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✫

✩
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Process
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✫

✩

✪

What is a Process

• A process is an execution-instance of a

programa.

• Running of a program requires a CPU, a

memory, open files and other resources.

• The OS creates an illusion (virtual machine)

that every process gets its own computing

system.
aOne program may have more than one execution instances running in

parallel. ($ g++ -Wall runParallel $ ./a.out & ./a.out, Ctrl+c, $ fg@,

Ctrl+c)
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✫

✩

✪

OS and Process

• A process is the logical unit of computation

that the OS manages.

• A process may have several threads of

computation, but for time being we assume

that there is only one.

• OS allocates resource e.g. CPU time,

memory space, IO facility to every process.
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✫

✩

✪

OS and Process

• OS creates a process.

• It loads the executable code and static data

from a file present in a persistent memory

e.g. disk.

• It creates other memory regions e.g.

execution stack, heap etc. for running the

code.
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✫

✩

✪

OS and Process

• It schedules a process ready for execution,

suspends it if necessary, and finally

terminates it (normal or abnormal).

• It receives request from a process for service

and provides it if valid. The service may be

an IO request, or a request for more memory

etc.
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✫

✩

✪

OS and Process

• The OS protects one process from the

interference of another process.

• It also insulates the overall system from the

malfunction of a running process.

• At the same time it also facilitates

communication between cooperating

processes.
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✫

✩

✪

Process States

• In terms of internal computation a process

may have large number of states depending

on the content of the CPU, memory, open

files, messages etc.

• But the OS is not concerned about these

internal states.
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✫

✩

✪

Process States

• To the OS a process might have just been

created, it is ready for execution but not

running, it is running i.e. using the CPU,

suspended due to some reason i.e. not ready

for execution, or it has just finished.

• There may be finer divisions as well.

• Following is a simplified state-transition

diagram of a process.
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✫

✩

✪

Process States and Transitions
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dispatch
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I/O or event wait

5 state model

running terminated

blocked

readynew

I/O or event complete
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✫

✩

✪

Process States

The state transition of Unix system V is more
complicated and is as follows.
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✫

✩

✪

States and Transitions in Unix (Maurice J Bach)

Sleep,

System Call,
Interrupt Return from

sys call, interrupt

scheduled again

blocked

exit

wakeup

preempt

same state

enough memory

swap out swap out

wakeup

swap in

in swap device

User Mode
Running:

Zombi

Sleep in
Memory

Swapped

Running:
Kernel Mode

Ready in
Memory

Ready, 
Swapped

Preempted

Created
fork()

Design of the Unix Operating System  (page 148)

not enough memory,
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✫

✩

✪

Process Creation

• Our discussion is biased by Unix/Linux like

OS.

• We already know that a Linux kernel starts

the first process inita.

• Every process has an identification number

called process ID (PID).

• The PID of init is 1b.
aReplaced by Upstart or systemd:

https://www.tecmint.com/systemd-replaces-init-in-linux/
bGive the command: ps -A | less
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✫

✩

✪

Process Creation

• Any other process is a descendant of init.

• A user process can create a child process by

sending a request (system call) to the OS. In

Linux the call is fork().

• On receiving a fork() request the OS

creates a new process (child) in the image of

the requesting (parent) process.
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✫

✩

✪

Process Creation

• The fork() call returns values to the parent

as well as to the child process.

• It returns the PID of the child process to the

parent. And returns 0 to the child process.

Lect 2 Goutam Biswas



Operating System IIIT Kalyani 15✬

✫

✩

✪

Process Creation in Windows

A new process is created in Windows by the

CreateProcess function.

BOOL CreateProcess (

LPCTSTR lpApplicationName,

LPTSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpsaProcess,

LPSECURITY_ATTRIBUTES lpsaThread,

BOOL bInheritHandles,

DWORD dwCreationFlags,
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✫

✩

✪

LPVOID lpEnvironment,

LPCTSTR lpCurDir,

LPSTARTUPINFO lpStartupInfo,

LPPROCESS_INFORMATION lpProcInfo)

http://www.informit.com/articles/
article.aspx?p=362660&seqNum=2
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✫

✩

✪

Process Creation

Following program shows the creation of a child

process in Linux (Unix).

