
Operating System IIIT Kalyani 1✬

✫

✩

✪

Synchronization in Cooperating Processes - I

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 2✬

✫

✩

✪

Concurrent and Parallel Execution

• Threads of execution of different processes

can run on different cores of a modern

processor concurrently or in parallel.

• A running thread may be interrupted at any

point. And another thread may be scheduled

in its place on the processing core.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 3✬

✫

✩

✪

Cooperating Process

• Two processesa are said to be cooperating if

one can affect or gets affected by the

computation of the other.

• Cooperating processes share data either by

sharing the address space, or by sharing file

or by exchange of messagesb.

aThis is true for different threads within a process.
bThreads within a process share the global data space.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 4✬

✫

✩

✪

Cooperating Process

• Concurrent and/or parallel execution of

cooperating processes or threads may lead to

concurrent access to shared data.

• If such an access is unrestricted, it may lead

to data inconsistency.

• Different methods have been designed to

maintain data integrity by putting

restriction on concurrent access of data.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 5✬

✫

✩

✪

Producer-Consumer

• Following example is the classic

producer-consumer problem of cooperating

processes.

• Producer and consumer processes share data

through a bounded buffer.

• The producer generates data that is used by

the consumer.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 6✬

✫

✩

✪

Producer-Consumer

• The bounded buffer is organized as a finite

size circular queue.

• The queue resides in the shared memory.

• The producer can add data as long as the

queue is not full.

• The consumer can consume so long as the

queue is not empty.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 7✬

✫

✩

✪

A Queue: queue.h

/*

header file for queue.h

*/

#ifndef _QUEUE_H

#define _QUEUE_H

#define MAX 5

#define ERROR 1

#define OK 0

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 8✬

✫

✩

✪

class queue {

private:

int data[MAX];

int front, rear, count ;

public:

queue();

int addQ(int);

int deleteQ(void);

int frontQ(int &);

int isEmptyQ();

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 9✬

✫

✩

✪

int isFullQ();

} ;

#endif

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 10✬

✫

✩

✪

A Queue: queue.c++

/*

* queue.c++ implementation of int

* queue

* $ g++ -Wall -c queue.c++

*/

#include "queue.h"

queue::queue() {

front = rear = 0; count = 0;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 11✬

✫

✩

✪

}

int queue::isFullQ(){

return count == MAX;

}

int queue::isEmptyQ(){

return count == 0;

}

int queue::addQ(int n){

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 12✬

✫

✩

✪

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

count = count+1;

return OK;

}

int queue::frontQ(int &v){

if(isEmptyQ()) return ERROR;

v = data[(front+1)%MAX] ;

return OK;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 13✬

✫

✩

✪

}

int queue::deleteQ(){

if(isEmptyQ()) return ERROR;

front = (front+1)%MAX ;

count = count - 1;

return OK;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 14✬

✫

✩

✪

Producer-Consumer: prodCon1.c++

/*

* prodCon1.c++ Producer-Consumer Problem on

* shared memory

* $ g++ -Wall prodCon1.c++ queue.o

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <stdlib.h>

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 15✬

✫

✩

✪

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

#include <unistd.h>

#include "queue.h"

void producer(queue *);

void consumer(queue *);

int *countP, *countC; // global counters

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 16✬

✫

✩

✪

int main() {

int shmID, chID1, chID2, status ;

struct shmid_ds buff ;

queue *qP ;

shmID = shmget(IPC_PRIVATE,

sizeof(queue),

IPC_CREAT | 0777);

if(shmID == -1) {

perror("Error in shmget\n") ;

exit(1) ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 17✬

✫

✩

✪

}

qP = (queue *) shmat(shmID, 0, 0777);

countP = (int *)(qP+1);

countC = countP+1;

*countP = *countC = 0; // counter init

if((chID1 = fork()) != 0) { // Parent

if((chID2 = fork()) != 0) { // Parent now

waitpid(chID1, &status, 0);

waitpid(chID2, &status, 0);

cout << *countP << " data produced\n";

cout << *countC << " data consumed\n";

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 18✬

✫

✩

✪

shmdt(qP) ;

shmctl(shmID, IPC_RMID, &buff);

}

else producer(qP);

// consumer(qP);

// Child 2: producer

}

else consumer(qP);

// producer(qP);

// Child I: consumer

return 0 ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 19✬

✫

✩

✪

}

void producer(queue *qP){

int added = 1, i;

for(i=1;i<=500000;++i) {

int data, err;

if(added) {

data = rand() ;

added = 0 ;

}

err = qP->addQ(data) ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 20✬

✫

✩

✪

if(err == OK) {

added = 1 ;

cout << "Produced Data "

<< ++(*countP)

<< " " << data << "\n" ;

}

}

}

void consumer(queue *qP) {

int i;

for(i=1; i<= 500000; ++i) {

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 21✬

✫

✩

✪

int data, dataOK;

dataOK = qP -> frontQ(data);

qP -> deleteQ(); // where to put this code

if(dataOK == OK){

// qP -> deleteQ() ;

cout << "\tConsumed Data "

<< ++(*countC)

<< " " << data << "\n" ;

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 22✬

✫

✩

✪

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 23✬

✫

✩

✪

Producer-Consumer: output1

Produced Data 379 1858721860

Produced Data 380 1548348142

Produced Data 381 105575579

Produced Data 382 964445884

Produced Data 383 2118421993

383 data produced
309 data consumed
Funny output, Note that the queue size is only
5. Is it due to race?

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 24✬

✫

✩

✪

Race Condition

• The consumer deletes some data without

reporting.

• Two concurrent processes producer and

consumer update the data structure queue.

• The outcome depends on the order of access

to the shared data by their components e.g.

addQ(), deleteQ() etc.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 25✬

✫

✩

✪

Race Condition

• Even if the queue is empty while executing

qP -> frontQ(data), it may not be empty

while executing the next method

qP -> deleteQ().

• The method deletes the item without

reporting.

• This is known as race condition.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 26✬

✫

✩

✪

Race Condition

• This can be avoided by shifting

qP -> deleteQ() within the guard of

if(dataOK == OK).

• But a similar race condition may arise at a

finer granularity as the high-level language

constructs are translated to a sequence of

machine instructions.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 27✬

✫

✩

✪

Race Condition

• The increment and the decrement of the

count of queue elements, qP -> count (not

public), may not be done by a single

machine instruction. So the increment

operation is interruptible.

• It is possible that the increment operation of

the producer process is interrupted

immediately after the count is read from the

memory to a CPU register.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 28✬

✫

✩

✪

Race Condition

• Before the data update takes place in the

memory, count is also read for the decrement

operation by the consumer processa.

• Both the processes have the same

qP -> count value say n. One will

increment it to n+ 1 and the other will

decrement it to n− 1.
aThere is a context switch or the consumer is running in parallel.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 29✬

✫

✩

✪

Race Condition

• Finally both the processes will write in the

memory location. The value of the one who

writes last will remain.

• But both the situationsa are incorrect.

• After producing a new data and consuming

an old data the qP -> count should remain

at n.
aThe consumer is writing last or the producer is writing last.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 30✬

✫

✩

✪

Race Condition

• Normally a machine instruction is

uninterruptible i.e. an interrupt is processed

only after the completion of the current

instruction.

• On a uniprocessor system if increment and

decrement of a memory location is

performed by one machine instruction, the

previous race condition will not arise.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 31✬

✫

✩

✪

Race Condition

• But on a multi core/processor system the

race condition cannot be avoided even if

data update is done by one instruction,

unless the memory location is locked.

• The producer and the consumer processes

running in parallela can access the same

memory location concurrently, and read the

data on two different memory cycles.
aOn different cores/processors

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 32✬

✫

✩

✪

Race Condition

• The breakdown of atomicity of instruction

execution can be restored by locking the

memory location implicitlya or explicitly by

using a memory lock.

• Essentially, the memory update should be

mutually exclusive.

aAny memory access instruction will lock the location.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 33✬

✫

✩

✪

Race Condition

• A race condition may occur in a user

program having multiple threads or

processes. It may also take place while

executing the kernel code.

• There may be several processes running the

kernel mode in a system.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 34✬

✫

✩

✪

Race Condition

• A race conditions in kernel mode may occur

while modifying the kernel data structures.

Such data structures are related to memory

allocation, list of PCBs etc.

• As an example two different processes may

give fork() call, enter the kernel mode and

update same set of data structures

concurrently.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 35✬

✫

✩

✪

Preemptive Kernel

• A kernel may be preemptive or

non-preemptive.

• On a non-preemptive kernel, a user process

running in the kernel mode cannot be

interrupted (interrupts are disabled).

• So it should be free from race condition on a

uniprocessor system.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 36✬

✫

✩

✪

Preemptive Kernel

• But in an SMP or multi-core system

disabling interrupt for all processors or cores

may not be possible or even if it is, it will be

costly.

• In such a situation hardware supported

locking will be used to protect integrity of

kernel data structures.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 37✬

✫

✩

✪

Race in Producer-Consumer

• To show how the race condition is still

present in our producer-consumer problem,

we amplify it.

• We inject delay within the increment and

the decrement operations of data count in

addQ() and deleteQ() methods.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 38✬

✫

✩

✪

Delay in addQ()

int queue::addQ(int n){

int temp, i;

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

// count = count+1;

temp = count;
for(i=1; i<= 500000; ++i); // Delay
temp = temp+1;
count = temp;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 39✬

✫

✩

✪

return OK;
}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 40✬

✫

✩

✪

Delay in deleteQ()

We drop the frontQ() function and modify the

deteteQ() function.

int queue::deleteQ(int &v){

int temp, i;

if(isEmptyQ()) return ERROR;

v = data[(front+1)%MAX] ;

front = (front+1)%MAX ;

// count = count - 1;

temp = count;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 41✬

✫

✩

✪

for(i=1; i<= 500000; ++i); // Delay
temp = temp-1;
count = temp;
return OK;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 42✬

✫

✩

✪

Race Again

$ $ g++ -Wall prodCon1a.c++ queue1a.o

$./a.out

Produced Data 17 1365180540

Produced Data 18 1540383426

Produced Data 19 304089172

Produced Data 20 1303455736

Produced Data 21 35005211

21 data produced

11 data consumed

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 43✬

✫

✩

✪

Race Again

Consumed Data 9 596516649

Consumed Data 10 1189641421

Consumed Data 11 424238335

Consumed Data 12 719885386

Consumed Data 13 1649760492

10 data produced

13 data consumed

As the count value is incorrect, the consumer is
reading old data.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 44✬

✫

✩

✪

Critical Section of Code

• A set of cooperating processes are running

on a system.

