Operating System IIIT Kalyani 1

4 N

Inter Process Communication - II

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 2

Isolation and Interaction'

e Different processes running on an OS are

logically independent and isolated entities.

e They have separate logical memory spaces,
CPU states, open files etc.

e An event in one process does not interfere
with another process. One process may crush

but the other processes will continue to run.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 3

/ Isolation and Interaction' \

e But often it is also necessary for two

processes or a process and the OS to

interact. There are several reasons for that.

e It may be necessary to pass the output of

one process as the input to another process.

e In a multiple processor system, dividing a

job in several processes may achieve faster

completion through parallelism.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 4

4 N
‘ Different Models '

e So it is necessary to share information

between two processes.

e There are three fundamental models of

sharing information between processes.

e One is through shared memory between
communicating processes and the other one

is data transter through the kernel buffer.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 5

4 N
‘ Shared Memory I

e The address spaces of two processes are

mutually disjoint.

e But a process may request the OS for some

memory that it can share with other process.

e OS provides a physical memory where

portions ot logical address spaces ot both the

process are mapped.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 6

4 N
‘ Shared Memory I

e Both processes can read from and write in

the shared memory space. This allows them

to communicate without any further
interaction with the OS.

e But writing on the same memory location by
more than one processes has the problem of

data integrity of the memory location.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 7

4 N
Data Transfer '

e A data transfer may be a pure byte stream

or in the form of a message.

e There is no shared memory in the user space.
But there may be buffer maintained by the

kernel to store byte stream or message.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 8

Interprocess Communication on Linux'

e We shall talk about some of the interprocess

communication mechanisms available on

Linux platform.

e These are pipe, named pipe, shared memory,

Unix domain socket and signal.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 9

A Note on File Descriptor'

e We have already mentioned that a file

descriptor is available for every open file; and
a child process inherits the file descriptors of

its parent at the time of creation.

e But in Unix/Linux many objects such as
pipes, sockets, devices etc. are also treated

as files.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

-~

N\

A Note on File Descriptor'

e A file descriptor is returned when these

objects are opened by a open() system call.

e Data can be read from or write to these

objects using the descriptors.

/

Lect 3

10

Goutam Biswas

Operating System IIIT Kalyant 11

4 N
‘ Unnamed Pipe I

e A pipe is a unidirectional communication

channel for byte stream?® given by kernel to a

requesting process.

e Data of any block size can be written in a
pipe and read from a pipe. There is no

concept of message.

@The kernel maintains a FIFO buffer in its space.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

12

-

.

‘ Unnamed Pipe I

e A pair of file descriptors are associated to a

pipe. One of them is used to read from and

the other one is to write into the pipe.

e If two processes share the file descriptors of a

pipe, then the data of one can be passed to

the other.

~

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

15

-

.

‘ Unnamed Pipe I

e In the following example the command

interpreter bash redirects the output of

/bin/1ls as input to /bin/less using pipe.

e 1s -1 displays the files and subdirectories

under the current directory:.

e less facilitates the display of the stream of

data on the VDU screen.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

14

/ ‘ Unnamed Pipe I

$ 1s -1 /usr/include | less

total 1236

-rw-r—-—-r——. 1 root root 7445 Mar
-rw-r—--r——. 1 root root 2050 Mar
drwxr-xr-x. 2 root root 4096 May
-rw-r-—-r——. 1 root root 2263 Mar

-rw-r——-r-—. 1 root root 5938 May

\

2015
2015
15 2015
6 2015
13 2015

Lect 3

Goutam Biswas

alo..
alia

asSIn

cpilo

cput

Operating System IIIT Kalyant 15

Lect 3

4 N

_ /

‘ Unnamed Pipe I

e The shell opens a pipe, and creates two child
processes using fork(). One (¢) is loaded

with /bin/1s and the other one (cz) with

/usr/bin/less using exec () calls.

e The 1s writes its output on stdout and the

less takes input from the stdin.

Goutam Biswas

Operating System IIIT Kalyant 16

Lect 3

4 N

_ /

‘ Unnamed Pipe I

e The shell before exec () redirects the output
descriptor of c¢; to the write-end of the pipe.
It also redirects the input descriptor of ¢y to

the read-end of the pipe.

o After exec() calls 1s (c;) and less (co) are
loaded. They inherit the descriptors (but not

‘aware’ of redirections) and act normally.

Goutam Biswas

Operating System IIIT Kalyant 17

Lect 3

4 N

_ /

‘ Unnamed Pipe I

e Following program gives a system call to

open an unnamed pipe

e Creates a child process so that the parent
and the child share the file descriptors of the

pipe.

e Then they communicate through the pipe.

