
Operating System IIIT Kalyani 1✬

✫

✩

✪

Inter Process Communication - I

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 2✬

✫

✩

✪

Isolation and Interaction

• Different processes running on an OS are

logically independent and isolated entities.

• They have separate logical memory spaces,

CPU states, open files etc.

• An event in one process does not interfere

with another process. One process may crush

but the other processes will continue to run.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 3✬

✫

✩

✪

Isolation and Interaction

• But often it is also necessary for two

processes or a process and the OS to

interact. There are several reasons for that.

• It may be necessary to pass the output of

one process as the input to another process.

• In a multiple processor system, dividing a

job in several processes may achieve faster

completion through parallelism.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 4✬

✫

✩

✪

Different Models

• So it is necessary to share information

between two processes.

• There are three fundamental models of

sharing information between processes.

• One is through shared memory between

communicating processes and the other one

is data transfer through the kernel buffer.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 5✬

✫

✩

✪

Shared Memory

• The address spaces of two processes are

mutually disjoint.

• But a process may request the OS for some

memory that it can share with other process.

• OS provides a physical memory where

portions of logical address spaces of both the

process are mapped.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 6✬

✫

✩

✪

Shared Memory

• Both processes can read from and write in

the shared memory space. This allows them

to communicate without any further

interaction with the OS.

• But writing on the same memory location by

more than one processes has the problem of

data integrity of the memory location.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 7✬

✫

✩

✪

Data Transfer

• A data transfer may be a pure byte stream

or in the form of a message.

• There is no shared memory in the user space.

But there may be buffer maintained by the

kernel to store byte stream or message.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 8✬

✫

✩

✪

Interprocess Communication on Linux

• We shall talk about some of the interprocess

communication mechanisms available on

Linux platform.

• These are pipe, named pipe, shared memory,

Unix domain socket and signal.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 9✬

✫

✩

✪

A Note on File Descriptor

• We have already mentioned that a file

descriptor is available for every open file; and

a child process inherits the file descriptors of

its parent at the time of creation.

• But in Unix/Linux many objects such as

pipes, sockets, devices etc. are also treated

as files.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 10✬

✫

✩

✪

A Note on File Descriptor

• A file descriptor is returned when these

objects are opened by a open() system call.

• Data can be read from or write to these

objects using the descriptors.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 11✬

✫

✩

✪

Unnamed Pipe

• A pipe is a unidirectional communication

channel for byte streama given by kernel to a

requesting process.

• Data of any block size can be written in a

pipe and read from a pipe. There is no

concept of message.

aThe kernel maintains a FIFO buffer in its space.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 12✬

✫

✩

✪

Unnamed Pipe

• A pair of file descriptors are associated to a

pipe. One of them is used to read from and

the other one is to write into the pipe.

• If two processes share the file descriptors of a

pipe, then the data of one can be passed to

the other.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 13✬

✫

✩

✪

Unnamed Pipe

• In the following example the command

interpreter bash redirects the output of

/bin/ls as input to /bin/less using pipe.

• ls -l displays the files and subdirectories

under the current directory.

• less facilitates the display of the stream of

data on the VDU screen.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 14✬

✫

✩

✪

Unnamed Pipe

$ ls -l /usr/include | less

total 1236

-rw-r--r--. 1 root root 7445 Mar 6 2015 aio.h

-rw-r--r--. 1 root root 2050 Mar 6 2015 aliases.h

drwxr-xr-x. 2 root root 4096 May 15 2015 asm

.......................

-rw-r--r--. 1 root root 2268 Mar 6 2015 cpio.h

-rw-r--r--. 1 root root 5938 May 13 2015 cpufreq.h

:

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 15✬

✫

✩

✪

Unnamed Pipe

• The shell opens a pipe, and creates two child

processes using fork(). One (c1) is loaded

with /bin/ls and the other one (c2) with

/usr/bin/less using exec() calls.

• The ls writes its output on stdout and the

less takes input from the stdin.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 16✬

✫

✩

✪

Unnamed Pipe

• The shell before exec() redirects the output

descriptor of c1 to the write-end of the pipe.

It also redirects the input descriptor of c2 to

the read-end of the pipe.

• After exec() calls ls (c1) and less (c2) are

loaded. They inherit the descriptors (but not

‘aware’ of redirections) and act normally.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 17✬

✫

✩

✪

Unnamed Pipe

• Following program gives a system call to

open an unnamed pipe

• Creates a child process so that the parent

and the child share the file descriptors of the

pipe.

