
Operating System IIIT Kalyani 1✬

✫

✩

✪

Memory Management - I

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 2✬

✫

✩

✪

Memory is Shared

• In a computing system the CPU is shared

between processes (threads).

• It is necessary to keep images of different

processes in the main memorya.

• So the main memory is also shared among

different processes (threads).

aIt will be very costly in terms of time to load the process image during every

context switch.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 3✬

✫

✩

✪

Memory is Shared

• The logical memory space available to each

process on a particular system is almost

identical.

• It is necessary to map different logical spaces

to different parts of the main memory.

• Every logical address generated by the CPU

is translated to the corresponding physical

memory address.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 4✬

✫

✩

✪

Memory is Shared

• If the translation of logical address to main

memory address is slow, the performance of

the system will be poor.

• It is also necessary to protect the image of

one process against any attempt to tamper it

by another process.

• No user process should be allowed to modify

the translation data.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 5✬

✫

✩

✪

Memory is Shared

• There are also other issues e.g. whether the

whole or some parts of a process image

should be kept in the main memory at any

point of time.

• If the whole image is kept in the main

memory, a fewer number of processes can be

simultaneously accommodated in the main

memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 6✬

✫

✩

✪

Memory is Shared

• If only the currently active parts of the

images are kept in the main memorya, it will

be necessary to bring the other parts (data

or code) in the main memory as and when

required. That requires access to backup

store.

• But transferring data from the backup store

to main memory is a slower process.
aOther parts are in the storage device e.g. disk.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 7✬

✫

✩

✪

Memory is Shared

• Moreover the main memory may be already

full and it will be necessary to free some part

of it.

• There should be some protocol to select a

block of memory to free.

• A selected block to be removed might have

been modified (dirty) and it is necessary to

write it back in the backup store.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 8✬

✫

✩

✪

Memory Fault

• When a process tries to access a logical

address that is currently not present in the

main memory, there will be a memory

exception.

• The process cannot complete the offending

instruction and switches to the kernel mode.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 9✬

✫

✩

✪

Memory Fault

• The kernel initiates the loading of the

required portion of the logical space from the

backup store to the main memory and the

process is suspended.

• Once the required memory is loaded, the

process is ready for execution.

• When it is scheduled, it starts running from

the offending instruction.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 10✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• We start our discussion about logical

memory mapping and its protection with the

following simple scheme.

• Assume that every process image starts from

the same logical address zero (0) and is up

to certain high value ah.

• The whole image is loaded as a single block

in the main memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 11✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• Two registers are used in this scheme for

address translation and protection.

• One register is called the base register that

stores the address of the main memory

where the process image startsa.

• The other register is the limit register. It

stores the upper limit of the addressb.
aLogical address zero (0) is mapped to that.
bThe logical address ah is mapped to base + limit.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 12✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• Consider a process P2 whose range of logical

address is 0 to ah.

• It is loaded in the main memory starting

from the address 4096.

• The base register is loaded with 4096 and

the limit register is loaded with 4096 + ah.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 13✬

✫

✩

✪

Base and Limit Registers

Hi−address

Lo−address

Process − 0

Process − 2

Process − 3

Process − 1

Kernel

Main Memory

Process − 2 Image

0

a

mapping

Limit Register

Base Register

4096

code + data 4096+a

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 14✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• The CPU while executing code of the

process P2 normally generates address in the

range of 0− ah.

• The logical address is added to the base

address stored in the base register to get the

main memory address.

• The main memory address is compared with

the value stored in the limit register.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 15✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• If the main memory address exceeds the

limit register value, it is a violation of

memory that transfers control to the kernel

for exception handling.

• User process cannot modify the base and

limit registers as that requires privileged

instructions. This protects the memory

space of one process from another.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 16✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• The kernel savesa and loadsb these two

registers during a context switching.

• When a process is running in the kernel

mode, the base register may be set to zero

(0) and and limit register to the limit of the

main memory.

aFor the preempted process.
bFor the scheduled process.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 17✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• The kernel code needs to access the whole

main memory for different purpose e.g.

loading a process image, using part of

memory for IO buffer and copying data from

the buffer to the process space etc.

• The architecture may support the kernel to

bypass these two registers.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 18✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• This simple scheme does not work for a

modern computing system due to several

reasons.

• The scheme requires contiguous loading of

the whole process image.

• It is not clear how shared memory can be

implemented using the scheme.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 19✬

✫

✩

✪

Memory Mapping with Base and Limit Registers

• So communication between processes

through shared memory or use of shared

library seems to be impossible or very

difficult.

• It is also not possible to restrict access in

different parts of the process image. For

example the code is read-only, but data is

not. The code is usually not executable.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 20✬

✫

✩

✪

Memory Allocation and External Fragmentation

• The kernel keeps a list of main memory

blocks occupied by different processes and

also a list of available (free) blocks (along

with their sizes)a.

• In our base + limit register scheme, a

contiguous block of sufficient size is required

to load a process image to start execution.

aThis can be done through the free blocks itself forming a linked list.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 21✬

✫

✩

✪

Memory Allocation and External Fragmentation

• After the termination of a process the

memory block used by it is released to the

kernel pool of free blocks.

