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✫

✩

✪

Inter Process Communication - I
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✫

✩

✪

Isolation and Interaction

• Different processes running on an OS are

logically independent and isolated entities.

• They have separate logical memory spaces,

CPU states, open files etc.

• An event in one process does not interfere

with another process. One process may crush

but the other processes will continue to run.
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✫

✩

✪

Isolation and Interaction

• But often it is also necessary for two

processes or a process and the OS to

interact. There are several reasons for that.

• It may be necessary to pass the output of

one process as the input to another process.

• In a multiple processor system, dividing a

job in several processes may achieve faster

completion through parallelism.
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✫

✩

✪

Different Models

• So it is necessary to share information

between two processes.

• There are three fundamental models of

sharing information between processes.

• One is through shared memory between

communicating processes and the other one

is data transfer through the kernel buffer.
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✫

✩

✪

Shared Memory

• The address spaces of two processes are

mutually disjoint.

• But a process may request the OS for some

memory that it can share with other process.

• OS provides a physical memory where

portions of logical address spaces of both the

process are mapped.
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✫

✩

✪

Shared Memory

• Both processes can read from and write in

the shared memory space. This allows them

to communicate without any further

interaction with the OS.

• But writing on the same memory location by

more than one processes has the problem of

data integrity of the memory location.
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✫

✩

✪

Data Transfer

• A data transfer may be a pure byte stream

or in the form of a message.

• There is no shared memory in the user space.

But there may be buffer maintained by the

kernel to store byte stream or message.
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✫

✩

✪

Interprocess Communication on Linux

• We shall talk about some of the interprocess

communication mechanisms available on

Linux platform.

• These are pipe, named pipe, shared memory,

Unix domain socket and signal.
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✫

✩

✪

A Note on File Descriptor

• We have already mentioned that a file

descriptor is available for every open file; and

a child process inherits the file descriptors of

its parent at the time of creation.

• But in Unix/Linux many objects such as

pipes, sockets, devices etc. are also treated

as files.
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✫

✩

✪

A Note on File Descriptor

• A file descriptor is returned when these

objects are opened by a open() system call.

• Data can be read from or write to these

objects using the descriptors.
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✫

✩

✪

Unnamed Pipe

• A pipe is a unidirectional communication

channel for byte streama given by kernel to a

requesting process.

• Data of any block size can be written in a

pipe and read from a pipe. There is no

concept of message.

aThe kernel maintains a FIFO buffer in its space.
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✫

✩

✪

Unnamed Pipe

• A pair of file descriptors are associated to a

pipe. One of them is used to read from and

the other one is to write into the pipe.

• If two processes share the file descriptors of a

pipe, then the data of one can be passed to

the other.
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✫

✩

✪

Unnamed Pipe

• In the following example the command

interpreter bash redirects the output of

/bin/ls as input to /bin/less using pipe.

• ls -l displays the files and subdirectories

under the current directory.

• less facilitates the display of the stream of

data on the VDU screen.
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✫

✩

✪

Unnamed Pipe

$ ls -l /usr/include | less

total 1236

-rw-r--r--. 1 root root 7445 Mar 6 2015 aio.h

-rw-r--r--. 1 root root 2050 Mar 6 2015 aliases.h

drwxr-xr-x. 2 root root 4096 May 15 2015 asm

.......................

-rw-r--r--. 1 root root 2268 Mar 6 2015 cpio.h

-rw-r--r--. 1 root root 5938 May 13 2015 cpufreq.h

:
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✫

✩

✪

Unnamed Pipe

• The shell opens a pipe, and creates two child

processes using fork(). One (c1) is loaded

with /bin/ls and the other one (c2) with

/usr/bin/less using exec() calls.

• The ls writes its output on stdout and the

less takes input from the stdin.
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✫

✩

✪

Unnamed Pipe

• The shell before exec() redirects the output

descriptor of c1 to the write-end of the pipe.

It also redirects the input descriptor of c2 to

the read-end of the pipe.

• After exec() calls ls (c1) and less (c2) are

loaded. They inherit the descriptors (but not

‘aware’ of redirections) and act normally.
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✫

✩

✪

Unnamed Pipe

• Following program gives a system call to

open an unnamed pipe

• Creates a child process so that the parent

and the child share the file descriptors of the

pipe.