• Then they communicate through the pipe.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 18✬

✫

✩

✪

Communication Through Pipe

#include <iostream>

using namespace std;

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int main() { // pipe1.c++

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 19✬

✫

✩

✪

int chpid, fd[2], err, status ;

err = pipe(fd) ;

if(err == -1) {

cerr << "pipe open error\n" ;

return 0;

}

chpid = fork();

if(chpid == -1){

cerr << "fork() error\n";

return 0;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 20✬

✫

✩

✪

}

if(chpid > 0){ // write in parent

char buffP[100] = "IIIT Kalyani";

close(fd[0]);

write(fd[1], buffP, strlen(buffP));

cout << "Parent has written in pipe\n";

close(fd[1]);

waitpid(chpid, &status,0);

}

else { // child

char buffC[100]={0};

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 21✬

✫

✩

✪

close(fd[1]);

sleep(5);

read(fd[0], buffC, 100);

cout << "Child: " << buffC << endl;

close(fd[0]);

}

return 0;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 22✬

✫

✩

✪

Communication Through Pipe

Output:

$ a.out

Parent has written in pipe

Child: IIIT Kalyani

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 23✬

✫

✩

✪

Communication Through Pipe

• The system call pipe(fd) creates a FIFO

data channel that can be used for

interprocess communication.

• Two file descriptors are available in the

two-element integer array fd[2] - fd[1]

refers to write into and fd[0] refers to read

from the pipe.

• Data written is buffered by the Kernel.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 24✬

✫

✩

✪

Communication Through Pipe

• During fork() the file descriptors of a pipe

are copied to the child process along with

other open file descriptors e.g. 0 (stdin), 1

(stdout), 2 (stderr).

• The parent process closes the input

descriptor fd[0] and uses fd[1] to write in

the pipe. On the other hand the child

process closes the output descriptor and uses

fd[0] to read data.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 25✬

✫

✩

✪

Communication Through Unnamed Pipe in Python

#!/usr/bin/python

pipe2.py creates a pipe, parent-child

communicates through it

import os,sys, time

def main():

try:

fdr,fdw = os.pipe()

except:

OSError

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 26✬

✫

✩

✪

print "Pipe-open fails"

sys.exit(1)

try:

chPID = os.fork()

except:

OSError

print "fork() fails"

sys.exit(1)

if chPID > 0:

os.close(fdr)

n = os.write(fdw, ’IIT Kalyani’)

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 27✬

✫

✩

✪

print ’Parent has written in pipe’

os.waitpid(chPID,0)

else:

os.close(fdw)

data = os.read(fdr, 100)

time.sleep(5)

print ’child:’, data

main()

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 28✬

✫

✩

✪

Communication Through Unnamed Pipe in Python

Output:

$./pipe2.py

Parent has written in pipe

child: IIIT Kalyani

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 29✬

✫

✩

✪

Communication Through Pipe

• The call os.pipe returns a 2-tuple of file

descriptors. The first one is for read and the

second one is for write.

• The call os.write(fdw, str) writes the

byte string of str to the file of the descriptor

fdw.

• The call os.read(fdr, n) reads n bytes

and returns the byte string.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 30✬

✫

✩

✪

Close Unused Descriptor

• It is necessary for a process reading from a

pipe to close its write descriptor (fd[1]).

(pipe4a.c++)

• Similarly it is also necessary for a process

writing in a pipe to close its read descriptor

(fd[0]). (pipe4.c++)

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 31✬

✫

✩

✪

State of Reader/Writer Process

• What is the state of the reader process (child

in our example) if the writer (parent in this

case) is not writing in the pipe?

(pipe5a.c++)

• What is the state of the writer if the reader

is not reading? (pipe5b.c++)

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 32✬

✫

✩

✪

Can There be More than One Reader/Writer

• Can more than one process write in a pipe

and similarly can more than one process

read from a pipe? (pipe6.c++)

• Will the write operation be atomic for a

process?

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 33✬

✫

✩

✪

close() and dup()

• The system call close(fd) closes the open file

corresponding to the file descriptor fd.

• The slot corresponding to fd in the file

descriptor table is free.