• It is possible that there are more than one

free blocks of sufficient sizes to accommodate

a process image. The natural question is,

which one to choose to load the image.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 22✬

✫

✩

✪

Memory Allocation and External Fragmentation

• There are different suggestions e.g. first-fit,

best-fit, worst-fit etc.

• first-fit: chooses the ‘first block’ of proper

size from the list of free blocks.

• best-fit: chooses the smallest among the free

‘blocks’ of suitable sizes.

• worst-fit: chooses the largest among the free

‘blocks’ of suitable sizes.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 23✬

✫

✩

✪

Memory Allocation and External Fragmentation

Each strategy has its justification -

• first-fit - it picks up the first available block

of suitable size to load the image, so it is

fastest.

• best-fit - it picks up the smallest block to

load the image, so the leftover of the free

block is of smallest size.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 24✬

✫

✩

✪

Memory Allocation and External Fragmentation

• worst fit - it pickup the largest block to load

the image, so the leftover free block is of

largest size.

• People run simulations on sequence of

request and release of blocks to measure

goodness of different strategies.

• It was observed that first fit and best fit are

better strategies compared to worst fit.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 25✬

✫

✩

✪

Memory Allocation and External Fragmentation

• After some allocation and release of memory

blocks, the available blocks may be broken

into small pieces.

• Due to this, it is possible that the total

volume of free memory is sufficiently large,

but there is no free block of suitable size to

load a process image.

• This is external fragmentation of memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 26✬

✫

✩

✪

External Fragmentation and Memory Compaction

• One possible solution to external

fragmentation is memory compaction i.e. to

collect all smaller free blocks to one large

free block.

• Memory compaction can be done in run-time

by copying process images and modifying

corresponding base + limit registers.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 27✬

✫

✩

✪

External Fragmentation and Swapping Out

• But copying of almost the whole main

memory is time consuming.

• Another solution to accommodate a new

process in the memory where no free block of

suitable size is available is to swap out an

existing process image (may be a suspended

one) to the backing store e.g. disk.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 28✬

✫

✩

✪

Swapping of Process Image

• When a scheduler decides a

context-switching, it invokes the dispatcher.

• The dispatcher picks the next process from

the ready queue.

• If its image is already there in the memory,

the execution may start immediately.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 29✬

✫

✩

✪

Swapping of Process Image

• If it is not, the dispatcher tries to find a free

memory block to load the process image.

• If no such free block is available, a process

image of suitable size from the main memory

is swapped outa to the backing store.

• The selected process image is loaded in the

newly created free memory block.
aSelection of a process for swapping is decided by some algorithm.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 30✬

✫

✩

✪

Swapping of Process Image

• Swapping out a process and loading one for

execution is again time consuming. It is also

not easy to select the right process to swap

out.

• Even in the swap area of the backing store

there will be external fragmentation

problem.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 31✬

✫

✩

✪

Segmented View of Memory

• The logical memory space of a process is

divided in several parts e.g. code segment,

data segment, stack segment, heap (data

segment allocated at run time), shared

library, shared memory etc.

• It is possible to divide the logical space into

these segments and map each segment to

different contiguous main memory locations.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 32✬

✫

✩

✪

Segmented View of Memory

• Dividing the logical space in smaller

segments has its advantages. The required

size of memory block for each segment will

be smaller.

• This may reduce the possibility of external

fragmentation.

• Each segment can have different types of

permissions e.g. r-x, rw-, r-- etc.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 33✬

✫

✩

✪

Segmented View of Memory

• There may be shared segments between

processes.

• All segments need not be present in the

main memorya.

• In this scheme a logical address has two

components, a segment address(ls) and an

offset (lo) within a segment.

aLoaded on demand.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 34✬

✫

✩

✪

Segmented View of Memory

• But then each segment requires its own base

and limit registers.

• There is a segment table per process. The

segment address part of the logical address

(ls) is used to access the segment table.

• Each entry in the segment table has a base

address of the segment in the main memory

(sb) and its size or limit (sl).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 35✬

✫

✩

✪

Segmented View of Memory

• If the segment offset (lo) of the logical

address is less than or equal to the segment

limit (lo ≤ sl), then the segment base

address is added to the offset (sb + lo) to get

the main memory address.

• Otherwise there will be memory access fault.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 36✬

✫

✩

✪

Segment Table Translation

s

o

s

o

base

Lo

Hi s
e

g
m

e
n

t n
o

o
ffs

e
t

+

no
yes

<=
Main Memory

Address

Segment Table

logical address

Memory

limit

Fault

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 37✬

✫

✩

✪

Segmented View of Memory

• An obvious question is where to store the

segment table.

• If the size of the table is small, it can be

stored in the memory management unit

(MMU) of the hardware.

• But a large segment table should be memory

resident.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 38✬

✫

✩

✪

Segmented View of Memory

• If the segment table is stored in the memory,

then for each logical memory access there

are two main memory access.