• In the code of each process there may be

sequences of instructions that update a

shared data.

• These sequences are called critical sections of

code.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 45✬

✫

✩

✪

Critical Section of Code

• No two process should run their critical

sections of code related to a shared data

concurrently. It is essential for the purpose

of data integrity.

• Each cooperating process must follow a

protocol before entering a critical section

and also after leaving it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 46✬

✫

✩

✪

Critical Section Protocol

• Before entering a critical section a process

must check and ensure that no other process

is running in its corresponding critical

section of code.

• After leaving a critical section the process

must signal its departure.

• Any critical section protocol should satisfy

the following conditions.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 47✬

✫

✩

✪

Critical Section Protocol

• Mutual exclusion (safety): no two process

should execute their related critical sections

concurrently.

• Progress (liveness): Each process requesting

to enter its critical section eventually must

get its chance.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 48✬

✫

✩

✪

Critical Section Protocol

• Bounded waiting (weak fairness): A

requesting process Pi may have to wait to

enter its critical section as other processes

are entering (and leaving) their critical

sections. But there should be a bound on

the number of entries by other processes

before the entry is granted to Pi.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 49✬

✫

✩

✪

Critical Section Protocol

Following is a software based critical section
protocol for two cooperating processes.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 50✬

✫

✩

✪

Peterson’s Algorithm

• Peterson’s algorithma was proposed as a

software solution of the critical section

problem of two processesb.

• The algorithm allows alternate execution of

critical section of codes by two processes P0

and P1 if both of them wishes to enter

simultaneously.
aAn improvement over Dekker’s algorithm.
bBut it cannot guarantee correctness on a modern architecture.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 51✬

✫

✩

✪

Peterson’s Algorithm

• Two boolean variables C0 and C1 are used

to register requests of two process P0 and P1

to enter the critical sections.

• The variable turn ∈ {0, 1} indicates the

turn of the process to enter the critical

section when both have registered their

requests.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 52✬

✫

✩

✪

Peterson’s Algorithm

For process Pi, i ∈ {0, 1}:

while (1) {
Ci = true
turn = 1-i
while (C1−i == true and turn == 1-i) wait

...
critical section of code
...

Ci = false
non-critical code

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 53✬

✫

✩

✪

Peterson’s Algorithm

The process Pi, i ∈ {0, 1} does the following to

enter its critical section of code.

• It sets Ci = true to register its request.

• It gives priority to the other process P1−i to

enter its critical section by setting

turn = 1-i.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 54✬

✫

✩

✪

Peterson’s Algorithm

• If P1−i (other process) has already registered

its request to enter the critical section and

the value of turn remains to 1-ia, then Pi

waits on the while-loop.

• If only Pi requests, then C1−i is false and

Pi enters its critical section.

aThe process P1−i performed turn = i before Pi performs turn = 1-i.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 55✬

✫

✩

✪

Peterson’s Algorithm

• While Pi is in its critical section, the other

process P1−i cannot enter in its critical

section as both C1−(1−i) = Ci == true and

turn = i (= 1-(1-i)), set by P1−i.

• Pi leaves its critical section by withdrawing

its request, Ci = false.

• If P1−i is waiting on while-loop, it can now

enter the critical section.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 56✬

✫

✩

✪

Peterson’s Algorithm

• When both processes try to enter, the last

one that updates turn = 1-i is stopped and

P1−i enters its critical section.

• But once P1−i comes out of its critical

section and withdraws its request, it cannot

enter again in its critical section before Pi.

• Usually C0 and C1 are replaced by a

2-element array flag[2].

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 57✬

✫

✩

✪

Mutual Exclusion

• Both Pi and P1−i cannot cross the

while-barrier concurrently as that require

C0, C1 == true and also turn == 0 and

turn == 1, which is impossible.

• So the mutual exclusion of entering critical

sections is guaranteed (not really).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 58✬

✫

✩

✪

Liveness and Fairness

• Even when both P0 and P1 request to enter

the critical section and one enters first. The

next turn will be for the other one.

• The wait time for Pi is the time of execution

of critical section of P1−i.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 59✬

✫

✩

✪

Note

• What will happen if we exchange the order

of assignments of Ci and turn?

Ci = true

turn = 1-i

is replaced by

turn = 1-i

Ci = true

• Sequential semantics of these two codes are

not different as Ci and turn are independent.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 60✬

✫

✩

✪

Note

• But when two processes P0 and P1 are

running concurrently, the mutual exclusion

of entering critical section of codes are not

guaranteed by the second version.

• There may be the following sequence of

execution of code in P0 and P1.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 61✬

✫

✩

✪

Note

Initially both C0 and C1 are false. The code

for Pi is

turn = 1-i

Ci = true

while (C1−i == true and turn == 1-i) wait

Following is an execution sequence:

1. P1: turn = 0

2. P0: turn = 1

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 62✬

✫

✩

✪

Note

5. P0: C0 = true

6. P0: C1 == true and turn == 1 is false.

P0 enters its critical section.

7. P1: C1 = true.

8. P1: C0 == true and turn == 0 is false.

P1 enters its critical section.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 63✬

✫

✩

✪

Out of Order Execution

• Machine instructions are reordered by the

compiler and also by the hardware for better

performance.

• This may create trouble for Paterson’s

algorithm.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 64✬

✫

✩

✪

Shared Variables

• The variables C0, C1 and turn are accessed

by both the process P0 and P1.

• So these variables are bound to some shared

memory region.

• Following is an implementation of Peterson’s

algorithm on producer-consumer problem.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 65✬

✫

✩

✪

Shared Variable

In prodConPeterson.c++

............

int *turnP; // Peterson var

bool *c0P, *c1P; // Peterson vars

............

turnP = countC+1; // Peterson

c0P = (bool *)(turnP+1); // variables

c1P = c0P+1; // in shared memory

*c0P = *c1P = false;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 66✬

✫

✩

✪

Queue Header File

In queue1b.h

extern int *turnP;

extern bool *c0P, *c1P;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 67✬

✫

✩

✪

Critical Sections

• Critical section of code are in two methods

of the queue.

• The producer uses addQ() and the consumer

uses deleteQ().

• In addQ() the critical section is increment of

the counter.

• In deleteQ() the critical section is

decrement of the counter.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 68✬

✫

✩

✪

Critical Sections

• Peterson’s entry and exit codes are used to

make these two operations logically atomic

with respect to producer and consumer

processes.

• Following are the modified codes of addQ()

and deleteQ()

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 69✬

✫

✩

✪

addQ()

In queue1b.c++

int queue::addQ(int n){

int temp, i;

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

// count = count+1;

*c0P=true; *turnP=1;

while(*c1P && *turnP == 1);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 70✬

✫

✩

✪

temp = count;

for(i=1; i<= 500000; ++i); // Delay

temp = temp+1;

count = temp;

*c0P=false;

return OK;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 71✬

✫

✩

✪

deleteQ()

int queue::deleteQ(){

int temp, i;

if(isEmptyQ()) return ERROR;

front = (front+1)%MAX ;

// count = count - 1;

*c1P=true; *turnP=0;

while(*c0P && *turnP == 0);

temp = count;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 72✬

✫

✩

✪

for(i=1; i<= 500000; ++i); // Delay

temp = temp-1;

count = temp;

*c1P=false;

return OK;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 73✬

✫

✩

✪

Architectural Support

• A more general solutions of critical section

problem uses architectural support provided

by the CPU.

• In a single processor system a critical section

of code can be made atomic or

uninterruptible if the interrupt is disabled

before entering the critical section and

enabled after leaving it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 74✬

✫

✩

✪

Architectural Support

• But this cannot be used in user mode as

disabling interrupt is a privileged instruction.

• This technique can be used on a single

processor system with a non-preemptive

kernel.

• Preemption is not allowed when a process is

running in kernel mode to update kernel

data structures.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 75✬

✫

✩

✪

Architectural Support

• Even in the kernel mode, keeping interrupts

disabled for a long time may affect the

response in a time critical application.

• It can be used for a short critical section.

• But on a multiprocessor system, it may be

complicated and costly to disable interrupt

for all processors.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 76✬

✫

✩

✪

Architectural Support

• Execution of a machine instruction is atomic

on a uniprocessor. An interrupt is not

serviced before the completion of the current

instruction.

• This feature can be used to create a lock for

critical sections using some special

instructions.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 77✬

✫

✩

✪

Special Machine Instructions

• Two such instructions are test and set and

exchange.

• Usually a memory access by an instruction is

not atomic on a multiprocessor system. But

they can be made so by locking the memory

location.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 78✬

✫

✩

✪

Test and Set

boolean tAs(boolean *lockP){

boolean temp = *lockP

*lockP = True

return temp;

}

• A variable lock is initialized to False.

• tAs(&lock) returns its stored value and sets

it to True.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 79✬

✫

✩

✪

Test and Set

• If more than one processors try to execute

tAs on the same memory location

simultaneously, the hardware ensures that

they are executed in some sequence, making

the access and update of the location atomic.

• The memory location lock is locked during

the execution of test and set.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 80✬

✫

✩

✪

Bit-Test and Set in x86-64

• The instruction ‘bts bitPos, bitWord’

(bit-test and set) tests and set the bit

specified by the bitPos in the bitWorda.

• It copies the specified bit of the bitWord in

the carry flag (CF) of the program status

word (PSW), and sets the bit.

aThere are similar instructions e.g. bt (bit test), btc (bit-test and comple-

ment), btr (bit-test and reset).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 81✬

✫

✩

✪

Bit-Test and Set in x86-64

• On a single CPU the instruction is atomic.

• On a multiprocessor the lock prefix can

make it atomic by locking the memory

location of bitWord.

• If two such instructions are fetched for

execution on two different processors in

parallel, they will be executed sequentially in

some order.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 82✬

✫

✩

✪

Semantics of Bit-Test and Set

Let the memory location be L and the bit
position be i. The semantics of Bit-Test and
Set is
CF = Li

Li = 1; where CF is the carry flag.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 83✬

✫

✩

✪

bts and Mutual Exclusion

• Let bitWord be the memory location lock

initialized to zero (0).

