Operating System ITIT Kalyani 1

4 N

‘Threads Ot Computation - II

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 2

/ Threads within a Process' \

e So far we have looked at a process as a

program In execution.

e We assumed that there is only one execution
sequence or thread of computation of the

code within a process.

e But it is possible to have more than one
execution sequence running concurrently or

in parallel® within a process.

\ @Say on a multi-core processor. /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 3

Threads within a Process'

e There are computational jobs with distinct

logical parts and can have almost

independent flow of computation.

e We have seen how child processes are created
to do the parts of a whole job in parallel.
And then combine the outcome of different

child processes if necessary.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 4

/ Threads within a Process' \

e But instead of creating child processes with

separate address spaces, it 1s possible to have
multiple threads of execution within a

process sharing the same address spece.
e [Lach thread can be scheduled independently.

e Each thread has its own identification,
thread ID (TID), CPU state (program

counter (PC) and other registers), and stack.

.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 5

/ ‘Multiple Threads in a Process' \

e But all threads of a process share the same

code, global data, heap area®, open files etc.
e Data sharing is easy between threads.

e A software may have different kinds of
activity e.g. user interfaces to different users,
different computations, different database

access etc.

@There are different stacks for different threads of a process. But they live

\Within the same virtual address space of the process. /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 6

/ ‘Multiple Threads in a Process' \

e This may be achieved by running different

threads within a process.

e A blocking I/O suspends a single-thread
process. But in a multi-thread process even
when a thread is blocked for 1/0, other

threads may continue.

e There is also a possibility of concurrent 1/0
by different threads.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 7

/ ‘Multiple Threads in a Process' \

e [t is also claimed that creating and switching

thread is order of magnitude faster than

creating and switching process.

e This may be due to the fact that creation of
a thread does not require the creation of a

new address space and its page table.

e [t also does not require different data copy

to child process.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 8

‘Multiple Threads in a Process'

e A process can communicate either through

shared memory or by message passing. Both
requires some dialog with the OS. But a
threads of a process can communicate

through the common area of global data.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 9

4 N\
‘ Advantages I

e Better responsiveness in a interactive system.

e [asy sharing of data.
e Faster creation of thread.

e Non-blocking of the complete process due to
slow 1/0.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

-~

10

Amdahl’s Law of Performance Gain.

e Let there be n processing units, and the
fraction of task that is to be performed

sequentially be s.

e The speedup is limited by the formula:

1
s+ (1—s)/n

speedup <

N\

Lect 4

/

Goutam Biswas

Operating System IIIT Kalyani 11

Amdahl’s Law of Performance Gain'

o If s = 0.2 and there are 4-cores, the speedup

1 _
cannot exceed 0270874 — 2.5.

e The main observation is that with 20%
sequential work load, the speedup cannot
exceed 1/0.2 = 5 with any number of

pProcessor.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 12

4 N
‘Types of Threads'

e The implementation of thread may be at the

user level known as a user thread or at the

OS level, known as a kernel thread.

e User threads are managed at the user level.
The kernel is not aware of it. So it can also

be implemented on a single CPU system.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 13

4 N
Types of Threads'

e KKernel threads are managed and scheduled

by the OS kernel.

e But at the lower level any thread runs on a
kernel thread. Following are three different

mapping models.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

Lect 4

14

-

‘T ypes of Threads'

e Many-to-one model: maps many user

threads to one kernel thread.

e One-to-one model: each user thread is

mapped to a kernel thread.

e Many-to-many model: the set of user
threads are mapped to a set (smaller or

same size) of kernel threads.

.

/

Goutam Biswas

Operating System IIIT Kalyani

15

-

.

Many-to-One Model I

e Threads are managed at the user space by
the thread library, so there is no overhead of

transition from user mode to kernel mode

during thread switching.

e But user threads cannot take the advantage

of the multiprocessor or multi-core

architecture.

