
Computer Science and Engineering
IIIT Kalyani, West Bengal

Compilers Design Laboratory (CS 511)
(Autumn: 2019 - 2020)
3rd Year CSE: 5th Semester

Assignment - 5 Marks: 10

Assignment Out: 5th September, 2019 Report on or before: 20th September,

2019

Write C program to implement a table driven predictive parser for the lan-
guage of the following grammar (G) with terminals { eof id num r , (comma)
= (assignment) + (plus) ∗ (times) ((left-parenthesis)) (right-parenthesis) },
non-terminals { S CE AE PE ME BE }, where ‘S’ as the start symbol. The
production rules are,

S → CE eof

CE → CE , AE | AE
AE → id = AE | PE
PE → PE + ME | ME
ME → ME * BE | BE
BE → (CE) | id | num | r
The grammar G is not LL(1). Transform it to an equivalent LL(1) grammar

G1 by removing left recursion, substitution and left factoring.
For a table driven predictive parser we need a stack and a parsing table. We

also need to encode the production rules and store them with rule numbers.
Following are my suggestions. You may decide in a different way.

1. We need to encode the production rules and store them. We already have
token code for terminals. We also assign distinct code to non-terminals. It
is necessary to keep in mind that the rows of the parsing table are indexed
by the non-terminals.

After encoding, a production rule is a sequence of positive integers (code).
In our case it is not necessary to store the left-hand non-terminal as they
are already available as the index of the row of the parsing table. So the
set of rules may be stored a an array structure as follows:

typedef struct{

int len; // length of right-hand side of the rule

int rule[LEN]; // code sequence of terminals and

// non-terminals

} rule_t;

2. The parsing stack will store the terminals and non-terminals (their code).
So a simple integer stack is good enough. Note that rules are inserted in
reverse order (rightmost symbol first). A stack is implemented as usual,
stack.h and stack.c files. The header file may be as follows.

1

// stack.h

#include <stdio.h>

#ifndef _STACK_H

#define _STACK_H

#define SIZE 1000

#define ERROR 1

#define OK 0

typedef struct {

int data[SIZE];

int tos;

} stack ;

void init(stack *) ; // Initializes the stack

int push(stack * , int) ;

int pop(stack *) ;

int top(stack *, int *) ;

int isEmpty(stack *) ;

int isFull(stack *) ;

#endif

Implement the functions in the stack.c file.

3. Use the scanner of assignment-4 as it is with its lex.h and lex.c files.

4. The row indices of the parsing table are non-terminals. If there are n non-
terminals, there are 0, · · · , n− 1 rows. The non-terminal codes should be
such that the actual table index can be obtained with ease.

Similarly the column indices of the parsing table are terminals. There are
10 terminals in this assignment. So the column indices are 0, · · · , 9. We
already have code for the terminals. These codes should be mapped to
the range of column indices. An 1D-array may be used for the mapping
of a terminal code to the column index.

5. The content of the parsing table of size 10× 10 are the rule numbers and
error indicators.

6. The parser is implemented as parser.h and parser.c files. It will not

generate any intermediate code. Its output is simply an Accept or
a Reject.

7. Modify the Makefile.

8. Prepare a .tar file with all the files you have with the following command:
$ tar cvf <rollNo>.5.tar lex.c lex.h parser.c parser.h main.c

stack.c stack.h Makefile

Send it to us on or before the due date.

A few input and output are:

$ a.out

1

Accepted

2

$ a.out

1+2*3

Accepted

$ a.out

a=2+3

Accepted

$ a.out

a=2, b=a+5

Accepted

$ a.out

2 + 3 4

Rejected

$ a.out

3 % 8

Wrong token: %

Rejected

$ a.out

2 = 3

Rejected

$ a.out

2+a=5

Rejected

$ a.out

2+(a=5)

Accepted

3