• The critical section entry code for a process

Pi is bts 0, lock.

• It sets the bit-0 of lock to one (1), and stores

the original value of bit-0 of lock in the

carry-flag (CF).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 84✬

✫

✩

✪

bts and Mutual Exclusion

• The value stored in CF is zero (0) if there is

no other process in its critical section.

• But if there is a process in the critical

section, it has already set the bit-0 of lock to

one (1), so CF gets set (value 1) after

execution of the instruction.

• The process Pi enter its critical section if

CF=0.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 85✬

✫

✩

✪

bts and Mutual Exclusion

• But Pi loops on its bit-test and set, if CF=1.

• The variable lock is reset to zero (0) as the

exit code of the critical section.

• The mutual exclusion is guaranteed by the

atomicity of bts.

• The variable lock should be in the shared

memory.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 86✬

✫

✩

✪

bts and Producer-Consumer

• We introduce bts instruction as inline

assembly code in the critical sections of

counter increment and counter decrement in

addQ() and deleteQ() respectively.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 87✬

✫

✩

✪

Shared Variable lock

In prodConTaS.c++

int *lockP; // Global

....................

lockP = countP+1;

*lockP = 0; // lock initialized to 0

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 88✬

✫

✩

✪

Shared Variable lock

In queue1c.h

extern int *lockP;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 89✬

✫

✩

✪

Inline Assembly Code addQ()

In queue1c.c++

__asm__ __volatile__ (

".MyLbl1: \n\t"

"lock \n\t"

"btsl $0, 0(%%rbx) \n\t"

"jc .MyLbl1 \n\t"

:

:"b"(lockP)

:

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 90✬

✫

✩

✪

);

temp = count;

for(i=1; i<= 500000; ++i); // Delay

temp = temp+1;

count = temp;

*lockP = 0 ; // make lock = 0 The code
for deleteQ() is also similar.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 91✬

✫

✩

✪

Exchange or Swap

This instruction may have different form and
we take one of them.
void swap(int *srcP, int *dstP){

int temp
temp = *srcP
*srcP = *dstP
*dstP = temp

This also is executed atomically.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 92✬

✫

✩

✪

Exchange or Swap

• A global variable lock is initialized to zero

(0).

• The first process that executes the

instruction before entering its critical section

sets the lock (*dstP) to one (1)a and gets

the old content of the lock in *srcP.
aStored in its local variable *srcP.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 93✬

✫

✩

✪

Exchange or Swap

• When there is already a process (Pi) in its

critical section, and another process Pj

attempts to enter its critical section, it gets

the value one (1) from the lock in its local

variable *srcP. It waits (spin lock) until the

value become zero (0).

• At the end of the critical section the process

sets lock to zero (0).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 94✬

✫

✩

✪

Exchange in x86-64

• The instruction ‘xchg src, dst’, exchanges

the contents of src and dst.

• In case of memory operand (destination),

the instruction implicitly includes a memory

lock. So it is atomic even on a

multiprocessor system.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 95✬

✫

✩

✪

Exchange in x86-64

• If two such instructions with the same

destination in memory are fetched for

execution on two different processors in

parallel, they will be executed sequentially in

some order.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 96✬

✫

✩

✪

xchg and Mutual Exclusion

• Let the lock be a shared memory location

among processes. It is initialized to zero (0).

• We load a CPU register say eax with one (1)

and execute the instruction

‘xchg eax, lock’ in the entry codes of the

critical sections of concurrent processes.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 97✬

✫

✩

✪

xchg and Mutual Exclusion

• The contents of lock and the register eax

are exchanged. one (1) will be stored in the

shared variable lock.

• Only the first process Pi executing this

instruction, will get a zero (0) in its register

eax.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 98✬

✫

✩

✪

xchg and Mutual Exclusion

• All other concurrent processes that have

executed ‘xchg eax, lock’ after Pi and

before Pi leaves its critical section will get

one (1) in eax.

• Pi enters the critical section and other

concurrent processes will loop (busy wait) on

‘xchg eax, lock’.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 99✬

✫

✩

✪

Inline Assembly Code addQ()

In queue1d.c++

__asm__ __volatile__ (

"movl $1, %%eax \n\t"

".MyLbl1: \n\t"

"xchgl %%eax, 0(%%rbx) \n\t"

"cmpl $0, %%eax \n\t"

"jne .MyLbl1 \n\t"

:

:"b"(lockP)

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 100✬

✫

✩

✪

:"%eax"

);

temp = count;

for(i=1; i<= 500000; ++i); // Delay

temp = temp+1;

count = temp;

*lockP = 0 ; // make lock = 0

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 101✬

✫

✩

✪

LL/SC Instruction Pairs

• Load-link (LL) and store-conditional (SC) are

a pair of machine instructions used for

process or thread synchronization.

• They do not lock the memory.

• LL loads a value from a memory location

(M) to a CPU register (R).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 102✬

✫

✩

✪

LL/SC Instruction Pairs

• SC is interesting - it updates a value in M

and returns one (1) provided M has not been

updated since LL has read it.

• Otherwise it does not update M and returns

zero (0).

• Architecture like Alpha, PowerPC, MIPS,

ARM supports it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 103✬

✫

✩

✪

Busy Wait

• In both the hardware methods we have

discussed, a process asks for a lock before

entering its critical section.

• It enters the critical section only if it can

acquires the lock.

• Otherwise it loops and tests the lock again

until it is released by the process holding it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 104✬

✫

✩

✪

Busy Wait

• This is called a busy wait and such a mutex

(mutual exclusion) lock is known as a

spinlock. A busy wait wastes CPU time.

• Moreover It does not satisfy the fairness

(bounded wait) propertya.

• It also requires little bit of low-level

programming.

aOne can write algorithm to satisfy this property [SGG].

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 105✬

✫

✩

✪

Busy Wait

• As an alternative a process that waits for the

lock may be suspended.

• But that requires intervention by the kernela

and the overhead of context switching.

• A busy wait of a process on a uniprocessor

system is a waste of the whole time slice of

the waiting process.
aUser level thread does not require kernel intervention.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 106✬

✫

✩

✪

Busy Wait

• Let there be n processes ready to enter their

critical sections on a uniprocessor system.

• One of them is preempted in the middle of

its critical section.

• Other n− 1 processes will waste their entire

time slices by busy wait on the lock.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 107✬

✫

✩

✪

Busy Wait

• On a multiprocessor system if the execution

time of a critical section is short, then one

process may busy wait on a processor for a

short duration while the process holding the

lock can finish its critical section on another

processor.

• Busy wait is acceptable if the wait time is

shorter than the time to switch context.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 108✬

✫

✩

✪

Kernel Uses Spinlock

• On a multi processor system processes

running on different processors may enter the

kernel mode and modify a data structure.

• Restricting concurrent access to the data by

disabling interrupt is not possible (or costly)

in such a situation.

• The kernel (e.g. Linux) may use spinlock in

such a situation.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 109✬

✫

✩

✪

Bounded-Wait Using Exchange

Following algorithm ensures bounded-wait

using exchange.

• Let there be n processes {P0, · · · , Pn−1}.

• There is an array of global variables

waiting[n] and a lock variable. All are

initialized to zero (0).

• key is local to each process.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 110✬

✫

✩

✪

Bounded-Wait Using Exchange

while(1){
1 waiting[i] = key = 1
2 while(waiting[i] && key)
3 swap(&key, &lock)
4 waiting[i] = 0

5 // Critical section of code

6 j = (i+1) mod n
7 while(j 6=i && ¬waiting[j])
8 j = (j+1) mod n
9 if(j == i) lock = 0
10 else waiting[j] = 0
}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 111✬

✫

✩

✪

Bounded-Wait Using Exchange

• If the process Pi wants to enter its critical

section, it initializes waiting[i] and key to

one (1) - line-1.

• The process, among those waiting to enter

the critical section, that first executes

swap() gets zero (0) in its key and writes

one (1) in the the global variable lock.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 112✬

✫

✩

✪

Bounded-Wait Using Exchange

• Let that process be Pi. Its while loop is

terminated (line-2-3), and it enters its

critical section after changing waiting[i] to

zero (0).

• No other waiting process (Pj) can enter their

critical sections as their respective key get

one (1) from lock and waiting[j] is also

one (1).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 113✬

✫

✩

✪

Bounded-Wait Using Exchange

• The process Pi after coming out of its

critical section searches for the next process

(if there is any) that is waiting to enter the

critical section.

• If one such process Pj is found, Pi changes

waiting[j] = 0 (line-10). This enables to

terminate the while-loop (line 2-3) of Pj and

enter its critical section.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 114✬

✫

✩

✪

Bounded-Wait Using Exchange

• If there is no other process waiting to enter

the critical section the while-loop (line-7-8)

is terminated at j==i.

• The lock is reset to zero (0).

• The bounded-wait is guaranteed as

requesting processes get chance in a

round-robin manner.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 115✬

✫

✩

✪

Mutex Lock

• The simplest software tool (API) available

for mutual exclusion of critical section is a

mutex lock.

• It is a boolean variable that has two states,

locked and unlocked.

• A process or a thread acquires a mutex lock

before entering the critical section. It

releases the lock after coming out of it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 116✬

✫

✩

✪

Mutex Lock

• A thread that locks a mutex becomes its

owner. Only the owner can unlock a mutex.

No other thread can acquire it before it is

released.

• It is necessary to initialize a mutex before

any use.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 117✬

✫

✩

✪

Creating Mutex Lock

• We already know how to create a mutex lock.

