
Computer Science and Engineering
IIIT Kalyani, West Bengal

Compilers Design Laboratory (CS 511)
(Autumn: 2019 - 2020)
3rd Year CSE: 5th Semester

Assignment - 3 Marks: 10

Assignment Out: 9th August, 2019 Report on or before: 16th August, 2019

Consider the following set of fully parenthesized expressions over non-negative
integers with addition (+) and multiplication (∗) operators, and reading input
(r) from the stdin.

1. Every non-negative integer (32-bit) is an expression.

2. r is an expression. Its value is the integer read from the stdin.

3. If e1 and e2 are expressions, then so are (e1 + e2) and (e1 ∗ e2). In both
the cases inorder evaluation is performed.

4. Nothing else is an expression.

As an example, the expression ((12+r)*5) on input 3 from stdin is evaluated
to 75. Every expression is followed by EOF.

Write a C program to implement a scanner, a parser and an interpreter

for such expressions. The parser builds an abstract syntax tree (AST) of the
input expression as an intermediate representation. The interpreter evaluates
the expressions by inorder traversal on the AST. The input-output looks as
follows.

$./a.out

((12+r)*5)

:3

Value: 75

You may follow the following instructions. You are not allowed to use any
available software or library for scanner, parser or interpreter.

1. In the scanner there are two files lex.h and lex.c. The header may be
as follows:

// lex.h the header file for the scannar

#include <stdio.h>

#define END 256

#define NUM 257

typedef struct { int tokenClass; int val; } token_t;

extern token_t token;

extern void getNextToken(void);

1

A token is of type token t with two fields.
The tokenClass has values END (end-of-file), NUM (non-negative integer)
or the ASCII code of any other character except white space (blank, \n,
\t), which are ignored.
The val is used to store the value of a number (tokenClass = NUM).

The global variable token is declared in lex.c. The function getNextToken(),
when called by the parser, updates the content of token with the next to-
ken value. And then it is accessed by the parser.

2. In the parser also there are two files parser.h and parser.c. The header
may be as follows:

// parse.h header file for the parser

#ifndef PARSER_H

#define PARSER_H

typedef struct node {

char type; // I: internal, D: data, R: read

unsigned int val; // for a node of type D

struct node *left, *right; // pointers to left and right

// subtrees for a node of type I

char op; // the operator in node type I

} ASTnode_t;

extern int parser(ASTnode_t **); // returns 1 on success,

// returns 0 on failure.

#endif

ASTnode t is the type of every AST node. The field type indicates the
type of a node - internal node (I) with an operator (op), a pointer to the
left sub-expression tree (left) and a pointer to the right sub-expression
tree (right).
Leaf node (D) with data in val or a leaf node (R) to read a data from the
stdin.

The main parser function int parser(ASTnode t **tpp), defined in parser.c,
takes a pointer to pointer to an AST node, tpp, as argument. It returns
1 when the AST of the expression is constructed successfully and pointed
by *tpp. Otherwise it returns 0.

The function int parser(ASTnode t **tpp) calls scanner function void

getNextToken(void) when the next token is required.

Parsing an expression is done by the recursive function int parseExp(ASTnode t

**tpp). Following is the outline of its definition. The pointer *tpp is the
address of root of the AST (if successfully created). The return value is
for success or failure.

• If the next-token is NUM, a leaf-node of type ‘D’ is created with the
value of the number.

• If the next token is ‘r’, a leaf node of type ‘R’ is created that will be
subsequently used by the interpreter to read data from stdin.

2

• If the next token is ‘(’, an internal node of type ‘I’ is created for
expression of the form (e1 + e2) or (e1 ∗ e2). The left and right sub-
trees corresponding to e1 and e2 are created by calling parseExp()

recursively. The left and the right pointers are updated.
When the token for the ‘+’ or ‘*’ is encountered, it is put in the op

filed of the internal node.
The final ‘)’ completes the expression.

3. The function main() calls int parser(ASTnode t **tpp) with pointer
to pointer to an AST node as argument. If the return value is 1 i.e. a
successful construction of the AST, it calls the backend interpreter.

4. The backend function present in backend.c takes the pointer to the AST
as argument and interprets it by traversing the tree inorder. Its header is
available in backend.h

5. There are several files to compile. So it is necessary to prepare a Makefile
as follows:

objfiles = main.o parser.o lex.o backend.o

a.out: $(objfiles)

cc $(objfiles)

main.o: main.c

cc -c -Wall main.c

parser.o: parser.c

cc -c -Wall parser.c

lex.o: lex.c

cc -Wall -c lex.c

backend.o: backend.c

cc -Wall -c backend.c

clean :

rm a.out $(objfiles)

6. Prepare a .tar file with all the files you have with the following command:
$ tar cvf <rollNo>.3.tar lex.c lex.h parser.c parser.h main.c

backend.c backend.h Makefile

And send it to us on or before the due date.

3