#include <iostream>

using namespace std;

#include <cstdio>

#include <cstdlib>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>
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✫

✩

✪

int main() { // createProc1.c++

int chPID, status ;

chPID = fork();

if(chPID == -1){

cerr << "fork() failed\n";

exit(1);

}

if(chPID > 0) { // parent

sleep(1);
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✫

✩

✪

cout << "In parent: parent pid = "

<< getpid() << "\n"

<< "\tIn parent: child pid = "

<< chPID << "\n" ;

waitpid(chPID, &status, 0) ;

}

else { // child

cout << "In child: child pid = "

<< getpid() << "\n"

<< "\tIn child: parent pid = "

<< getppid() << "\n" ;
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✫

✩

✪

} return 0 ;

}
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✫

✩

✪

Process Creation

• We mentioned earlier that fork() is a

system call.

• Any system call uses a machine instruction

(x86 64) that causes a software interrupt.

• In the previous program there are three

other system calls, waitpid(), getpid()

and getppid().
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✫

✩

✪

waitpid()

• This system call suspends the execution of

the calling process (main() in this case)

until the child, whose pid is specified,

changes state e.g. terminates.

• The exit status of the child is stored in the

variable pointed by &status.

• See the manual for more detail.
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✫

✩

✪

Inline Assembly Language in C++ Code

• Assembly language code can be embedded in

a C or C++ program.

• The keyword asm is used to embed a

segment of assembly language code.

• The keyword volatile is used to disable

optimization by the GCC compiler on the

specified assembly language code.
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✫

✩

✪

Inline Assembly Language in C++ Code

• Extended asm allows to pass input

parameters to CPU registers from program

variables; and output contents of CPU

registers to variables.

• See internet for more informationa.
ahttps://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/Using-Assembly-Language-with-C.html

https://www.cs.virginia.edu/ clc5q/gcc-inline-asm.pdf
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✫

✩

✪

Process Creation

• In the following code we simply replace

fork() by the inline assembly code of

x86 64 architecture.

• 57 is the code for fork(), loaded in the CPU

register raxa. There is no parameter.

• The machine instruction syscall generates

the software interrupt.
aABI specifies that.

https://www.cs.utexas.edu/ bismith/test/syscalls/syscalls.html

http://syscalls.kernelgrok.com/
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✫

✩

✪

Process Creation

........
int main() { // createProc2.c++

int chPID, status ;

__asm__ __volatile__(
"movq $57,%%rax \n\t"
"syscall \n\t"
:"=a" (chPID)

);
.............
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✫

✩

✪

Note

:"=a" (chPID) instructs to transfer the

content of eax to the program variable chPID.

The assembly language code is -

movq $57,%rax

syscall

movl %eax, -28(%rbp) # chPID is Mem[rbp-28]
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✫

✩

✪

Process Creation using Python

Let us see how one creates a child process in
Python.
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✫

✩

✪

Process Creation in Python

#!/usr/bin/python

# createProc3.py creates two process,

# prints pid and ppid

import os

import time

def main():

try:

chPID = os.fork()

if chPID > 0:
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✫

✩

✪

time.sleep(1)

print ’In parent: parent pid =’, \

os.getpid(),’\n’

print ’In parent: child pid =’, \

chPID, ’\n’

os.waitpid(chPID,0)

else:

print ’\tIn child: child pid =’, \

os.getpid(),’\n’

print ’\tIn child: parent pid =’, \

os.getppid(),’\n’

Lect 2 Goutam Biswas



Operating System IIIT Kalyani 31✬

✫

✩

✪

except:

OSError

print ’fork() fails’

main()
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✫

✩

✪

Time Sharing

• Once the child is created, both the parent

and the child are scheduled to run in

time-shared mode.

• Following code demonstrates the time

sharing.
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✫

✩

✪

Time Sharing

#!/usr/bin/python

# createProc4.py scheduling of parent and child, time

import os

def main():

try:

chPID = os.fork()

if chPID == 0:

msg = ’child running\n’

n = 5
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✫

✩

✪

else:

msg = ’parent running’

n = 6

while n > 0:

print msg

count = n*10000000

while count > 0: count = count - 1

n = n - 1

except:

OSError

print ’fork() fails’

Lect 2 Goutam Biswas



Operating System IIIT Kalyani 35✬

✫

✩

✪

main()
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✫

✩

✪

Process Termination

• The normal termination of a process is

through the system call exit().

• After the termination of a process (end of

exit()), OS reclaims all the resources e.g.

memory, internal data structure of OS, etc.

used by the process.
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✫

✩

✪

Process Termination

• If the parent process terminates before the

child, the inita process becomes the new

parent of the child on Linux.

• Following code demonstrates this.

aIt may have a different name e.g. systemd or upstart that replaces init.

