
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 11 Marks: 10

Assignment Out: 3rd April, 2020

This is an experiment similar to assignment 10. The difference is it is not
for threads but for processes. So we have to use shared memory and change the
implementation of the queue of suspended processes as new is not available on
shared memory.

In this experiment you will try to implement a lock that will not only make
the critical section atomic but instead of busy wait on it, it will suspend its
process after adding the process ID to its queue.

1. Create processes using fork() and use signals (assignment 9) to suspend
and restart a process.

2. There is a new complication. The operations on the queue of suspended
queue should be atomic as more than one process may try to update it
concurrently. The atomicity of the operations on the queue is ensured by
busy wait.

3. The shared data structure is simply a counter in the shared memory ini-
tialized to zero (0). The operations are increment and decrement of the
counter.

4. The lock will make the increment and decrement operations on the counter
atomic. Note: introduce delay to magnify the possibility of race in the
critical sections of increment and decrement operations.

5. The main() process takes an input n and creates n number of concurrent
processes that perform increment operations on the counter. Similarly
it creates another set of n number of concurrent processes to perform
decrement operations on the counter.

6. The final value of the counter should be zero (0) as it was initialized to
zero (0) at the beginning.

7. At the end of execution of 2×n processes, the result should be zero (0) if
the operations are atomic (using your lock). Otherwise it can be anything
arbitrary.

8. Following are the suggested data structures.

(a) The data structure for the queue (similar to our produce-consumer i
problem) is.

#define MAX 100

#define ERROR (-1)

#define OK 0

class queue {

private:

int front, rear, count ;

int data[MAX];

public:

queue();

bool isEmptyQ();

bool isFullQ();

int addQ(int); // return -1 on error, 0 on success

int deleteQ(); // return -1 on error

};

(b) The suggested data structure for the lock is as follows:

1



typedef struct mylock_t{

int mylock;

int guard;

queue q;

} mylock_t;

void mylockInit(mylock_t &, int); // 2nd param for initial value

void mylock(mylock_t &);

void myunlock(mylock_t &);

(c) You may put both of then in a header file myLock.h. The implemen-
tation is in myLock.c++.

(d) The int mylock; field of the data type myloc t is the actual lock
variable.

(e) The int guard; is the local lock used to make the operations on
queue q; atomic. This one is actually a spin lock.

(f) The operations on mylock t are as usual. But they relay on our old
(assignment 8)
void tasLock(int *lp),
void tasUnlock(int &lck) and
void tasInitlock(int &lck).

9. You should use a Makefile to compile your code. Prepare a .tar file of all
required files and send it.

10. As it was mentioned earlier that the suggested implementation is incorrect
(see the Google sheet for discussion). Nevertheless I learn something while
writing this code and I wish you too.

Input/Output:

$ ./a.out

Enter a small +ve integer: 1

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 1

lock? (1/0)

0

Data: 999

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

0

Data: -994

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

0

Data: 960

$ ./a.out

Enter a small +ve integer: 10

2



lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 10

lock? (1/0)

0

Data: -1000

$ ./a.out

Enter a small +ve integer: 10

lock? (1/0)

0

Data: 1007

3


