
Operating System IIIT Kalyani 1✬

✫

✩

✪

Threads Of Computation - I

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 2✬

✫

✩

✪

Threads within a Process

• So far we have looked at a process as a

program in execution.

• We assumed that there is only one execution

sequence or thread of computation of the

code within a process.

• But it is possible to have more than one

execution sequence running concurrently or

in parallela within a process.
aSay on a multi-core processor.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 3✬

✫

✩

✪

Threads within a Process

• There are computational jobs with distinct

logical parts and can have almost

independent flow of computation.

• We have seen how child processes are created

to do the parts of a whole job in parallel.

And then combine the outcome of different

child processes if necessary.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 4✬

✫

✩

✪

Threads within a Process

• But instead of creating child processes with

separate address spaces, it is possible to have

multiple threads of execution within a

process sharing the same address spece.

• Each thread can be scheduled independently.

• Each thread has its own identification,

thread ID (TID), CPU state (program

counter (PC) and other registers), and stack.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 5✬

✫

✩

✪

Multiple Threads in a Process

• But all threads of a process share the same

code, global data, heap areaa, open files etc.

• Data sharing is easy between threads.

• A software may have different kinds of

activity e.g. user interfaces to different users,

different computations, different database

access etc.
aThere are different stacks for different threads of a process. But they live

within the same virtual address space of the process.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 6✬

✫

✩

✪

Multiple Threads in a Process

• This may be achieved by running different

threads within a process.

• A blocking I/O suspends a single-thread

process. But in a multi-thread process even

when a thread is blocked for I/O, other

threads may continue.

• There is also a possibility of concurrent I/O

by different threads.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 7✬

✫

✩

✪

Multiple Threads in a Process

• It is also claimed that creating and switching

thread is order of magnitude faster than

creating and switching process.

• This may be due to the fact that creation of

a thread does not require the creation of a

new address space and its page table.

• It also does not require different data copy

to child process.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 8✬

✫

✩

✪

Multiple Threads in a Process

• A process can communicate either through

shared memory or by message passing. Both

requires some dialog with the OS. But a

threads of a process can communicate

through the common area of global data.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 9✬

✫

✩

✪

Advantages

• Better responsiveness in a interactive system.

• Easy sharing of data.

• Faster creation of thread.

• Non-blocking of the complete process due to

slow I/O.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 10✬

✫

✩

✪

Amdahl’s Law of Performance Gain

• Let there be n processing units, and the

fraction of task that is to be performed

sequentially be s.

• The speedup is limited by the formula:

speedup ≤
1

s+ (1− s)/n

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 11✬

✫

✩

✪

Amdahl’s Law of Performance Gain

• If s = 0.2 and there are 4-cores, the speedup

cannot exceed 1

0.2+0.8/4 = 2.5.

• The main observation is that with 20%

sequential work load, the speedup cannot

exceed 1/0.2 = 5 with any number of

processor.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 12✬

✫

✩

✪

Types of Threads

• The implementation of thread may be at the

user level known as a user thread or at the

OS level, known as a kernel thread.

• User threads are managed at the user level.

The kernel is not aware of it. So it can also

be implemented on a single CPU system.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 13✬

✫

✩

✪

Types of Threads

• Kernel threads are managed and scheduled

by the OS kernel.

• But at the lower level any thread runs on a

kernel thread. Following are three different

mapping models.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 14✬

✫

✩

✪

Types of Threads

• Many-to-one model: maps many user

threads to one kernel thread.

• One-to-one model: each user thread is

mapped to a kernel thread.

• Many-to-many model: the set of user

threads are mapped to a set (smaller or

same size) of kernel threads.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 15✬

✫

✩

✪

Many-to-One Model

• Threads are managed at the user space by

the thread library, so there is no overhead of

transition from user mode to kernel mode

during thread switching.

• But user threads cannot take the advantage

of the multiprocessor or multi-core

architecture.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 16✬

✫

✩

✪

Many-to-One Model

• Any blocking system call will block the

underlying kernel thread, resulting the

blocking of all user level threads mapped to

it.