• We put our inline assembly code in wrapper

functions.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 118✬

✫

✩

✪

myMutex.h

// header file for myMutex.c++

#ifndef _MYMUTEX_H

#define _MYMUTEX_H

void myMutexInit(int &);

void myMutexLock(int *);

void myMutexUnlock(int &);

#endif

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 119✬

✫

✩

✪

myMutex.c++

/*

* myMutex.c++

* $ g++ -Wall -c myMutex.c++

*/

#include "myMutex.h"

void myMutexInit(int &lock){

lock = 0;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 120✬

✫

✩

✪

void myMutexLock(int *lockP){

__asm__ __volatile__ (

"movl $1, %%eax \n\t"

".MyLbl1: \n\t"

"lock \n\t"

"xchgl %%eax, 0(%%rbx) \n\t"

"cmpl $0, %%eax \n\t"

"jne .MyLbl1 \n\t"

:

:"b"(lockP)

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 121✬

✫

✩

✪

:"%eax"

);

}

void myMutexUnlock(int &lock){

lock = 0;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 122✬

✫

✩

✪

queue1e.c++

/*

queue1e.c++ implementation of int

queue

*/

#include "queue1d.h"

#include "myMutex.h"

............

int queue::addQ(int n){

int temp, i;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 123✬

✫

✩

✪

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

myMutexLock(lockP);
temp = count;
for(i=1; i<= 500000; ++i); // Delay
temp = temp+1;
count = temp;

myMutexUnlock(*lockP);
return OK;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 124✬

✫

✩

✪

Note

• It is possible to build a lock that will avoid

busy wait.

• A process that does not get the lock will be

suspended.

• If there are more than one such processes,

they will be put in a queue.

• One or all of the suspended processes will be

ready once the lock is released.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 125✬

✫

✩

✪

Semaphore

• A semaphore is a synchronization mechanism

suggested by Edsger W. Dijkstra in 1962-63.

• It is a shared integer variable that can be

initialized and accessed through two atomic

operations.

• Often it is maintained by the kernel and

system calls are required to perform the

operations.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 126✬

✫

✩

✪

Operations on Semaphore

• A semaphore is initialized to non-negative

integer value and the related data structure

is prepared.

• P() or wait() operation: the name P() comes

from the Dutch word proberen(to test).

• V() or signal() operation: the origin of the

name V() is from the Dutch word verhogen

(to increase).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 127✬

✫

✩

✪

Operations on Semaphore

When a thread (process) Pi performs the P()
operation on a semaphore s, the value of the
semaphore is decremented by one (1) and then
it is tested. If the value is less than zero (0),
the thread (process) Pi is blocked on s.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 128✬

✫

✩

✪

Operations on Semaphore

When a thread (process) Pi performs the V()
operation on a semaphore s, the semaphore
value is incremented by one (1). If the value is
≤ 0, then there must be some other threads
(processes) Pj blocked on the semaphore. It is
brought to ready state.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 129✬

✫

✩

✪

Operations on Semaphore

• View a semaphore as a resource counter.

• A thread requests for a copy of the resource

by the P() or wait() operation.

• The semaphore value is decremented to

indicate that the resource will be allocated

to the thread.

• The thread is blocked if the resource is

currently not available.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 130✬

✫

✩

✪

Operations on Semaphore

• If no resource is available i.e. the initial

value of the semaphore is ≤ 0, the requesting

thread is blocked.

• For each semaphore, a queue of blocked

threads is maintained. The magnitude of the

negative value of the semaphore indicates

the number of blocked threads on it.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 131✬

✫

✩

✪

Operations on Semaphore

• When a thread relinquishes the resource, it

performs a V() operation. If there is a

suspended thread on the semaphore, that is

brought to ready queue.

• Atomicity of P() and V() operations are not

difficult to implement. But suspension and

wakeup of thread requires OS kernel

intervention.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 132✬

✫

✩

✪

Binary and Counting Semaphores

• If the values taken by a semaphore ranges

over {0, 1}, it is called a binary semaphore.

• A counting semaphore can take integer

values.

• A binary semaphore can be used as a mutex

lock.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 133✬

✫

✩

✪

An Example

• Let there be two copies of some resource and

the counting semaphore s is initialized to

two (2).

• There are two processes P1 and P2. They

perform semaphore operations as follows:

P1: P2:

s.wait(); s.wait(); s.wait();

s.signal(); s.signal(); s.signal();

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 134✬

✫

✩

✪

An Example

Let one execution sequence be as follows:

Execute s.val Queue P1 P2

Init 2 [] ready ready

P1 :s.wait() 1 [] running ready

P2 :s.wait() 0 [] running running

P2 :s.wait() −1 [P2] running blocked

P1 :s.signal() 0 [] running ready

P2 :s.signal() 1 [] finished running

P2 :s.signal() 2 [] finished running

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 135✬

✫

✩

✪

Semaphore Data Structure

A conceptual data type of counting semaphore

is as follows:

typedef struct {

int count; // boolean for binary sem

semQ queue;

} semaphore;

semaphore s;

The queue is for the blocked processes on the
semaphore.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 136✬

✫

✩

✪

Initialization of Semaphore

void initSem(semaphore *sP, int val) {

sP -> count = val;

sP -> queue = EMPTY;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 137✬

✫

✩

✪

Binary Semaphore Operations

These operations are atomic.

void P(semaphore *sP) {

if(sP->count==1) sP->count=0;

else {

addQ(sP->queue, process);

block the process;

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 138✬

✫

✩

✪

void V(semaphore *sP) {

sP->count = 1;

if(!isEmpty(sP->queue)) {

addQ(readyQ, frontQ(sP->queue)) ;

deleteQ(sP->queue) ;

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 139✬

✫

✩

✪

Counting Semaphore Operations

These operations are atomic.

void P(semaphore *sP) {

sP->count--;

if(sP->countr < 0) {

addQ(sP->queue, process);

block the process;

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 140✬

✫

✩

✪

void V(semaphore *sP) {

sP->count++;

if(sP->count <= 0) {

addQ(readyQ, frontQ(sP->queue)) ;

deleteQ(sP -> queue);

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 141✬

✫

✩

✪

Different Usage of Semaphore

There are two essential usage of semaphore.

• Guarding critical sections of code for

execution in mutual exclusion.

• Creating synchronization point or a barrier

in the path of execution.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 142✬

✫

✩

✪

Mutual Exclusion of Critical Sections

A simple example is as follows where a

semaphore is used as a mutex lock.

Initialization: semaphore s = 1;

Proc-I Proc-II

....

s.P() s.P()

Critical section Critical section

s.V() s.V()

....

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 143✬

✫

✩

✪

Synchronization Point-I

Initialization: semaphore s = 0;

Proc-I Proc-II

....

s.P() s.V()

l1: l2:

Process-I cannot cross l1 unless process-II
crosses l2.
Typical examples are join of thread, waitpid of
process.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 144✬

✫

✩

✪

Synchronization Point

Initialization: semaphore s1 = 0, s2 = 0;

Proc-I Proc-II

....

s1.V() s2.V()

s2.P() s1.P()

l1: l2: ... synch-point ...

Process-I cannot go beyond l1 unless process-II
crosses l2 and vice versa.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 145✬

✫

✩

✪

Semaphore on Linux

• Two types of semaphore implementations

and their APIs are available on Linux

platform.

• They are old System V semaphore and

POSIX (Portable Operating System

Interface) semaphore

• We start with the API of System V

semaphore.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 146✬

✫

✩

✪

System V Semaphore: Basic Operations

• Geta a semaphore set: semget().

• Initialize the elements of the semaphore set

using semctl().

• Perform semaphore operations on the set

elements: semop().

• At the end remove the semaphore set:

semctl().
aCreate a new one or open an existing one.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 147✬

✫

✩

✪

semget()

int semget(key t key, int n, int flag)

• The system call to get a semaphore set.

• The first parameter specifies an IPC key

returned by ftok() or often IPC PRIVATE.

• The parameter n specifies the number of

semaphores in the set ({0, · · · , n− 1}) when

it is createda.
aLess than or equal to the number of semaphores in an existing semaphore

set.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 148✬

✫

✩

✪

• If the flag is not IPC CREAT, no new

semaphore is created. The flag also holds the

read-write permission bits.

• A typical semget() call is,

#define NUM_SEMS 2

#define PERM (0644)

int semid ;

semid = semget(IPC_PRIVATE, NUM_SEMS,

IPC_CREAT | PERM);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 149✬

✫

✩

✪

semctl()

int semctl(int semid, int ind, int cmd,

...);

• This system call performs different control

operations on the semaphores of the set.

• The first argument is the semaphore

identifier of the semaphore set.

• The second argument is the index of a

semaphore in the set.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 150✬

✫

✩

✪

• The third argument is a command and the

fourth argument depends on it.

• The fourth argument:

union semun {

int val; /* Value for SETVAL */

struct semid_ds *buf;

unsigned short *array;

struct seminfo *__buf;

};

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 151✬

✫

✩

✪

semctl()

Following are two typical calls to semctl().

• semctl(semID, 0, SETVAL, 1); - sets the

value of the 0th semaphore of semID to 1.

• semctl(semID, 0, IPC RMID) ; - removes

the semaphore set of semID.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 152✬

✫

✩

✪

semop()

int semop(int semid, struct sembuf

opsPtr[], unsigned int nOps);

• This system call is used to perform

operations on the semaphores of the set

identified by semid..

• It can perform one or more operations

specified by nOps elements of the array of

struct sembuf pointed to by opsPtr.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 153✬

✫

✩

✪

semop()

• The pointer opsPtr to an array of structures

specify different operations on different

semaphores of the set.

• The operations are performed atomically

and in the order of the elements of opsptr[].

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 154✬

✫

✩

✪

semop()

• The fields of struct sembuf are

struct sembuf {

ushort sem_num ; // semaphor index

short sem_op ; // operation

short sem_flg ; // operation flag

};

• Each array element specifies an operation on

an element of the semaphore set.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 155✬

✫

✩

✪

Semaphore Values

• Each semaphore of the set is associated with

following set of data:

unsigned short semval; /* semaphore value */

unsigned short semzcnt;/* # waiting for zero */

unsigned short semncnt;/* # waiting for increase

pid_t sempid; /* ID of process that did

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 156✬

✫

✩

✪

Semaphore Values

• semval is the value of the semaphore.

• semzcount is the count of threads waiting on

the semaphore for its value to be zero (0).

• semncnt is the count of threads waiting on

the semaphore for its value to increase.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 157✬

✫

✩

✪

semop()

• If sem op > 0 (resource released): its value

is added to semvala. This may awaken a

process waiting on the semaphore to

decrease its value (to get resource).

