
Computer Science and Engineering & Information
Technology (2nd Year B.Tech.)
IIIT Kalyani, West Bengal

Operating System Lab (CS 411): (Spring: 2019-2020)

Assignment - 10 Marks: 10

Assignment Out: 27th March, 2020

In this experiment you will try to implement a lock that will not only make
the critical section atomic but instead of busy wait on it, it will suspend its
thread after adding the thread ID to its queue.

1. Create the threads using clone() and use signals (assignment 9) to sus-
pend and restart a thread.

2. There is a new complication. The operations on the queue of suspended
threads should be atomic as more than one thread may try to update it
concurrently. The atomicity of the operations on the queue is ensured by
busy wait.

3. The shared data structure is simply a global counter initialized to zero (0).
The operations are increment and decrement.

4. The lock will make the increment and decrement operations on the counter
atomic. Note: introduce delay to magnify the possibility of race in the
critical sections of increment and decrement operations.

5. The main() thread takes an input n and creates n number of threads that
concurrently perform increment operations on the counter.

6. Similarly it creates another set of n number of concurrent threads to per-
form decrement operations on the counter.

7. The counter was initialized to zero (0) at the beginning.

8. At the end of execution of 2× n threads, the result should be zero (0) if
the operations are atomic (using your lock). Otherwise it can be anything
arbitrary.

9. Following are the suggested data structures.

(a) The data structure for the queue is same as assignment 9.

typedef struct node {

int data;

struct node *next;

} node_t;

class queue{

node_t *front, *rear;

public:

queue();

bool isEmptyQ();

void addQ(int n);

int deleteQ();

};

(b) The suggested data structure for the lock is as follows:

typedef struct mylock_t{

int mylock;

int guard;

queue q;

} mylock_t;

void mylockInit(mylock_t &, int); // 2nd param for initial value

void mylock(mylock_t &);

void myunlock(mylock_t &);

1



(c) You may put both of then in a header file myLock.h and implement
in myLock.c++.

(d) The int mylock; field of the data type myloc t is the actual lock
variable.

(e) The int guard; is the local lock used to make the operations on
queue q; atomic. This one is actually a spin lock.

(f) The operations on mylock t are as usual. But they relay on our old
(assignment 8)
void tasLock(int *lp),
void tasUnlock(int &lck) and
void tasInitlock(int &lck).

10. You should use a Makefile to compile your code.

11. Is your implementation correct? Try to find a possibility of race condition
and magnify it if there is one!

Input/Output:

$ ./a.out

Enter a small +ve integer: 1

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 1

lock? (1/0)

0

Data: 1000

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

0

Data: -994

$ ./a.out

Enter a small +ve integer: 4

lock? (1/0)

0

Data: 905

$ ./a.out

Enter a small +ve integer: 10

lock? (1/0)

1

Data: 0

$ ./a.out

Enter a small +ve integer: 10

2



lock? (1/0)

0

Data: 1070

$ ./a.out

Enter a small +ve integer: 10

lock? (1/0)

0

Data: -1001

3