• Then they communicate through the pipe.
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✫

✩

✪

Communication Through Pipe

#include <iostream>

using namespace std;

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int main() { // pipe1.c++
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✫

✩

✪

int chpid, fd[2], err, status ;

err = pipe(fd) ;

if(err == -1) {

cerr << "pipe open error\n" ;

return 0;

}

chpid = fork();

if(chpid == -1){

cerr << "fork() error\n";

return 0;
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✫

✩

✪

}

if(chpid > 0){ // write in parent

char buffP[100] = "IIIT Kalyani";

close(fd[0]);

write(fd[1], buffP, strlen(buffP));

cout << "Parent has written in pipe\n";

close(fd[1]);

waitpid(chpid, &status,0);

}

else { // child

char buffC[100]={0};
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✫

✩

✪

close(fd[1]);

sleep(5);

read(fd[0], buffC, 100);

cout << "Child: " << buffC << endl;

close(fd[0]);

}

return 0;

}
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✫

✩

✪

Communication Through Pipe

Output:

$ a.out

Parent has written in pipe

Child: IIIT Kalyani
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✫

✩

✪

Communication Through Pipe

• The system call pipe(fd) creates a FIFO

data channel that can be used for

interprocess communication.

• Two file descriptors are available in the

two-element integer array fd[2] - fd[1]

refers to write into and fd[0] refers to read

from the pipe.

• Data written is buffered by the Kernel.
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✫

✩

✪

Communication Through Pipe

• During fork() the file descriptors of a pipe

are copied to the child process along with

other open file descriptors e.g. 0 (stdin), 1

(stdout), 2 (stderr).

• The parent process closes the input

descriptor fd[0] and uses fd[1] to write in

the pipe. On the other hand the child

process closes the output descriptor and uses

fd[0] to read data.
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✫

✩

✪

Communication Through Unnamed Pipe in Python

#!/usr/bin/python

# pipe2.py creates a pipe, parent-child

# communicates through it

import os,sys, time

def main():

try:

fdr,fdw = os.pipe()

except:

OSError
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✫

✩

✪

print "Pipe-open fails"

sys.exit(1)

try:

chPID = os.fork()

except:

OSError

print "fork() fails"

sys.exit(1)

if chPID > 0:

os.close(fdr)

n = os.write(fdw, ’IIT Kalyani’)
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✫

✩

✪

print ’Parent has written in pipe’

os.waitpid(chPID,0)

else:

os.close(fdw)

data = os.read(fdr, 100)

time.sleep(5)

print ’child:’, data

main()

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 28✬

✫

✩

✪

Communication Through Unnamed Pipe in Python

Output:

$ ./pipe2.py

Parent has written in pipe

child: IIIT Kalyani
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✫

✩

✪

Communication Through Pipe

• The call os.pipe returns a 2-tuple of file

descriptors. The first one is for read and the

second one is for write.

• The call os.write(fdw, str) writes the

byte string of str to the file of the descriptor

fdw.

• The call os.read(fdr, n) reads n bytes

and returns the byte string.
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✫

✩

✪

Close Unused Descriptor

• It is necessary for a process reading from a

pipe to close its write descriptor (fd[1]).

(pipe4a.c++)

• Similarly it is also necessary for a process

writing in a pipe to close its read descriptor

(fd[0]). (pipe4.c++)
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✫

✩

✪

State of Reader/Writer Process

• What is the state of the reader process (child

in our example) if the writer (parent in this

case) is not writing in the pipe?

(pipe5a.c++)

• What is the state of the writer if the reader

is not reading? (pipe5b.c++)
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✫

✩

✪

Can There be More than One Reader/Writer

• Can more than one process write in a pipe

and similarly can more than one process

read from a pipe? (pipe6.c++)

• Will the write operation be atomic for a

process?
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✫

✩

✪

close() and dup()

• The system call close(fd) closes the open file

corresponding to the file descriptor fd.

• The slot corresponding to fd in the file

descriptor table is free.