Goutam Biswas

Operating System IIIT Kalyani 18

/ ‘Communication Through Pipe' \

#include <iostream>

using namespace std;
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main() { // pipel.c++
_ . %

Lect 3 Goutam Biswas

Operating System

IIIT Kalyani

-~

"

int chpid, fd[2], err, status ; ‘\\

err = pipe(fd) ;
if(err == -1) {

cerr << "pipe open error\n" ;

return O;
}
chpid = fork();
if (chpid == -1){

cerr << "fork() error\n";

return O; 4//

Lect 3

19

Goutam Biswas

Operating System IIIT Kalyant 20

C N
if (chpid > 0){ // write in parent

char buffP[100] = "IIIT Kalyani"
close(£fd[0]);

write(fd[1], buffP, strlen(buffP));
cout << "Parent has written in pipe\n";
close(fd[1]);
waitpid(chpid, &status,0);

T

t
else { // child

\\; char buffC[100]={0}; 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 21

4 N

close(fd[1]);

sleep(5);

read (£fd[0], buffC, 100);
cout << "Child: " << buffC << endl;
close(£d4d[0]);

¥

return O;

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 22

4 N

‘Communication Through Pipe.

Output:

$ a.out
Parent has written 1in pipe
Child: IIIT Kalyani

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 23

/ ‘Communication Through Pipe' \

e The system call pipe(fd) creates a FIFO

data channel that can be used for

Interprocess communication.

e ['wo file descriptors are available in the
two-element integer array fd[2] - fd[1]
refers to write into and fd[0] refers to read

from the pipe.

e Data written is buffered by the Kernel.

_ /

Lect 3 Goutam Biswas

Operating System III'T Kalyant 24

/ ‘Communication Through Pipe' \

e During fork() the file descriptors of a pipe

are copied to the child process along with
other open file descriptors e.g. 0 (stdin), 1
(stdout), 2 (stderr).

e The parent process closes the input
descriptor £d[0] and uses £d[1] to write in
the pipe. On the other hand the child

process closes the output descriptor and uses

\ fd[0] to read data. /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 25

N\
/‘ Communication Through Unnamed Pipe in Pythoﬁ'

#!/usr/bin/python

pilpe2.py creates a plpe, parent-child
e communicates through 1t
import os,sys, time
def main():
try:
fdr,fdw = os.pipe()

except:

\\; OSError 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

26

-

print "Pipe-open fails"
sys.exit (1)
try:
chPID = os.fork()
except:
OSError
print "fork() fails"
sys.exit (1)
if chPID > O:

os.close(fdr)

n = os.write(fdw, ’IIT Kalyani’;//

~

Lect 3

Goutam Biswas

Operating System III'T Kalyant 27

print ’Parent has written in pipe’
os.waitpid(chPID,0)

else:

os.close(fdw)
data = os.read(fdr, 100)

time.sleep(5)
print ’child:’, data

main()

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyani

28

-~

~

Output:

$./pipe2.py
Parent has written 1n pipe
child: IIIT Kalyani

_

‘Communication Through Unnamed Pipe in Python'

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 29

Lect 3

/ ‘Communication Through Pipe' \

N\

e The call os.pipe returns a 2-tuple of file
descriptors. The first one is for read and the

second one is for write.

e The call os.write(fdw, str) writes the
byte string of str to the file of the descriptor
fdw.

e The call os.read(fdr, n) reads n bytes

and returns the byte string.

/

Goutam Biswas

Operating System IIIT Kalyant 30

Lect 3

4 N

_ /

Close Unused Descriptor'

e It is necessary for a process reading from a
pipe to close its write descriptor (£d[1]).
(pipeda.c++)

e Similarly it is also necessary for a process

writing in a pipe to close its read descriptor
(fd[0]). (piped.c++)

Goutam Biswas

Operating System IIIT Kalyant 31

State of Reader/Writer Process'

e What is the state of the reader process (child

in our example) if the writer (parent in this

case) is not writing in the pipe?

(pipeba.c++)

e What is the state of the writer if the reader
is not reading? (pipebb.c++)

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

-~

‘Can There be More than One Reader/ Writer'

e Can more than one process write in a pipe
and similarly can more than one process

read from a pipe? (pipe6.c++)

e Will the write operation be atomic for a

process’?

N\

Lect 3

~

/

32

Goutam Biswas

Operating System IIIT Kalyant 33

Lect 3

4 N

_ /

‘close() and dup () I

e The system call close(fd) closes the open file
corresponding to the file descriptor fd.

e The slot corresponding to fd in the file

descriptor table is free.

e The system call dup(fd1l) copies the file
descriptor of fd1 in the least index available

in the file descriptor table.

Goutam Biswas

Operating System IIIT Kalyant 34

/ ‘ Redirecting Output I \

#include <iostream>

using namespace std;
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

"

//;nt main(int ac, char *av[]){ ‘\\

int fd1; // dupTOstdoutl.c++
// $./a.out dupOut
if(ac < 2){

cerr << "File name not specified\n"}|

exit(1);
b
fdl = open(av[1], O_CREAT | O_WRONLY,
if (fd1 == -1){

cerr << "File open error\n";

exit(1); 4//

Lect 3

35

0666) ;

Goutam Biswas

Operating System IIIT Kalyant 36

4 N

}

cout << "Line before close(fileno(stdout))\n"
close(fileno(stdout)) ;
cout << "Line after close(fileno(stdout))\n";
dup (£fdi);

cout << "Line after dup(fdil)\n";

close(fdl);

return O;

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

37

-~

‘ Redirecting Output I

$ a.out dupOut

I.Line before close(fileno(stdout))
dupOut: Line after dup(fdl)

_

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

Lect 3

-

close() and dup2() I

e There is a similar system call dup2(ofd,
nfd) makes nfd a copy of the old file
descriptor ofd.

e If there is an open file with the file

descriptor nid, it is closed.

e If the call succeeds, both ofd and ntd refers
to the same entry of the open file table.