• The system call dup(fd1) copies the file

descriptor of fd1 in the least index available

in the file descriptor table.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 34✬

✫

✩

✪

Redirecting Output

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 35✬

✫

✩

✪

int main(int ac, char *av[]){

int fd1; // dupTOstdout1.c++

// $./a.out dupOut

if(ac < 2){

cerr << "File name not specified\n";

exit(1);

}

fd1 = open(av[1], O_CREAT | O_WRONLY, 0666);

if(fd1 == -1){

cerr << "File open error\n";

exit(1);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 36✬

✫

✩

✪

}

cout << "Line before close(fileno(stdout))\n";

close(fileno(stdout));

cout << "Line after close(fileno(stdout))\n";

dup(fd1);

cout << "Line after dup(fd1)\n";

close(fd1);

return 0;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 37✬

✫

✩

✪

Redirecting Output

$ a.out dupOut

Line before close(fileno(stdout))

dupOut: Line after dup(fd1)

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 38✬

✫

✩

✪

close() and dup2()

• There is a similar system call dup2(ofd,

nfd) makes nfd a copy of the old file

descriptor ofd.

• If there is an open file with the file

descriptor nfd, it is closed.

• If the call succeeds, both ofd and nfd refers

to the same entry of the open file table.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 39✬

✫

✩

✪

Standard IO and IPC on Pipe

• As an example we use close() the file

descriptor of stdin (stdout).

• Then call dup2() to duplicate the input

(output) file descriptor of the opened pipe to

the file descriptor of stdin (stdout).

• Now the stdio library functions can be used

to read from (write to) the pipe.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 40✬

✫

✩

✪

stdio, dup2(), pipe()

#include <iostream>

using namespace std;

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

int main() { // pipe3.c++

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 41✬

✫

✩

✪

int chpid, fd[2], err, status ;

err = pipe(fd) ;

if(err == -1) {

cerr << "pipe open error\n" ;

exit(1) ;

}

chpid = fork();

if(chpid == -1){

cerr << "fork() error\n";

exit(1);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 42✬

✫

✩

✪

}

if(chpid > 0){ // in parent

int n;

close(fd[0]);

cout << "parent: Enter a +ve integer: ";

cin >> n;

cout << "parent: " << n << " is the input\n";

// dup2(fileno(stdout), fd[1]+1);

// copy stdout (1) to fd[1]+1

close(fileno(stdout)) ; // close stdout

cout << "Cannot be printed\n";

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 43✬

✫

✩

✪

dup2(fd[1], fileno(stdout));

cout << n << "\n";

waitpid(chpid, &status,0);

}

else { // child process

int m;

close(fd[1]);

// dup2(fileno(stdin), fd[1]+1);

close(fileno(stdin)) ;

dup2(fd[0], fileno(stdin));

cin >> m;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 44✬

✫

✩

✪

cout << "data " << m << " received in child\n";

}

return 0;

}

Output:

$./a.out

parent: Enter a +ve integer: 100

parent: 100 in the input

data 100 received in child

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 45✬

✫

✩

✪

Named Pipe

• The system call mkfifo() creates a named

pipe.

• The special file created by this call is similar

to anonymous communication channel pipe,

but is entered in the file system as a named

object.

• Once created, any process with proper

permission can open it for read or write.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 46✬

✫

✩

✪

Named Pipe

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <unistd.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 47✬

✫

✩

✪

#define MAX 100

// namedPipe1.c++

// $./a.out r <pipeName> & $./a.out w <pipeName>

int main(int count, char *vect[]) {

int err, pd ;

char wBuff[] = "This text will be written in

rBuff[MAX] = {0};

if(count < 3) {

cerr << "Less number of arguments\n" ;

exit(1) ;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 48✬

✫

✩

✪

}

err = mkfifo(vect[2], 0666) ;

if(err == -1 && errno != EEXIST){

cerr << "errno: " << errno << "\n";

exit(1);

}

if(strcmp(vect[1], "r") == 0) { // Reader process

pd = open(vect[2], O_RDONLY) ;

read(pd, rBuff, MAX);

cout << "OutData: " << rBuff << "\n" ;

close(pd);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 49✬

✫

✩

✪

}

else if(strcmp(vect[1], "w") == 0) { // Writer

pd = open(vect[2], O_WRONLY) ;

write(pd, wBuff, strlen(wBuff)) ;

close(pd);

} else {

cerr << "Wrong 2nd argument\n" ;

exit(1) ;

}

return 0;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 50✬

✫

✩

✪

Named Pipe

• If a process opens a FIFO for reading

(O RDONLY), gets blocked, if it is not opened

by another process for writing. This is true

for opening in writing mode also.