• The system call dup(fd1) copies the file

descriptor of fd1 in the least index available

in the file descriptor table.
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✫

✩

✪

Redirecting Output

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>
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✫

✩

✪

int main(int ac, char *av[]){

int fd1; // dupTOstdout1.c++

// $ ./a.out dupOut

if(ac < 2){

cerr << "File name not specified\n";

exit(1);

}

fd1 = open(av[1], O_CREAT | O_WRONLY, 0666);

if(fd1 == -1){

cerr << "File open error\n";

exit(1);

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 36✬

✫

✩

✪

}

cout << "Line before close(fileno(stdout))\n";

close(fileno(stdout));

cout << "Line after close(fileno(stdout))\n";

dup(fd1);

cout << "Line after dup(fd1)\n";

close(fd1);

return 0;

}
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✫

✩

✪

Redirecting Output

$ a.out dupOut

Line before close(fileno(stdout))

dupOut: Line after dup(fd1)
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✫

✩

✪

close() and dup2()

• There is a similar system call dup2(ofd,

nfd) makes nfd a copy of the old file

descriptor ofd.

• If there is an open file with the file

descriptor nfd, it is closed.

• If the call succeeds, both ofd and nfd refers

to the same entry of the open file table.

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 39✬

✫

✩

✪

Standard IO and IPC on Pipe

• As an example we use close() the file

descriptor of stdin (stdout).

• Then call dup2() to duplicate the input

(output) file descriptor of the opened pipe to

the file descriptor of stdin (stdout).

• Now the stdio library functions can be used

to read from (write to) the pipe.
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✫

✩

✪

stdio, dup2(), pipe()

#include <iostream>

using namespace std;

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

int main() { // pipe3.c++
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✫

✩

✪

int chpid, fd[2], err, status ;

err = pipe(fd) ;

if(err == -1) {

cerr << "pipe open error\n" ;

exit(1) ;

}

chpid = fork();

if(chpid == -1){

cerr << "fork() error\n";

exit(1);
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✫

✩

✪

}

if(chpid > 0){ // in parent

int n;

close(fd[0]);

cout << "parent: Enter a +ve integer: ";

cin >> n;

cout << "parent: " << n << " is the input\n";

// dup2(fileno(stdout), fd[1]+1);

// copy stdout (1) to fd[1]+1

close(fileno(stdout)) ; // close stdout

cout << "Cannot be printed\n";
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✫

✩

✪

dup2(fd[1], fileno(stdout));

cout << n << "\n";

waitpid(chpid, &status,0);

}

else { // child process

int m;

close(fd[1]);

// dup2(fileno(stdin), fd[1]+1);

close(fileno(stdin)) ;

dup2(fd[0], fileno(stdin));

cin >> m;
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✫

✩

✪

cout << "data " << m << " received in child\n";

}

return 0;

}

Output:

$ ./a.out

parent: Enter a +ve integer: 100

parent: 100 in the input

data 100 received in child
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✫

✩

✪

Named Pipe

• The system call mkfifo() creates a named

pipe.

• The special file created by this call is similar

to anonymous communication channel pipe,

but is entered in the file system as a named

object.

• Once created, any process with proper

permission can open it for read or write.
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✫

✩

✪

Named Pipe

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <unistd.h>
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✫

✩

✪

#define MAX 100

// namedPipe1.c++

// $ ./a.out r <pipeName> & $ ./a.out w <pipeName>

int main(int count, char *vect[]) {

int err, pd ;

char wBuff[] = "This text will be written in

rBuff[MAX] = {0};

if(count < 3) {

cerr << "Less number of arguments\n" ;

exit(1) ;
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✫

✩

✪

}

err = mkfifo(vect[2], 0666) ;

if(err == -1 && errno != EEXIST){

cerr << "errno: " << errno << "\n";

exit(1);

}

if(strcmp(vect[1], "r") == 0) { // Reader process

pd = open(vect[2], O_RDONLY) ;

read(pd, rBuff, MAX);

cout << "OutData: " << rBuff << "\n" ;

close(pd);
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✫

✩

✪

}

else if(strcmp(vect[1], "w") == 0) { // Writer

pd = open(vect[2], O_WRONLY) ;

write(pd, wBuff, strlen(wBuff)) ;

close(pd);

} else {

cerr << "Wrong 2nd argument\n" ;

exit(1) ;

}

return 0;

}
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✫

✩

✪

Named Pipe

• If a process opens a FIFO for reading

(O RDONLY), gets blocked, if it is not opened

by another process for writing. This is true

for opening in writing mode also.