• If sem op = 0, the semval is checked for

zero (0)b. If it is, the call is completed, else

it waits-for-zeroc.
aThe process must have write permission.
bThe process must have read permission
cIncrements semzcnt, count of threads waiting for semaphore value to be zero

(0).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 158✬

✫

✩

✪

semop()

• If sem op < 0: if semval ≥ |sem op|,

subtract |sem op| from semval, and the

operation is complete (required resource

obtained). Otherwise the semncnt (count of

threads waiting on this semaphore value to

increase) is incremented by one, the

operation (process) is blocked until semval

becomes ≥ |sem op|.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 159✬

✫

✩

✪

Binary P() Operation

static int P(int semID) {

struct sembuf buff ;

buff.sem_num = 0 ; // On the 0th element

buff.sem_op = -1 ;

buff.sem_flg = 0 ;

if(semop(semID, &buff, 1) == -1) {

cerr << "semop P operation error\n" ;

return -1;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 160✬

✫

✩

✪

}

return 0 ;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 161✬

✫

✩

✪

Binary V() Operation

static int V(int semID) {

struct sembuf buff ;

buff.sem_num = 0 ; // On the 0th element

buff.sem_op = 1 ;

buff.sem_flg = 0 ;

if(semop(semId, &buff, 1) == -1) {

cerr << "semop V operation error\n" ;

return -1 ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 162✬

✫

✩

✪

}

return 0 ;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 163✬

✫

✩

✪

System V Semaphore as Mutex Lock

/*

* semSysV1.c++ shows the use of System V

* semaphore as mutex lock

* $ g++ -Wall semSysV1.c++

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <stdlib.h>

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 164✬

✫

✩

✪

#include <sys/types.h>

#include <unistd.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/wait.h>

#define FLAGS (0644)

static int P(int semID) {

struct sembuf buff ;

buff.sem_num = 0 ; // On the 0th element

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 165✬

✫

✩

✪

buff.sem_op = -1 ;

buff.sem_flg = 0 ;

if(semop(semID, &buff, 1) == -1) {

cerr << "semop P operation error\n" ;

return -1;

}

return 0 ;

}

static int V(int semID) {

struct sembuf buff ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 166✬

✫

✩

✪

buff.sem_num = 0 ; // On the 0th element

buff.sem_op = 1 ;

buff.sem_flg = 0 ;

if(semop(semID, &buff, 1) == -1) {

cerr << "semop V operation error\n" ;

return -1 ;

}

return 0 ;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 167✬

✫

✩

✪

int main() {

int semID, chID ;

if((semID = semget(IPC_PRIVATE, 1, IPC_CREAT

cerr << "semget() fails\n" ;

exit(1) ;

}

semctl(semID, 0, SETVAL, 1);

chID = fork();

if(chID == -1){

cerr << "fork() fails\n";

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 168✬

✫

✩

✪

exit(1);

}

if(chID > 0) { // Parent

int status ;

for(int i=0; i<=5; ++i) {

//P(semID) ;

cout << "Indian Institute of";

fflush(stdout);

sleep(2);

cout << " Information Technology\n";

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 169✬

✫

✩

✪

//V(semID) ;

sleep(1) ;

}

waitpid(chID, &status, 0) ;

semctl(semID, 0, IPC_RMID) ;

}

else { // Child

for(int i=0; i<=5; ++i) {

//P(semID) ;

cout << "Allahabad ";

fflush(stdout);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 170✬

✫

✩

✪

sleep(1);

cout << "Bhubaneswar ";

fflush(stdout);

sleep(1);

cout << "Kalyani\n";

//V(semID) ;

sleep(2) ;

}

}

return 0 ;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 171✬

✫

✩

✪

POSIX Semaphore on Linux

• Both threads and processes can be

synchronized using this semaphore.

• The value of a semaphore is a non-negative

integer.

• The P() operation is called sem wait() and

the V() operation is called sem post().

• Other operations are create, initialize, get

the value of and remove a semaphore.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 172✬

✫

✩

✪

POSIX Semaphore on Linux

• There are two forms of POSIX semaphores

available on Linux. One is named and the

other is unnamed.

• A named semaphore is identified by a name

of the form /xyz.

• A named semaphore is kernel persistent i.e.

once created it remains in the the system

until shutdown.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 173✬

✫

✩

✪

POSIX Semaphore on Linux

• An unnamed or memory-based semaphore

does not have a name.

• It resides in the shared memory between

threads (global data) or processes (shared

memory).

• This requires to be initialized explicitly

before use and deallocated after use.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 174✬

✫

✩

✪

POSIX Named Semaphore as Mutex Lock

• Following example shows how a portion of

code is made atomic using a named

semaphore.

• The semaphore is used as a mutex lock. The

output of two processes (parent and child)

are intermingled when the semaphore is not

used.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 175✬

✫

✩

✪

POSIX Named Semaphore as Mutex Lock

/*

semaphorePOS1.c++ shows the use of POSIX

named semaphore as mutex lock

$ g++ -Wall semaphorePOS1.c++ -lpthread

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <stdlib.h>

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 176✬

✫

✩

✪

#include <sys/wait.h>

#include <unistd.h>

#include <sys/sem.h>

#include <fcntl.h>

#include <semaphore.h>

#include <errno.h>

int main() {

int i, cPID, status;

sem_t *sP;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 177✬

✫

✩

✪

sP = sem_open("/abcd", O_CREAT, 0777, 1);

if(sP == SEM_FAILED && errno != EEXIST){

cerr << errno << " Semaphore error\n";

exit(1);

}

cPID = fork();

if(cPID == -1){

cerr << "fork() fails\n";

exit(1);

}

if(cPID != 0) { // Parent

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 178✬

✫

✩

✪

for(i=1; i<=5; ++i) {

// sem_wait(sP); // get lock

cout << "Indian Institute of";

fflush(stdout);

sleep(2);

cout << " Information Technology\n";

// sem_post(sP); // release lock

sleep(1);

}

waitpid(cPID, &status, 0);

sem_close(sP);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 179✬

✫

✩

✪

}

else { // Child

for(i=1; i<=5; ++i) {

// sem_wait(sP); // get lock

cout << "Allahabad ";

fflush(stdout);

sleep(1);

cout << "Bhubaneswar ";

fflush(stdout);

sleep(1);

cout << "Kalyani\n";

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 180✬

✫

✩

✪

// sem_post(sP); // release lock

sleep(2);

}

}

return 0 ;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 181✬

✫

✩

✪

Output without Lock

$ a.out

Indian Institute of Allahabad Bhubaneswar Information

Kalyani

Indian Institute ofAllahabad Information Technology

Bhubaneswar Indian Institute ofKalyani

Information Technology

Allahabad Indian Institute ofBhubaneswar Kalyani

Information Technology

Indian Institute ofAllahabad Bhubaneswar Information

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 182✬

✫

✩

✪

Kalyani

Allahabad Bhubaneswar Kalyani

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 183✬

✫

✩

✪

Output with Lock

$ a.out

Indian Institute of Information Technology

Allahabad Bhubaneswar Kalyani

Indian Institute of Information Technology

Allahabad Bhubaneswar Kalyani

Indian Institute of Information Technology

Allahabad Bhubaneswar Kalyani

Indian Institute of Information Technology

Allahabad Bhubaneswar Kalyani

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 184✬

✫

✩

✪

Indian Institute of Information Technology

Allahabad Bhubaneswar Kalyani

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 185✬

✫

✩

✪

Where is the Semaphore

A named semaphore on Linux is created in the

directory under /dev/shm.

$ ls -l /dev/shm

lrwxrwxrwx ... /dev/shm -> /run/shm

$ ls -l /run/shm

total 316

...........

-rwxrwxr-x 32 Aug 15 05:53 sem.abcd

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 186✬

✫

✩

✪

Different APIs Used

sem t *sem open(const char *name,

int oflag,

mode t mode,

unsigned int value)

• name is the name of the semaphore of the

form /xyz. It comes as /dev/shm/sem.xyz.

• oflag is the control flag (see the man page).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 187✬

✫

✩

✪

Different APIs Used

• mode is for permission bits.

• value is the initial value of the semaphore.

• The mode and value are ignored if the

semaphore name already exists and oflag is

set to O CREAT.

• On success, the return value is the address of

the semaphore.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 188✬

✫

✩

✪

Different APIs Used

int sem wait(sem t *sem)

• Decrements the semaphore pointed by sem if

it is greater than zero (0), and proceeds.

• If it is zero (0), then the call blocks until the

value of the semaphore is greater than zero

(then it can be decremented).

• It returns zero (0) on success.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 189✬

✫

✩

✪

Different APIs Used

int sem post(sem t *sem)

• Increments (unlock) the semaphore pointed

by sem.

• If there is a process or thread in the queue of

this semaphore, blocked on a sem wait()

call, it will proceed to decrement (lock) the

semaphore.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 190✬

✫

✩

✪

POSIX Unnamed Semaphore as Mutex Lock

• Unnamed semaphore for process lives in a

shared memory.

• So a shared memory segment is created

using shmget() and is attached to a pointer

of type semaphore type, sem t.

• It is initialized using sem init().

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 191✬

✫

✩

✪

sem init()

int sem init(sem t *sP, int shrd,

unsigned int val)

• If shrd is zero (0), the semaphore is shared

between threads. In that case sP points to a

global or heap memory location.

• If shrd is not zero (6= 0), it is shared

between processes, and sP points to a shared

memory location.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 192✬

✫

✩

✪

Unnamed Semaphore Persistence

• The persistence of a semaphore defined on a

global or a heap variable is the life-time of

the process.

• The persistence of a shared memory

semaphore is the life-time of the shared

memory. It may be up to the shut-down of

the system.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 193✬

✫

✩

✪

POSIX Unnamed Semaphore as Mutex Lock

• The use of sem wait() and sem post() are

same.

• Finally we close and remove the semaphore

by sem close() and sem destroy().

• The value of a semaphore can be extracted

by int sem getvalue(sem t *sem, int

*sval) through sval.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 194✬

✫

✩

✪

Semaphore and Deadlock

Consider the situation with two binary

semaphores s1 and s2. They are used by two

processes P1 and P2 in the following way.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 195✬

✫

✩

✪

P1 P2

wait(s1) wait(s2)
...

...

C: wait(s2) wait(s1)
...

...

signal(s2) signal(s1)
...

...

signal(s1) signal(s2)

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 196✬

✫

✩

✪

Semaphore and Deadlock

• If both the processes reach the point C, none

of them can move any further.

• The situation is called a deadlock.

• It is necessary to design a system so that no

deadlock can occur.