• A named FIFO can be opened from a shell -

$ mkfifo -m mode pathname.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 51✬

✫

✩

✪

Named Pipe

/*

* fifoRead.c++ shows that the process is blocked

* as there is no writing process

* $ mkfifo -m 0666 myFIFO

* $ g++ -Wall fifoRead.c++ -o fifoRead

* $ g++ -Wall fifoWrite.c++ -o fifoWrite

* $./fifoRead myFIFO &

* $./fifoWrite myFIFO &

*/

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 52✬

✫

✩

✪

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <unistd.h>

#define MAX 100

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 53✬

✫

✩

✪

int main(int ac, char *av[]) {

int pd;

char buff[MAX];

if(ac < 2){

cerr << "FIFO name not specified\n";

exit(1);

}

pd = open(av[1], O_RDONLY);

if(pd == -1){

cerr << "FIFO open error\n";

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 54✬

✫

✩

✪

exit(1);

}

cout << "Not printed until fifoWrite\n";

read(pd, buff, 100);

cout << "Data read: " << buff << endl;

close(pd);

return 0;

}

The fifoWrite.c++ is similar.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 55✬

✫

✩

✪

Named Pipe in Python

#!/usr/bin/python

namedPipe2.py creates a named pipe

$./namedPipe2.py r <fileName> &

$./namedPipe2.py w <fileName> &

import os

import sys

def main():

try:

os.mkfifo(sys.argv[2], 0666)

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 56✬

✫

✩

✪

except: OSError

try:

if sys.argv[1] == ’r’:

fd = os.open(sys.argv[2], os.O_RDONLY)

data = os.read(fd, 100)

print data

elif sys.argv[1] == ’w’:

fd = os.open(sys.argv[2], os.O_WRONLY)

os.write(fd, "\nWrittten in the named pipe")

except: print ’wrong argument’

main()

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 57✬

✫

✩

✪

Shared Memory

• A process can send a request to the OS to

allocate a block of shared memory.

• It can be attached to the virtual address

spaces of two or more cooperating processes.

• Once the shared memory is attached, process

can access the memory for read and write

without any intervention of the kernel.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 58✬

✫

✩

✪

Shared Memory

• This makes communication through a shared

memory more efficient than a pipe where

data is buffered in the kernel space, and

every access requires a system call.

• But then there is a price to pay - it is

necessary to synchronize read and write

operations of different processes for data

consistency.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 59✬

✫

✩

✪

Shared Memory

• The original shared memory API on Linus is

from System V.

• Subsequently the POSIX (Portable

Operating System Interface) API was

implemented.

• System V shared memory is identified by a

key and an identifier. The POSIX shared

memory API is similar to that of a file.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 60✬

✫

✩

✪

Shared Memory

• A key and an identifier is associated with a

System V shared memory segment.

• The key is the name of the shared memory,

and the identifier is used within the program

by other related functions.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 61✬

✫

✩

✪

Shared Memory

/*

Creating a shared memory segment and attaching it

to the logical address space. sharedMem1.c++

$ g++ -Wall sharedMem1.c++

$./a.out w

$./a.out r

*/

#include <iostream>

using namespace std;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 62✬

✫

✩

✪

#include <stdlib.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SIZE 4

int main(int count, char *vect[]) {

int shmID, *p ;

if(count < 2) {

cerr << "No 2nd argument\n";

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 63✬

✫

✩

✪

exit(1) ;

}

shmID = shmget(ftok("/home/goutam", 1234), SIZE, IPC_CREAT

if(shmID == -1) {

cerr << "Error in shmget" ;

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777) ;

cout << "Attached at VA: " << p << endl;

if(vect[1][0] == ’w’) {

cout << "Enter an integer: ";

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 64✬

✫

✩

✪

cin >> *p ; // Write data

shmdt(p) ;

}

else if(vect[1][0] == ’r’){

cout << "The data is:" << *p << "\n";

shmdt(p) ;

}

// The shared memory segment remains in the system

// $ ipcs $ ipcrm -m<number>

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 65✬

✫

✩

✪

Output

$./a.out w

Attached at VA: 0x7fea66c67000

Enter an integer: 100

$./a.out r

Attached at VA: 0x7f44e118e000

The data is:100

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 66✬

✫

✩

✪

Shared Memory

• The function ftok() creates a key from its

parameters.

• The system call shmget() takes three

parameters - a key, the size of the requested

memorya, and a set of flags.

aThe actual size of the shared memory is normally the smallest multiple of

the page size ≤ the requested size.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 67✬

✫

✩

✪

Shared Memory

• The return value of shmget() is either a +ve

integer, an identifier of the allocated shared

memory segment, or −1 in case of a failure.