• User level threads are used for fine grain

parallelism where system calls are often not

required.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 17✬

✫

✩

✪

Many-to-One Model

• Normally user level threads are small

computation intensive code. Each thread has

its CPU state and a thread control block to

cooperate and manage the scheduling of

different threads.

• It should have its own mechanism to manage

the atomic of critical sections of code and

synchronization.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 18✬

✫

✩

✪

Many-to-One Model

• As it does not require any OS support, it

can be implemented on any OS.

• But most OS today support kernel level

thread and most processors are multi-core.

That possibly makes user level thread less

popular.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 19✬

✫

✩

✪

Many-to-One Model

Think of the following issues in connection to

user-level threads:

• How does one thread gets suspended and

another is scheduled?

• Who decides about the scheduling policy?

• What will happen if there is an exception or

blocking system call in one thread?

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 20✬

✫

✩

✪

One-to-One Model

• Each user level thread is mapped to a kernel

level thread.

• Threads can run in parallel on a

multiprocessor or multi-core architecture.

• Blocking of one thread does not affect the

execution of another thread.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 21✬

✫

✩

✪

One-to-One Model

• For every user thread there is a kernel

thread. So the thread creation overhead and

the presence of large number of kernel

threads may be a problem.

• Thread creation time may be comparable to

process creation time.

• This model is good for coarse-grained

parallelism.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 22✬

✫

✩

✪

One-to-One Model

• It require full support from the OS e.g.

creation, scheduling, blocking and

termination of threads.

• OS must support data structures like thread

control block (TAB) etc.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 23✬

✫

✩

✪

Many-to-Many Model

• This is a middle-path between the first two

models where an user can create as many

threads as he wishes.

• But the OS can create number of kernel

threads depending on the architecture

(number of processor or core).

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 24✬

✫

✩

✪

Many-to-Many Model

• If an user thread issues a blocking system

call, the kernel can schedule a ready user

thread on the kernel thread.

• It is also possible to nail some particular

user thread to a kernel thread.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 25✬

✫

✩

✪

Thread Library

• An API to create and manage threads is

provided by a thread library.

• The library may work at the user space or at

the kernel level.

• We shall talk about POSIX Threads known

as pthread. The API is defined by POSIX

standard (IEEE Std 1003.1c-1995).

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 26✬

✫

✩

✪

An Example

/*

Programming with pthread: pthread1.c++

one thread computes factorial and

the other thread computes fibonacci

$ g++ -Wall pthread1.c++ -lpthread

$./a.out 5

*/

#include <iostream>

using namespace std;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 27✬

✫

✩

✪

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#define loop(X) {for(int i=0; i<=(X); ++i);}

void * thread1(void *) ;

void * thread2(void *) ;

int eS1, eS2;

int fact(int n){

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 28✬

✫

✩

✪

if(n == 0) return 1 ;

return n*fact(n-1) ;

}

int fib(int n) {

int f0 = 0, f1 = 1, i ;

if(n == 0) return f0 ;

if(n == 1) return f1 ;

for(i=2; i<=n; ++i) {

int temp = f0 ;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 29✬

✫

✩

✪

f0 = f1 ;

f1 = f0 + temp ;

}

return f1 ;

}

int main(int count, char *vect[]) {

pthread_t thID1, thID2; // thread ID

int n ; // pthread1.c++

int err, *esP1, *esP2;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 30✬

✫

✩

✪

if(count < 2) {

cerr << "No argument for function\n" ;

exit(1) ;

}

n = atoi(vect[1]) ;

cout << "main thread: n = "

<< n << "\n" ;

err = pthread_create(&thID1, NULL, thread1, (void

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 31✬

✫

✩

✪

// 1st child thread1

if(err != 0){

cerr << "Thread 1 creation problem\n";

exit(1);

}

err = pthread_create(&thID2, NULL, thread2, (void

// 2nd child thread2

if(err != 0){

cerr << "Thread 2 creation problem\n";

exit(1);