N\

/

38

Goutam Biswas

Operating System IIIT Kalyant 39

Lect 3

4 N

_ /

Standard 10 and IPC on Pipe'

e As an example we use close() the file

descriptor of stdin (stdout).

e Then call dup2() to duplicate the input
(output) file descriptor of the opened pipe to
the file descriptor of stdin (stdout).

e Now the stdio library tfunctions can be used

to read from (write to) the pipe.

Goutam Biswas

Operating System IIIT Kalyant

40

/ stdio, dup2(), pipe()'

#include <iostream>
using namespace std;
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>

\\int main() { // pipe3.c++

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 41

//7 int chpid, fd[2], err, status ; ‘\\

err = pipe(fd) ;

if(err == -1) {
cerr << "pipe open error\n" ;
exit (1) ;

¥

chpid = fork();

if (chpid == -1){

cerr << "fork() error\n";

\\¥ exit(1); 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 42

C N

if(chpid > 0){ // in parent
int n;
close(£d4[0]);

cout << '"parent: Enter a +ve integer: ";

cin >> n;
cout << "parent: " << n << " is the input
// dup2(fileno(stdout), fd[1]+1);

// copy stdout (1) to fd[1]+1
close(fileno(stdout)) ; // close sg$tdout
\\¥ cout << "Cannot be printed\n";

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 43

//7 dup2(fd[1], fileno(stdout)); ‘\\
cout << n << "\n";
waitpid(chpid, &status,0);
¥
else { // child process
int m;
close(fd[1]);
// dup2(fileno(stdin), fd[1]+1);
close(fileno(stdin)) ;
dup2(£fd[0], fileno(stdin));

\\; cin >> m; 4//

Lect 3 Goutam Biswas

Operating System IIT Kalyana 44

4 N

cout << "data " << m << " received in chi

¥
return O;
¥
Output:
$./a.out

parent: Enter a +ve integer: 100
parent: 100 in the 1input

data 100 received in child

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 45

-

.

e The system call mkfifo() creates a named

e The special file created by this call is similar

e Once created, any process with proper

‘ Named Pipe I \

pipe.

to anonymous communication channel pipe,
but is entered in the file system as a named

object.

permission can open it for read or write.

/

Lect 3

Goutam Biswas

Operating System

III'T Kalyant 46

-~

#include

#include
#include
#include
#include
#include
#include
\\finclude

using namespace std;

‘ Named Pipe I \

<iostream>

<stdlib.h>

<sys/types.h>

<sys/stat.h>

<errno.h>

<string.h>

<fcntl.h>

<unistd.h> 4//

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

/<;define MAX 100

// namedPipel.c++

int main(int count, char *vect[]) {

int err, pd ;
rBuff [MAX] = {0};

if (count < 3) {

\\¥ exit (1) ;

~

char wBuff[] = "This text will be wr:

cerr << "Less number of argumen:

47

// $./a.out r <pipeName> & $./a.out w {pipeNam

| tten 1n

ss\n"

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 48

Cy N

err = mkfifo(vect[2], 0666)

)

if (err == -1 && errno !'= EEXIST){
cerr << "errno: " << errno << "\nf;
exit(1);

}

if (strcmp(vect[1], "r") == 0) { // Reader pr
pd = open(vect[2], O_RDONLY) ;
read(pd, rBuff, MAX);
cout << "QutData: " << rBuff <<|"\n"

\\¥ close(pd); 4//

Lect 3

)

Goutam Biswas

Operating System IIIT Kalyant 49

-~

} N

else if(strcmp(vect[1], "w") == 0) {|// Writ
pd = open(vect[2], O_WRONLY) |;
write(pd, wBuff, strlen(wBuff)) ;

close(pd);
} else A
cerr << "Wrong 2nd argument\n" ;
exit(1) ;
¥
return O;

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

Lect 3

-

‘ Named Pipe I

e If a process opens a FIFO for reading
(0_RDONLY), gets blocked, if it is not opened
by another process for writing. This is true

for opening in writing mode also.

e A named FIFO can be opened from a shell

$ mkfifo -m mode pathname.

.