• The identifier is used in the subsequent calls.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 68✬

✫

✩

✪

Shared Memory

• The system call shmat() attaches the shared

memory specified by the first parameter

(shmID) to an unused portion of the logical

address space of the processa.

• The third parameter specifies the access

permission to the shared memory.

aOften it is the space between the stack and the heap. This may be modified

by the second parameter.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 69✬

✫

✩

✪

Shared Memory

• The call returns the logical address of the

point of attachment, which then is bound to

some local variable (p in the example).

• Finally the memory can be detached from

the process by the system call shmdt().

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 70✬

✫

✩

✪

Shared Memory

• Even though the shared memory is not

attached to any process, it remains available

in the system. It can be identified by its key.

• It can be viewed by the command $ ipcs

and can be removed by the command

$ ipcrm -m <shmid>.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 71✬

✫

✩

✪

Shared Memory

• It also can be removed using the system call

shmctl().

• In our program the requested shared

memory is only 4 bytes. But OS does not

deal with this granularity. It allocates in

multiple of pages.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 72✬

✫

✩

✪

Shared Memory

/*

Creating a shared memory segment and attaching it

to the logical address space. sharedMem2.c++

Its logical address, size and removal

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 73✬

✫

✩

✪

#include <sys/ipc.h>

#include <sys/shm.h>

#define SIZE 4

#define MAXSIZE 4095 // 16KB

int main() {

int shmID, *p;

struct shmid_ds buff;

shmID = shmget(ftok("/home/goutam", 1234), SIZE,

IPC_CREAT | 0777);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 74✬

✫

✩

✪

if(shmID == -1) {

cerr << "Error in shmget";

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777);

cout << "Shared memory address: "

<< (void *) p << "\n";

p[0]=0; p[MAXSIZE]=MAXSIZE;

cout << "data: " << p[0] << "-"

<< p[MAXSIZE] << "\n";

shmdt(p) ;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 75✬

✫

✩

✪

shmctl(shmID, IPC_RMID, &buff);

return 0 ;

}

$ a.out

Shared memory address: 0x7f6955903000

data: 0-4095

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 76✬

✫

✩

✪

Size of Shared Memory

• MAXSIZE is changed from 4095 to 4096.

$ a.out

Shared memory address: 0x7f238c4a3000

Segmentation fault (core dumped)

• 16KB shared memory allocated.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 77✬

✫

✩

✪

POSIX Shared Memory APIs

/*

* Creating a shared memory segment with POSIX API,

* attaching it to the logical address space.

$ g++ -Wall sharedMem1a.c++ -lrt

$./a.out w

$./a.out r

*/

#include <iostream>

using namespace std;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 78✬

✫

✩

✪

#include <stdlib.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#define SIZE 4

// sharedMem1a.c++

int main(int count, char *vect[]) {

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 79✬

✫

✩

✪

int *p, shmD ;

if(count < 2) {

cerr << "No 2nd argument\n";

exit(1) ;

}

shmD = shm_open("/myShm", O_CREAT | O_RDWR,

0777);

if(shmD == -1){

cerr << "shm_open() error\n";

exit(1);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 80✬

✫

✩

✪

}

if(ftruncate(shmD, SIZE) == -1){

cerr << "ftruncate() error\n";

exit(1);

}

p = (int *)mmap(NULL, SIZE,

PROT_READ | PROT_WRITE,

MAP_SHARED, shmD, 0) ;

if(p == MAP_FAILED){

cerr << "mmap() error\n";

exit(1);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 81✬

✫

✩

✪

}

cout << "Attached at VA: " << p << endl;

if(vect[1][0] == ’w’) {

cout << "Enter an integer: ";

cin >> *p ; // Write data

}

else if(vect[1][0] == ’r’) // read data

cout << "The data is:" << *p << "\n";

// shm_unlink("/myShm");

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 82✬

✫

✩

✪

POSIX Shared Memory APIs

• shm open(): opens a shared memory and

returns the descriptor.

• ftruncate(): used to set the size of the

shared memorya

• mmap(): maps the shared memory in the

virtual space and returns the attachment

address. Subsequently the memory locations

can be accessed using the address.
aThe call shm open() opens a shared memory with size zero.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 83✬

✫

✩

✪

Output

$ a.out w
Attached at VA: 0x7fc34034f000
Enter an integer: 100
$ a.out r
Attached at VA: 0x7ff9f6bdf000
The data is:100
$ ls -l /dev/shm
-rwxrwxr-x 1 goutam goutam 4 Jul 24 15:40 myShm
.....

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 84✬

✫

✩

✪

Race in Shared Memory

• Following example shows race in the shared

memory.