~

/

Lect 4

Goutam Biswas

Operating System IIIT Kalyani 16

4 N\
Many-to-One Model I

e Any blocking system call will block the

underlying kernel thread, resulting the
blocking of all user level threads mapped to
it.

e User level threads are used for fine grain

parallelism where system calls are often not

required.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 17

/ Many-to-One Model I \

e Normally user level threads are small

computation intensive code. Each thread has
its CPU state and a thread control block to
cooperate and manage the scheduling of
different threads.

e It should have its own mechanism to manage

the atomic of critical sections of code and

synchronization.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 18

4 N\
Many-to-One Model I

e As it does not require any OS support, it

can be implemented on any OS.

e But most OS today support kernel level
thread and most processors are multi-core.
That possibly makes user level thread less

popular.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 19

4 N\
Many-to-One Model I

Think of the following issues in connection to

user-level threads:

e How does one thread gets suspended and

another is scheduled?
e Who decides about the scheduling policy?”

e What will happen if there is an exception or

blocking system call in one thread?

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 20

a N
One-to-One Model '

e ach user level thread is mapped to a kernel
level thread.

e Threads can run in parallel on a

multiprocessor or multi-core architecture.

e Blocking of one thread does not affect the

execution of another thread.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 21

Lect 4

-

e For every user thread there is a kernel
-

the presence of large number of kernel

t.

e Thread creation time may be comparable to

process creation time.

e This model is good for coarse-grained

.

hread. So the thread creation overhead and

One-to-One Model ' \

parallelism.

hreads may be a problem.

/

Goutam Biswas

Operating System IIIT Kalyani 22

4 N
One-to-One Model '

e It require full support from the OS e.g.

creation, scheduling, blocking and

termination of threads.

e OS must support data structures like thread
control block (TAB) etc.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 23

4 N
‘ Many-to-Many Model I

e This is a middle-path between the first two

models where an user can create as many

threads as he wishes.

e But the OS can create number of kernel
threads depending on the architecture

(number of processor or core).

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 24

4 N
‘ Many-to-Many Model I

e If an user thread issues a blocking system

call, the kernel can schedule a ready user
thread on the kernel thread.

e It is also possible to nail some particular

user thread to a kernel thread.

_ /

Lect 4 Goutam Biswas

Operating System

Lect 4

IIIT Kalyani 25

-

.

e An API to create and manage threads is

provided by a thread library.

e The library may work at the user space or at

the kernel level.

e We s
as ptl

Thread Library I

nall talk about POSIX Threads known
hread. The API is defined by POSIX

stand

ard (IEEE Std 1003.1¢-1995).

Goutam Biswas

Operating System ITIT Kalyani 26

/ An Example I \

/ *
Programming with pthread: pthreadl.c++

one thread computes factorial and
the other thread computes fibonacci
$ g++ -Wall pthreadl.c++ -lpthread
$./a.out 5
*/

#include <iostream>

\ggsing namespace std; 4//

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 27

//;include <stdio.h> ‘\\
#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#define loop(X) {for(int i=0; i<=(X); ++i);}

void * threadl(void *) ;
void * thread2(void *)
int eS1, eS2;

\\Ent fact(int n){ 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

28

//7 if(n == 0) return 1 ;

return n*fact(n-1)

int fib(int n) {
int £fO = 0, f1 =1, 1

if(n == 0) return fO ;
if(n == 1) return f1 ;

for(i=2; i<=n; ++i) {

\\¥ int temp = fO ;

b

/

Lect 4

Goutam Biswas

Operating System IIIT Kalyani

29

-~

"

10
f1

f1 ;
O + temp ;

}

return f1 ;

int main(int count, char *vect[]) {
pthread_t thID1, thID2; // thread ID

int n ; // pthreadl.c++

int err, *esPl, *xesP2;

/

Lect 4

Goutam Biswas

Operating System ITIT Kalyani 30

4 N

if (count < 2) {

cerr << "No argument for functionjn" ;

exit (1) ;

n = atoi(vect[1]) ;
cout << "main thread: n ="
<< n << ll\nll

)

\\¥ err = pthread_create(&thID1, NULL,/E%readl,

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 31

-~

_

// 1st Child\;hreadl

if(err !'= 0){
cerr << "Thread 1 creation problemjn";
exit (1) ;

}
err = pthread_create(&thID2, NULL, thread2,

// 2nd child thread2

if (err !'= 0){
cerr << "Thread 2 creation problemjn";
exit(1);

: Y

Lect 4

Goutam Biswas

Operating System IIIT Kalyani

-~

void

~

pthread_join(thID2, (void **)&esP2);,
pthread_join(thID1, (void **)&esP1);,
cout << "Thread 1: " << *esPl << endl
cout << "Thread 2: " << *esP2 << endl]

return O ;