/

50

Goutam Biswas

Operating System IIIT Kalyant 51

/ ‘ Named Pipe I \

* fifoRead.c++ shows that the process 1is|blocked
* as there 1s no writing process

* $§ mkfifo -m 0666 myFIFO

* $§ g++ -Wall fifoRead.c++ -o fifoRead

* § g++ -Wall fifoWrite.c++ -o fifoWrite
* $§ ./fifoRead myFIFO &

x $§ ./fifoWrite myFIFO &

\ /

Lect 3 Goutam Biswas

Operating System

Lect 3

IIIT Kalyani

52

/<;include <iostream>

using namespace std;

#include
#include
#include
#include
#include
#include

#include

<stdlib.h>
<sys/types.h>
<sys/stat.h>
<errno.h>
<string.h>
<fcntl.h>
<unistd.h>

#define MAX 100

"

/

Goutam Biswas

Operating System IIIT Kalyant

"

//;nt main(int ac, char *av[]) { ‘\\

int pd;
char buff [MAX];

if(ac < 2){
cerr << "FIFO name not specified\n"}|
exit(1);

Iy

pd = open(av[1], O_RDONLY);

if(pd == -1){

cerr << "FIFO open error\n"; 4//

Lect 3

538

Goutam Biswas

Operating System IIIT Kalyant 54

4 N

exit(1);

¥

cout << "Not printed until fifoWrite\n";
read(pd, buff, 100);
cout << "Data read: " << buff << endl}

close(pd);

return O;

¥

The fifoWrite.c++ 1s similar.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyani

-~

Lect 3

55

‘Named Pipe in Python'

#!/usr/bin/python

namedPipe2.py creates a named pipe
$./namedPipe2.py r <fileName> &

$./namedPipe2.py w <fileName> &
import os

import sys

def main():

try:

\\; os.mkfifo(sys.argv([2], 0666)

~

/

Goutam Biswas

Operating System IIIT Kalyani 56

//7 except: OSError ﬁ\\

try:

if sys.argv[l] == ’r’:
fd = os.open(sys.argv[2], os.0_RDONLY)
data = os.read(fd, 100)
print data
elif sys.argv[l] == ’w’:
fd = os.open(sys.argv[2], os.0_WRONLY)
os.write(fd, "\nWrittten in the|named p
except: print ’wrong argument’

kmain() /

Lect 3 Goutam Biswas

Operating System III'T Kalyant 57

4 N
‘ Shared Memory I

e A process can send a request to the OS to

allocate a block of shared memory.

e It can be attached to the virtual address

spaces of two or more cooperating processes.

e Once the shared memory is attached, process

can access the memory for read and write

without any intervention of the kernel.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 58

/ ‘ Shared Memory I \

e This makes communication through a shared

memory more efficient than a pipe where
data is buffered in the kernel space, and

every access requires a system call.

e But then there is a price to pay - it is
necessary to synchronize read and write

operations of different processes for data

consistency.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 59

Lect 3

/ ‘ Shared Memory I \

_ /

e The original shared memory API on Linus is

from System V.

e Subsequently the POSIX (Portable
Operating System Interface) API was

implemented.

e System V shared memory is identified by a
key and an identifier. The POSIX shared

memory API is similar to that of a file.

Goutam Biswas

Operating System IIIT Kalyant 60

Lect 3

4 N

_ /

Shared Memory I

e A key and an identifier is associated with a

System V shared memory segment.

e The key is the name of the shared memory,
and the identifier is used within the program

by other related functions.

Goutam Biswas

Operating System IIIT Kalyant 61

/ ‘ Shared Memory I \

/ *

Creating a shared memory segment and attaching 1

to the logical address space. sharedMeml]l.c++
$ g++ -Wall sharedMeml.c++
$./a.out w

$./a.out r

*/

#include <iostream>

\ggsing namespace std; 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

"

Lect 3

62

/<;include <stdlib.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SIZE 4

int main(int count, char *vect[]) {

int shmID, *p ;

if (count < 2) {

cerr << "No 2nd argument\n";

Goutam Biswas

Operating System

-~

Lect 3

IIIT Kalyani

63

}

exit (1) ;

~

shmID = shmget(ftok("/home/goutam", 1234)| SIZE,

if (shmID ==

-1) A

cerr << "Error in shmget" ;

exit (1) ;
t

cout <<

p = (int *) shmat(shmID, 0, 0777) ;
"Attached at VA:

if (vect[1] [0] == ’w’) {

"

cout << "Enter an integer: ﬂi/

" << p <K endl;

Goutam Biswas

Operating System IIIT Kalyant 64

//7 cin >> xp ; // Write data N
shmdt (p) ;
¥
else if(vect[1][0] == ’r’){
cout << "The data 1is:" <<L|*xp << "
shmdt (p) ;
¥

// The shared memory segment remains in the syste
// $ ipcs $ ipcrm -m<number>
return O ;

\J Y,

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 65

4 N
‘ Output I

$./a.out w

Attached at VA: 0x7fea66c67000
Enter an integer: 100

$./a.out r

Attached at VA: 0x7£f44e118e000
The data 1s:100

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 66

Lect 3

4 N

‘ Shared Memory I

e The function ftok() creates a key from its

parameters.

e The system call shmget () takes three
parameters - a key, the size of the requested

memory?, and a set of flags.

_ /

The actual size of the shared memory is normally the smallest multiple of

the page size < the requested size.