• The shared location p[0] is initialized to 0.

• A child process is created. The location p[0]

is decremented 5× 106 times in the child

process.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 85✬

✫

✩

✪

Race in Shared Memory

• The location p[0] is incremented 5× 106

times in the parent process.

• The expected final result is 0.

• But every run gives different output.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 86✬

✫

✩

✪

Race in Shared Memory

/*

Race in shared memory

$ g++ -Wall sharedMem4.c++

$./a.out 5000000

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 87✬

✫

✩

✪

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

#include <unistd.h>

#define SIZE 4

int main(int count, char *vect[]) {

int shmID, *p, cPID, n, status ;

struct shmid_ds buff;

if(count < 2) {

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 88✬

✫

✩

✪

cerr << "No 2nd argument\n";

exit(1) ;

}

shmID = shmget(ftok("/home/goutam", 1234), SIZE,

IPC_CREAT | 0777);

if(shmID == -1) {

cerr << "Error in shmget" ;

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777);

p[0] = 0; // shared memory initialized to 0

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 89✬

✫

✩

✪

n = atoi(vect[1]);

cPID = fork();

if(cPID == -1){

cerr << "fork() error\n";

shmdt(p);

shmctl(shmID, IPC_RMID, &buff);

exit(1);

}

if(cPID > 0){ // parent

int i;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 90✬

✫

✩

✪

for(i=1; i<=n; ++i) p[0]=p[0]+1;

waitpid(cPID, &status, 0);

cout << "p[0]: " << p[0] << "\n";

}

else { // child

int i;

for(i=1; i<=n; ++i) p[0]=p[0]-1;

}

shmdt(p);

shmctl(shmID, IPC_RMID, &buff);

return 0 ;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 91✬

✫

✩

✪

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 92✬

✫

✩

✪

Race in Shared Memory

$ a.out 5000000

p[0]: 12440

$ a.out 5000000

p[0]: -2043936

$ a.out 5000000

p[0]: -1069027

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 93✬

✫

✩

✪

Race in Shared Memory and Synchronization

• The reason for this peculiar output is due to

race condition.

• Two concurrent processes are accessing the

shared location p[0]. But in different runs

the access are interleaved in different ways to

produce different results.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 94✬

✫

✩

✪

Race in Shared Memory and Synchronization

• It is necessary to avoid interleaving of low

level operations of increment and decrement.

• It is necessary to make these operations

atomic i.e. one cannot take place unless the

other is complete.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 95✬

✫

✩

✪

Concurrent Access of Shared Resource

• Race condition - computation is not

deterministic.

• Critical section - portion of code that access

a shared resource.

• Mutual exclusion - no two critical sections

executed concurrently.

• Atomic - execution of critical section is

logically uninterruptible.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 96✬

✫

✩

✪

Message Queue

• Message queue is another method for

communication between two processes.

• It is similar to pipe and FIFO, but it is

message oriented. The reader receives the

whole message sent by the writer.

• Unlike pipe, it is not possible to read a part

of it (a few bytes) leaving the rest in the

queue.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 97✬

✫

✩

✪

POSIX Message Queue

/*

* msgQ1.c++ POSIX message queue

* $ g++ -Wall msgQ1.c++ -lrt

* $ sudo ./a.out w; ./a.out r

*/

#include <iostream>

using namespace std;

#include <fcntl.h>

#include <sys/stat.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 98✬

✫

✩

✪

#include <mqueue.h>

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/wait.h>

#define MSGSIZE 1024

#define MAXMSG 16

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 99✬

✫

✩

✪

int main(int ac, char *av[]){

struct mq_attr attr;

int err, msgLen;

mqd_t mqd;

if(ac < 2){

cerr << "r/w not specified\n";

exit(1);

}

attr.mq_maxmsg = MAXMSG;

attr.mq_msgsize = MSGSIZE;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 100✬

✫

✩

✪

attr.mq_flags = 0;

attr.mq_curmsgs = 0;

if(av[1][0] == ’w’){

char buff[MSGSIZE];

int prio=0;

mqd = mq_open("/myMq", O_WRONLY | O_CREAT,

if(mqd == -1){

cerr << "mq_open() problem: " << errno <<

exit(1);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 101✬

✫

✩

✪

}

cout << "Enter message (terminate with Ctrl-D):

while(1) {

cin.getline(buff, MSGSIZE);

err = mq_send(mqd, buff, strlen(buff), prio++);

if(err == -1){

cerr << "mq_send() fails\n";

exit(1);