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 32✬

✫

✩

✪

pthread_join(thID2, (void **)&esP2);// 2nd thread

pthread_join(thID1, (void **)&esP1);// 1st thread

cout << "Thread 1: " << *esP1 << endl;

cout << "Thread 2: " << *esP2 << endl;

return 0 ;

}

void *thread1(void *vp) {// Address of parameter

int i, *p ; // to pass

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 33✬

✫

✩

✪

p = (int *) vp ;

for(i=0; i<=*p; ++i) {

cout << "Th1: fib(" << i

<< ") = " << fib(i) << endl ;

loop(5000000);

}

eS1 = 1;

pthread_exit((void *)&eS1) ;

}

void *thread2(void *vp) {// Address of parameter

int i, *p; // to pass

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 34✬

✫

✩

✪

p = (int *) vp ;

for(i=0; i<=*p; ++i) {

cout << "Th2:" << i

<< "! = " << fact(i) << endl ;

loop(5000000);

}

eS2 = 2;

pthread_exit((void *)&eS2) ;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 35✬

✫

✩

✪

Creating Threads

int pthread create(pthread t *thread,

const pthread attr t *attr, void

*(*start fun) (void *), void *arg);

• Creates a thread with the identifier in

*thread.

• attr is used to set thread attributes. A NULL

is for default attribute values.

• start fun is a function that the thread will

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 36✬

✫

✩

✪

execute once created.

• arg is the single argument passed to

start fun as a (void *) pointer.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 37✬

✫

✩

✪

Wait for Termination

• int pthread join(pthread t tid, void

**ret) waits for the thread with tid to

terminate.

• void pthread exit(void *retval);

terminates the thread and returns status

information through *retval. This

information is available through ret, where

*ret is the value of retval in pthread join.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 38✬

✫

✩

✪

Terminating Thread

• pthread cancel(thread) sends cancellation

request to the thread.

• But whether the thread will be canceled or

not depends on the threads cancelability

state and type.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 39✬

✫

✩

✪

Cancelability State

• int pthread setcancelstate (int

state, int *oldstate) sets the

cancelability state of a thread either to

THREAD CANCEL ENABLE, receive cancel

request, or to THREAD CANCEL DISABLE,

ignores cancel request.

• The second parameter is the old state

pointer, may be put to NULL.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 40✬

✫

✩

✪

• Also see pthread setcanceltype().

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 41✬

✫

✩

✪

Terminating Thread: An Example

/*

Programming with pthread: cancelability state:

pthread2.c++

$ g++ -Wall pthread2.c++ -lpthread

$./a.out

*/

#include <iostream>

using namespace std;

#include <unistd.h>

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 42✬

✫

✩

✪

#include <pthread.h>

#define MAXLOOP 15

void * thread(void *) ;

int tS, *tSP;

int main() {

pthread_t tid; // pthread2.c++

pthread_create(&tid, NULL, thread, NULL);

pthread_cancel(tid);

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 43✬

✫

✩

✪

pthread_join(tid, (void **)&tSP);

// cout << "Thread status: " << *tSP << endl;

return 0 ;

}

void *thread(void *vp) {

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,

for(int i=1; i<= MAXLOOP; ++i) {

sleep(1);

if(i==10)

pthread_setcancelstate(

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 44✬

✫

✩

✪

PTHREAD_CANCEL_ENABLE, NULL);

cout << "Thread Running: " << i << endl;

}

tS = 1;

pthread_exit((void *)&tS) ;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 45✬

✫

✩

✪

Different Stacks

// pthread4.c++ different stacks

// $ c++ -Wall pthread4.c++ -lpthread

#include <iostream>

using namespace std;

#include <pthread.h>

#include <cstdio>

#include <unistd.h>

void *thread1(void *p){

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 46✬

✫

✩

✪

int n = 20;

sleep(1);

cout << "Child Thread 1 - n: " << dec << n

<< ", &n: " << hex << &n << endl;

return NULL;

}

void *thread2(void *p){

int n = 30;

sleep(2);

cout << "Child Thread 2 - n: " << dec << n

<< ", &n: " << hex << &n << endl;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 47✬

✫

✩

✪

return NULL;