The reason is explained in en.wikipedia.org/wiki/Upstart
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✫

✩

✪

init or systemd is New Parent

/*

createProc5a.c++ death of parent

*/

#include <iostream>

using namespace std;

#include <cstdio>

#include <cstdlib>

#include <unistd.h>

#include <sys/types.h>
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✫

✩

✪

#include <sys/wait.h>

int main() { // createProc5a.c++

int chPID;

chPID = fork();

if(chPID == -1){

cerr << "fork() failed\n";

return 0;

}

if(chPID > 0) { // parent
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✫

✩

✪

sleep(1);

cout << "In parent: parent pid = "

<< getpid() << "\n"

<< "\tIn parent: child pid = "

<< chPID << "\n" ;

}

else { // child

cout << "In child: child pid = "

<< getpid() << "\n"

<< "\tIn child: parent pid = "

<< getppid() << "\n" ;
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✫

✩

✪

sleep(5);

cout << "Again in child: child pid = "

<< getpid() << "\n"

<< "\tIn child: parent pid = "

<< getppid() << "\n" ;

}

return 0 ;

}
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✫

✩

✪

Memory Image of a Process

• The logical memory space of a process is

divided in several parts.

• The OS kernel is mapped to the higher

address and is protected.
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✫

✩

✪

Logical Memory of a Process

Low Memory

High Memory

Heap (malloc)
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(Uninit Data)

Data (Init Data)
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+ RO data
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Program Break
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Hole
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✫

✩

✪

Memory Image of a Process

• The text segment contains the executable

code. This portion is read-only to protect it

from unintentional modification.

• It is also shareable so that more than one

process can share the same code by mapping

in their own logical spaces.

• Often the read-only data are also stored in

this segment.
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✫

✩

✪

Memory Image of a Process

• There is data area that contains initialized

global and static data. This segment has

read and write permissions.

• This area is initialized from the executable

file when the program is loaded in the main

memory.
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✫

✩

✪

Memory Image of a Process

• The uninitialized global and static data

occupy another memory region bssa. The

region is kept it separate from the initialized

data as the executable file does not store any

information other than the address and size

of an uninitialized object.

• The region is initialized to all zero during

program loading.
aBlock started by symbol.
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✫

✩

✪

Memory Image of a Process

• Remaining portion of the user space is

divided mainly into stack and heap areas.

• The stack grows normally from higher

address to lower address. But heap grows in

the reverse direction. The top end of the

heap is called program break.
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✫

✩

✪

Memory Image of a Process

• The stack holds data related to activation or

call of functions e.g. local variables,

parameters to functions, return values and

return addresses.

• The heap grows due to run-time request of

memory allocation.

• Shared libraries are mapped to some part of

the logical memory space.
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✫

✩

✪

Memory Image of a Process

• The code and data of Linux kernel is

mapped to the highest address of the logical

memory space of a process.

• But this area is protected from direct user

access.

• The logical memory address space of x86 64

architecture is huge. It is the lower order

48-bits of the 64-bit address i.e. 256 TB.
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✫

✩

✪

Different Memory Areas

Following program shows logical addresses of
different objects in the user space.
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✫

✩

✪

Different Memory Regions

#include <iostream>

using namespace std;

int a, b =10;

int main() { // memoryRegions1.c++

int (* mainPtr)() = main ;

char *ro = (char *)"IIIT Kalyani", *p, c;

static char s=10;

p = new char;
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✫

✩

✪

p = new char;

cout <<"main() starts: " <<(void *)mainPtr << endl;

cout <<"Read-only data: " <<(void *)ro << endl;

cout <<"Init global data: " <<(void *)&b << endl;

cout <<"Uninit global data: " <<(void *)&a << endl;

cout <<"Dynamic data: " <<(void *)p << endl;

cout <<"Local data: " <<(void *)&c << endl;

cout <<"Local static data: " <<(void *)&s << endl;

return 0 ;

}
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✫

✩

✪

Different Memory Regions

$ ./a.out

main() starts: 0x400876

Read-only data: 0x400ae4

Init global data: 0x601068

Uninit global data: 0x601194

Dynamic data: 0xdb0c40

Local data: 0x7fffe283b7ff

Local static data: 0x60106c
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✫

✩

✪

Logical Memory to Physical Memory

• The logical memory space of a process is

divided into different segments and/or pages.

• The main memory of the system is also

divided into memory frames.