• The first one is to access the segment table

in the memory, and the second one is to

access the actual data or instruction.

• This will slowdown the process considerably.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 39✬

✫

✩

✪

Segmented View of Memory

• One way to achieve faster address

translation is to keep relevant segment table

entries in a fully associative cache memorya

in the memory management unit.

• Most of the time the translation will be

through the entries present in the cache and

will be fast.
aNot to be confused with the cache memory in the memory hierarchy.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 40✬

✫

✩

✪

Segmented View of Memory

• If a segment entry is not available in the

segment table cache, the segment table in

the main memory is accessed for translation.

• This entry will also be loaded in the segment

table cache to make subsequent translations

fastera.
aWe shall discuss about the cache in detail in connection to paging.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 41✬

✫

✩

✪

Segmentation to Paging

• Though segmentation divides the logical

address space, it cannot avoid external

fragmentation.

• Also segments are of different sizes which

makes loading a segment, and housekeeping

of free and occupied memory slots more

difficult.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 42✬

✫

✩

✪

Segmentation to Paging

• An alternate scheme called paging has

become more popular. All pages are of equal

size.

• There is no external fragmentation in

paging, but there may be loss of memory due

to partly occupied page, known as internal

fragmentation.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 43✬

✫

✩

✪

Basic Paging

• The main memory is divided into fixed size

blocks known as page frames.

• The logical address space is divided in equal

size blocks called pages.

• When a process image is loaded, its pages

are loaded in free page frames of the main

memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 44✬

✫

✩

✪

Basic Paging

• For each process there is a kernel data

structure called a page-map table or page

tablea.

• The page table of a process translates a valid

logical address to the main memory address.

aThere are schemes where a global page table for the entire system is used.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 45✬

✫

✩

✪

Page Fault

• If the logical address is invalid or the page is

not present in the main memory, then it can

be detected from the page table.

• This event generates a page fault exception.

Different actions are taken by the OS kernel

depending on the situationa.

aIf the page is invalid it is a memory violation. Otherwise an empty page

frame may be allocated to the process. The new page frame may be loaded from

the backing store e.g. file system or swap area etc.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 46✬

✫

✩

✪

Page Mapping

P3

P2

P1

P0

P3

P2

P1

P0

P
a
g
e
s

P
a
g
e
s

Process−I

Process−II

P3

P1

P3

P2

P2

P1

P0

P0

OS
P

a
g
e
 F

ra
m

e
s

Main Memory

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 47✬

✫

✩

✪

Page Mapping

Page No. Offset

Logical Address from CPU

Index to page table

Offset

Page Frame Nos Fields

Other

Frame No

Main Memory Address
Simple Page Table

PTBR

N O

F O

L

M

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 48✬

✫

✩

✪

Page Table

• In the simplest form of page table mapping a

logical address has two parts - a page

number and an offset within the page.

Logical address: Page Number Offset

• The page number is an index to the page

table that stores the base address of the

page frame holding the pagea.
aProvided it is valid and present.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 49✬

✫

✩

✪

Page Mapping

P3

P1

P3

P2

P2

P1

P0

P0

OS

P
a

g
e

 F
ra

m
e

s

Main Memory

P3

P2

P1

P0

P3

P2

P1

P0

P
a

g
e

s
P

a
g

e
s

Process−I

Process−II

0

1

2

3

0

1

2

3

0

1 

2

3

4

5

6

7

8
8

4

2

1 

5

3

7

0

Page Table Proc. II

Page Table Proc. I

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 50✬

✫

✩

✪

Page Mapping: an Example

• Let the logical address be 32-bit (a31 · · · a0),

and the page-frame size be 4-KB.

• The bits a11 · · · a0 specifies the offset within

a page.

• The page number is specified by a31 · · · a12

i.e. there are 220 = 1M pages.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 51✬

✫

✩

✪

Page Mapping: an Example

• Let the size of each entry of the page table

be 32-bits, of which 20-bits specify the page

frame number.

• The total size of the page table for every

process is 4 MB.

• This is too large a space for meta data per

process. We shall see solutions for this.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 52✬

✫

✩

✪

Page Mapping: an Example

• Consider a logical address 0x12345678.

• The offset within a page is 0x678 = 0110

0111 1000B.

• The page number is 0x12345 = 0001 0010

0011 0100 0101.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 53✬

✫

✩

✪

Page Mapping: an Example

• Let the page table entry corresponding to

this page number be 0x87654321. The least

significant 20-bits specifies the base addressa

of the page frame.

• Let the page frame base address be

0x54321000.

• The main memory address corresponding to

the logical address is 0x54321678.
aMost significant 20-bits.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 54✬

✫

✩

✪

Page Mapping: an Example

• Other 12-bit of the page table entry are used

to store different information about the page

e.g. page valid, page present, page CoW,

r-w-x permissions etc.

• If the page is not present in main memory,

the lower order 20-bits may store information

about its location in the backup store.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 55✬

✫

✩

✪

Page Table: Linux on x86-64

• The logical address of x86-64 architecture is

48-bit (a47 · · · a0).