}

int main() {

pthread_t thID1, thID2; // thread ID

int n=10; // pthread4.c++

cout << "Main Thread - n: " << n

<< ", &n: " << hex << &n << endl;

pthread_create(&thID1, NULL, thread1, NULL);

pthread_create(&thID2, NULL, thread2, NULL);

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 48✬

✫

✩

✪

pthread_join(thID1, NULL);

pthread_join(thID2, NULL);

return 0;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 49✬

✫

✩

✪

Different Stacks

$ a.out

Main Thread - n: 10, &n: 0x7fff8ff7b50c

Child Thread 1 - n: 20, &n: 0x7f49609b9efc

Child Thread 2 - n: 30, &n: 0x7f49601b8efc

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 50✬

✫

✩

✪

Race on Global Variable

/*

pthread3.c Race condition

$ g++ -Wall -lpthread pthread3.c++

$./a.out 500000

output: 0, +ve and -ve

*/

#include <iostream>

using namespace std;

#include <stdio.h>

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 51✬

✫

✩

✪

#include <stdlib.h>

#include <pthread.h>

int times, n = 0 ;

void * thread1(void *) ;

void * thread2(void *) ;

void inc() {n=n+1;}

void dec() {n=n-1;}

int main(int count, char *vect[]) { // argument is

pthread_t thID1, thID2;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 52✬

✫

✩

✪

if(count < 2) {

perror("No argument for times\n") ;

exit(1) ;

}

times = atoi(vect[1]) ;

pthread_create(&thID1, NULL, thread1, NULL) ;

pthread_create(&thID2, NULL, thread2, NULL) ;

pthread_join(thID1, NULL) ;

pthread_join(thID2, NULL) ;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 53✬

✫

✩

✪

cout << "n: " << n << "\n" ;

return 0 ;

}

void *thread1(void *vp) {

int i ;

for(i=1; i<=times; ++i) inc();

return NULL ;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 54✬

✫

✩

✪

void *thread2(void *vp) {

int i ;

for(i=1; i<=times; ++i) dec() ;

return NULL ;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 55✬

✫

✩

✪

Race on Global Variable

• The global variable is initialized to 0.

• One thread increments it 5× 106 times.

• The other thread decrements it 5×106 times.

• At the end the expected result is 0 again.

But different runs give different results.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 56✬

✫

✩

✪

Race on Global Variable

$ a.out 5000000

n: -2203358

$ a.out 5000000

n: 3156188

$ a.out 5000000

n: 4050120

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 57✬

✫

✩

✪

Linux clone()

• The library function clone() and the

corresponding system call clone() is specific

to Linux and is not portable.

• The system call or its glibc wrapper

function is used to create a child process.

• But it can also be used to create kernel level

threads.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 58✬

✫

✩

✪

Linux clone()

• A call to clone() also creates the child

process almost as the copy of the parent.

• But unlike fork(), the child process does

not start execution at the point of the call.

• It calls the function specified as argument in

the call along with parameters.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 59✬

✫

✩

✪

Linux clone()

• The interface of glibc wrapper function of

clone() is

int clone(int (*f)(void *), void

*child stack, int flags, void *rag);

• The child process starts executing the

function f with void *rag as the parameter

i.e. f(rag).

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 60✬

✫

✩

✪

Linux clone()

• The child process created by clone()

terminates when f(rag) returns or there is a

call to exit() within it.

• The exit code of the child is the integer

returned by f(). The parent process may

wait for the completion of the child as usual.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 61✬

✫

✩

✪

Linux clone()

• A cloned child, unlike forked child, shares

some execution context of the parent.

• The memory space, the file descriptor table

etc. are shared.

• As the memory space is shared, the stack of

the parent cannot be used by the child.

• The second parameter of the call specifies

the bottom of child’s stacka.
aWhich often grows from higher address to lower address.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 62✬

✫

✩

✪

Linux clone()

• The least significant byte of flags specifies

the termination signal from the child to the

parent.

• Other bits are used to control the effects of

call to clone().