}

if(cin.eof()) break;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 102✬

✫

✩

✪

}

if(av[1][0] == ’r’){

char buff[MSGSIZE];

mqd = mq_open("/myMq", O_RDONLY | O_CREAT,

if(mqd == -1){

cerr << "mq_open() problem: " << errno <<

exit(1);

}

cout << "Reader reads message: \n";

while((msgLen = mq_receive(mqd, buff, MSGSIZE,

buff[msgLen]=’\0’;

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 103✬

✫

✩

✪

if(msgLen != 0)

cout << "Received message: " << buff <<

}

}

mq_close(mqd);

return 0;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 104✬

✫

✩

✪

struct mq attr

struct mq_attr

{

long mq_flags; /* Message queue flags. */

long mq_maxmsg; /* Maximum number of messages.

long mq_msgsize; /* Maximum message size. */

long mq_curmsgs; /* Number of messages currently

};

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 105✬

✫

✩

✪

Note

• Messages are ordered in the queue in

descending order of priority, a non-negative

integer where zero (0) is of lowest priority.

• If the queue is empty, the process of

mq receive() is blocked unless the queue is

opened with O NONBLOCK flag.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 106✬

✫

✩

✪

Signals

• A signal is a mechanism to notify a process

about an event.

• It is a short message, a number, sent to a

process or a set of processes through the OS.

It does not have any other parameter.

• A signal may be raised (sent) explicitly by a

process for another process through a system

call e.g. kill().

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 107✬

✫

✩

✪

Signals

• It may be raised due to some event e.g.

memory permission violation, divide-by zero,

illegal instruction etc. from a running

process.

• It may also be raised by external events e.g.

keyboard interrupt e.g. Ctrl-C or Ctrl-Z.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 108✬

✫

✩

✪

Signals

• Any occurrence of such event suspends the

normal execution of the running process, and

the control is transferred to the kernel.

• The kernel updates the data structure of the

target process for the signal.

• A signal is delivered when the process starts

running.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 109✬

✫

✩

✪

Signals

• So a signal may remain pending for a

suspended process.

• There can be only one pending signal of a

particular type per process (no queue).

• The OS checks for pending signals of the

process before it going to be scheduled.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 110✬

✫

✩

✪

Signals

• Every time the mode switches from the

kernel to the user the check for pending

signal is done for the scheduled process.

• If the pending signal cannot be ignored, it is

handled by switching to the corresponding

signal handler or taking default action.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 111✬

✫

✩

✪

Signals

• Once the signal handler finishes its job, the

original execution of the process may be

restarted.

• There are three possible responses on a

delivered signal - it may be ignored, some

default action may be taken, or handled by

the corresponding signal-handler.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 112✬

✫

✩

✪

Ctrl-C Ctrl-Z Ctrl-\

/*

Ctrl-C terminates the current process:

$./a.out

Press Ctrl-C to terminate

Execute again

Press Ctrl-Z to suspend

$ fg to restart

Try Ctrl-\

*/

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 113✬

✫

✩

✪

#include <iostream>

using namespace std;

int main(){ // ctrlC.c++

while(1)

cout << "What next...\n";

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 114✬

✫

✩

✪

Ctrl-C Ctrl-Z Ctrl-\

• Ctrl-C sends SIGINT signal to the

foreground process. The default action is to

terminate the process.

• Ctrl-Z sends SIGTSTP (terminal stop)

signal to the foreground process. The default

action is to suspend the process.

• The command fg resumes the current job in

the foreground.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 115✬

✫

✩

✪

Ctrl-\ and kill

• Ctrl-\ sends SIGABORT aborts the

foreground process. The default action is to

terminate the process.

• $ kill PID terminates a process.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 116✬

✫

✩

✪

kill

$ ps

9114 pts/2 00:00:00 bash

9709 pts/2 00:00:00 a.out

9711 pts/2 00:00:00 ps

$ kill 9709

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 117✬

✫

✩

✪

kill

• kill 9709 sends the signal SIGKILL to the

process with PID 9709.

$ ps

PID TTY TIME CMD

9114 pts/2 00:00:00 bash

9709 pts/2 00:00:00 a.out

9716 pts/2 00:00:00 ps

• But it is not killed!

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 118✬

✫

✩

✪

kill

$ fg

a.out

Terminated

The command fg restarts a.out and the signal

SIGKILL is delivered.

$ ps

PID TTY TIME CMD

9114 pts/2 00:00:00 bash

9752 pts/2 00:00:00 ps

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 119✬

✫

✩

✪

System Call kill()

• The system call kill(pid, sig) can be

used to send signal sig to a process of pid.