• Common page size is 4 KB (a11 · · · a0)
a.

• The page number is specified by a47 · · · a12.

• Every page has a 64-bit entry in the page

table.
aOther page sizes are also possible.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 56✬

✫

✩

✪

Page Table: Linux on x86-64

• The number of pages per process is

236 = 64G!

• So the size of page table per process is 512

GB.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 57✬

✫

✩

✪

Page Table: Linux on x86-64

• Given a logical address (A) (say of a

variable), we can find its page number by

pn = A/ps, where ps is the page size.

• The offset of the corresponding page table

entry is to = pn × es, where es is the entry

size.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 58✬

✫

✩

✪

Advantages of Paging

• Allocation of a page in page frames is simple

as each page is of same size.

• There is no external fragmentation. But a

few pages per process may not be completely

full (internal fragmentation)a.

aAny access to that logically empty part is difficult to restrict.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 59✬

✫

✩

✪

Advantages of Paging

• Shared memory among processes is easy to

implement in a paged memory management

system. Shared main memory frames can be

attached to logical pages of different

processes.

• If the code is not self-modifying (re-entrant)

it can also be shared. OS kernel can ensure

that the permission for pages of shared code

is read and execute.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 60✬

✫

✩

✪

Advantages of Paging

• In general access restrictions can be enforced

for every page through the page table.

• A page table entry not only contains the

mapping to the main memory address, but

also bits are kept for access permissions and

other information.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 61✬

✫

✩

✪

Address Translation by Page Table

There are several issues in connection to the

page table and address translation.

• The first question is where to keep the page

table and how to organize it.

• Then what will be the time penalty for

address translation and how to reduce it.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 62✬

✫

✩

✪

Page Table in Hardware

• If the logical address space is small and there

are smaller number of page frames, the page

table can be stored in the memory

management unit (MMU).

• Consider the the case of PDP-11 (DEC)

where the logical address was 16-bit, and the

page size was 8 KB.

• So there are only eight (8) page frames.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 63✬

✫

✩

✪

Page Table in Hardware

• The 8-entry page table was stored in the

hardware, which will be saved and loaded by

the Kernel during contest- switchinga.

• In this case the address translation will be

fast, and the penalty is little.

aMust be done by privileged instructions.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 64✬

✫

✩

✪

Large Page Table per Process

• But in a modern CPU the size of a page

table is much larger. Assuming the size of

page frame to be 4 KB.

• On a 32-bit architecture, the number of

pages are 220.

• On a 48-bit logical address e.g. x86-64a, the

number of pages are 236.
aHigher order 16-bits are not used.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 65✬

✫

✩

✪

Large Page Table per Process

• In case of 32-bit architecture, assuming

4-bytes for each page table entry, the size of

the page table (per process) is 4 MB.

• In case of 48-bit logical address, assuming

8-byte for each page table entry, the size of

the page table is 1
2
TB.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 66✬

✫

✩

✪

Page Table in Memory

• A page table of such a large size cannot be

stored in the MMU hardware.

• Even if the whole page table is stored in the

memory, it will occupy a large portion of it.

• For 32-bit address space the full table

occupy 1K page frames, and for 48-bit

address space it will occupy 128 M page

frames, per process.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 67✬

✫

✩

✪

Page Table in Memory

• Large page tables are divided into pages.

• Every page of the page table for a process

need not be valida.

• Every valid page of the page table need not

be present in the main memory for the whole

running time.

aThere are large ‘holes’ in the logical address space.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 68✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• The 32-bit logical address is translated to

main memory address using a 2-level page

table.

• The top level is called a page directory. Its

size is 4KB and there are 1K entries each of

size 4B.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 69✬

✫

✩

✪

32-bit Address Translation

Page No.

Logical Address from CPU

Offset

Main Memory Address

O

F O

L

M

PTBR

Page Directory

D

Directory Offset
Fields
Other

Partitioned Page Table

T

Page Table Offset

Fields

Other

Page Frame No
10 10

031

Frame No

12

PTB

Offset

entry 0

i iTh partition

Page Table Base

0Th partition

Page Table

Page Table

iTh partition

Page Table

entry 1023

1023rd partition

4KByte

4KByte

4KByte

4KByte

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 70✬

✫

✩

✪

32-bit Address Translation

Logical Address
01112212231

PTBR

+

Lo

Page Directory

+

Page Table

+

Page

Main Memory

Hi

X 2
12

X 2
12

X 4 X 4

Main Memory
Address

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 71✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• The base address of the page directory is

stored in a MMU register called the page

directory base register (PDBR)a.

• The higher order 10-bits of the logical

address provides the offset within the page

directory (PDBR + 4× a31 · · · a22).

• Each page directory entry corresponds to 4

MB of logical space.
aIt is called cr3 in IA-32 architecture.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 72✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• 20-bits of a 32-bit bit entry of the page

directory provides the base address

(d19 · · · d0

12
︷ ︸︸ ︷

0 · · · 0) of a partition of the page

table, where each entry is of size 4B.