• It is also necessary to detect, if it ever

occurs.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 197✬

✫

✩

✪

Producer-Consumer on pthread

• Following code shows an implementation of

the producer-consumer problem using two

threads.

• The bounded buffer (circular queue) is

implemented as a global data.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 198✬

✫

✩

✪

Producer-Consumer on pthread

• We may use locking facility available in

pthread to ensure mutual exclusion of

critical sections.

• We also can use busy wait using machine

instruction xchg.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 199✬

✫

✩

✪

Producer-Consumer on pthread

/*

* prodConPth1.c++ Producer-Consumer Problem on

* pthread

* $ g++ -Wall prodCon1.c++ queuePth1.o -lpthread

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <pthread.h>

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 200✬

✫

✩

✪

#include "queuePth1.h"

void *thread1(void *);

void *thread2(void *);

void producer(queue *);

void consumer(queue *);

int countP = 0, countC = 0;

int main(int count, char *vect[]) {

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 201✬

✫

✩

✪

pthread_t thID1, thID2; // thread ID

queue *qP;

qP = new queue;

pthread_create(&thID1, NULL, thread1, (void *)

pthread_create(&thID2, NULL, thread2, (void *)

pthread_join(thID1, NULL);

pthread_join(thID2, NULL);

cout << countP << " data produced\n";

cout << countC << " data consumed\n";

return 0;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 202✬

✫

✩

✪

}

void *thread1(void *p){

queue *qP = (queue *)p;

producer(qP);

pthread_exit(NULL);

}

void * thread2(void *p){

queue *qP = (queue *)p;

consumer(qP);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 203✬

✫

✩

✪

pthread_exit(NULL);

}

void producer(queue *qP){

int added = 1, i ;

for(i=1;i<=500000;++i) {

int data, err;

if(added) {

data = rand() ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 204✬

✫

✩

✪

added = 0 ;

}

err = qP->addQ(data) ;

if(err == OK) {

added = 1 ;

cout << "Produced Data "

<< ++countP

<< " " << data << "\n" ;

}

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 205✬

✫

✩

✪

void consumer(queue *qP) {

int i ;

for(i=1; i<= 500000; ++i) {

int data, dataOK;

dataOK = qP -> frontQ(data);

if(dataOK == OK){

qP -> deleteQ() ;

cout << "\tConsumed Data "

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 206✬

✫

✩

✪

<< ++countC

<< " " << data << "\n" ;

}

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 207✬

✫

✩

✪

Producer-Consumer on pthread

/*

queuePth1.c++ implementation of int

queue

$ g++ -Wall queuePth1.c++ -c

*/

#include "queuePth1.h"

pthread_mutex_t makeAtomic = PTHREAD_MUTEX_INITIALI

............................

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 208✬

✫

✩

✪

int queue::addQ(int n){

int temp, i;

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

// count = count+1;

pthread_mutex_lock(&makeAtomic);

temp = count;

for(i=1; i<= 100000; ++i); // Delay

temp = temp+1;

count = temp;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 209✬

✫

✩

✪

pthread_mutex_unlock(&makeAtomic);

return OK;

}

Similar modification in deleteQ().

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 210✬

✫

✩

✪

pthread mutex lock

• int pthread mutex lock(pthread mutex t

*mutexP) locks the mutex object referenced

by mutexP if it is not already locked.

• If the mutex object is already locked, the

calling thread is blocked until the object is

released.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 211✬

✫

✩

✪

pthread mutex unlock

• int

pthread mutex unlock(pthread mutex t

*mutexP) unlocks the mutex object

referenced by mutexP if it is locked.

• If there are threads blocked on the mutex

object, one of them may own the lock

depending on the scheduling policy.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 212✬

✫

✩

✪

C++11 Thread and Mutex

• The language C++11 has support for

threads, mutual exclusion etc.

• Following is a code for producer-consumer

problem.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 213✬

✫

✩

✪

queueC11.h

........

#include <thread>

#include <mutex>

.......

Other things are similar.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 214✬

✫

✩

✪

queueC11.c++

/*

$ g++ -Wall -std=c++11 queueC11.c++

-lpthread -c

*/

#include "queueC11.h"

mutex counterMutex;

........

int queue::addQ(int n){

int temp, i;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 215✬

✫

✩

✪

if(isFullQ()) return ERROR;

rear = (rear + 1) % MAX;

data[rear] = n;

// count = count+1;

counterMutex.lock();

temp = count;

for(i=1; i<= 100000; ++i); // Delay

temp = temp+1;

count = temp;

counterMutex.unlock();

return OK;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 216✬

✫

✩

✪

}

..............

Similar change in deleteQ(). Other things are
similar.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 217✬

✫

✩

✪

prodConC11.c++

/*

$ g++ -Wall -std=c++11 prodConC11.c++

queueC11.o -lpthread

*/

#include <iostream>

#include <thread>

using namespace std;

#include "queueC11.h"

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 218✬

✫

✩

✪

void producer(queue *);

void consumer(queue *);

int countP = 0, countC = 0;

int main(int count, char *vect[]) {

queue *qP;

qP = new queue;

thread th1(&producer, qP);

thread th2(&consumer, qP);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 219✬

✫

✩

✪

th1.join();

th2.join();

cout << countP << " data produced\n";

cout << countC << " data consumed\n";

return 0;

}

Producer and consumer codes are similar to
earlier examples.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 220✬

✫

✩

✪

C++11 Thread and Mutex

• thread is a class, it represents a single

thread of execution.

• mutex is also a class, it is used to protect

shared data.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 221✬

✫

✩

✪

Reformulating Producer-Consumer Problem

• The producer-consumer problem can be

formulated and solved using two counting

and a binary semaphores.

• The binary semaphore is a mutex lock.

• But the test for queue-full and queue-empty

are replaced by two counting semaphores

fulla and emptyb.
aInitialized to zero (0)
bInitialized to N, the size of the queue.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 222✬

✫

✩

✪

Initialization

semaphore lock = 1, empty = N, full = 0;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 223✬

✫

✩

✪

Producer

empty.wait(); // Reducing empty by 1

lock.wait(); // Mutex lock

// Produce item and put in queue

lock.signal() // Mutex unlock

full.signal() // Increasing full by 1

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 224✬

✫

✩

✪

Consumer

full.wait(); // Reducing full by 1

lock.wait(); // Mutex lock

// delete from queue.

lock.signal() // Mutex unlock

empty.signal() // Increasing empty by 1

Code: prodConSem.c++ queue1f.h
queue1f.c++

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 225✬

✫

✩

✪

Two Usage of Semaphore

• In this version of implementation of

producer-consumer problem we see two

distinct usages of semaphores.

• The lock is used for mutual exclusion.

• But full and empty are used to

communicate the change of state of the

queue in one process to the other process.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 226✬

✫

✩

✪

Two Usage of Semaphore

• full.signal() from producer informs the

consumer that the queue is more-full.

• If the consumer is suspended on

full.wait() (empty queue), it is ready for

execution after full.signal().

• Similar is the case for empty.signal().

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 227✬

✫

✩

✪

Reader-Writer Problem

• Another classic synchronization problem is

the readers-writers problem.

• There are a few readers (process/thread)

and a few writers.

• A reader reads data from the database but

does not update it. But a writer can read

and write.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 228✬

✫

✩

✪

Reader-Writer Problem

• The restriction is natural. When a writer is

active on the data, no reader or any other

writer can be active i.e. a writer has an

exclusive access to data.

• But more than one reader can be active

simultaneously.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 229✬

✫

✩

✪

Reader-Writer Problem: Solution I

• In case of simultaneous access request to the

database, different versions of solutions are

presented with different priorities of reader

and writer.

• When no writer is not writing, any number

of reader may go on reading.

• In this policy a waiting writer may starve.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 230✬

✫

✩

✪

Reader-Writer Problem: Solution II

• The priority may be given to the writer.

• Once a writer is ready to write, no more

reader can start reading afresh.

• This can make waiting readers starve.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 231✬

✫

✩

✪

First Solution

Two semaphores and a shared counter are used

to implement this version of solution where

readers have priority.

semaphore mutex = 1, countsem = 1;

int readerCount = 0;

Both the semaphores are essentially mutex
locks.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 232✬

✫

✩

✪

First Solution

• The semaphore mutex is used for mutual

exclusion of entering critical sections

between a reader and a writer and also

between two writers.

• The shared variable readerCount keeps

track of the number of readers.

• countsem makes the increment and

decrement operations on readerCount

atomic.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 233✬

✫

✩

✪

Writer Process

P(mutex) ;

/* CS: writer writes */

V(mutex) ;

A writer enters its critical section if there is no
other writer or reader in their critical sections.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 234✬

✫

✩

✪

Reader Process

P(countsem) ;

++readerCount ;

if(readerCount == 1) P(mutex);

V(countsem) ;

/* CS: reader reading */

P(countsem) ;

--readerCount ;

if(readerCount == 0) V(mutex) ;

V(countsem) ;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 235✬

✫

✩

✪

Reader Process

P(countsem);

++readerCount;

if(readerCount == 1) P(mutex);

V(countsem);

• The code makes the increment of reader

count atomic using the binary semaphore

countsem.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 236✬

✫

✩

✪

Reader Process

• If there is a writer in its critical section, there

cannot be any reader in its critical section.

The readercount is zero (0) at that point.

• During this period, if any reader wishes to

enter making readercount == 1, it will be

suspended at P(mutex).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 237✬

✫

✩

✪

Reader Process

• If there is no writer in its critical section, the

first reader before entering its critical section

will acquire the lock by P(mutex).

• No writer can enter its critical section after

this as long as there are readers.

• But other readers can enter their critical

sectionsa.
aThis is the source of starvation of the writers as readers may go on entering.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 238✬

✫

✩

✪

Reader Process

P(countsem);

--readerCount;

if(readerCount == 0) V(mutex);

V(countsem);

• The code makes the decrement of reader

count atomic using the binary semaphore

countsem.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 239✬

✫

✩

✪

Reader Process

• Only when the last reader leaves, a writer

can enter.

• A writer may have to wait indefinitely

(starvation) if readers keep on coming.

• But a reader may enter immediately once

the writer leaves.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 240✬

✫

✩

✪

Reader Priority

rederWriter1.c++ Reader priority,

starvation of writer

$ g++ -Wall readerWriter1.c++ -lpthread

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 241✬

✫

✩

✪

Second Solution

• In this solution a writer gets the priority.

