
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 2 Marks: 20

Assignment Out: 24th January, 2020

1. We have already seen that the system call

int pid;

pid = fork();

can be replaced by the inline assembly code (x86-64) as follows:

__asm__ __volatile__(

"movq $57,%%rax \n\t"

"syscall \n\t"

:"=a" (pid)

) ;

The command for fork() is 57, loaded in the register rax, syscall is
the machine instruction for software interrupt trap, the return value of
fork() is available in eax (rax[0-31]), it goes to C++ variable pid.

Consider the following C++ program with the system call read() (see
the man page).

#include <iostream>

using namespace std;

#include <unistd.h>

#define MAXL 201

int main(){

char data[MAXL]={0};

int n, bytes;

cout << "Enter a positive integer <= " << MAXL-1 << endl;

cin >> n;

cout << "Enter a string\n";

bytes=read(STDIN_FILENO, data, n);

cout << data << endl;

cout << "Bytes read: " << bytes << endl;

return 0;

}

A run of the program:

$ a.out

Enter a positive integer <= 200

10

Enter a string

IIIT Kalyani

IIIT Kalya

Bytes read: 10

$ ni

ni: command not found

Write a C++ program where you replace the call bytes=read(0, data,

n); by inline assembly language code of x86-64. Note the following infor-
mation.

(a) The command for read is 0 (zero). It goes to register rax.

1

(b) The first parameter is the file descriptor for the input file. For stdin
it is 0 (zero) (symbolic name STDIN_FILENO defined in unistd.h).
The first parameter goes to register rdi.

(c) The second parameter is the starting address of the buffer data. See
inline assembly language manual to map this name of C++ variable
to the second parameter register rsi (code ”S”).

(d) The third parameter is the number of bytes to read. This is passed
through the register rdx (code ”d”). Again see the manual to map
C++ variable n to this CPU register.

(e) The return value is available in the CPU register eax (rax[0-31]).
The C++ variable bytes is mapped to it for output.

2. Write a Python program that reads a non-negative integer n and creates
n child processes. Each child process prints its process ID. A sample run
looks like:

$ nProc.py

Enter a non-negative integer: 4

child: 6616

child: 6617

child: 6618

child: 6615

Use os._exit(os.EX_OK) to terminate a process.

3. Write a C++ program that reads a non-negative integer n and creates n!
child processes. You are not allowed to pre-compute the value of

n! i.e. given the value of n = 4 you cannot compute 4! = 24 first and
then create 24 processes. Each child process prints its process ID.

The structure of the following recursive function to compute n! may help
you to solve the problem! Note that to terminate a process from a function
exit(1) can be used.

int factorial(int n){

int val = 0;

if(n==0) return 1;

for(int i=1; i<=n; ++i)

val += factorial(n-1);

return val;

}

A sample run:

$ a.out

Enter a positive integer: 3

child: 6667

child: 6668

child: 6669

child: 6671

child: 6666

child: 6670

2