• Logical pages are mapped to different (need

not be contiguous) physical memory frames

called page frames.
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✫

✩

✪

Logical Memory to Physical Memory

• The mapping of logical memory space to

actual memory is maintained by the OS

using the memory management hardware

and memory resident table(s) e.g. segment

table, page table.

• Access permission to a portion of the logical

space can be restricted e.g. read-only, read

and execute, through the mapping table.
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✫

✩

✪

Logical Memory of Parent and a Child

• The memory image of the child process

created by fork() is identical to the parent.

• But often the child process gives an exec()

call to upload another executable file into its

logical address spacea.

• So it is unnecessary to immediately create a

separate copy the parent’s memory-image for

the child process.
aA command interpreter e.g. bash is doing that all the time.

Lect 2 Goutam Biswas



Operating System IIIT Kalyani 57✬

✫

✩

✪

Logical Memory of Parent and Child

• Initially identical pages of both parent and

child are mapped (by the page table) to

same page frames in the memory.

• But all page frames are marked as read-only.

A reference counter per frame is maintained

to keep track of the number of processes

sharing the frame.
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✫

✩

✪

Logical Memory of Parent and Child

• There is no issue as long as the shared pages

are only read.

• But if there is a write access to a writable

page frame of reference count > 1 by any

process, it is copied to a new frame.
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✫

✩

✪

Logical Memory of Parent and Child

• The page table of the writing-process is

modified and the reference count of both the

frames are updated.

• This technique known as copy-on-write

(CoW) is used to speed-up process creation.
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✫

✩

✪

Logical Memory of Parent and Child

Given the above scenario, explain the output of
the following program.
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✫

✩

✪

Explain the Output

// procMem1.c++ memory of child process

#include <iostream>

using namespace std;

#include <unistd.h>

#include <cstdio>

#include <cstdlib>

#include <sys/types.h>

int main() { // procMem1.c++

Lect 2 Goutam Biswas



Operating System IIIT Kalyani 62✬

✫

✩

✪

int chPID, n ;

chPID = fork();

if(chPID == -1) { // fork fails

cerr << "fork() fails\n";

return 0;

}

if(chPID > 0){ // parent

n=10;

cout << "In parent &n:" << (void *)&n

<< ", n: " << n << endl;
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✫

✩

✪

}

else { // child

n=15;

cout << "In child &n:" << (void *)&n

<< ", n: " << n << endl;

}

return 0 ;

}
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✫

✩

✪

Explain the Output

$ a.out

In parent &n:0x7ffe4936c0f0, n: 10

In child &n:0x7ffe4936c0f0, n: 15
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✫

✩

✪

Shell Commands

• In a command interpreter such as bash there

are certain commands that are internal e.g.

cd, pwd etc. that are built in as system calls

in the code of the interpreter.

• But there are other commands e.g. ls,

file, a.out etc. that are independent

executable files.
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✫

✩

✪

Internal Command

• The command interpreter executes the

internal commands directly. As an example,

to change the directory (cd) it uses the

appropriate system call or invokes the

wrapper function chdir() with the new

path as a parameter.

• Following is an example.
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✫

✩

✪

Changing Current Directory

// changeDir.c++ changes the current working directory

// by calling chdir()

// $ ./a.out <path>

#include <iostream>

using namespace std;

#include <cstdlib>

#include <unistd.h>

int main(int ac, char *av[]){

char *cwdP; // changeDir.c++
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✫

✩

✪

if(ac < 2){

cout << "No path specified\n";

return 0;

}

cwdP=get_current_dir_name();

cout << cwdP << endl;

chdir(av[1]);

cwdP=get_current_dir_name();

cout << cwdP << endl;

return 0;

}
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✫

✩

✪

Changing Current Directory

$ a.out ..

/home/goutam/IIITKalyani/operatingSystem/lect/l2Pro

/home/goutam/IIITKalyani/operatingSystem/lect
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✫

✩

✪

Command as an Executable File

• To run an executable file e.g. ls or a.out, it

is necessary to load the corresponding image

in the memory. But the command

interpreter cannot destroy its own image by

loading another executable in its space.

• So, it creates a child process.
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✫

✩

✪

Replacing Process Image

• The part of the code executed in the child

process gives an exec() calla which replaces

the parent’s image in the child process with

the image of the executable file specified in

the command.

• The path of the executable file and other

information are passed as parameters to the

exec() call.
aAlready present in the interpreter program.
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✫

✩

✪

Replacing Process Image

• Following is a sample program that uses

execve() system call to load the image of a

program computing factorial of a positive

integer.

