Computer Science and Engineering & Information
Technology (2" Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 3 Marks: 20
Assignment Out: 31% January, 2020

1. Write a C++ program (myawk.c++ = myawk) that creates a child process
and loads the awk program using execvp(). The path of awk may be
/usr/bin/awk or /bin/awk (check on your machine). The parent does
nothing but waits for the child to terminate. Do not use system() in
your program that executes a shell command.

A few sample output are:

$ awk ’BEGIN { print "IIIT Kalyani" }’

ITIT Kalyani

$ myawk ’BEGIN { print "IIIT Kalyani" }’
IIIT Kalyani

$ awk ’{ print }’

India

India

Bharat

Bharat

West Bengal

West Bengal

$ myawk ’{ print }’

India

India

Bharat

Bharat

West Bengal

West Bengal

$ 1s -1 | awk /o/

total 60

-rwxr-xr-x 1 gb gb 13440 Jan 24 07:53 a.out
-rw-r--r-— 1 gb gb 804 Jan 24 05:31 clockFreql.c++
-rw-r--r-— 1 gb gb 1193 Jan 24 07:52 clockFreq.c++

-rw-r--r-— 1 gb gb 4 Jan 25 17:50 prog
$ 1s -1 | myawk /o/
total 60

-rwxr-xr-x 1 gb gb 13440 Jan 24 07:53 a.out
-rw-r--r-— 1 gb gb 804 Jan 24 05:31 clockFreql.c++
-rw-r-—-r-— 1 gb gb 1193 Jan 24 07:52 clockFreq.c++
-rw-r--r-- 1 gb gb 4 Jan 25 17:50 prog

2. Write a C++ program to get a rough estimate of frequency of the CPU
clock.
Use the x86-64 machine instruction rdtscp (read time stamp counter and
processor ID)! The instruction loads the processor’s time-stamp counter
MSR (64-bit) into edx:eax pair. The lower order 32-bit of MSR goes to
eax (lower 32-bit of rax) and the higher order order 32-bit of MSR goes to
edx (lower 32-bit of rdx). Higher order bits of rax and rdx are initialized
to zero.

The time stamp counter MSR is incremented at every clock cycle of the
processor, and is set to zero when the processor is reset.

A program can get the content of the time stamp counter from eax at
the beginning and at the end of an event (make sure that edx has not

1You will get more information from Intel 64 and IA-32 Architectures Developer’s manual:
Vol. 2B from internet or Reading Material.



changed in the mean time). Their difference is the number of clock cycles
(¢) during the event.

Also use the system call clock_gettime () to find the time elapsed during

the same event (approximately). The system call

int clock_gettime(clockid_t clk_id, struct timespec *tp); when
invoked with the first parameter CLOCK_REALTIME stores the time (¢) in

the object *tp of type

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

Invoking it before and after the event can give the approximate time
elapsed during the event. Estimate the approximate clock frequency using
the time elapsed and the number of clock cycles during the event.

The event may be a simple for-loop with large number of iterations. We
may use several runs to get an average value of the clock frequency.

The output should be as follows:

$ a.out

Enter no of iterations of delay loop: 1000
Enter no of runs to average: 10

Clock: 2344.29

$ a.out

Enter no of iterations of delay loop: 10000
Enter no of runs to average: 10

Clock: 2388.96

Use the 1scpu command to verify your result (/usr/bin/lscpu).



