
Computer Science and Engineering
IIIT Kalyani, West Bengal

Compilers Design Laboratory (CS 511)
(Autumn: 2019 - 2020)
3rd Year CSE: 5th Semester

Assignment - 4 Marks: 10

Assignment Out: 22nd August, 2019 Report on or before: 5th September, 2019

In this assignment you need to augment the language of assignment-3, and
write its interpreter with the following features.

1. An identifier (id), a single letter of English alphabet [A-Za-qs-z]. Note
that we have excluded ‘r’ as it is a keyword to read a data from the stdin.

2. Two new operators, ‘=’ (assignment) and ‘,’ (comma).

The new definition of a fully parenthesized expression is as follows:

1. Every non-negative integer (32-bit) is an expression.

2. An identifier (id) is an expression whose value is the value assigned to it.

3. r is an expression. Its value is the integer read from the stdin.

4. If e is an expression and id is an identifier, then (id = e) is an expression.
Its value is the value of expression e. The value of the identifier (id) is
also same, and can be used afterwards.

5. If e1 and e2 are expressions, then so are (e1 + e2) and (e1 ∗ e2) with their
usual meaning. (e1, e2) also is an expression whose value is the value of
e2. In all three cases inorder evaluation is performed.

6. Nothing else is an expression.

You need to enhance your C program (the scanner, parser and the interpreter) to
incorporate these features. You have to use a symbol table to store the values of
different identifiers. In the modified version, the input-output looks as follows:

$ a.out

a

Value of ’a’ not defined

$ a.out

((a = (2 + r)), (b = (5 * a)))

:7

Value: 45

$ a.out

((b = (5 * a)), (a = (2 + r)))

Value of ’a’ not defined

You are not allowed to use any available software or library for scanner, parser,
symbol table or interpreter.

1



1. In the scanner there is a new token corresponding to an identifier (id).
The value of the token (val) may be the ASCII code of the letter (iden-
tifier).

#include <stdio.h>

#define END 256

#define NUM 257

#define ID 258

typedef struct { int tokenClass; int val; } token_t;

extern token_t token;

extern void getNextToken(void);

2. In the symbol table you may use the following structure (you are free to
choose some other structure as well).

#ifndef SYMTAB_H

#define SYMTAB_H

#define SIZE 60

typedef struct {

char def; // 1: defined, 0: undefined

int val; // value assigned to the identifier

} symRec;

extern symRec symTab[SIZE];

void initSymTab(); // every location is undefined

void updateSymTab(int index, int val); // updates the indexed loc.

int getVal(int index, int *vP); // returns error (1) or OK (0)

// *vP is the value of indexed loc.

#endif

It is an array of structures (symRec) of size 60. The 0th entry is for the
id ‘A’ (65), 25th entry is for ‘Z’ (90), 32nd for ‘a’, and the 57th entry is
for ‘z’ etc. The def field is zero (0) when the corresponding identifier is
undefined. It is one (1) when it is defined. The value of the identifier is
stored in the val field.

The function void initSymTab(); initializes the table by making each
entry (identifier) undefined.

The function void updateSymTab(int index, int val); updates the
the entry corresponding to the given index with the val. It updates the
value and sets the defined flag.

The function int getVal(int index, int *vP); returns zero (0) if the
indexed location is not defined. Returns one (1) if it is defined. The value
of the identifier is available in *vP.

3. You need to modify both the parser and the backend interpreter.

4. The modified Makefile looks like the following one,

2



objfiles = main.o parser.o lex.o backend.o symTab.o

a.out: $(objfiles)

cc $(objfiles)

main.o: main.c

cc -c -Wall main.c

parser.o: parser.c

cc -c -Wall parser.c

lex.o: lex.c

cc -Wall -c lex.c

backend.o: backend.c

cc -Wall -c backend.c

symtab.o: symtab.c

cc -Wall -c symTab.c

clean :

rm a.out $(objfiles)

5. Prepare a .tar file with all the files you have with the following command:
$ tar cvf <rollNo>.4.tar lex.c lex.h parser.c parser.h main.c

backend.c backend.h symTab.h symTab.c Makefile

Send it to us on or before the due date.

3