• A named FIFO can be opened from a shell -

$ mkfifo -m mode pathname.
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✫

✩

✪

Named Pipe

/*

* fifoRead.c++ shows that the process is blocked

* as there is no writing process

* $ mkfifo -m 0666 myFIFO

* $ g++ -Wall fifoRead.c++ -o fifoRead

* $ g++ -Wall fifoWrite.c++ -o fifoWrite

* $ ./fifoRead myFIFO &

* $ ./fifoWrite myFIFO &

*/
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✫

✩

✪

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <unistd.h>

#define MAX 100
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✫

✩

✪

int main(int ac, char *av[]) {

int pd;

char buff[MAX];

if(ac < 2){

cerr << "FIFO name not specified\n";

exit(1);

}

pd = open(av[1], O_RDONLY);

if(pd == -1){

cerr << "FIFO open error\n";
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✫

✩

✪

exit(1);

}

cout << "Not printed until fifoWrite\n";

read(pd, buff, 100);

cout << "Data read: " << buff << endl;

close(pd);

return 0;

}

The fifoWrite.c++ is similar.
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✫

✩

✪

Named Pipe in Python

#!/usr/bin/python

# namedPipe2.py creates a named pipe

# $ ./namedPipe2.py r <fileName> &

# $ ./namedPipe2.py w <fileName> &

import os

import sys

def main():

try:

os.mkfifo(sys.argv[2], 0666)
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✫

✩

✪

except: OSError

try:

if sys.argv[1] == ’r’:

fd = os.open(sys.argv[2], os.O_RDONLY)

data = os.read(fd, 100)

print data

elif sys.argv[1] == ’w’:

fd = os.open(sys.argv[2], os.O_WRONLY)

os.write(fd, "\nWrittten in the named pipe")

except: print ’wrong argument’

main()
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✫

✩

✪

Shared Memory

• A process can send a request to the OS to

allocate a block of shared memory.

• It can be attached to the virtual address

spaces of two or more cooperating processes.

• Once the shared memory is attached, process

can access the memory for read and write

without any intervention of the kernel.
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✫

✩

✪

Shared Memory

• This makes communication through a shared

memory more efficient than a pipe where

data is buffered in the kernel space, and

every access requires a system call.

• But then there is a price to pay - it is

necessary to synchronize read and write

operations of different processes for data

consistency.
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✫

✩

✪

Shared Memory

• The original shared memory API on Linus is

from System V.

• Subsequently the POSIX (Portable

Operating System Interface) API was

implemented.

• System V shared memory is identified by a

key and an identifier. The POSIX shared

memory API is similar to that of a file.
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✫

✩

✪

Shared Memory

• A key and an identifier is associated with a

System V shared memory segment.

• The key is the name of the shared memory,

and the identifier is used within the program

by other related functions.
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✫

✩

✪

Shared Memory

/*

Creating a shared memory segment and attaching it

to the logical address space. sharedMem1.c++

$ g++ -Wall sharedMem1.c++

$ ./a.out w

$ ./a.out r

*/

#include <iostream>

using namespace std;
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✫

✩

✪

#include <stdlib.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SIZE 4

int main(int count, char *vect[]) {

int shmID, *p ;

if(count < 2) {

cerr << "No 2nd argument\n";
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✫

✩

✪

exit(1) ;

}

shmID = shmget(ftok("/home/goutam", 1234), SIZE, IPC_CREAT

if(shmID == -1) {

cerr << "Error in shmget" ;

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777) ;

cout << "Attached at VA: " << p << endl;

if(vect[1][0] == ’w’) {

cout << "Enter an integer: ";
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✫

✩

✪

cin >> *p ; // Write data

shmdt(p) ;

}

else if(vect[1][0] == ’r’){

cout << "The data is:" << *p << "\n";

shmdt(p) ;

}

// The shared memory segment remains in the system

// $ ipcs $ ipcrm -m<number>

return 0 ;

}
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✫

✩

✪

Output

$ ./a.out w

Attached at VA: 0x7fea66c67000

Enter an integer: 100

$ ./a.out r

Attached at VA: 0x7f44e118e000

The data is:100
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✫

✩

✪

Shared Memory

• The function ftok() creates a key from its

parameters.

• The system call shmget() takes three

parameters - a key, the size of the requested

memorya, and a set of flags.

aThe actual size of the shared memory is normally the smallest multiple of

the page size ≤ the requested size.
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✫

✩

✪

Shared Memory

• The return value of shmget() is either a +ve

integer, an identifier of the allocated shared

memory segment, or −1 in case of a failure.