• The offset within this partition of the page

table comes from the next 10-bits of the

logical address

(212 × d19 · · · d0 + 4× a21 · · · a12).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 73✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• 20-bits of a 32-bit bit entry of the page table

provides the base address (t19 · · · t0

12
︷ ︸︸ ︷

0 · · · 0) of

the required page.

• The offset within the page comes from the

last 12-bits of the logical address

(212 × t19 · · · t0 + a11 · · · a0).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 74✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• Both from the page directory and from the

page table 20-bits of each entry are used as

the base addressesa of a page frame in the

main memory, provided the portion of the

page table and the page are present.

• Otherwise, if the page is valid, it may

contains information about the location of

the page in the backup store.
aAligned to 4KB boundary.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 75✬

✫

✩

✪

32-bit Two-Level Paging: an Example

• Remaining 12-bits of each entry stores other

information e.g. the page is valid, page or

page table is present, CoW and other

permissions etc.

• A page fault exception is generated if either

the page is not valid or not present.

• Following the exception, necessary actions

are taken by the Kernel.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 76✬

✫

✩

✪

Note

• The address of an instruction or of a data

may generate a page fault exception.

• If it is a real memory access violation, the

process may be terminated.

• But there are other possibilities where a new

page frame may be allocated to the process.

And it may be loaded with data from the

backup store.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 77✬

✫

✩

✪

Note

• At times it may be necessary to suspend the

process during the data read.

• But then the process is to be restarted from

the instruction that has generated the page

fault.

• That requires some housekeeping by the

hardware and the page fault handler.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 78✬

✫

✩

✪

Note

• It is also possible that no free page frame is

available to load the new page.

• It will be necessary to remove some of the

existing pages to create space.

• But then the question is which page to

remove, and what is to be done if the page is

dirty.

• There are page replacement policies.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 79✬

✫

✩

✪

Advantages of Hierarchy

• The hierarchical page table organization has

tremendous advantage in terms of space

usage per process.

• Only the top-level of the page tablea must be

present in the main memory.

• Other levels may be absent (invalid)

altogether or may be at the backup store

and loaded on demand.
aPage directory for 2-level or PML4E for 4-level for each process.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 80✬

✫

✩

✪

Problem of Hierarchy

• Each logical memory access requires three

(3) main memory access in case of 2-level

page table and five (5) main memory access

in case of 4-level page table.

• This is simply unacceptable.

• The MMU architecture provides hardware

support to solve the problem.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 81✬

✫

✩

✪

Spatial and Temporal Locality of Access

• It is well known that access to memory

locations often changes slowly over time.

• Most often the current-instruction is not a

jump or a branch. So instruction execution

takes place in a spacial locality.

• Most of the time spent in execution of a

code are in loops. The same code is executed

again and again - it is temporal locality.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 82✬

✫

✩

✪

Spatial and Temporal Locality of Access

• Data access also has a pattern and it is

claimed that this too satisfies the principles

of locality.

• The number of pages accessed by a process

during its CPU time slice is not too large.

• Often a small portion of the page table is

used for address translation during this

period.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 83✬

✫

✩

✪

Translation Look-aside Buffer (TLB)

• The MMU architecture provides a

fully-associative or set-associative cache

known as a translation look-aside buffer

(TLB). It stores the translation of most

relevant logical pages.

• Most often the logical addresses generated

by the CPU is translated to the main

memory addresses using the TLB.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 84✬

✫

✩

✪

Translation Look-aside Buffer (TLB)

• If the entry corresponding to the logical page

is not present in the TLB (miss), the page

table is accessed for translationa.

• The translation entry (page number, frame

base address, protection etc.) from the page

table is also loaded in some free slot of the

TLB.
aThis may be done by the hardware or by the OS kernel in response to an

exception may be called a soft page fault.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 85✬

✫

✩

✪

Translation Look-aside Buffer (TLB)

• If no free slot of the TLB is available, some

existing entry is removed to accommodate

the new translation.

• The replacement policy may be least recently

used (LRU), random, or round-robin (RR).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 86✬

✫

✩

✪

Context-Switching

• At the time of context-switching the PTBR

corresponding to the page table of the

preempted process is saved.

• The new value of the page directory base

address corresponding to the scheduled

process is loaded in the PTBR.

• TLB entries are invalidated as they

correspond to the preempted process.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 87✬

✫

✩

✪

Context-Switching

• Some TLB stores an identifier of a processa

along with its translation entries.

• In such a case the logical address must

contain the identifier of the generating

process.

• A TLB entry is valid only if the current

process identifier matches with the identifier

of the TLB entry.
aThis need not be the PID given by the OS kernel.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 88✬

✫

✩

✪

Context-Switching

• In a TLB with process identifier, it is not

necessary to invalidate entries during

context-switching.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 89✬

✫

✩

✪

Inverted Page Table

• The logical address space of a modern

processor is very large. So the possible

number of pages are also large.

• Each page has an entry in the page table

(for each process).

• Many of these entries are actually invalid as

there is no real page corresponding to it.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 90✬

✫

✩

✪

Inverted Page Table

• But large number of entries makes the size of

page table per process rather large.