Goutam Biswas

Operating System III'T Kalyant 67

-

.

e The return value of shmget () is either a +ve

e The identifier is used in the subsequent calls.

‘ Shared Memory I

integer, an identifier of the allocated shared

memory segment, or —1 in case of a failure.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 68

Lect 3

4 N

‘ Shared Memory I

e The system call shmat() attaches the shared
memory specified by the first parameter
(shmID) to an unused portion of the logical

address space of the process®.

e The third parameter specifies the access

permission to the shared memory.

aOften it is the space between the stack and the heap. This may be modified

/

Goutam Biswas

by the second parameter.

Operating System IIIT Kalyant 69

Lect 3

4 N

_ /

Shared Memory I

e The call returns the logical address of the
point of attachment, which then is bound to

some local variable (p in the example).

e Finally the memory can be detached tfrom

the process by the system call shmdt ().

Goutam Biswas

Operating System IIIT Kalyant 70

-

N\

e ILven though the shared memory is not

e [t can be viewed by the command $§ ipcs

‘ Shared Memory I

attached to any process, it remains available

in the system. It can be identified by its key.

and can be removed by the command

$ ipcrm -m <shmid>.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 71

4 N
‘ Shared Memory I

e [t also can be removed using the system call
shmct1 ().

e In our program the requested shared
memory is only 4 bytes. But OS does not
deal with this granularity. It allocates in

multiple of pages.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 72

/ ‘ Shared Memory I \

/ *

Creating a shared memory segment and attaching 1

to the logical address space. sharedMem®.c++
Its logical address, size and removal
*/
#include <iostream>

using namespace std;
#include <stdlib.h>

\<finclude <sys/types.h> 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 73

//;include <sys/ipc.h> ‘\\
#include <sys/shm.h>

#define SIZE 4

#define MAXSIZE 4095 // 16KB

int main() {
int shmID, *p;
struct shmid_ds buff;

shmID = shmget(ftok("/home/goutam", 1234)| SIZE,

\ IPC_CREAT | j??) ;

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 74

/if(shmID == -1) { \

cerr << "Error in shmget";
exit (1) ;
¥
p = (int *) shmat(shmID, O, 0777);
cout << "Shared memory address: "
<< (void *) p << "\n";
pl0]=0; p[MAXSIZE]=MAXSIZE;
cout << "data: " << p[0] << "-"
<< p[MAXSIZE] << "\n";

\\ihmdt(p) ; 4//

Lect 3 Goutam Biswas

Operating System

-~

Lect 3

IIIT Kalyani

return 0O ;

¥

$ a.out

shmctl (shmID, IPC_RMID, &buff);

)

Shared memory address: 0x7£6955903000
data: 0-4095

_

~

/

75

Goutam Biswas

Operating System IIIT Kalyant 76

4 N

_ /

Lect 3

‘Size of Shared Memory'

e MAXSIZE is changed from 4095 to 4096.

$ a.out
Shared memory address: 0x7£238c4a3000

Segmentation fault (core dumped)

e 16KDB shared memory allocated.

Goutam Biswas

Operating System IIIT Kalyant 77

/ ‘POSIX Shared Memory APISI \

* Creating a shared memory segment with POSIX AP
* attaching it to the logical address space.
$ g++ -Wall sharedMemla.c++ -1rt
$./a.out w
$

.Ja.out r

#include <iostream>

\ggsing namespace std; 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 78

//;include <stdlib.h> ‘\\
#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#define SIZE 4

// sharedMemla.c++

\\int main(int count, char *xvect[]) { 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 79

//f int *p, shmD ; ﬁ\\

if (count < 2) {

cerr << "No 2nd argument\n";

exit (1) ;
}
shmD = shm_open("/myShm", O_CREAT | O[RDWR,
0777) ;
if (shmD == -1){

cerr << "shm_open() error\n";

\\¥ exit(1); 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 80

-~

"

} N

if (ftruncate(shmD, SIZE) == -1){
cerr << "ftruncate() error\n'";
exit(1);

¥

p = (int *)mmap(NULL, SIZE,

PROT_READ | PROT_WRITE,
MAP_SHARED, shmD, 0) |
if (p == MAP_FAILED){

cerr << "mmap() error\n";

exit(1); 4//

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 81

o N

cout << "Attached at VA: " << p << endl;
if (vect[1]1[0] == ’w’) A{
cout << "Enter an integer: ";

cin >> *p ; // Write data

}
else if(vect[1][0] == ’r’) // read data
cout << "The data is:" << *p €< "\n";
// shm_unlink("/myShm") ;
return O ;
\ Y

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 82

/ ‘POSIX Shared Memory APISI \

e shm_open(): opens a shared memory and

returns the descriptor.

e ftruncate(): used to set the size of the

shared memory®

e mmap (): maps the shared memory in the
virtual space and returns the attachment
address. Subsequently the memory locations

can be accessed using the address.