• The factorial program takes its input

through the command line.
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✫

✩

✪

Factorial Program

// factorial.c++ computes factorial, takes

// command line argument

// $ g++ -Wall factorial.c++ -o factorial

#include <iostream>

using namespace std;

#include <cstdlib>

int main(int count, char *vects[]) {

int n, i, fact = 1 ;
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✫

✩

✪

if(count < 2) {

cerr << "Missing 2nd argument\n" ;

return 0 ;

}

n = atoi(vects[1]) ;

for(i=1; i<=n; ++i) fact *=i ;

cout << n << "! = " << fact << endl;

return 0 ;

}
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✫

✩

✪

Execute Factorial

$ ./factorial

Insufficient command line argument

$ ./factorial 0

0! = 1

$ ./factorial 5

5! = 120
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✫

✩

✪

execve() ./factorial

/************************************

* This program uses execve system *

* call. Execute - *

* $ ./a.out ./factorial 6 *

* **********************************/

#include <iostream>

using namespace std;

#include <sys/types.h>

#include <unistd.h>
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✫

✩

✪

#include <sys/wait.h>

int main(int argc, char *argv[], char *envp[]) {

int chPID, status ;

char **agv; // execve1.c++

if(argc < 3){

cerr << "Less number of arguments\n";

return 0;

}

agv=argv+1;
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✫

✩

✪

chPID = fork();

if(chPID == -1) {

cerr << "fork() error\n";

return 0;

}

if(chPID > 0) { // Parent

cout << "Inside Parent\n" ;

waitpid(chPID, &status, 0) ;

cout << "child " << chPID << " terminates\n";

}

else { // Child
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✫

✩

✪

int err;

cout << "Inside Child\n" ;

err = execve(agv[0], agv, envp) ;

// err = execvp(agv[0], agv) ;

if(err == -1){

cerr << "exec fails\n" ;

return 0;

}

}

return 0 ;

}
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✫

✩

✪

execve() ./factorial

$ ./a.out factorial 5

Inside Parent

Inside Child

5! = 120

child 7582 terminates
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✫

✩

✪

System Call for execve()

• The syscall code for execve() is 59.

• The ABI specification is as follows:

– rax ← syscall code,

– rdi ← 1st parameter,

– rsi ← 2nd parameter,

– rdx ← 3rd parameter.

– eax holds the return value.
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✫

✩

✪

System Call for execve()

In the inline assembly language code,

• rdi is D,

• rsi is S,

• rdx is d,

• eax is a.
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✫

✩

✪

execve() ./factorial

.......

int main(int argc, char *argv[], char *envp[]) {

int chPID, status ;

char **agv = argv+1;

// execve2.c++

.......
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✫

✩

✪

execve() ./factorial

// execve(agv[0], agv, envp) ;

__asm__ __volatile__(

"movq $59, %%rax\n\t"

"syscall\n\t"

:"=a" (err)

:"D" (agv[0]), "S" (agv), "d" (envp)

) ;

......
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✫

✩

✪

Try with execv()

$ a.out factorial 5

Inside Parent

Inside Child

5! = 120

child 9737 terminates
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✫

✩

✪

Try with execv()

• Try with execv() to write a similar code.

• factorial1 takes input from stdin.

• See the manual for the meaning of ‘v’, ‘p’, ‘e’

etc.

• A Python version of the execv() call is as

follows.
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✫

✩

✪

os.execv() ./fact.py

#!/usr/bin/python

# execv3.py loads a process image in the child

import os

import sys

if len(sys.argv)==1:

print ’Less arguments’

sys.exit(0)

def main():

path = sys.argv[1]
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✫

✩

✪

arg2 = sys.argv[1:]

try:

chPID = os.fork()

if chPID > 0:

print ’In parent’

os.waitpid(chPID,0)

print ’Child’, chPID, ’ends’

else:

print ’In child’

try: os.execv(path, arg2)

except: OSError
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✫

✩

✪

except: OSError

main()
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✫

✩

✪

os.execv() ./fact.py

$ execv3.py fact.py 5

In parent

In child

5 ! = 120

Child 12087 ends
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✫

✩

✪

Child Process and Open Files

• An IO device is often treated as a special file

under /dev.

• Three device files, stdin, stdout and stderr,

are normally open (inherited from the

parent) in a process.