• The identifier is used in the subsequent calls.
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✫

✩

✪

Shared Memory

• The system call shmat() attaches the shared

memory specified by the first parameter

(shmID) to an unused portion of the logical

address space of the processa.

• The third parameter specifies the access

permission to the shared memory.

aOften it is the space between the stack and the heap. This may be modified

by the second parameter.
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✫

✩

✪

Shared Memory

• The call returns the logical address of the

point of attachment, which then is bound to

some local variable (p in the example).

• Finally the memory can be detached from

the process by the system call shmdt().
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✫

✩

✪

Shared Memory

• Even though the shared memory is not

attached to any process, it remains available

in the system. It can be identified by its key.

• It can be viewed by the command $ ipcs

and can be removed by the command

$ ipcrm -m <shmid>.
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✫

✩

✪

Shared Memory

• It also can be removed using the system call

shmctl().

• In our program the requested shared

memory is only 4 bytes. But OS does not

deal with this granularity. It allocates in

multiple of pages.
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✫

✩

✪

Shared Memory

/*

Creating a shared memory segment and attaching it

to the logical address space. sharedMem2.c++

Its logical address, size and removal

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>
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✫

✩

✪

#include <sys/ipc.h>

#include <sys/shm.h>

#define SIZE 4

#define MAXSIZE 4095 // 16KB

int main() {

int shmID, *p;

struct shmid_ds buff;

shmID = shmget(ftok("/home/goutam", 1234), SIZE,

IPC_CREAT | 0777);
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✫

✩

✪

if(shmID == -1) {

cerr << "Error in shmget";

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777);

cout << "Shared memory address: "

<< (void *) p << "\n";

p[0]=0; p[MAXSIZE]=MAXSIZE;

cout << "data: " << p[0] << "-"

<< p[MAXSIZE] << "\n";

shmdt(p) ;
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✫

✩

✪

shmctl(shmID, IPC_RMID, &buff);

return 0 ;

}

$ a.out

Shared memory address: 0x7f6955903000

data: 0-4095
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✫

✩

✪

Size of Shared Memory

• MAXSIZE is changed from 4095 to 4096.

$ a.out

Shared memory address: 0x7f238c4a3000

Segmentation fault (core dumped)

• 16KB shared memory allocated.
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✫

✩

✪

POSIX Shared Memory APIs

/*

* Creating a shared memory segment with POSIX API,

* attaching it to the logical address space.

$ g++ -Wall sharedMem1a.c++ -lrt

$ ./a.out w

$ ./a.out r

*/

#include <iostream>

using namespace std;
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✫

✩

✪

#include <stdlib.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#define SIZE 4

// sharedMem1a.c++

int main(int count, char *vect[]) {
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✫

✩

✪

int *p, shmD ;

if(count < 2) {

cerr << "No 2nd argument\n";

exit(1) ;

}

shmD = shm_open("/myShm", O_CREAT | O_RDWR,

0777);

if(shmD == -1){

cerr << "shm_open() error\n";

exit(1);
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✫

✩

✪

}

if(ftruncate(shmD, SIZE) == -1){

cerr << "ftruncate() error\n";

exit(1);

}

p = (int *)mmap(NULL, SIZE,

PROT_READ | PROT_WRITE,

MAP_SHARED, shmD, 0) ;

if(p == MAP_FAILED){

cerr << "mmap() error\n";

exit(1);
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✫

✩

✪

}

cout << "Attached at VA: " << p << endl;

if(vect[1][0] == ’w’) {

cout << "Enter an integer: ";

cin >> *p ; // Write data

}

else if(vect[1][0] == ’r’) // read data

cout << "The data is:" << *p << "\n";

// shm_unlink("/myShm");

return 0 ;

}
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✫

✩

✪

POSIX Shared Memory APIs

• shm open(): opens a shared memory and

returns the descriptor.

• ftruncate(): used to set the size of the

shared memorya

• mmap(): maps the shared memory in the

virtual space and returns the attachment

address. Subsequently the memory locations

can be accessed using the address.
aThe call shm open() opens a shared memory with size zero.
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✫

✩

✪

Output

$ a.out w
Attached at VA: 0x7fc34034f000
Enter an integer: 100
$ a.out r
Attached at VA: 0x7ff9f6bdf000
The data is:100
$ ls -l /dev/shm
-rwxrwxr-x 1 goutam goutam 4 Jul 24 15:40 myShm
.....
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✫

✩

✪

Race in Shared Memory

• Following example shows race in the shared

memory.