*threadl(void *vp) {// Address of pa
int i, *p ; // to pass

32

// 2nd t
// 1st t

rameter

/

Lect 4

Goutam Biswas

Operating System IIIT Kalyani

Lect 4

//’ p = (int *) vp ; ‘\\

\\; int i, *p; // to pass 4//

for(i=0; i<=x*p; ++i) {
cout << "Thil: fib(" << i
<< ") =" << fib(i) << endl
10op (5000000) ;
Iy
eSSl = 1;
pthread_exit((void *)&eS1) ;
¥
void *thread2(void *vp) {// Address of paz

33

rameter

Goutam Bis

was

Operating System IIIT Kalyani

34

-~

p = (int *) vp ;
for(i=0; i<=xp; ++i) {
cout << "Th2:" <K i

<< "l =" << fact(i) << endl];

10op (5000000) ;
¥
esS2 = 2;
pthread_exit((void *)&eS2) ;

/

Lect 4

Goutam Biswas

Operating System ITIT Kalyani 35

K Creating Threads I \

int pthread_create(pthread t *thread,

const pthread attr_t *attr, void

*(*start_fun) (void *), void *arg);

e Creates a thread with the identifier in

*thread.

e attr is used to set thread attributes. A NULL

1s for default attribute values.

k. start_fun is a function that the thread Wﬂl/

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 36

4 N

execute once created.

e arg is the single argument passed to

start fun as a (void *) pointer.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 37

/ Wait for Termination' \

e int pthread_join(pthread t tid, void

xxret) wailts for the thread with tid to

terminate.

e void pthread_exit(void *retval);
terminates the thread and returns status
information through *retval. This

information is available through ret, where

*ret is the value of retval in pthread join.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 38

4 N
Terminating Thread I

e pthread_cancel (thread) sends cancellation

request to the thread.

e But whether the thread will be canceled or
not depends on the threads cancelability
state and type.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 39

K ‘ Cancelability State I \

e int pthread_setcancelstate (int

state, int *oldstate) sets the
cancelability state of a thread either to
THREAD_CANCEL_ENABLE, receive cancel
request, or to THREAD_CANCEL_DISABLE.,

ignores cancel request.

e The second parameter is the old state

\ pointer, may be put to NULL. /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 40

4 N

e Also see pthread_setcanceltype().

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 41

/ Terminating Thread: An Examplel \

/ *
Programming with pthread: cancelability state:
pthread2. c++
$ g++ -Wall pthread2.c++ -lpthread
$./a.out

*/

#include <iostream>

using namespace std;

\<finclude <unistd.h> 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 42

//;include <pthread.h> ‘\\
#define MAXLOOP 15

void * thread(void *)

int tS, *tSP;

int main() {

pthread_t tid; // pthread2.c++

pthread_create(&tid, NULL, thread, NULL);
\\¥ pthread_cancel(tid); 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 43

//7 pthread_join(tid, (void **)&tSP);‘\\
// cout << "Thread status: " << *tSP|<< endl

return O ;
¥
void *thread(void *vp) {
pthread_setcancelstate (PTHREAD_CANCEL_DISABL
for(int i=1; i<= MAXLOOP; ++i) {
sleep(1);
if (i==10)
\\¥ pthread_setcancelstate(4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 44

4 N

N —g

PTHREAD_CANCEL_ENABLE, NULL);

)

cout << "Thread Running: " << 1 <{ endl;

¥
ts = 1;
pthread_exit((void *)&tS) ;

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 45

/ Different Stacks ' \

// pthread4.c++ different stacks
// $ c++ -Wall pthread4.c++ -lpthread

#include <iostream>

using namespace std;
#include <pthread.h>
#include <cstdio>

#include <unistd.h>

\;iOid *threadl (void *p){ 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

46

-~

volid

"

int n = 20;

sleep(1);

cout << "Child Thread 1 - n: " << de¢
<< ", &n: " << hex << &n << endl]l;

return NULL;

*thread2 (void *p){

int n = 30;

sleep(2);

cout << "Child Thread 2 - n: " << de¢

<< ", &n: " << hex << &n << 929};