• An open file is identified by its file descriptor

in a process. It is a non-negative integer, an

index to file-descriptor table.
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✫

✩

✪

Child Process and Open Files

• The file descriptors for the standard input

(stdin) is 0 (STDIN FILENO defined in

unistd.h), for the standard output (stdout)

it is 1 (STDOUT FILENO) and for the standard

error (stderr) it is 2 (STDERR FILENO).

• A child process inherits all the open file

descriptors from the parent after the fork().
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✫

✩

✪

Child Process and Open Files

// fileDes1.c++ printing file descriptor of

// parent and child

#include <iostream>

using namespace std;

#include <cstdio>

#include <unistd.h>

#include <sys/wait.h>

#include <time.h>
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✫

✩

✪

int main() { // fileDes1.c++

int chPID, status ;

chPID = fork();

if(chPID < 0){

cerr << "fork() error\n";

return 0;

} //

if(chPID != 0) { // parent

cout << "In parent:\n"

<< fileno(stdin) << ": stdin\n"

<< fileno(stdout) << ": stdout\n"
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✫

✩

✪

<< fileno(stderr) << ": stderr\n";

waitpid(chPID, &status, 0) ;

}

else { // child

cout << "In child:\n"

<< fileno(stdin) << ": stdin\n"

<< fileno(stdout) << ": stdout\n"

<< fileno(stderr) << ": stderr\n";

}

return 0 ;

}
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✫

✩

✪

Output: File Descriptors

$ ./a.out

In parent:

0: stdin

1: stdout

2: stderr

In child:

0: stdin

1: stdout

2: stderr
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✫

✩

✪

open() and close()

• Given a file pathname the system call

open() makes an entry in the tablea of open

files and returns the file descriptor, a

reference or index of the entry.

• The descriptor has the smallest non-negative

integer that does not correspond to any

other open file.

• On error the call returns −1.
aThe entry keeps track of file offset and a few other information.
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✫

✩

✪

open() and close()

• Given a file descriptor the system call

close() dissociates the descriptor from its

file.

• This descriptor is available for new file to

open.

• On success it returns 0 and on error it

returns −1.
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✫

✩

✪

Redirecting Output

• Following code shows how one can close the

file descriptor 1 of the stdout, and open a

file with 1 as its descriptor.

• Functions that are suppose to write on

stdout will subsequently write in the open

file, a redirection of the output.

• Similarly input can also be redirected from a

file.
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✫

✩

✪

Redirecting Output

// fileDes2.c++ close stdout,open new file for output

// $ ./a.out <output file name of child>

#include <iostream>

using namespace std;

#include <cstdio>

#include <cstdlib>

#include <unistd.h>

#include <sys/wait.h>

#include <sys/types.h>
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✫

✩

✪

#include <sys/stat.h>

#include <fcntl.h>

int main(int ac, char **av ) { // fileDes2.c++

int chPID, status, fd ;

if(ac < 2){

cerr << "Less arguments\n";

return 0;

}

chPID = fork();

if(chPID == -1){
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✫

✩

✪

perror("fork() error\n");

exit(1);

} //

if(chPID != 0) { // parent

cout << "In parent\n";

waitpid(chPID, &status, 0) ;

}

else { // child

if(close(fileno(stdout)) == -1){

cerr << "File close error" << endl;

return 0;
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✫

✩

✪

}

fd = open(av[1], O_WRONLY | O_CREAT, 0666);

if(fd == -1){

cerr << "File open error" << endl;

return 0;

}

cout << "In child" << endl;

close(fd);

}

return 0 ;

}
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✫

✩

✪

Redirecting Output in Python

#!/usr/bin/python

# fileDes3.py redirecting output in child

import os, sys

def main():

fileNm = raw_input(’Enter the output file name:

try:

chPID = os.fork()

if chPID > 0:

print ’In parent’
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✫

✩

✪

os.waitpid(chPID,0)

print ’Child’, chPID, ’ends’

else:

print ’In child’

try:

os.close(sys.stdout.fileno())

except:

OSError

print "os.close() fails"

try:

os.open(fileNm, os.O_CREAT+os.O_WRONLY
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✫

✩

✪

except:

OSError

print "os.open() fails"

print "Again in child"

except:

OSError

print "fork() fails"

main()
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✫

✩

✪

OS Data Structure for Process

• We have already mentioned that it is

necessary to save the state of a process when

it is preempted or suspended.

• OS maintains a data structure called process

control block (PCB) for each process.

• It maintains a list of PCBs for all processes

present in a system.
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✫

✩

✪

OS Data Structure for Process

• The PCB is created during process creation

and is removed on termination.