• Hierarchical page table organization solves

this problem to some extent where lower

label tables may be absent.

• An Inverted page table is an alternate

solution.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 91✬

✫

✩

✪

Inverted Page Table

• It is a global page table with each entry

corresponds to a page frame of the main

memory.

• Each valid entry of the table contains a

logical page number and the corresponding

process identifier.

• The base address of the page frame can be

derived from the index of the page tablea
abase address = index×k + c.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 92✬

✫

✩

✪

Inverted Page Table

• The table is searched for a logical address

along with the process identifier. The search

naturally takes a long time.

• But most of the time the address translation

takes place through the TLB cache and the

table search is not necessary.

• It is difficult to implement shared memory

on an inverted page table.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 93✬

✫

✩

✪

Inverted Page-Table

CPU
pid page no. page offset

search

Inverted Page Table

0

i
page no.pid

pid page no. j

fun

page frame base page offset

Main memory address

Logical address

pid page no.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 94✬

✫

✩

✪

Memory Mapped File

• A disk file is accessed using IO system calls

like open(), read(), write() etc.

• But a file or a portion of it can also be

mapped to the main memory and attached

to the logical address space of one or more

processes.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 95✬

✫

✩

✪

Memory Mapped File

• Thereby a file IO can be done by access to

the memory regions where it is attached.

• Data can be read, written and even execute.

File can also be used for inter process

communication.

• Following are a few examples.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 96✬

✫

✩

✪

Memory Mapped File: Read

/*

* memoryMapFile1.c++ maps a file to the address space

* process in read only mode

* $ ./a.out ./inData

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 97✬

✫

✩

✪

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

int main(int ac, char *av[]){

int fd, size;

char *mapP;

if(ac < 2){

cerr << "File path not specified\n" ;

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 98✬

✫

✩

✪

exit(1);

}

fd = open(av[1], O_RDONLY);

if(fd == -1){

cerr << "File open error\n";

exit(1);

}

size = sysconf(_SC_PAGE_SIZE);

mapP = (char *)mmap(0, size, PROT_READ, MAP_PRIVATE,

if(mapP == MAP_FAILED){

cerr << "Map failed\n";

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 99✬

✫

✩

✪

exit(1);

}

cout << mapP << endl;

close(fd);

return 0;

}

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 100✬

✫

✩

✪

Memory Mapped File: Read

• The file name supplied as the command line

argument contains a string of characters.

• It is opened as usual in read mode, attached

to the logical address space by the mmap()

with with the read permission.

• The specified length of the mapping is the

page size of the memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 101✬

✫

✩

✪

Memory Mapped File: Read

• It is a private mappinga.

• The offset is zero (0) i.e. the mapping starts

from the beginning of the file.

• The mapping address of the logical address

space is unspecified (NULL) and is decided by

the kernel.
aModifications, not applicable for this example, is not reflected in the original

file.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 102✬

✫

✩

✪

Memory Mapped File: Read

• The call to mmap() returns the starting

address of the attached memory location.

• The file can be read using this address.

• Finally we unmap and close the file.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 103✬

✫

✩

✪

Demand Paging

• The Kernel may load the complete process

image while creating it. But that may lead

to poor utilization of main memory for a

large process.

• An alternative is to make the lazy loading of

the process pages on demand and also in

anticipation.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 104✬

✫

✩

✪

Demand Paging

• But that requires swapping pages back and

forth between the main memory and the

backup store.

• There are mainly two places of the backup

store from where this swapping takes place.

They are the file system and the swap area.

• Demand paging requires some support from

hardware architecture.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 105✬

✫

✩

✪

Demand Paging: Page Table

• A valid page of a process may not be present

in the main memory.

• Each page table entry may have another bit

(present) to indicate the presence or absence

of a valid page.

• It is also necessary to save the information

about the location of the page in the backup

store.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 106✬

✫

✩

✪

Demand Paging: Page Table

• If a page is absent from the main memory,

the bits used to store the page-frame number

in the entry are available.

• These bits may be used to store the block

number of the backup store where the page

was swapped out or to be loaded from.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 107✬

✫

✩

✪

Demand Paging: Page Fault

• Page faults of a demand paging system are

of at least of two different types.

• The page fault may be due to an attempt to

access an invalid page by the processa.

• The page is valid but not present in the

main memory.

aIt may be invalid due to several reasons - (i) not a valid address, (ii) attempt

to write on a read-only page etc.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 108✬

✫

✩

✪

Demand Paging: Page Fault

• On any page-fault the state of the CPUa is

saved along with the address of the offending

instruction and the offending address of data.

The control is then transferred to the kernel.

• If the offending address is invalid, the

process is terminated.

aThe state before the execution of the current instruction.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 109✬

✫

✩

✪

Demand Paging: Page Fault

• If the address is valid but the corresponding

page is not present in the main memory,

following actions are initiated by the

page-fault handler.

