Computer Science and Engineering & Information

Technology (2" Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 7 Marks: 10
Assignment Out: 6" March, 2020

1. Write a C++ program to show the race condition on shared data in the
following way:

(a)
(b)
()

—
—

The program reads a positive integer n, the the dimension of two
vectors.

It creates two 1-D array of size n and of type double in the heap (not
on stack).

Declares a global variable dotProd of type double to compute the
dot-product of the vectors.

n—1
dorProd « Z ali] x [d].
i=0

The variable is initialize to zero (0.0).

The program creates three threads using Linux clone () (not pthread).

The thread-1 computes the dot-product of the lower one-third of u
and v i.e. index 0 to n/3, adds it to dotProd. Similarly the thread-2
computes the dot-product of the middle one-third and the thread-
3 computes the dot-product of the remaining portion of the array.
These values are added to dotProd. Each thread uses the same
thread function with different parameters.

) Finally the main thread prints the value of the dot-product.

As three threads are accessing the same location dotProd there is a
possibility of race. Amplify the the possibility of race by introducing
a delay at an appropriate place in the thread function. Run the code
with the delay and without the delay.

Input:

$./a.out

Enter the dimension of the vector: 3
Enter the first vector: 1 2 3

Enter the second vector: 10 20 30
With or without delay (1/0): O

Output:

vector-1: 1 2 3
vector-2: 10 20 30

Dot

product: 140

Input:

$./a.out

Enter the dimension of the vector: 3
Enter the first vector: 1 2 3

Enter the second vector: 10 20 30
With or without delay (1/0): 1

Output:

vector-1: 1 2 3
vector-2: 10 20 30
Dot product: 90

Input:

$./a.out

Enter the dimension of the vector: 3
Enter the first vector: 1 2 3

Enter the second vector: 10 20 30
With or without delay (1/0): 1

Output:

vector-1: 1 2 3
vector-2: 10 20 30
Dot product: 10

. Write a C++ program to compare the time to create a process and a
thread. Use Linux clone() to create a process and also to create a
thread. Both of them may execute the same function e.g. computation of
of factorial. But we are interested only about the creation time, not the
completion time of a thread or a process.

You may use clock time function int clock_gettime(clockid t clk_id,
struct timespec *tp); to get the real-time in micro seconds before and
after an event.

You may also use inline-assembly code similar to the following one to get
the value of the time-stamp counter before and after an event.

asm__ __volatile__(
"cpuid \n\t"
"rdtsc \n\t"
"shl $32, %krdx\n\t"
"orq %%hrdx, %krax\n\t"

:"=a" (start)
)
// the C++ program variable ’start’ is of type ’long long unsigned’.
Run
$ a.out

Enter a +ve integer: 5

Thread creation time stamp count: 164534
Thread creation time: 48.77 microSec

51 = 120

Process creation time stamp count: 424154
Process creation time: 125.158 microSec
51 =120

$ a.out

Enter a +ve integer: 5

Thread creation time stamp count: 201640
Thread creation time: 59.723 microSec

5! =120

Process creation time stamp count: 462434
Process creation time: 142.316 microSec
51 = 120