• Once a writer wishes to enter its critical

section no more readers are allowed to enter.

• This may lead to some kind of starvation of

readers as concurrent reading may not be

possible.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 242✬

✫

✩

✪

Second Solution

Four semaphores and two shared counters are

used to implement this version.

semaphore mutex = rCmutex = wCmutex = try = 1;

int rCount = wCount = 0;

• The role of mutex is same as before. Mutual

exclusion between reader-writer and also

between two writers.

• The counters rCount and wCount are used

for reader and writer counts respectively.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 243✬

✫

✩

✪

Second Reader-Writer Problem

• The semaphores rCmutex and wCmutex are

used to make increment and decrement

operations atomic on rCount and wCount

respectively.

• The semaphore try prohibits a new reader

to enter after a writer is trying to do so. The

reader is permitted only after the writer

finishes.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 244✬

✫

✩

✪

Reader Process

P(try); // reader tries to reg.

P(rCmutex); // no race between readers

++rCount; // increment reader count

if(rCount == 1) P(mutex); // enter CS or wait

V(rCmutex); // another reader may reg.

V(try); // reader or writer may try

// Readers Critical Section

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 245✬

✫

✩

✪

P(rCmutex); // a reader wishes to leav

--rCount; // decrement reader

if(rCount == 0) V(mutex); // waiting writer

// gets chance

V(rCmutex); // aother reader may reg.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 246✬

✫

✩

✪

Writer Process

P(wCmutex); // one writer reg.

++wCount;

if(wCount == 1) P(try);

// enter CS or wait

V(wCmutex); // another writer may reg.

P(mutex); // only one writer

// Critical section

V(mutex);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 247✬

✫

✩

✪

P(wCmutex); // writer leavs

--wCount;

if(wCount == 0) V(try); // others may try

V(wCmutex); // another writer may reg.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 248✬

✫

✩

✪

Reader Process

• The entry section is completed one-reader at

a time.

• If there is no request from any writer any

number of reader may enter their critical

sections.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 249✬

✫

✩

✪

Reader Process

• But even if there is a reader in the critical

section, and another reader is permitted to

enter, it may be blocked at P(try), by a

writer who has already attempted to enter

its critical section.

• The action V(try) by the writer is

performed only after it comes out of the

critical section. Only then any following

reader may enter.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 250✬

✫

✩

✪

Writer Process

• P(try) stops any further entry of reader

until the writer finishes.

• The P(mutex) and V(mutex) pair prohibits

any other reader or writer to be in their

critical sections.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 251✬

✫

✩

✪

Producer-Consumer Revisited

Consider the following simplified code of

producer-consumer problem.

/*

* slowProdCon.c++ Producer-Consumer Problem

* one is slower than the other

* $ g++ -Wall slowProdCon.c++ -lpthread

*/

#include <iostream>

using namespace std;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 252✬

✫

✩

✪

#include <stdlib.h>

#include <pthread.h>

#include "queuePth1.h"

#define DELAY 10000

int data;

int dataCount=0;

void *producer(void *);

void *consumer(void *);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 253✬

✫

✩

✪

pthread_mutex_t makeAtomic = PTHREAD_MUTEX_INITIALI

int main(int count, char *vect[]) {

pthread_t thID1, thID2; // thread ID

int num;

cout << "Enter number of data: ";

cin >> num ;

pthread_create(&thID1, NULL, producer, (void

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 254✬

✫

✩

✪

pthread_create(&thID2, NULL, consumer, (void

pthread_join(thID1, NULL);

pthread_join(thID2, NULL);

return 0;

}

void *producer(void *par){

int num = *(int *)par;

for(int i=1; i<=num;) {

pthread_mutex_lock(&makeAtomic);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 255✬

✫

✩

✪

cout << "P-> ";

if(dataCount==0){

dataCount = 1;

data=i;

++i;

}

pthread_mutex_unlock(&makeAtomic);

for(int j=0; j<DELAY; ++j); // Delay

}

pthread_exit(NULL);

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 256✬

✫

✩

✪

void *consumer(void *par){

int num = *(int *)par;

for(int i=1; i<=num;){

pthread_mutex_lock(&makeAtomic);

cout << "C<- ";

if(dataCount==1){

cout << "Data read: " << data << endl;

dataCount=0;

++i;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 257✬

✫

✩

✪

}

pthread_mutex_unlock(&makeAtomic);

// for(int j=0; j<DELAY; ++j); // Delay

}

pthread_exit(NULL);

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 258✬

✫

✩

✪

Slow Producer: Output

$ a.out

Enter number of data: 3

P-> C<- Data read: 1

C<- C<- C<- C<- P-> C<- Data read: 2

C<- C<- C<- C<- P-> C<- Data read: 3

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 259✬

✫

✩

✪

Producer-Consumer Revisited

• Even when the producer is not producing

any new data, the consumer wastes CPU

time by executing its code. This can also be

other way round.

• Similarly even when the bounded buffer is

full, the producer is in a loop to check for

emptiness of the buffer.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 260✬

✫

✩

✪

Producer-Consumer Revisited

• It is good to have a mechanism so that the

consumer is suspended as long as there is no

new data, and it will be awakened when a

new data is produced by the producer.

• Similarly in case of a bounded buffer, the

producer is suspended as long as the buffer

is full.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 261✬

✫

✩

✪

Condition Variable

• A general solution is proposed by

introducing the notion of condition variablea.

• A condition variable (cv) is used by a thread

(ti) to suspend itself when a condition is not

satisfied (not a desired state).

aThe name is due to Hoare in connection to his monitors and is similar to

private semaphore of Dijkstra.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 262✬

✫

✩

✪

Condition Variable

• Each condition variable (cv) has its queue of

suspended threads waiting for the condition

to be true (change of state).

• Before going to suspension ti may need to

release the lock it is holding.

• Another thread (tj) changes the state as

required by the condition variable (cv).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 263✬

✫

✩

✪

Condition Variable

• The thread (tj) can awaken one or more

threads waiting in the queue of cv.

• If more than one threads wake up and ready,

it is essential that each of them checks the

condition variable again before start running.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 264✬

✫

✩

✪

Pthread Condition Variable

/*

* slowProdConCond.c++ Producer-Consumer Problem

* one is slower than the other

* $ g++ -Wall slowProdConCond.c++ -lpthread

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <pthread.h>

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 265✬

✫

✩

✪

#include "queuePth1.h"

#define DELAY 10000

int data;

int dataCount=0;

void *producer(void *);

void *consumer(void *);

pthread_mutex_t makeAtomic = PTHREAD_MUTEX_INITIALI

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 266✬

✫

✩

✪

pthread_cond_t cvF = PTHREAD_COND_INITIALIZER; //

pthread_cond_t cvE = PTHREAD_COND_INITIALIZER; //

int main(int count, char *vect[]) {

pthread_t thID1, thID2; // thread ID

int num;

cout << "Enter number of data: ";

cin >> num ;

pthread_create(&thID1, NULL, producer, (void

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 267✬

✫

✩

✪

pthread_create(&thID2, NULL, consumer, (void

pthread_join(thID1, NULL);

pthread_join(thID2, NULL);

return 0;

}

void *producer(void *par){

int num = *(int *)par;

for(int i=1; i<=num;) {

pthread_mutex_lock(&makeAtomic);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 268✬

✫

✩

✪

cout << "P-> ";

while(dataCount == 1) // added

pthread_cond_wait(&cvE, &makeAtomic);

// if(dataCount==0){

dataCount = 1;

data=i;

++i;

// }

pthread_cond_signal(&cvF); // added

pthread_mutex_unlock(&makeAtomic);

// for(int j=0; j<DELAY; ++j); // Delay

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 269✬

✫

✩

✪

}

pthread_exit(NULL);

}

void *consumer(void *par){

int num = *(int *)par;

for(int i=1; i<=num;){

pthread_mutex_lock(&makeAtomic);

cout << "C<- ";

while(dataCount == 0) // added

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 270✬

✫

✩

✪

pthread_cond_wait(&cvF, &makeAtomic);

// if(dataCount==1){

cout << "Data read: " << data << endl;

dataCount=0;

++i;

// }

pthread_cond_signal(&cvE); // added

pthread_mutex_unlock(&makeAtomic);

for(int j=0; j<DELAY; ++j); // Delay

}

pthread_exit(NULL);

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 271✬

✫

✩

✪

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 272✬

✫

✩

✪

Slow Producer with Cond Var: Output

$ a.out

Enter number of data: 5

P-> P-> C<- Data read: 1

P-> C<- Data read: 2

P-> C<- Data read: 3

P-> C<- Data read: 4

C<- Data read: 5

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 273✬

✫

✩

✪

Condition Variable

• If the buffer (data) is full, the producer

thread waits on the condition variable cvE.

• It also releases the mutex lock.

• Similarly, if the buffer is empty, the

consumer thread waits on the condition

variable cvF.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 274✬

✫

✩

✪

Condition Variable

• After every item produced, the producer

calls pthread cond signal() to signal the

condition variable cvE.

• The consumer thread blocked on the

condition variable (cvE) is awakeneda.

aIn general one of the threads blocked on the condition variable is awakened.

There is also a call pthread cond broadcast() that awakens all blocked threads.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 275✬

✫

✩

✪

Condition Variable

• Similarly after every item consumed, the

consumer calls pthread cond signal() to

signal the condition variable cvF.

• The producer thread blocked on the

condition variable (cvF) is awakened.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 276✬

✫

✩

✪

Condition Variable

• The consumer thread locks the mutex

(makeAtomic).

• Then it checks the dataCount. If it is zero

(0), then the thread will go to sleep but it

should also release the mutex (makeAtomic)

lock so that the producer can enter its

critical sectiona.
aThis is the purpose of two parameters of pthread cond wait().

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 277✬

✫

✩

✪

Condition Variable

• When the consumer is awakened by the

signal, it must acquire the mutex

(makeAtomic) lock before it access the

shared data (dataCount).

• The call to pthread cond wait() is in a

loop. The reason is, even after awakening,

which takes time, the thread may find that

the shared variable in a ‘wrong’ statea.
aMay be due to other consumer.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 278✬

✫

✩

✪

High-Level Construct of Synchronization

• Peoplea realized that semaphore is a

low-level synchronization primitive.