\ The call shm_open() opens a shared memory with size zero. /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

-~

83

‘ Output I
$ a.out w

Attached at VA: 0x7£c34034f000
Enter an integer: 100

$ a.out r

Attached at VA: Ox7££9f6bdf000
The data 1s:100

$ 1s -1 /dev/shm

-rwxrwxr-x 1 goutam goutam 4 Jul 24 15:40|myShm

/

Goutam Biswas

Operating System III'T Kalyant 84

‘Race in Shared Memory'

e Following example shows race in the shared

MEemory.
e The shared location p[0] is initialized to O.

e A child process is created. The location p[0]
is decremented 5 x 10° times in the child

pProcess.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 85

-~

N\

e The location p[0] is incremented 5 x 10°

e The expected final result is O.

e But every run gives different output.

‘Race in Shared Memory'

times in the parent process.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyani 86

/ ‘Race in Shared Memory' \

/ *

Race 1n shared memory
$ g++ -Wall sharedMemé.c++
$./a.out 5000000

*/

#include <iostream>

using namespace std;
#include <stdlib.h>

\<finclude <sys/types.h> 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyani

87

/<;include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <unistd.h>
#define SIZE 4

int main(int count, char *vect[]) {

struct shmid_ds buff;

\\¥ if (count < 2) {

int shmID, *p, cPID, n, status ;

)

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyani 88

//7 cerr << "No 2nd argument\n"; ‘\\
exit (1) ;
I
shmID = shmget(ftok("/home/goutam", 1234), SI
IPC_CREAT | O777);

if (shmID == -1) {
cerr << "Error 1in shmget" ;
exit (1) ;

b

p = (int *) shmat(shmID, 0, 0777);
\\; pl0] = 0; // shared memory initialifsﬂ to O

Lect 3 Goutam Biswas

Operating System IIIT Kalyani

-

_

n = atoi(vect[1]);
cPID = fork();

if (cPID == -1){
cerr << "fork() error\n";
shmdt (p) ;

shmctl (shmID, IPC_RMID, &buff);
exit(1);

I

if (cPID > 0){ // parent

int 1;

/

Lect 3

89

Goutam Biswas

Operating System IIIT Kalyani

90

-

for(i=1; i<=n; ++1i) p[O]=p[O]+1;\

waitpid(cPID, &status, 0);

cout << ”p[O]: N << p[O] << ll\nll;

}
else { // child
int 1;
for(i=1; i<=n; ++i) p[0]=p[0]-1;
b
shmdt (p) ;

shmctl (shmID, IPC_RMID, &buff);

return 0 ;

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyani 91

4 N

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 92

‘Race in Shared Memory'

$ a.out 5000000
p[0]: 12440

$ a.out 5000000
p[0]: -2043936
$ a.out 5000000
p[0]: -1069027

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 93

4 N

Lect 3

_ /

Race in Shared Memory and Synchronization'

e The reason for this peculiar output is due to

race condition.

e Two concurrent processes are accessing the
shared location p[0]. But in different runs
the access are interleaved in different ways to

produce different results.

Goutam Biswas

Operating System IIIT Kalyant 94

Race in Shared Memory and Synchronization'

e [t is necessary to avoid interleaving of low

level operations of increment and decrement.

e It is necessary to make these operations
atomic i1.e. one cannot take place unless the

other is complete.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 95

Lect 3

K ‘Concurrent Access of Shared Resource' \

N\

e Race condition - computation 1s not

deterministic.

e (ritical section - portion of code that access

a shared resource.

e Mutual exclusion - no two critical sections

executed concurrently.

e Atomic - execution of critical section is

logically uninterruptible.

/

Goutam Biswas

Operating System IIIT Kalyant 96

/ Message Queue I \

e Message queue is another method for

communication between two processes.

e It is similar to pipe and FIFO, but it is
message oriented. The reader receives the

whole message sent by the writer.

e Unlike pipe, 1t 1s not possible to read a part
of it (a few bytes) leaving the rest in the

queue.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

Lect 3

97

/ ‘POSIX Message Queue'

* msgl.c++ POSIX message queue
x $§ g++ -Wall msgQl.c++ -1rt
* $§ sudo ./a.out w; ./a.out r
*/

#include <iostream>

using namespace std;

#include <fcntl.h>

\<finclude <sys/stat.h>

/

Goutam Biswas

Operating System

Lect 3

IIIT Kalyani

98

/<;include

#include
#include
#include
#include
#include

#include

<mqueue.h>
<stdlib.h>
<errno.h>
<unistd.h>
<string.h>
<sys/types.h>
<sys/wait.h>

#define MSGSIZE 1024
#Hdefine MAXMSG 16

"

/

Goutam Biswas

Operating System IIIT Kalyant 99

//;nt main(int ac, char *av[]){ ‘\\
struct mg_attr attr,
int err, msglen;

mqd_t mqd;

if(ac < 2){
cerr << "r/w not specified\n";
exit(1);

¥
attr.mq_maxmsg = MAXMSG;

\\¥ attr.mg_msgsize = MSGSIZE; 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 100