• Following is an example.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 120✬

✫

✩

✪

System Call kill()

/*

kill1.c++ signal from child to parent

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 121✬

✫

✩

✪

#include <sys/wait.h>

int main() { // kill1.c++

int cPID, status ;

cPID = fork();

if(cPID == -1){

perror("fork() failed\n");

exit(1);

}

if(cPID > 0) {

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 122✬

✫

✩

✪

while(1){

cout << "Parent running...\n";

sleep(1);

}

waitpid(cPID, &status, 0) ;

}

else { // child

int pPID = getppid();

sleep(5);

kill(pPID, SIGTSTP);

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 123✬

✫

✩

✪

cout << "SIGTSTP sent to parent\n";

sleep(5);

cout << "SIGCONT sent to parent\n";

kill(pPID, SIGCONT);

sleep(5);

cout << "SIGINT sent to parent\n";

kill(pPID, SIGINT);

}

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 124✬

✫

✩

✪

Signal Handling

• Each signal has its default action. Often it

terminates the receiving processa.

• But most of the signals can be caught and

handled by the signal handler supplied by

the user.

• SIGKILL and SIGSTOP cannot be caught.

aSIGVHLD is ignored by default. SIGCONT resumes the stopped process.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 125✬

✫

✩

✪

Signal Handling

• A program can use the library function

signal.

typedef void (*sighandler t)(int)

sighandler t signal(int sig,

sighandler t handler)

• signal is a function that takes two

parameters.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 126✬

✫

✩

✪

Signal Handling

• The first parameter sig is the signal to

catch.

• The second parameter handler is the

function to be called when the signal

specified by the first parameter is received.

• handler can also take special values SIG IGN

or SIG DFL.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 127✬

✫

✩

✪

Signal Handling

• If handler is set to SIG IGN, the signal is

ignored.

• If it is set to SIG DFL, the default action

associated with the signal takes place.

• If it is a function, then it is invoked with sig

as the argument.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 128✬

✫

✩

✪

Signal Handling

• The return type of signal() is same as that

of its second parameter.

• It returns the previous value of the signal

handler or error.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 129✬

✫

✩

✪

Ignoring SIGINT

/*

sigHand1.c++ Ignoring SIGINT (Ctrl-C)

*/

#include <iostream>

using namespace std;

#include <signal.h>

#include <unistd.h>

void mySigHandler(int n) {

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 130✬

✫

✩

✪

static int m = 1;

if(m > 2) signal(SIGINT, SIG_DFL);

else signal(SIGINT, mySigHandler);

// <ctrl-C> default

cout << "In handler: "<< m << "\n";

++m;

}

int main() {

signal(SIGINT, mySigHandler) ;

// <Ctrl-C> mySignalHandler()

while(1) {

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 131✬

✫

✩

✪

cout << "What next?...\n";

sleep(1);

}

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 132✬

✫

✩

✪

Ignoring SIGINT

• The program sigHand1.c++ ignores the

signal SIGINT (Ctrl-C) three times.

• Then SIGINT takes its default action.

• The name of the signal handler is

mySigHandler().

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 133✬

✫

✩

✪

Memory Violation

• Access to illegal memory segment generates

the signal SIGSEGV.

• We often encounter this while using pointer

variable.

• This exception cannot be ignored as the

offending instruction will be tried again.

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 134✬

✫

✩

✪

SIGSEGV

/*

sigHand2.c++ SIGSEGV handler

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 135✬

✫

✩

✪

void mySEGVhandler(int sig){

signal(sig, SIG_IGN);

// SEGV

sleep(1);

cout << "In Handler\n" ;

}

int main() {

int *p = (int *)100 ;

signal(SIGSEGV, mySEGVhandler);

// SEGV mySEGVhandler()

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 136✬

✫

✩

✪

*p = 10 ;

cout << "Not printed\n" ;

return 0 ;

}

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 137✬

✫

✩

✪

Bibliography

1. https://www.tutorialspoint.com/python/os pipe.htm

2. Beginning Linux Programming by Neil Mathew & Richard

Stones, 3rd ed., Wiley Pub., 2004, ISBN 81-265-0484-6.

3. Understanding the Linux Kernel by Daniel P Bovet & Marco

Cesati, 3rd ed., O’Reilly, ISBN 81-8404-083-0.

4. http://www.comptechdoc.org/os/linux/programming/

linux pgsignals.html

Lect 3 Goutam Biswas