• The shared location p[0] is initialized to 0.

• A child process is created. The location p[0]

is decremented 5× 106 times in the child

process.
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✫

✩

✪

Race in Shared Memory

• The location p[0] is incremented 5× 106

times in the parent process.

• The expected final result is 0.

• But every run gives different output.
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✫

✩

✪

Race in Shared Memory

/*

Race in shared memory

$ g++ -Wall sharedMem4.c++

$ ./a.out 5000000

*/

#include <iostream>

using namespace std;

#include <stdlib.h>

#include <sys/types.h>
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✫

✩

✪

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

#include <unistd.h>

#define SIZE 4

int main(int count, char *vect[]) {

int shmID, *p, cPID, n, status ;

struct shmid_ds buff;

if(count < 2) {
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✫

✩

✪

cerr << "No 2nd argument\n";

exit(1) ;

}

shmID = shmget(ftok("/home/goutam", 1234), SIZE,

IPC_CREAT | 0777);

if(shmID == -1) {

cerr << "Error in shmget" ;

exit(1) ;

}

p = (int *) shmat(shmID, 0, 0777);

p[0] = 0; // shared memory initialized to 0
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✫

✩

✪

n = atoi(vect[1]);

cPID = fork();

if(cPID == -1){

cerr << "fork() error\n";

shmdt(p);

shmctl(shmID, IPC_RMID, &buff);

exit(1);

}

if(cPID > 0){ // parent

int i;

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 90✬

✫

✩

✪

for(i=1; i<=n; ++i) p[0]=p[0]+1;

waitpid(cPID, &status, 0);

cout << "p[0]: " << p[0] << "\n";

}

else { // child

int i;

for(i=1; i<=n; ++i) p[0]=p[0]-1;

}

shmdt(p);

shmctl(shmID, IPC_RMID, &buff);

return 0 ;
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✫

✩

✪

}
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✫

✩

✪

Race in Shared Memory

$ a.out 5000000

p[0]: 12440

$ a.out 5000000

p[0]: -2043936

$ a.out 5000000

p[0]: -1069027
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✫

✩

✪

Race in Shared Memory and Synchronization

• The reason for this peculiar output is due to

race condition.

• Two concurrent processes are accessing the

shared location p[0]. But in different runs

the access are interleaved in different ways to

produce different results.
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✫

✩

✪

Race in Shared Memory and Synchronization

• It is necessary to avoid interleaving of low

level operations of increment and decrement.

• It is necessary to make these operations

atomic i.e. one cannot take place unless the

other is complete.
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✫

✩

✪

Concurrent Access of Shared Resource

• Race condition - computation is not

deterministic.

• Critical section - portion of code that access

a shared resource.

• Mutual exclusion - no two critical sections

executed concurrently.

• Atomic - execution of critical section is

logically uninterruptible.
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✫

✩

✪

Message Queue

• Message queue is another method for

communication between two processes.

• It is similar to pipe and FIFO, but it is

message oriented. The reader receives the

whole message sent by the writer.

• Unlike pipe, it is not possible to read a part

of it (a few bytes) leaving the rest in the

queue.
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✫

✩

✪

POSIX Message Queue

/*

* msgQ1.c++ POSIX message queue

* $ g++ -Wall msgQ1.c++ -lrt

* $ sudo ./a.out w; ./a.out r

*/

#include <iostream>

using namespace std;

#include <fcntl.h>

#include <sys/stat.h>
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✫

✩

✪

#include <mqueue.h>

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/wait.h>

#define MSGSIZE 1024

#define MAXMSG 16
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✫

✩

✪

int main(int ac, char *av[]){

struct mq_attr attr;

int err, msgLen;

mqd_t mqd;

if(ac < 2){

cerr << "r/w not specified\n";

exit(1);

}

attr.mq_maxmsg = MAXMSG;

attr.mq_msgsize = MSGSIZE;
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✫

✩

✪

attr.mq_flags = 0;

attr.mq_curmsgs = 0;

if(av[1][0] == ’w’){

char buff[MSGSIZE];

int prio=0;

mqd = mq_open("/myMq", O_WRONLY | O_CREAT,

if(mqd == -1){

cerr << "mq_open() problem: " << errno <<

exit(1);
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✫

✩

✪

}

cout << "Enter message (terminate with Ctrl-D):

while(1) {

cin.getline(buff, MSGSIZE);

err = mq_send(mqd, buff, strlen(buff), prio++);

if(err == -1){

cerr << "mq_send() fails\n";

exit(1);

