
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 12 Marks: 10

Assignment Out: 10th April, 2020

This one is going to be the last assignment of the OS laboratory. You will
implement your ownmalloc() (myMalloc()) and free() (myFree() functions on a
block of acquired memory. The main use of it will be for the shared memory. The
starting address of the acquired shared memory is copied to different processes
and will remain unchanged.

A program calls void *myMalloc(int n); to get n Bytes of memory. It calls
void myFree(void *p); to free the block of memory acquired and pointed by
p (do not bother about the situation where the parameter p is arbitrary).

The acquired memory at any point is divided into free memory cells and
used areas. The list of free memory cells is maintained by an in memory doubly
linked list. A pointer to the free memory cell list is also maintained in the shared
memory.

The type of header of a free memory cell and function interfaces are as
follows:

typedef struct myHeap{

int size;

struct myHeap *next;

struct myHeap *prev;

} myHeap_t;

extern myHeap_t **memoryP;

void initMyHeap();

void *myMalloc(int);

void myFree(void *);

void mergeFL();

• size: size of the free space available in a cell in bytes.

• next: pointer to the next free memory cell. It is NULL if there is no next
cell (the last cell).

• prev: pointer to the previous free memory cell. It is NULL if there is no
previous cell (the first cell).

• memoryP: global pointer to the acquired memory block. This will be shared
by different processes and will not change. The first 8 bytes of the block
is used as the free memory cell list header. So its type is myHeap t **,
but that is not a necessity.

• initMyHeap(): initializes the memory to a big free cell. It looks like the
following.

cell header

n bytes

Initial Cell

n

nextprev
size

memory pointer

fre
e

lis
t p

oin
te

r

One Free Cell

• The function myMalloc() allocates space in multiple of 8 bytes. It also
maintains a field to store the size of the useful space allocated. It returns
the starting address of the useful space. If the requested space cannot be
allocated, it returns NULL.

So after a call myMalloc(10), (16+8) bytes are taken out of the initial
free cell space, and it looks as follows.

1

n−24 bytes
n−

2416 16 byte

After allocation

used area

size prev next

Returned address

size
memory pointer

fre
e

lis
t p

oin
te

r

myMalloc(10) (16 + 8) Bytes used

Free Cell

In fact myMalloc(n) traverses the free cell list to find a free cell of suitable
size (> n). You may use first fit or any other algorithm. After allocation
it is necessary to update the the free cell list.

• The function myFree(ptr) will free the memory block pointed by ptr

and inserts it in the free cell list in proper place. Note that ptr is not the
actual starting address of the block. It is 8 byte larger than that (due to
the size field).

The memory block looks as follows at some intermediate point.

used area

size prev next

used area

n1 Free cell Free celln2 n3 n4

Free List and Used Area

size
next

prev

size

size
memory pointer

fre
e

lis
t p

oin
te

r

• The function mergeFL() is used to merge contiguous free cells to get a
larger free cell.

You need to write the above mentioned four functions. The user program is
supplied. Do not modify it, also do not change any function interface. Prepare
a makefile and return the assignment.

A user program to test your code is as follows:

// userProg.c++

#include <iostream>

using namespace std;

#include "myHeap.h"

#include <cstdlib>

#include <sys/ipc.h>

#include <sys/types.h>

#include <unistd.h>

#include <sys/shm.h>

#include <sys/wait.h>

myHeap_t **memoryP;

typedef struct node{

int data;

struct node *next;

} node_t;

void printFreeList(myHeap_t *);

int main(){

int shmID, n, pid, status;

struct shmid_ds buff;

node_t **lP;

shmID = shmget(IPC_PRIVATE, SIZE+sizeof(node_t *), IPC_CREAT | 0777);

lP = (node_t **)shmat(shmID, 0, 0777);

memoryP = (myHeap **)(lP+1);

initMyHeap();

2

cout << "Enter a positive integer: ";

cin >> n;

if((pid = fork()) == -1){

cerr << "fork() fails\n";

exit(1);

}

if(pid == 0){ // child

node_t *l = NULL, *nP;

cout << "Enter " << n << " data\n";

for(int i=0; i<n; ++i){

nP = (node_t *)myMalloc(sizeof(node_t));

cin >> nP->data;

nP->next = l;

l = nP;

}

*lP = l;

}

else{ // parent

node_t *nP;

waitpid(pid, &status, 0);

nP=*lP;

while(nP) {

cout << nP->data << " ";

nP = nP->next;

}

cout << endl;

// Testing free

cout << "memoryP: " << hex << memoryP << endl;

initMyHeap();

printFreeList(*memoryP);

void *rp=myMalloc(100);

cout << "rp: " << rp << endl;

printFreeList(*memoryP);

myFree(rp);

printFreeList(*memoryP);

rp=myMalloc(150);

cout << "rp: " << rp << endl;

printFreeList(*memoryP);

myFree(rp);

printFreeList(*memoryP);

mergeFL();

printFreeList(*memoryP);

shmdt(memoryP);

shmctl(shmID, IPC_RMID, &buff);

}

return 0;

}

void printFreeList(myHeap_t *l){

cout << "Free list: ";

while(l){

cout << hex << l << ", ";

cout << " size: " << l->size << ", ";

l = l->next;

}

3

cout << endl;

}

A sample run:

$./a.out

Enter a positive integer: 5

Enter 5 data

-2 -1 0 1 2

2 1 0 -1 -2

memoryP: 0x7fc74c7c2008

Free list: 0x7fc74c7c2010, size: 3fe0,

rp: 0x7fc74c7c2018

Free list: 0x7fc74c7c2080, size: 3f70,

Free list: 0x7fc74c7c2010, size: 58, 0x7fc74c7c2080, size: 3f70,

rp: 0x7fc74c7c2088

Free list: 0x7fc74c7c2010, size: 58, 0x7fc74c7c2120, size: 3ed0,

Free list: 0x7fc74c7c2010, size: 58, 0x7fc74c7c2080, size: 88, 0x7fc74c7c2120, size: 3ed0,

Free list: 0x7fc74c7c2010, size: 3fe0,

4