• A page-frame is obtained from the the list of

free page-framesa.

aIf there is no page-frame free, some occupied frame is to be replaced.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 110✬

✫

✩

✪

Demand Paging: Page Fault

• The operation of loading the page, may be

spread over several disc blocks, from the file

system or the swap area is initiated.

• As the disk IO is a much slower operation,

the process is suspended.

• Once the page is loaded in the frame, the

kernel updates the page-table data structure

and changes the process state to ready.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 111✬

✫

✩

✪

Demand Paging: no Free Page-frame

• If there is no free page-frame available, one

of the occupied frames is to be freed. The

question is which one.

• Different page replacement algorithms are

proposed. But there are two essential issues.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 112✬

✫

✩

✪

Demand Paging: no Free Page-frame

• The kernel must decide the number of pages

for a process to be present in the main

memory. This determines the degree of

multi programming.

• The kernel also have a policy to select a page

frame to replace when there is no free frame

available. The policy may be local to a

process or may be system wide.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 113✬

✫

✩

✪

Demand Paging: Replacing a Dirty Page

• The frame selected for replacement may be

dirty (modified)a i.e. its last image in the

disk contains old data.

• So it is necessary to write it back in the disk.

It amounts to writing a page and reading the

demand pageb.

aIndicated by the dirty bit of the page table entry.
bThe process can be expedited using a free page frame list.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 114✬

✫

✩

✪

Page Replacement and Performance

• Page replacement has an impact on the

performance on the computing system.

• If the replaced page is referenced

immediately, there will be a page fault and

the replaced page is to be brought back to

memory by replacing another page.

• Very frequent page replacement may lead to

a phenomena called thrashing.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 115✬

✫

✩

✪

Page Replacement and Performance

• Let the memory access time be m and

page-fault handling time be f .

• If the probability of page-fault is

p, 0 ≤ p ≤ 1, the average memory access

time a = (1− p)m+ f

• Typically the value of m is in the order of

10’s of nanoseconds and f is of the order of

milliseconds.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 116✬

✫

✩

✪

Page Replacement and Performance

• If we take m = 20 ns and f = 10 ms, then

the average access time is

a = 20(1− p) + 107p ≈ 20 + 107p.

• If we wish to keep the degradation of

memory access time for demand paging

within 10% of the actual memory access

time, then 107p = 2 ⇒ p = 2× 10−7.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 117✬

✫

✩

✪

Page Replacement Algorithm: FIFO

• The oldest page brought into the memory

will be replaced.

• A queue of page frames in the order of their

loading is maintained.

• When required, a page from the front of the

queue will be replaced.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 118✬

✫

✩

✪

Page Replacement Algorithm: FIFO

• The problem is, an active page loaded long

back may be replaced. An immediate

subsequent access to it will give rise to a new

page fault.

• The algorithm shows a peculiar behavior

known as Belady’s anomaly. The number of

page faults increases for some sequence of

page references even with the increase of

page frame numbers.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 119✬

✫

✩

✪

Page Replacement Algorithm: FIFO Example

Page references: 7 2 3 1 2 5 3 4 6 7 7 1 0 5 4 6 2 0 3 0 1,
No of Page frames: 3

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 120✬

✫

✩

✪

Frames Ref. Pages Fault

7 7 1

7 2 2 2

7 2 3 3 3

1 2 3 1 4

1 2 3 2 4

1 5 3 5 5

1 5 3 3 5

1 5 4 4 6

· · · · · · · · · · · · · · ·

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 121✬

✫

✩

✪

Page Replacement Algorithm: Optimal

• If the complete sequence of page references is

known, then for a fixed number of page

frames, there is an algorithm that gives

lowest number of page faults.

• A page that will not be referenced for the

longest time in future is replaced.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 122✬

✫

✩

✪

Page Replacement Algorithm: Optimal Example

Page references: 7 2 3 1 2 5 3 4 6 7 7 1 0 5 4 6 2 0 3 0 1,
No of Page frames: 3

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 123✬

✫

✩

✪

Frames Ref. Pages Fault

7 7 1

7 2 2 2

7 2 3 3 3

1 2 3 1 4

1 2 3 2 4

1 5 3 5 5

1 5 3 5 5

1 5 4 4 6

· · · · · · · · · · · · · · ·

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 124✬

✫

✩

✪

Page Replacement Algorithm: Optimal

• The optimal page replacement algorithm is

not useable simple because the future frame

references depend on data.

• In case of global replacement policy it also

depend on page references of other processes

on the system.

• It is mainly used to compare other

replacement algorithms.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 125✬

✫

✩

✪

Page Replacement Algorithm: LRU

• The LRU (least recently used) algorithm

works on assumption that a page referenced

long back may not be referenced in near

future.

• Each page frame may be associated with a

time stamp. When a page is referenced, the

time stamp is updated.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 126✬

✫

✩

✪

Page Replacement Algorithm: LRU

• The page with the oldest time stamp is

replaced when required.

• The main problem of implementation is the

fast update of time stamp on each reference

to a page, and search for the page with the

oldest time stamp.