~

Lect 4

Goutam Biswas

<<

<<

Il

Operating System ITIT Kalyani 47

//7 return NULL; ‘\\

}

int main() {
pthread_t thID1, thID2; // thread ID

int n=10; // pthread4.c++

cout << "Main Thread - n: " << n
<< ") &n: " << hex << &n << endl];

pthread_create(&thID1, NULL, threadl] NULL);
\\¥ pthread_create(&thID2, NULL, threafgk NULL) ;

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 48

4 N

pthread_join(thID1, NULL);
pthread_join(thID2, NULL);

return O;

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 49

4 N

Different Stacks '

$ a.out
Main Thread - n: 10, &n: Ox7f£f£8ff7b50c

Child Thread 1 - n: 20, &n: 0x7£49609bOef¢
Child Thread 2 - n: 30, &n: 0x7£49601b8ef¢

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 50

/ ‘Raee on Global Variable' \

/ *

pthread3.c Race condition

$ g++ -Wall -lpthread pthread3.c++
$./a.out 500000
output: O, +ve and -ve
*/
#include <iostream>
using namespace std;
\<ﬁinclude <stdio.h> 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 51

//;include <stdlib.h> ‘\\
#include <pthread.h>

int times, n = 0 ;

void * threadl(void *) ;
void * thread2(void *) ;
void inc() {n=n+1;}

void dec() {n=n-1;}

int main(int count, char *vect[]) { // argument i

\\; pthread_t thID1, thID2; 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 52

4 N

if (count < 2) {

perror ("No argument for times\nf) ;
exit (1) ;

Iy

times = atoi(vect[1]) ;

pthread_create(&thID1, NULL, threadl} NULL)

pthread_create(&thID2, NULL, thread2| NULL)

pthread_join(thID1, NULL) ;

pthread_join(thID2, NULL) ;

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

-~

Lect 4

53

void

cout << "n: " << n << "\n" ;

return 0 ;

sthreadl (void *vp) {

int 1 ;

for(i=1; i<=times; ++i) inc();

return NULL ;

~

/

Goutam Biswas

Operating System IIIT Kalyani 54

4 N

void *thread2(void *vp) A

int 1 ;

for(i=1; i<=times; ++i) dec() ;

return NULL ;

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 55

‘Race on Global Variable.

e The global variable is initialized to 0.

e One thread increments it 5 x 10° times.
e The other thread decrements it 5 x 10° times.

e At the end the expected result is 0 again.

But different runs give different results.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 56

‘Race on Global Variable'

a.out 5000000
: —2203358
a.out 5000000
: 3156188
a.out 5000000
: 4050120

_ /

Lect 4 Goutam Biswas

B A B A B &L

Operating System ITIT Kalyani 57

4 N
Linux clone() I

e The library function clone() and the

corresponding system call clone () is specific

to Linux and is not portable.

e The system call or its glibc wrapper

function is used to create a child process.

e But 1t can also be used to create kernel level
threads.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 58

4 N
Linux clone() I

e A call to clone() also creates the child

process almost as the copy of the parent.

e But unlike fork (), the child process does

not start execution at the point of the call.

e It calls the function specified as argument in

the call along with parameters.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 59

4 N
Linux clone() I

e The interface of glibc wrapper tunction of

clone() is
int clone(int (*f) (void *), void

*child_stack, int flags, void *rag);

e The child process starts executing the
function £ with void *rag as the parameter

ile. f(rag).

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 60

a N
Linux clone() I

e The child process created by clone()

terminates when f (rag) returns or there is a

call to exit () within it.

e The exit code of the child is the integer
returned by f (). The parent process may

wait for the completion of the child as usual.

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 61

/ Linux clone() I \

e A cloned child, unlike forked child, shares

some execution context of the parent.

e The memory space, the file descriptor table

etc. are shared.

e As the memory space is shared, the stack of

the parent cannot be used by the child.

e The second parameter of the call specifies
the bottom of child’s stack®.

\ @Which often grows from higher address to lower address. /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

-

Lect 4

/ Linux clone() I

e The least significant byte of flags specifies
the termination signal from the child to the

parent.

e Other bits are used to control the effects of

call to clone().

e CLONE_VM - parent and child share the
virtual memory, CLONE_FILES - parent
and child share the file descriptor table.

