
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 7 Marks: 10

Assignment Out: 6th March, 2020

1. Write a C++ program to show the race condition on shared data in the
following way:

(a) The program reads a positive integer n, the the dimension of two
vectors.

(b) It creates two 1-D array of size n and of type double in the heap (not
on stack).

(c) Declares a global variable dotProd of type double to compute the
dot-product of the vectors.

dorProd←

n−1∑

i=0

~u[i]× ~v[i].

The variable is initialize to zero (0.0).

(d) The program creates three threads using Linux clone() (not pthread).

(e) The thread-1 computes the dot-product of the lower one-third of u
and v i.e. index 0 to n/3, adds it to dotProd. Similarly the thread-2
computes the dot-product of the middle one-third and the thread-
3 computes the dot-product of the remaining portion of the array.
These values are added to dotProd. Each thread uses the same

thread function with different parameters.

(f) Finally the main thread prints the value of the dot-product.

(g) As three threads are accessing the same location dotProd there is a
possibility of race. Amplify the the possibility of race by introducing
a delay at an appropriate place in the thread function. Run the code
with the delay and without the delay.

Input:

$./a.out

Enter the dimension of the vector: 3

Enter the first vector: 1 2 3

Enter the second vector: 10 20 30

With or without delay (1/0): 0

Output:

vector-1: 1 2 3

vector-2: 10 20 30

Dot product: 140

Input:

$./a.out

Enter the dimension of the vector: 3

Enter the first vector: 1 2 3

Enter the second vector: 10 20 30

With or without delay (1/0): 1

Output:

1

vector-1: 1 2 3

vector-2: 10 20 30

Dot product: 90

Input:

$./a.out

Enter the dimension of the vector: 3

Enter the first vector: 1 2 3

Enter the second vector: 10 20 30

With or without delay (1/0): 1

Output:

vector-1: 1 2 3

vector-2: 10 20 30

Dot product: 10

2. Write a C++ program to compare the time to create a process and a
thread. Use Linux clone() to create a process and also to create a
thread. Both of them may execute the same function e.g. computation of
of factorial. But we are interested only about the creation time, not the
completion time of a thread or a process.

You may use clock time function int clock gettime(clockid t clk id,

struct timespec *tp); to get the real-time in micro seconds before and
after an event.

You may also use inline-assembly code similar to the following one to get
the value of the time-stamp counter before and after an event.

__asm__ __volatile__(

"cpuid \n\t"

"rdtsc \n\t"

"shl $32, %%rdx\n\t"

"orq %%rdx, %%rax\n\t"

:"=a" (start)

) ;

// the C++ program variable ’start’ is of type ’long long unsigned’.

Run

$ a.out

Enter a +ve integer: 5

Thread creation time stamp count: 164534

Thread creation time: 48.77 microSec

5! = 120

Process creation time stamp count: 424154

Process creation time: 125.158 microSec

5! = 120

$ a.out

Enter a +ve integer: 5

Thread creation time stamp count: 201640

Thread creation time: 59.723 microSec

5! = 120

Process creation time stamp count: 462434

Process creation time: 142.316 microSec

5! = 120

2