• Its implementation requires architectural

support.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 127✬

✫

✩

✪

Page Replacement Algorithm: LRU

Page references: 7 2 3 1 2 5 3 4 6 7 7 1 0 5 4 6 2
0 3 0 1,
Page frames: 3

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 128✬

✫

✩

✪

Frames Ref. Pages Fault

70 7 1

71 20 2 2

72 21 30 3 3

10 22 31 1 4

11 20 32 2 4

12 21 50 5 5

30 22 51 3 6

· · · · · · · · · · · · · · ·

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 129✬

✫

✩

✪

LRU Implementation: I

• A time stamp field is associated with each

page table entry. It is updated every time

the page is referenced.

• There may be a logical clock or counter

available in the CPU. Which is incremented

on every memory reference and its value is

written in the time stamp field of the

corresponding page.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 130✬

✫

✩

✪

Note

• Most address translations are through the

TLB.

• What happens when there is a context

switch.

• It takes time to find the LRU page when a

page replacement is requireda.

aThe page with oldest time stamp may not be in the main memory.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 131✬

✫

✩

✪

LRU Implementation: II

• A stack-like data structure may be used to

keep track of page usage.

• The bottom of the stack holds the LRU

page, and the top of the stack holds the

most recently used page.

• When a page is referenced, it is taken out

from the middle of the stack and put on the

top of it.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 132✬

✫

✩

✪

LRU Implementation: II

• It is costly to update the page reference

stack and makes it useless without any

architectural support.

• But no search is required to locate the LRU

page during a page replacement.

• MMU Architecture provides a very limited

support in the form of reference bit(s),

insufficient for LRU implementation.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 133✬

✫

✩

✪

Reference Bit(s)

• There is a reference bit with every entry of

the page table. They are set to zero (0)

when a process is created.

• Every time a page is referenced, the

corresponding reference bit is set to one (1).

• The simplest page replacement algorithm

will replace a page of reference bit zero (0).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 134✬

✫

✩

✪

Better Ordering Using Reference Bits

• The kernel may maintain a list of 8-bit

counters (Ck) for each valid page Pk of a

process. Counters are initialized to

0000 0000 when a process is created.

• These data structure is updated after a

regular interval (Ij) of the order of the CPU

time quantum of a processa.

aDuring context switching.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 135✬

✫

✩

✪

Better Ordering Using Reference Bits

• At the end of the interval Ij, the counter Ck

is shifted right by 1-bita and the reference

bit of the page Pk is copied to the most

significant bit (b7) of Ck.

• The counter Ck maintains the reference

history of Pk through the last eight intervals

with a higher weight for more recent

intervals.
aThe least significant bit is discarded.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 136✬

✫

✩

✪

Better Ordering Using Reference Bits

• If there are n pages, {P0, · · · , Pn−1}, then a

page corresponding to min{C0, · · · , Cn−1} is

a ‘LRU’ page.

• There may be several pages with same Ck

value and which one to replace is to be

decided.

• It also takes time to search for the least Ck

from the page reference list.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 137✬

✫

✩

✪

Modified FIFO using Reference Bit

• The reference bit can be used to modify

FIFO algorithm in a simple way.

• If a page at the head of the FIFO queue

(circular), but its reference bit is one (1), it

is be given a second chance.

• The reference bit is cleared and the page is

brought to the rear of the queue by

advancing the head pointer.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 138✬

✫

✩

✪

Modified FIFO using Reference Bit

• A page is replaced if it is at the head of the

queue and its reference bit zero (0).

• In the worst case when the reference bits of

all pages in the queue are ones (1), the head

pointer traverse the whole list to locate a

replaceable page, the first one at the

beginning.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 139✬

✫

✩

✪

FIFO using Reference and Dirty Bit

• This algorithm can be modified further using

the reference and dirty bits, (r, d).

• There are four (4) possible situations and

the best page to replace is the one where

(r = 0, d = 0).

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 140✬

✫

✩

✪

Free-Page Pool

• The kernel may maintain a steady free page

frame pool.

• The page on demand will be loaded in one of

the free pages frames from the pool.

• The selected replaceable page will go back to

the free page pool after write-back if

necessary.

Lect 6 Goutam Biswas



Operating System IIIT Kalyani 141✬

✫

✩

✪

Bibliography

1. Operating System Concepts by Abraham Silberschatz, Peter B

Galvin & Gerg Gagne, 9th ed., Wiley Pub., 2014, ISBN

978-81-265-5427-0.

2. Operating Systems: Three Easy Pieces by Remzi H.

Arpaci-Dusseau & Andre C. Arpaci-Dusseau Pub.

Arpaci-Dusseau Books, LLC, 2008-19.

3. Beginning Linux Programming by Neil Mathew & Richard

Stones, 3rd ed., Wiley Pub., 2004, ISBN 81-265-0484-6.

4. Understanding the Linux Kernel by Daniel P Bovet & Marco

Cesati, 3rd ed., O’Reilly, ISBN 81-8404-083-0.

5.

https://github.com/0xAX/linux-insides/blob/master/Theory/Paging.md

Lect 6 Goutam Biswas