/

62

Goutam Biswas

Operating System IIIT Kalyani 63

/ ‘Thread Creation by clone () I \

/ *
clonel.c++ Creation of new thread by clome()
* /

#include <iostream>

using namespace std;
#include <stdio.h>
#include <sched.h>
#include <sys/types.h>
\<ﬁinclude <unistd.h> 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

64

/<;include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>

#define MAXSTACK 4096

int fact ; // global data
int what(void *p) ;

int main() { // clonel.c++

\\¥ int chPID, status, n ;

b

/

Lect 4

Goutam Biswas

Operating System ITIT Kalyani 65

//’ char *chStack ; ‘\\

)

cout << "Enter a +ve 1integer: " ;
cin >> n;

chStack = (char *) malloc(MAXSTACK) ;
// Memory for new stack
chStack + MAXSTACK;

// Stack grows towards lower
// address. Bottom of stack

chStack

\\\ chPID = clone(what, chStack, CLDNE_V?;/

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

// ’what (NULL)’ .

// &n parameter to ’what’

// chPID - cloned process i¢
cout << "Inside proc: pid = " << getpiq
cout << "Inside proc: cpid = " << chPIl

waitpid (chPID, &status, __WCLONE) ;
// __WCLONE - wait for

66

//7 (void *);;1;
// Cloned process will execlte

// CLONE_VM - same memory space

)|
i() << n
D << "\n

\\¥ // cloned process 4//

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 67

//7 cout << "Inside proc:" << n <K "I = :\Y< fact

return O ;

int what(void *p) {

int n = *(int *)p, 1i;

for(fact=i=1;i<=n;++i) fact *= i;

return O ;

\J Y,

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 68

/ ‘Thread in Python' \

e Import the thread module.

e Start the method
thread.start new thread (function,

rags).

e The first parameter is the function name,
the second parameter is a tulle of arguments

to the function.

\. There is a third parameter that we ignore.

/

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 69

/ A Simple Thread' \

#!/usr/bin/python

sorting.py reads a string of integers se¢perated

blanks. split them in three J]ists
sort them by running three threads
e finally merge them

import thread
import time
def merge(l1l, 12):

\\¥ if 11 == []: return 12 4//

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 70

//7 if 12 == []: return 11 ﬁ\\

if 11[0] < 12[0]: return [11[0]]+ \
merge(11[1:], 12)
else: return [12[0]]+merge(11, 12[1:].
def mySort(l, n):
global 11g, 12g, 13g

—g

1.sort()

if n==1: 11g =1
elif n==2: 12g =1
elif n==3: 13g = 1

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 71

//; = raw_input ("Enter +ve integers: ") D

1 = []

for i in s.split(): 1 =1 + [int(i)]

llen = len(1)

11, 12, 13 = 1[:11en/3], 1[1llen/3:2x1len/8]1, \

1[2x11len/3:]

print 11, 12, 13

try:
thread.start_new_thread(mySort, (11, 1}))
thread.start_new_thread(mySort, (12, 2}))

\\; thread.start_new_thread(mySort, (13,/5*))

Lect 4 Goutam Biswas

Operating System IITT Kalyani

-

except: print "Thread creation error"
time.sleep(1l) # bad use
print merge(merge(llg, 12g), 13g)

/

72

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 73

4 N
Thread in C++11 I

e Include <thread> header and compile with

following options:

g++ -Wall -std=c++11 c++threadl.c++ -pthread

e Following is a very simple example. But

there are many features.

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 74

/ A Simple Thread' \

/ %
* c++threadl.c++ basic c++ thread
x $§ g++ -Wall -std=c++11 c++threadl.c++ tpthread
* /

#include <iostream>

#include <thread>

using namespace std;
#include <unistd.h>

_ /

Lect 4 Goutam Biswas

Operating System ITIT Kalyani 75

//;nt fact; ‘\\

void factorial(int n){

fact=1;

for(int i=1; i<=n; ++i) fact *= i;
sleep(1);
cout << "child thread ID: " << this thread::

int main(){

int n;

_ /

Lect 4 Goutam Biswas

Operating System IIIT Kalyani

-~

~

cout << "Enter a +ve integer: ";

cin >> n;
std: :thread t(factorial, n);
cout << "main thread ID: " << this_th

cout << "child thread ID (in parent):
t.join();
cout << n <K "I =" <K fact << endl;

return O;

76

read: :ge
1] << t'.

/

Lect 4

Goutam Biswas

