
Computer Science and Engineering
IIIT Kalyani, West Bengal

Compilers Design Laboratory (CS 511)
(Autumn: 2019 - 2020)
3rd Year CSE: 5th Semester

Assignment - 6 Marks: 10

Assignment Out: 11th October, 2019 Report on or before: 18th October, 2019

1. Consider the following context-free grammar G: the non-terminals are
N = { AS, BE, D, DL, E, IOS, IS, LS, P, PE, RE, S, SL, TY, VL },
the terminals are
Σ = { + − ∗ / == < > ( ) = ; & | ~ else ic fc id if int real do nop
print read str then while },
the start symbol is P and the production rules are,

P → DL SL

DL → DL D | ε
D → VL : TY

TY → int | real
VL → VL id | id
SL → SL | S
S → AS | IS | LS | IOS | nop

AS → id = E

IS → if BE then SL else SL ;
LS → while BE do SL ;

IOS → print PE | read id
PE → E | str
BE → BE ‘|’ BE | BE & BE | ~ BE | ( BE ) | RE
RE → E == E | E < E | E > E

E → E + E | E − E | E ∗ E | E / E | − E | ( E ) | id | ic | fc

Most of the terminals have their usual meaning e.g. id is an identifier,
ic is an integer constant, fc is a floating-point constant, str is a string of
characters, nop for no operation, = is an assignment, == is equality, ‘|’
is logical ‘or’, & is logical ‘and’, ~ is ‘not’ etc. Both ‘|’ and ‘&’ are left

associative. The precedence relations of logical operators are ‘|′ < ‘&′ <
‘~’.

An identifier starts with an English alphabet followed by a sequence of
alphabet or decimal digits. An integer constant is a sequence of decimal
digits. a floating-point constant is a sequence of decimal digits with a
decimal dot in it (.12, 12., 1.2).

A comment starts with ‘//’ and is up to the end of line (‘\ n’). A character
string is within a pair of quotes (”).

2. Write a flex specification of the scanner. The name of the flex specification
file should be <roll no>.l. The command
$ flex <roll no>.l

generate the C code for the scanner in lex.yy.c. Include the header
file <roll no>.tab.h++ in the definition section of your flex specifica-
tion. This header file, created by bison, contains the token names, type of
yylval etc.

3. Write bison specification for the grammar to generate a parser. You need
to specify the precedence and associativity of boolean and arithmetic oper-
ators as these parts of the production rules makes the grammar ambiguous.
The specification file name should be <roll no>.y++ (this will generate
C++ parser code). The command
$ bison -d -v <roll no>.y++

generates three files
<roll no>.tab.c++,
<roll no>.tab.h++, and

1



<roll no>.output.
The .output file contains the description of the LALR(1) automaton.

4. The compiled code of <roll no>.tab.c and lex.yy.c gives the basic
parser. Let the name of the executable file be myParser. Prepare a
Makefile for the whole process.

5. To send the assignment for evaluation prepare a tar file with the name
<roll no>.6.tarwhich includes three (3) or more files: Makfile, <roll no>.l,
<roll no>.y++. Kindly do not put them under a subdirectory while
preparing the tar file.

6. A sample input is

// This program computes factorial

n fact i : int

read n

i = 1

fact = 1

while i < n | i == n do

fact = fact * i

i = i + 1

; // Note the ;

print fact

7. You may print the syntax error message by defining yylineno in flex

(%option yylineno) and using it with the yyerror() in bison. As an
example -

// This program computes factorial

n fact i : int

read n

i = 1

fact = 1

while i n | i == n do

fact = fact * i

i = i + 1

; // Note the ;

print fact

syntax error at line no: 6

2


