
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 4 Marks: 20

Assignment Out: 7th February, 2020

1. Write a C++ program (disp.c++ ⇒ disp) that will do the following:

(a) The program takes command line arguments. The arguments are
the name/path of another executable (ex) and its command line ar-
guments. As an example $./disp ls -l, where ”ex” is ”ls” and
-l is the command line argument of ls. The executable ”ex” should
write its output in stdout.

(b) The program creates an unnamed pipe with file descriptors fd[0]

and fd[1].

(c) Then the program forks two child processes c1 and c2. The pipe is
shared by both of them.

(d) In the child process c1 the file descriptor for stdout is closed and
fd[1] is copied to that slot. So c1 writes in the pipe using cout. Then
the executable ”ex” is loaded in the process c1 with its arguments.
You may use execvp().

(e) In the child process c2 the file descriptor for stdin is closed and fd[0]

is copied to that slot. So c2 reads from the pipe instead of stdin
using cin. Then /usr/bin/less is loaded in c2 with arguments
"-f" "/dev/stdin" NULL1. You may use execvp().

(f) Your program is expected to display the output of ”ex” using ”less”.

Sample output:

$./disp cat temp

ufkrg;hrg;grgh

rkf;wel;kblklk;ll

52ctpu0u[[6h6[

hrohphhjh[hhk

’ i

temp

io

o p5ooi5u5p u9u [

j0u 05u0vu0yum00666666666666666666

ixhhioot[ggtj

hhgeq89g5jgeqjg

igxjopegpimpg

ixppj j jjj

aaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbb

ccccccccccccccccc

ddddddddddddd

eeeeeeeeeeeee

fffffffffffff

ggggggggggggggggggg

hhhhhhhhhhhh

iiiiiiiiiiiiii

jjjjjjjjjjjjjj

/dev/stdin

1less expects a file name, but /dev/stdin is not a regular file so it is necessary to ‘force’

it by -f. The NULL terminates the argument list for less.

1

2. Write a C++ program that does the following.

(a) Reads two positive integer data blockSize and blockCount. It cre-
ates two buffers buff1 and buff2, each of type char and of size
blockSize bytes. The buffer buff1 is initialized with a’s and the
buffer buff2 is initialized with b’s.

(b) It creates an unnamed pipe with file descriptors pfd[0] (read) and
pfd[1] (write).

(c) It creates two child processes c1 and c2. The child process c1 writes
the buff1 in the pipe (pfd[1]) for blockCount number of times using
the system call write(). Similarly c2 writes buff2 in the pipe same
number of times.

(d) The parent process reads data from the pipe, one character at a time,
using cin. It prints the number of a’s and the number of b’s from
every contiguous block of a’s and b’s it reads from the pipe. As an
example, if the pipe contains aaabbbaaabbb the output should be
a: 3, b: 3, a: 3, b: 3.

(e) Try with blockSize: 100B, 1KB, 4KB, 8KB, 64KB, and blockCount:
1, 2, 3 etc.

(f) The purpose of the experiment is to see how write to an unnamed
pipe is atomic and how it breaks down.

Sample runs are:

$./a.out

Enter the size of block (bytes): 100

Enter the number of blocks: 1

PPID: 3783

CPID: 3784

Child (proc-1) writes 100 ’a’, iteration 0

CPID: 3785

Parent reads; a: 100

Child (proc-2) writes 100 ’b’, iteration 0

Parent reads: b: 100

$./a.out

Enter the size of block (bytes): 100

Enter the number of blocks: 3

PPID: 3786

CPID: 3787

Child (proc-1) writes 100 ’a’, iteration 0

CPID: 3788

Child (proc-1) writes 100 ’a’, iteration 1

Child (proc-2) writes 100 ’b’, iteration 0

Child (proc-2) writes 100 ’b’, iteration 1

Parent reads; a: 300

Child (proc-2) writes 100 ’b’, iteration 2

Child (proc-1) writes 100 ’a’, iteration 2

Parent reads: b: 300

$./a.out

Enter the size of block (bytes): 65536

Enter the number of blocks: 1

PPID: 3790

CPID: 3791

Child (proc-1) writes 65536 ’a’, iteration 0

CPID: 3792

Child (proc-2) writes 65536 ’b’, iteration 0

Parent reads; a: 65536

Parent reads: b: 65536

$./a.out

2

Enter the size of block (bytes): 65536

Enter the number of blocks: 3

PPID: 3793

CPID: 3795

CPID: 3796

Child (proc-1) writes 65536 ’a’, iteration 0

Parent reads; a: 69632

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Child (proc-1) writes 65536 ’a’, iteration 1

Parent reads; a: 8192

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Child (proc-2) writes 65536 ’b’, iteration 0

Parent reads; a: 20480

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Child (proc-1) writes 65536 ’a’, iteration 2

Parent reads; b: 4096

Parent reads; a: 8192

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 8192

Child (proc-2) writes 65536 ’b’, iteration 1

Parent reads; a: 40960

Child (proc-2) writes 65536 ’b’, iteration 2

Parent reads: b: 126976

$./a.out

Enter the size of block (bytes): 131072

Enter the number of blocks: 1

PPID: 3801

CPID: 3802

CPID: 3803

Parent reads; a: 65536

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

3

Parent reads; b: 4096

Parent reads; a: 8192

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Child (proc-1) writes 131072 ’a’, iteration 0

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 4096

Parent reads; b: 4096

Parent reads; a: 20480

Child (proc-2) writes 131072 ’b’, iteration 0

Parent reads: b: 86016

4

