
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 9 Marks: 10

Assignment Out: 20th March, 2020

In this experiment we shall see how a thread adds its thread ID in a global
queue and suspends itself. Another thread gets a thread ID of a suspended
thread from the queue and restarts it. Both add and delete queue operations
are performed atomically as more than one threads update the queue.

Organize the program in the following way.

1. Implement a queue using a linked list.

10

36

15

queue s

front

rear

21

In Heap

global

// queue.h Queue of thread ID

#ifndef QUEUE_H

#define QUEUE_H

#define ERROR (-1)

typedef struct node {

int data;

struct node *next;

} node_t;

class queue{

node_t *front, *rear;

public:

queue();

bool isEmptyQ();

void addQ(int n);

int deleteQ(); // top + delete

// returns ERROR when the queue is empty

};

#endif

2. Implement
void tasLockInit(int &lock),
void tasLock(int *lockp), and
void tasUnlock(int &lock)

using inline assembly code. Use the bit-test-and-set (btsl) for tasLock().
The formal parameter lockp is a pointer to a global variable used as a
lock. Similarly, lock is a reference parameter. A global lock-variable is
passed as an actual parameter.

1

3. The main() thread does the following:

(a) Initializes the lock(s).

(b) Reads a small positive integer n.

(c) Creates space for n stacks used by n child threads and keep their
base addresses in an array char *sp[n].

(d) It creates n number of child threads using clone().

(e) Finally the main() thread deletes (atomically using tasLock() and
tasUnlock()) nodes from the queue of suspended thread IDs. For
each thread ID it sends the signal SIGCONT to restart the thread using
the system call kill().

(f) The main() thread keeps track of the number of deleted threads. It
terminates when the number is n.

4. Each child thread does the following:

(a) Extracts the thread ID (syscall(SYS gettid)).

(b) Prints a message.

(c) Adds the thread ID, a positive integer, in the queue atomically using
tasLock() and tasUnlock(). The lock is already initialized in the
main() thread.

(d) It suspends itself using the system call kill()with the signal SIGSTOP.

(e) When it comes out of suspended state (after receiving the signal from
the main() thread) , it prints a second message and terminates.

5. Note:

(a) You may introduce a delay between thread creation, suspension and
restarting.

(b) It may be necessary to use a another lock for printing messages.

Input/Output:

$./a.out

Enter a +ve integer: 1

Thread: 4170 going to sleep

Thread: 4170 going to terminate

$./a.out

Enter a +ve integer: 2

Thread: 4174 going to sleep

Thread: 4175 going to sleep

Thread: 4175 going to terminate

Thread: 4174 going to terminate

$./a.out

Enter a +ve integer: 20

Thread: 4177 going to sleep

Thread: 4178 going to sleep

Thread: 4179 going to sleep

Thread: 4185 going to sleep

Thread: 4183 going to sleep

Thread: 4184 going to sleep

Thread: 4188 going to sleep

Thread: 4193 going to sleep

Thread: 4180 going to sleep

Thread: 4186 going to sleep

Thread: 4187 going to sleep

Thread: 4195 going to sleep

Thread: 4196 going to sleep

Thread: 4182 going to sleep

Thread: 4194 going to sleep

2

Thread: 4190 going to sleep

Thread: 4189 going to sleep

Thread: 4192 going to sleep

Thread: 4181 going to sleep

Thread: 4191 going to sleep

Thread: 4177 going to terminate

Thread: 4179 going to terminate

Thread: 4178 going to terminate

Thread: 4185 going to terminate

Thread: 4183 going to terminate

Thread: 4195 going to terminate

Thread: 4193 going to terminate

Thread: 4188 going to terminate

Thread: 4190 going to terminate

Thread: 4186 going to terminate

Thread: 4181 going to terminate

Thread: 4191 going to terminate

Thread: 4184 going to terminate

Thread: 4189 going to terminate

Thread: 4196 going to terminate

Thread: 4187 going to terminate

Thread: 4180 going to terminate

Thread: 4194 going to terminate

Thread: 4182 going to terminate

Thread: 4192 going to terminate

$

3