}

if(cin.eof()) break;

}
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✫

✩

✪

}

if(av[1][0] == ’r’){

char buff[MSGSIZE];

mqd = mq_open("/myMq", O_RDONLY | O_CREAT,

if(mqd == -1){

cerr << "mq_open() problem: " << errno <<

exit(1);

}

cout << "Reader reads message: \n";

while((msgLen = mq_receive(mqd, buff, MSGSIZE,

buff[msgLen]=’\0’;
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✫

✩

✪

if(msgLen != 0)

cout << "Received message: " << buff <<

}

}

mq_close(mqd);

return 0;

}
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✫

✩

✪

struct mq attr

struct mq_attr

{

long mq_flags; /* Message queue flags. */

long mq_maxmsg; /* Maximum number of messages.

long mq_msgsize; /* Maximum message size. */

long mq_curmsgs; /* Number of messages currently

};
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✫

✩

✪

Note

• Messages are ordered in the queue in

descending order of priority, a non-negative

integer where zero (0) is of lowest priority.

• If the queue is empty, the process of

mq receive() is blocked unless the queue is

opened with O NONBLOCK flag.
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✫

✩

✪

Signals

• A signal is a mechanism to notify a process

about an event.

• It is a short message, a number, sent to a

process or a set of processes through the OS.

It does not have any other parameter.

• A signal may be raised (sent) explicitly by a

process for another process through a system

call e.g. kill().

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 107✬

✫

✩

✪

Signals

• It may be raised due to some event e.g.

memory permission violation, divide-by zero,

illegal instruction etc. from a running

process.

• It may also be raised by external events e.g.

keyboard interrupt e.g. Ctrl-C or Ctrl-Z.

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 108✬

✫

✩

✪

Signals

• Any occurrence of such event suspends the

normal execution of the running process, and

the control is transferred to the kernel.

• The kernel updates the data structure of the

target process for the signal.

• A signal is delivered when the process starts

running.
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✫

✩

✪

Signals

• So a signal may remain pending for a

suspended process.

• There can be only one pending signal of a

particular type per process (no queue).

• The OS checks for pending signals of the

process before it going to be scheduled.
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✫

✩

✪

Signals

• Every time the mode switches from the

kernel to the user the check for pending

signal is done for the scheduled process.

• If the pending signal cannot be ignored, it is

handled by switching to the corresponding

signal handler or taking default action.
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✫

✩

✪

Signals

• Once the signal handler finishes its job, the

original execution of the process may be

restarted.

• There are three possible responses on a

delivered signal - it may be ignored, some

default action may be taken, or handled by

the corresponding signal-handler.
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✫

✩

✪

Ctrl-C Ctrl-Z Ctrl-\

/*

Ctrl-C terminates the current process:

$ ./a.out

Press Ctrl-C to terminate

Execute again

Press Ctrl-Z to suspend

$ fg to restart

Try Ctrl-\

*/
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✫

✩

✪

#include <iostream>

using namespace std;

int main(){ // ctrlC.c++

while(1)

cout << "What next...\n";

return 0 ;

}
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✫

✩

✪

Ctrl-C Ctrl-Z Ctrl-\

• Ctrl-C sends SIGINT signal to the

foreground process. The default action is to

terminate the process.

• Ctrl-Z sends SIGTSTP (terminal stop)

signal to the foreground process. The default

action is to suspend the process.

• The command fg resumes the current job in

the foreground.
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✫

✩

✪

Ctrl-\ and kill

• Ctrl-\ sends SIGABORT aborts the

foreground process. The default action is to

terminate the process.

• $ kill PID terminates a process.
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✫

✩

✪

kill

$ ps

9114 pts/2 00:00:00 bash

9709 pts/2 00:00:00 a.out

9711 pts/2 00:00:00 ps

$ kill 9709
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✫

✩

✪

kill

• kill 9709 sends the signal SIGKILL to the

process with PID 9709.

$ ps

PID TTY TIME CMD

9114 pts/2 00:00:00 bash

9709 pts/2 00:00:00 a.out

9716 pts/2 00:00:00 ps

• But it is not killed!
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✫

✩

✪

kill

$ fg

a.out

Terminated

The command fg restarts a.out and the signal

SIGKILL is delivered.