• CLONE VM - parent and child share the

virtual memory, CLONE FILES - parent

and child share the file descriptor table.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 63✬

✫

✩

✪

Thread Creation by clone()

/*

clone1.c++ Creation of new thread by clone()

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <sched.h>

#include <sys/types.h>

#include <unistd.h>

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 64✬

✫

✩

✪

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

#define MAXSTACK 4096

int fact ; // global data

int what(void *p) ;

int main() { // clone1.c++

int chPID, status, n ;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 65✬

✫

✩

✪

char *chStack ;

cout << "Enter a +ve integer: " ;

cin >> n;

chStack = (char *) malloc(MAXSTACK);

// Memory for new stack

chStack = chStack + MAXSTACK;

// Stack grows towards lower

// address. Bottom of stack

chPID = clone(what, chStack, CLONE_VM,

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 66✬

✫

✩

✪

(void *)&n);

// Cloned process will execute

// ’what(NULL)’.

// CLONE_VM - same memory space

// &n parameter to ’what’

// chPID - cloned process id

cout << "Inside proc: pid = " << getpid() << "\n"

cout << "Inside proc: cpid = " << chPID << "\n"

waitpid(chPID, &status, __WCLONE) ;

// __WCLONE - wait for

// cloned process

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 67✬

✫

✩

✪

cout << "Inside proc:" << n << "! = " << fact <<

return 0 ;

}

int what(void *p) {

int n = *(int *)p, i;

for(fact=i=1;i<=n;++i) fact *= i;

return 0 ;

}

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 68✬

✫

✩

✪

Thread in Python

• Import the thread module.

• Start the method

thread.start new thread(function,

rags).

• The first parameter is the function name,

the second parameter is a tulle of arguments

to the function.

• There is a third parameter that we ignore.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 69✬

✫

✩

✪

A Simple Thread

#!/usr/bin/python

sorting.py reads a string of integers seperated

blanks. split them in three lists

sort them by running three threads

finally merge them

import thread

import time

def merge(l1, l2):

if l1 == []: return l2

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 70✬

✫

✩

✪

if l2 == []: return l1

if l1[0] < l2[0]: return [l1[0]]+ \

merge(l1[1:], l2)

else: return [l2[0]]+merge(l1, l2[1:])

def mySort(l, n):

global l1g, l2g, l3g

l.sort()

if n==1: l1g = l

elif n==2: l2g = l

elif n==3: l3g = l

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 71✬

✫

✩

✪

s = raw_input("Enter +ve integers: ")

l = []

for i in s.split(): l = l + [int(i)]

llen = len(l)

l1, l2, l3 = l[:llen/3], l[llen/3:2*llen/3], \

l[2*llen/3:]

print l1, l2, l3

try:

thread.start_new_thread(mySort, (l1, 1,))

thread.start_new_thread(mySort, (l2, 2,))

thread.start_new_thread(mySort, (l3, 3,))

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 72✬

✫

✩

✪

except: print "Thread creation error"

time.sleep(1) # bad use

print merge(merge(l1g, l2g), l3g)

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 73✬

✫

✩

✪

Thread in C++11

• Include <thread> header and compile with

following options:

g++ -Wall -std=c++11 c++thread1.c++ -pthread

• Following is a very simple example. But

there are many features.

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 74✬

✫

✩

✪

A Simple Thread

/*

* c++thread1.c++ basic c++ thread

* $ g++ -Wall -std=c++11 c++thread1.c++ -pthread

*/

#include <iostream>

#include <thread>

using namespace std;

#include <unistd.h>

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 75✬

✫

✩

✪

int fact;

void factorial(int n){

fact=1;

for(int i=1; i<=n; ++i) fact *= i;

sleep(1);

cout << "child thread ID: " << this_thread::get_

}

int main(){

int n;

Lect 4 Goutam Biswas

Operating System IIIT Kalyani 76✬

✫

✩

✪

cout << "Enter a +ve integer: ";

cin >> n;

std::thread t(factorial, n);

cout << "main thread ID: " << this_thread::get_

cout << "child thread ID (in parent): " << t.get_id()

t.join();

cout << n << "! = " << fact << endl;

return 0;

}

Lect 4 Goutam Biswas