//f attr.mq_flags = O; ‘\\

attr.mq_curmsgs = O;

if(av[1] [0] == ’w’){
char buff [MSGSIZE];

int prio=0;

mqd = mq_open("/myMq", O_WRONLY | (Q_CREAT,
if (mqd == -1){

cerr << "mg_open() problem: " <<|errno <

\\¥ exit(1); 4//

Lect 3 Goutam Biswas

Operating System

IIIT Kalyani 101

-~

}

~

cout << "Enter message (terminate with Ctr

while(1) {

cin.getline(buff, MSGSIZE);
err = mq_send(mqd, buff, strlen
if (err == -1){
cerr << "mqg_send() fails\n";
exit(1);
¥
if(cin.eof()) break;

(buff),

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

102

-~

t
if(av[1] [0] == ’r’){
char buff [MSGSIZE] ;

~

mqd = mqg_open("/myMq", O_RDONLY | (Q_CREAT,

if(mgd == -1){
cerr << "mqg_open() problem: " <<|errno <
exit(1);

¥

cout << "Reader reads message: \n'"}

while((msglen = mq_receive(mqd, buff, MSGS

buff [msglen]="\0";

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 103

4 N

if (msglen !'= 0)

cout << "Received message: " <{ buff <

Iy
mq_close (mqd) ;

return O;

_ /

Lect 3 Goutam Biswas

Operating System

IIIT Kalyani

-~

struct mg_attr

{

long mq_flags;
long mqg_maxmsg;
long mq_msgsize;
long mqg_curmsgs;

+;

N\

/ *

‘ struct mqg_attr I

Message queue flags.

Maximum number of me:

Maximum message size|

104

*/
s5sages .

*/

Number of messages cyurrently

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

105

-

.

‘ Note '

e Messages are ordered in the queue in
descending order of priority, a non-negative

integer where zero (0) is of lowest priority.

e If the queue is empty, the process of

mq_receive() is blocked unless the queue is

opened with O_NONBLOCK flag.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 106

/ Signals I \

e A signal is a mechanism to notify a process

about an event.

e It is a short message, a number, sent to a
process or a set of processes through the OS.

It does not have any other parameter.

e A signal may be raised (sent) explicitly by a

process for another process through a system

call e.g. kill().
_ %

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 107

4 N
Signals I

e It may be raised due to some event e.g.

memory permission violation, divide-by zero,
illegal instruction etc. from a running

pProcess.

e It may also be raised by external events e.g.

keyboard interrupt e.g. Ctrl-C or Ctrl-Z.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 108

4 N
Signals I

e Any occurrence of such event suspends the

normal execution of the running process, and

the control is transferred to the kernel.

e The kernel updates the data structure ot the

target process for the signal.

e A signal is delivered when the process starts

running.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 109

4 N
Signals I

e 50 a signal may remain pending for a

suspended process.

e There can be only one pending signal of a

particular type per process (no queue).

e The OS checks for pending signals of the

process betfore it going to be scheduled.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 110

4 N
Signals I

e Every time the mode switches from the

kernel to the user the check for pending

signal is done for the scheduled process.

e If the pending signal cannot be ignored, it is
handled by switching to the corresponding

signal handler or taking default action.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 111

4 N
Signals I

e Once the signal handler finishes its job, the

original execution of the process may be

restarted.

e

e There are three possible responses on a

delivered signal - it may be ignored, some

default action may be taken, or handled by

the corresponding signal-handler.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 112

/ ‘Ctrl-C Ctrl-Z Ctrl-\' \

/ *
Ctrl-C terminates the current process:
$./a.out

Press Ctrl-C to terminate

Execute again

Press Ctrl-Z to suspend
$ fg to restart

Try Ctrl-\

\ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 1138

4 N

#include <iostream>
using namespace std;
int main(){ // ctrlC.c++
while (1)
cout << "What next...\n";

return O ;

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

114

-

.

‘Ctrl-C Ctrl-Z Ctrl-\'

e Ctrl-C sends SIGINT signal to the

foreground process. The default action is to

terminate the process.

e Ctrl-Z sends SIGTSTP (terminal stop)

signal to the foreground process. The default

action 1s to suspend the process.

e The command fg resumes the current job in

the foreground.

~

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 115

4 N
‘Ctrl—\ and kill'

e Ctrl-\ sends SIGABORT aborts the

foreground process. The default action is to

terminate the process.

e § kill PID terminates a process.

_ /

Lect 3 Goutam Biswas

Operating System

IIIT Kalyani

116

-~

$ ps

9114 pts/2
9709 pts/2
9711 pts/2
$ kill 9709

_

00:00:00 bash
00:00:00 a.out
00:00:00 ps

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 117

4 N

e kill 9709 sends the signal SIGKILL to the
process with PID 9709.

$ ps
PID TTY TIME CMD
9114 pts/2 00:00:00 bash
9709 pts/2 00:00:00 a.out
9716 pts/2 00:00:00 ps

\o But it is not killed! /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 118

4 N

$ fg
a.out

Terminated

The command fg restarts a.out and the signal
SIGKILL is delivered.