$ ps

PID TTY TIME CMD

9114 pts/2 00:00:00 bash

9752 pts/2 00:00:00 ps
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✫

✩

✪

System Call kill()

• The system call kill(pid, sig) can be

used to send signal sig to a process of pid.

• Following is an example.
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✫

✩

✪

System Call kill()

/*

kill1.c++ signal from child to parent

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>
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✫

✩

✪

#include <sys/wait.h>

int main() { // kill1.c++

int cPID, status ;

cPID = fork();

if(cPID == -1){

perror("fork() failed\n");

exit(1);

}

if(cPID > 0) {
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✫

✩

✪

while(1){

cout << "Parent running...\n";

sleep(1);

}

waitpid(cPID, &status, 0) ;

}

else { // child

int pPID = getppid();

sleep(5);

kill(pPID, SIGTSTP);
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✫

✩

✪

cout << "SIGTSTP sent to parent\n";

sleep(5);

cout << "SIGCONT sent to parent\n";

kill(pPID, SIGCONT);

sleep(5);

cout << "SIGINT sent to parent\n";

kill(pPID, SIGINT);

}

return 0 ;

}
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✫

✩

✪

Signal Handling

• Each signal has its default action. Often it

terminates the receiving processa.

• But most of the signals can be caught and

handled by the signal handler supplied by

the user.

• SIGKILL and SIGSTOP cannot be caught.

aSIGVHLD is ignored by default. SIGCONT resumes the stopped process.
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✫

✩

✪

Signal Handling

• A program can use the library function

signal.

typedef void (*sighandler t)(int)

sighandler t signal(int sig,

sighandler t handler)

• signal is a function that takes two

parameters.
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✫

✩

✪

Signal Handling

• The first parameter sig is the signal to

catch.

• The second parameter handler is the

function to be called when the signal

specified by the first parameter is received.

• handler can also take special values SIG IGN

or SIG DFL.
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✫

✩

✪

Signal Handling

• If handler is set to SIG IGN, the signal is

ignored.

• If it is set to SIG DFL, the default action

associated with the signal takes place.

• If it is a function, then it is invoked with sig

as the argument.
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✫

✩

✪

Signal Handling

• The return type of signal() is same as that

of its second parameter.

• It returns the previous value of the signal

handler or error.
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✫

✩

✪

Ignoring SIGINT

/*

sigHand1.c++ Ignoring SIGINT (Ctrl-C)

*/

#include <iostream>

using namespace std;

#include <signal.h>

#include <unistd.h>

void mySigHandler(int n) {

Lect 3 Goutam Biswas



Operating System IIIT Kalyani 130✬

✫

✩

✪

static int m = 1;

if(m > 2) signal(SIGINT, SIG_DFL);

else signal(SIGINT, mySigHandler);

// <ctrl-C> default

cout << "In handler: "<< m << "\n";

++m;

}

int main() {

signal(SIGINT, mySigHandler) ;

// <Ctrl-C> mySignalHandler()

while(1) {
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✫

✩

✪

cout << "What next?...\n";

sleep(1);

}

return 0 ;

}
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✫

✩

✪

Ignoring SIGINT

• The program sigHand1.c++ ignores the

signal SIGINT (Ctrl-C) three times.

• Then SIGINT takes its default action.

• The name of the signal handler is

mySigHandler().
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✫

✩

✪

Memory Violation

• Access to illegal memory segment generates

the signal SIGSEGV.

• We often encounter this while using pointer

variable.

• This exception cannot be ignored as the

offending instruction will be tried again.
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✫

✩

✪

SIGSEGV

/*

sigHand2.c++ SIGSEGV handler

*/

#include <iostream>

using namespace std;

#include <stdio.h>

#include <signal.h>

#include <unistd.h>
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✫

✩

✪

void mySEGVhandler(int sig){

signal(sig, SIG_IGN);

// SEGV

sleep(1);

cout << "In Handler\n" ;

}

int main() {

int *p = (int *)100 ;

signal(SIGSEGV, mySEGVhandler);

// SEGV mySEGVhandler()
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✫

✩

✪

*p = 10 ;

cout << "Not printed\n" ;

return 0 ;

}
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✫

✩

✪
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