• The image of a child process is often

overwritten using an exec() call.

• Some of the fields of the child’s PCB e.g.

PID, parents PID, open files etc. are

unchanged. But some other fields e.g.

memory mapping etc. are modified after the

exec() call.
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✫

✩

✪

OS Data Structure for Process

• There are large number of fields in a PCB.

In Linux a PCB is called a process

descriptor. It is of type task struct.

• The size of task struct of Linux is more

than a several KB which contains lots of

information.

• Some of the essential and basic information

saved in a PCB are as follows.
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✫

✩

✪

Some Information Saved in PCB

• Process identification - PID.

• State of the process - ready, running,

suspended, zombie etc.

• CPU-FPU state i.e. the content of different

CPU registers, program counter (PC),

program status word (PSW) etc.a.

aOften this is not directly kept in the PCB, but on the system stack. A

pointer to that may be saved in the PCB.
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✫

✩

✪

Some Information Saved in PCB

• Memory management information e.g.

content of the page-table base register.

Information about segmentation etc.

• Information about the open files i.e. IO

status.

• Pointers to parent, child and sibling.

• Scheduling priority information.
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✫

✩

✪

Some Information Saved in PCB

/usr/src/kernels/3.10.0-229.4.2.el7.x86_64/

include/linux
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✫

✩

✪

The procfs File System and /proc

• The procfs is a special file system of Linux.

It is available under the directory /proc.

• It provides information about the system

and also about different process.

• A listing of the directory provides the

following information.
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✫

✩

✪

ls /proc

1 2546 3125 ... devices pagetypeinfo

10 2564 32 ... diskstats partitions

...................

23 3039 4175 ... cpuinfo mtrr
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✫

✩

✪

The procfs File System and /proc

• The numbers are subdirectories related to

different processes. The subdirectory name

is the PID.

• The directory cpuinfo provides information

about CPU, the directory meminfo provides

information about the memory subsystem,

the directory fs provides information about

the file system etc.
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✫

✩

✪

Shared Code

We use /proc/self/pagemap to show that the

code of a parent process and its child process

share the same main memory page frame.

/*

* shareCode.c++

* $ sudo ./a.out

*/

#include <iostream>

using namespace std;
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✫

✩

✪

#include <sys/types.h>

#include <unistd.h>

#include <stdint.h>

#include <sys/stat.h>

#include <fcntl.h>

#define WORDSZ 64

#define PTentSZ 8

// shareCode.c++ $ sudo ./a.out

void printBits(uint64_t wrd){

// prints the bits of 64 word
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✫

✩

✪

int bit[WORDSZ]={0};

for(int i=0; i<WORDSZ; ++i) {

bit[i] = wrd%2;

wrd /= 2;

}

for(int i=WORDSZ-1; i>=0; --i) {

cout << bit[i] ;

if(i%4 == 0) cout << " " ;

}

cout << endl;
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✫

✩

✪

}

int main(){

int fd, pid, pageSz = sysconf(_SC_PAGESIZE);

int mainPn = (long int)main/pageSz;

uint64_t data=0;

cout << "Address main(): " << hex

<< (unsigned long int)main << " Page no.:

<< hex << mainPn << endl;

pid = fork();
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✫

✩

✪

if(pid == -1){

cerr << "Fork() error\n";

return 0;

}

if(pid > 0){ // parent

cout << "Parent pid: " << getpid() << endl;

fd = open("/proc/self/pagemap", O_RDONLY);

if(fd == -1) {

cerr << "File open error\n";

return 0;

}
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✫

✩

✪

}

else { // child

cout << "Child: " << getpid() << endl;

fd = open("/proc/self/pagemap", O_RDONLY);

if(fd == -1) {

cerr << "File open error\n";

return 0;

}

}

pread(fd, &data, sizeof(uint64_t), PTentSZ*mainPn);

if(data != 0) {
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✫

✩

✪

cout << " Table entry: " << hex << data << endl;

printBits(data);

}

close(fd);

return 0;

}
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✫

✩

✪

Output

$ g++ -Wall shareCode.c++

$ sudo ./a.out

Address main(): 400cdf Page no.: 400

Parent pid: 3429

Table entry: a0800000000845bd

1010 0000 1000 0000 0000 0000 0000 0000

0000 0000 0000 1000 0100 0101 1011 1101

Child: 342a

Table entry: a1800000000845bd
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✫

✩

✪

1010 0001 1000 0000 0000 0000 0000 0000

0000 0000 0000 1000 0100 0101 1011 1101

• Bit-63: page present in main memory.