• An incorrect use of it may lead to errors that

are difficult to detect.

• So there was a thought about supporting

synchronization as a high-level programming

language construct.
aC A R Hoare (Tony Hoare, Sir Charles Antony Richard Hoare) and Per

Brinch Hansen and others.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 279✬

✫

✩

✪

Monitor

• Brinch Hansena and Tony Hoare introduced

the concept of monitor.

• A monitor may be viewed as an abstract

data type with shared data that can be

accessed by different processes.

• The data is private and can be access only

by public operations (problem specific)

defined within it.
aFirst implemented in the Concurrent Pascal.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 280✬

✫

✩

✪

Monitor

This high-level synchronization construct has

the following features:

• Mutual exclusion of using the monitor

methods by threads.

• Condition variable: a thread can wait in the

queue of a condition variable when certain

condition is not satisfied. It relinquishes the

exclusive access before suspension.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 281✬

✫

✩

✪

Monitor

• Signal: a signal is sent to the suspended

thread(s) when the condition is satisfied.

The signal restarts thread(s).

• A monitor has mutex locks for atomic

methods and condition variables.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 282✬

✫

✩

✪

Monitor

• Mutual exclusion is guaranteed (by the

compiler) on the operations i.e. only one

thread/procedure at a time can execute a

monitor operation.

• If a thread tj tries to execute a monitor

operation while another thread ti is already

in the middle of execution of a monitor

operation, the thread tj will be blocked on

the monitor.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 283✬

✫

✩

✪

Monitor

• A condition variable has three (3) atomic

operations, wait(), signal(), and

signalAll() (also called broadcast())

defined on them.

• There is a queue of suspended threads for

every condition variable.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 284✬

✫

✩

✪

Monitor

• If x is a condition variable and a thread ti in

the middle of a monitor operation executes

x.wait()a, it is suspended and put in the

queue of x.

• The thread ti must either signal a suspended

thread within the monitor or release the

monitor lock so that another thread tj can

enter the monitor.
aSome condition is not satisfied e.g. no space in the buffer (full), no element

in the buffer (empty)

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 285✬

✫

✩

✪

Monitor

• If the thread tj while executing a monitor

operation performs x.signal(), a thread

e.g. ti suspended on the condition variable x

comes out of suspensiona.

• But then both ti and tj cannot be in the

ready or running state within the monitor.

ax.signalAll() will release all threads suspended on x.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 286✬

✫

✩

✪

Monitor

• Two possible solutions are suggested.

• Signal and wait: tj suspends itself until ti

leaves the monitor or gets suspended on

another condition variable (Hoare Style.

• Signal and continue: tj continues and ti

waits for tj either to leave the monitor or to

get suspended on a condition variable (Mesa

style).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 287✬

✫

✩

✪

Monitor for Producer-Consumer

monitor ProCon {

int data[100], front, rear, count ;

condVar full, empty;

initProdCon(){

front = rear = 0;

count = 0;

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 288✬

✫

✩

✪

void addQ(int n){

while(count == 100) full.wait();

rear = (rear +1)%100;

data[rear] = n;

count = count+1;

empty.signal(); // empty.signalAll();

}

void deleteQ(int *dP){

while(count == 0) empty.wait();

*dP = data[(front+1)%100];

front = (front+1)%100;

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 289✬

✫

✩

✪

count = count - 1;

full.signal();

}

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 290✬

✫

✩

✪

Implementing Monitor

• We need a semaphore mutex for each

monitor class, initialized to one (1).

• Any process must execute mutex.wait()

before running the code of any procedure

(F()) on shared data.

• Once the process finishes and there is no

suspended process in the monitor, it

executes mutex.signal().

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 291✬

✫

✩

✪

Implementing Monitor

• If we adopt the signal and wait semantics for

condition variables, the signaling process will

wait until the resumed process either finishes

or again blocked on condition variable.

• For that we need another semaphore next

and a counter nextCount both initialized to

zero (0).

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 292✬

✫

✩

✪

Implementing Monitor

• A signaling process can block itself on next

by executing next.wait() after

incrementing nextCount.

• After finishing the code of F() the process

checks whether nextCount > 0 and takes

the following action.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 293✬

✫

✩

✪

Invocation of Procedure F()

mutex.wait();

// body of F()

if(nextCount > 0) next.signal();

else mutex.signal();

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 294✬

✫

✩

✪

Note

• If nextCount > 0, there is already some

process waiting in the middle of some

procedure. They should be restarted.

• Otherwise a new process may enter the

monitor.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 295✬

✫

✩

✪

Condition Variable

• For each condition variable cV there is a

semaphore cVsem and a counter cVcount

both initialized to zero (0).

• The code for cV.wait() and cV.signal() are

as follows:

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 296✬

✫

✩

✪

cV.wait()

The thread is going to be blocked on cVsem.

cVcount++;

if(nextCount > 0) next.signal();

// release waiting thread

else mutex.signal(); // Allow new thread to enter

cVsem.wait();

cVcount--; // restarted

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 297✬

✫

✩

✪

cV.signal()

if(cVcount > 0)){ // if threads waiting on cV

nextCount++; // this thread will wait on next

cVsem.signal();

next.wait();

nextCount--; // wait on next is over

}

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 298✬

✫

✩

✪

Dining Philosophers Problem

• The original problem was formulated by

Edsger Dijkstra in 1965 as an examination

problem, where computers are competing for

tape drives.

• The current well-known formulation is due

to C A R Hoare.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 299✬

✫

✩

✪

Dining Philosophers Problem

“Five silent philosophers sit at a round table

with bowls of spaghetti. Five chopsticks are

placed between each pair of adjacent

philosophers.

Each philosopher must alternately think and

eat. However, a philosopher can only eat

spaghetti when they have both left and right

chopsticks. Each i chopstick can be held by

only one philosopher and so a philosopher can

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 300✬

✫

✩

✪

use the chopstick only if it is not being used by

another philosopher. After an individual

philosopher finishes eating, they need to put

down both chopsticks so that the chopsticks

become available to others. A philosopher can

take the chopstick on their right or the one on

their left as they become available, but cannot

start eating before getting both chopsticks.

Eating is not limited by the remaining amounts

of spaghetti or stomach space; an infinite

supply and an infinite demand are assumed.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 301✬

✫

✩

✪

The problem is how to design a discipline of

behavior (a concurrent algorithm) such that no

philosopher will starve; i.e., each can forever

continue to alternate between eating and

thinking, assuming that no philosopher can

know when others may want to eat or think.” -

Wikipedia

Note: problem may not have much practical
utility!

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 302✬

✫

✩

✪

Dining Philosophers

P2

P3P4

2

P1

P0
0

4

1

3

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 303✬

✫

✩

✪

Dining Philosophers Problem: Requirements

• No deadlock or livelock.

• No starvation.

• Maximum parallelism.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 304✬

✫

✩

✪

Dining Philosophers Problem

The obvious solution is not deadlock free. Each

philosopher repeats following four steps.

1. Philosopher Pi continues thinking until her

left-chopstick (i) is available, and she picks it

up.

2. Again continues thinking until her

right-chopstick ((i+ 4) mod 5) is available,

she picks it up too.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 305✬

✫

✩

✪

Dining Philosophers Problem

3. Then she eats for a finite amount of time.

4. Drops both the chopsticks.

Note: a binary semaphore can be associated
with every chopstick.
Deadlock: all philosophers pick up five
chopsticks from their left.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 306✬

✫

✩

✪

New Rules

We change the rule of the game slightly.

• After picking up the left-chopstick a

philosopher waits for t1 minutes to get the

right-chopstick. If he cannot get it, puts

back the left-chopstick.

• Waits for t2 minutes before starting the next

round.

This avoids deadlock but may lead to livelocka
aAll five of them are picking up and putting down chopsticks again and again.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 307✬

✫

✩

✪

First Solution

• The first solution to the problem that can

make it deadlock-free was proposed by

Dijkstra.

• The chopsticks (resources) are numbered

from 0, 1, 2, 3, 4.

• Restriction: a philosopher will always pick

up the lower-numbered chopstick first, and

then the higher-numbered chopstick.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 308✬

✫

✩

✪

Chopsticks are Numbered

P2

P3P4

2

P1

P0
0

4

1

3

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 309✬

✫

✩

✪

No Deadlock

• If we now allocate chopsticks to philosophers

in sequence starting from P0 according to the

protocol, we get the following assignments.

P0 ← 0, P1 ← X, P2 ← 1, P3 ← 2, P4 ← 3.

• Now P0 can finish eating by picking up

chopstick 4.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 310✬

✫

✩

✪

Solution using Arbitrator

• There is a central arbitrator (waiter, server)

who keeps track of states of all philosophers

(eating, thinking, hungry to eat).

• A philosopher when hungry will request the

arbitrator.

• The arbitrator checks the states of two

adjacent philosophers, if on of them is

eating, the requesting philosopher will wait.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 311✬

✫

✩

✪

Solution using Arbitrator

• Otherwise the philosopher can pick-up both

chopsticks and starts to eat.

• Once finished, he drops the chopsticks and

starts thinking.

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 312✬

✫

✩

✪

Bibliography

1. Operating System Concepts by Abraham Silberschatz, Peter B

Galvin & Gerg Gagne, 9th ed., Wiley Pub., 2014, ISBN

978-81-265-5427-0.

2. Operating Systems: Three Easy Pieces by Remzi H.

Arpaci-Dusseau & Andre C. Arpaci-Dusseau Pub.

Arpaci-Dusseau Books, LLC, 2008-19.

3. Beginning Linux Programming by Neil Mathew & Richard

Stones, 3rd ed., Wiley Pub., 2004, ISBN 81-265-0484-6.

4. Understanding the Linux Kernel by Daniel P Bovet & Marco

Cesati, 3rd ed., O’Reilly, ISBN 81-8404-083-0.

5.

https://en.wikipedia.org/wiki/Readers%E2%80%93writers problem

Lect 5 Goutam Biswas

Operating System IIIT Kalyani 313✬

✫

✩

✪

6.

https://cseweb.ucsd.edu/classes/fa05/cse120/lectures/120-l6.pdf

7. https://people.csail.mit.edu/rinard/osnotes/h14.html

8.

https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

9.

https://en.wikipedia.org/wiki/Dining philosophers problem

Lect 5 Goutam Biswas