$ ps
PID TTY TIME CMD
9114 pts/2 00:00:00 bash
\\\9752 pts/2 00:00:00 ps 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 119

4 N

System Call kill () I

e The system call kill(pid, sig) can be

used to send signal sig to a process of pid.

e Following is an example.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 120

/ System Call kill () I \

/ *

killl.c++ signal from child to parent
*/

#include <iostream>

using namespace std;
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>

\<ﬁinclude <sys/types.h> 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 121

//;include <sys/wait.h> ‘\\

int main() { // killl.c++
int cPID, status ;

cPID = fork();

if (cPID == -1){
perror ("fork() failed\n");
exit(1);

¥

\ if (cPID > 0) { /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

122

-~

while (1)1

cout << "Parent running...\n";

sleep(1);

Iy
waitpid(cPID, &status, 0) ;

t
else { // child

int pPID = getppid();

sleep(5);
kill(pPID, SIGTSTP);

~

/

Lect 3

Goutam Biswas

Operating System

III'T Kalyant 123

-~

¥

"

}

return 0 ;

cout << "SIGTSTP sent to parent\n"
sleep(5);

cout << "SIGCONT sent to parent\n"
kill (pPID, SIGCONT) ;

sleep(5);

cout << "SIGINT sent to parent\n";
kill (pPID, SIGINT);

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 124

4 N
‘ Signal Handling I

e Fach signal has its default action. Often it

terminates the receiving process?.

e But most of the signals can be caught and
handled by the signal handler supplied by

the user.

o SIGKILL and SIGSTOP cannot be caught.

aSIGVHLD is ignored by default. SIGCON'T resumes the stopped process.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant

125

-~

N\

‘ Signal Handling I

e A program can use the library function

signal.

typedef void (*sighandler_t) (int)
sighandler t signal(int sig,
sighandler t handler)

e signal is a function that takes two

parameters.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

126

-

.

‘ Signal Handling I

e The first parameter sig is the signal to

catch.

e The second parameter handler is the

function to be called when the signal

specified by the first parameter is received.

e handler can also take special values SIG_IGN

or SIG DFL.

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 127

4 N
‘ Signal Handling I

e If handler is set to SIG_IGN, the signal is

ignored.

e If it is set to SIG_DFL, the default action

assoclated with the signal takes place.

e [f it is a function, then it is invoked with sig

as the argument.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 128

4 N
‘ Signal Handling I

e The return type of signal() is same as that

of its second parameter.

e It returns the previous value of the signal

handler or error.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyani 129

/ Ignoring SIGINT I \

/ *
sigHandl.c++ Ignoring SIGINT (Ctrl-C)
*/

#include <iostream>

using namespace std;
#include <signal.h>
#include <unistd.h>

\;iOid mySigHandler (int n) A 4//

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 130

//7 static 1nt m = 1; ﬁ\\

if(m > 2) signal (SIGINT, SIG_DFL);

else signal (SIGINT, mySigHandler) ;
// <ctrl-C> default

cout << "In handler: "<< m << "\n";

++m

b

¥

int main() {
signal (SIGINT, mySigHandler) ;
// <Ctrl-C> mySignalHandler ()

\\¥ while(1) { 4//

Lect 3 Goutam Biswas

Operating System

IIIT Kalyani

151

-

}

cout << "What next?...\n";

sleep(1);

return O ;

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant

152

-

N\

Ignoring SIGINT I

e The program sigHandl.c++ ignores the

signal SIGINT (Ctrl-C) three times.

e Then SIGINT takes its default action.

e The name of the signal handler is

mySigHandler ().

/

Lect 3

Goutam Biswas

Operating System IIIT Kalyant 133

4 N
‘ Memory Violation'

e Access to illegal memory segment generates
the signal SIGSEGV.

e We often encounter this while using pointer

variable.

e This exception cannot be ignored as the

offending instruction will be tried again.

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 134

/ SIGSEGV ' \

/ *
sigHand2.c++ SIGSEGV handler
*/

#include <iostream>

using namespace std;
#include <stdio.h>

#include <signal.h>
#include <unistd.h>

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 135

/(;oid mySEGVhandler (int sig){ O

signal (sig, SIG_IGN);

// SEGV

sleep(1);

cout << "In Handler\n" ;
Iy
int main() {

int *p = (int *)100 ;

signal (SIGSEGV, mySEGVhandler);
\ // SEGV mySEGVhandler/()

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 136

4 N

*p = 10
cout << "Not printed\n" ;

return 0O ;

_ /

Lect 3 Goutam Biswas

Operating System IIIT Kalyant 137

4 N
Bibliography I

1. https://www.tutorialspoint.com/python/os pipe.htm

2. Beginning Linux Programming by Neil Mathew & Richard
Stones, 3"? ed., Wiley Pub., 2004, ISBN 81-265-0484-6.

3. Understanding the Linux Kernel by Daniel P Bovet & Marco
Cesati, 3" ed., O’Reilly, ISBN 81-8404-083-0.

4. http://www.comptechdoc.org/os/linux/programming/
linux_pgsignals.html

_ /

Lect 3 Goutam Biswas