• Bit-62: page swapped out.

• Bit-61: file-page or shared.

• Bit-56: page exclusively mapped.

• Bit-55: pte is soft-dirty.

• Bit-0-54: page frame no. (if present), swap

info (if swapped).
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✫

✩

✪

Cannot Show CoW

I was expecting to show copy on write (CoW).
But it is not working as I expected. (cow.c++).
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✫

✩

✪

Processor: ls /proc/cpuinfo

processor : 0

........................

model name : Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz

cpu MHz : 1998.000

cache size : 4096 KB

cpu cores : 2

........................

processor : 1

........................
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✫

✩

✪

model name : Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz

........................

cpu MHz : 1998.000

cache size : 4096 KB

cpu cores : 2
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✫

✩

✪

Memory: ls /proc/meminfo

MemTotal: 4039016 kB

MemFree: 670064 kB

Buffers: 247056 kB

Cached: 1445992 kB

SwapCached: 0 kB

Active: 1898144 kB

Inactive: 1210120 kB

Active(anon): 1562936 kB

Inactive(anon): 380496 kB
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✫

✩

✪

Active(file): 335208 kB

Inactive(file): 829624 kB

Mlocked: 40 kB

SwapTotal: 4882428 kB

SwapFree: 4882428 kB

Dirty: 172 kB

Shmem: 528224 kB

............................

DirectMap4k: 116288 kB

DirectMap2M: 4067328 kB
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✫

✩

✪

Run the Following Program

#include <iostream>

using namespace std;

#include <sys/types.h>

#include <unistd.h>

int main(){ // seeProcfs1.c++

int pid = getpid();

cout << pid << " is PID\n";
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✫

✩

✪

while(1);

return 0;

}

$ ./a.out

9746 is PID

The code is in a while-loop. We look into the
subdirectory /proc/9746.
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✫

✩

✪

$ ls /proc/9746/

attr cpuset limits

autogroup cwd loginuid

auxv environ maps

cgroup exe mem

clear_refs fd mountinfo

cmdline fdinfo mounts

comm io mountstats

coredump_filter latency net

...................................
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✫

✩

✪

ns sched syscall

numa_maps schedstat task

oom_adj sessionid wchan

oom_score smaps

oom_score_adj stack

pagemap stat

personality statm

root status
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✫

✩

✪

Some Contents of /proc/9746/

$ cat /proc/9746/cmdline

./a.out

$ ls -l /proc/9746/fd/

total 0

lrwx------ 1 ... 64 Jul 17 09:56 0 -> /dev/pts/4

lrwx------ 1 ... 64 Jul 17 09:56 1 -> /dev/pts/4

lrwx------ 1 ... 64 Jul 17 09:56 2 -> /dev/pts/4

$ cat /proc/9746/limits

Limit Soft Limit Units
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✫

✩

✪

Max cpu time unlimited seconds

Max file size unlimited bytes

Max data size unlimited bytes

Max stack size 8388608 bytes

Max core file size 0 bytes

Max resident set unlimited bytes

Max processes 31417 processes

Max open files 1024 files

Max locked memory 65536 bytes

Max address space unlimited bytes

Max file locks unlimited locks
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✫

✩

✪

Max pending signals 31417 signals

Max msgqueue size 819200 bytes

Max nice priority 0

Max realtime priority 0

Max realtime timeout unlimited

$ /proc/9746/maps

00400000-00401000 r-xp 00000000 08:05 1577007 ./a.out

00600000-00601000 r--p 00000000 08:05 1577007 ./a.out

00601000-00602000 rw-p 00001000 08:05 1577007 ./a.out

00606000-00638000 rw-p 00000000 00:00 0 [heap]

7f3424574000-7f342466f000 r-xp 00000000 08:02 1452342
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✫

✩

✪

/lib/x86_64-linux-gnu/libm-2.15.

7f3424a24000-7f3424c23000 ---p 001b4000 08:02 1452333

/lib/x86_64-linux-gnu/libc-2.15.

7f3425158000-7f342517a000 r-xp 00000000 08:02 1452339

/lib/x86_64-linux-gnu/ld-2.15.

7fffbb13b000-7fffbb15c000 rw-p 00000000 00:00 [stack]

7fffbb1ff000-7fffbb200000 r-xp 00000000 00:00 0

[vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00

[vsyscall]
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