
B.Tech/CSE/5th Sem-M/2019/CS-501

Indian Institute of Information Technology, Kalyani
Mid-Semester Examination 2019

Subject: Compiler Design Time: 1 hr 30 min.
Paper Code: CS-501 Full Marks: 45

Instructions : There are four (4) questions. Answer all of
them.

1. Answer each question with a brief explanation. [7 × 3]

(a) Consider the set of tokens, {ab, abc, abd, b, bc, bb, ca, cd, da, daa}.
What is the sequence of maximal length tokens generated from the
input “abcabbdaadacaabcbb”.

Ans. {abc ab b daa da ca abc bb}.

(b) Draw a deterministic transition diagram for the set of tokens in (1a).
Clearly mark the start state and the final states.

Ans.

a b c

d

b

c

a

d

d

a a

b

c

(c) Give the production rules of an ambiguous CFG for expressions over
Σ = {id , fc,+, ∗,=,), (}, where id is an identifier and fc is a float
constant. Operators ‘=’ (assignment), ‘+’, ‘∗’, and parenthesis ‘)’,
‘(’ have their usual meaning and purpose. You can use only one
non-terminal E.

Ans.
E → id = E | E + E | E ∗ E | (E) | id | fc

(d) Give an unambiguous CFG equivalent to the CFG of (1c). The
operator-precedence is ‘= < + < ∗’. Both ‘+’ and ‘∗’ are left-
associative, but ‘=’ is right-associative. Parenthesis ‘)’, ‘(’ are used
to overwrite precedence and associativity.

Ans.

E → id = E | P

P → P +M | M

M → M ∗B | B

B → (E) | id | fc

(e) Draw two parse trees corresponding to the string
“fah = cel * 9.0 * 0.02 + 32.0” in the grammar of (1c).

Ans.
E

id
= E

E
*

E

id E

fc

* E

E

fc

+ E

fc

fah

cel

9.0

0.02 32.0

E

id

fah

= E

E
+

fc

32.0

E
* E

E

id

cel

* E

fc

9.0

fc

0.02

(f) Remove left recursion from the CFG G1 = ({a, b, c, d}, {A,B}, P, A),
where P = {A → Aa | Aab | Bc, B → BAa | d}.

Ans. A → BcA′, A′ → aA′ | abA′ | ε, B → dB′, B′ → AaB′ | ε.

(g) Consider the following state-transition table of a DFA over an alpha-
bet {0, 1, 2}. The states are {qε, q0, q1, q2, q3}.

CS NS

0 1 2
qε 0 1 2
q0 0 1 2
q1 3 0 1
q2 2 3 0
q3 1 2 3

If each table entry takes one byte, show that the table can be com-
pressed to a 1D-vector of size six bytes. Show the displacement for
each row (state). (CS: current state, NS: next state)

Ans. The state-transition vector is

0 1 2 3 0 1

The displacement in the state-transition vector for each state is

qε q0 q1 q2 q3
0 0 3 2 1

2. Extract a C program from the following x86-64 assembly code where
the memory locations of variables a, b and c are Memory[rbp - 20],
Memory[rbp - 16] and Memory[rbp - 12] respectively. Assume that the
variable ‘a’ contains a positive integer n. What is finally value computed
in the variable ‘b’? [6]

movl $1, -12(%rbp)

movl $0, -16(%rbp)

jmp .L2

.L3:

movl -12(%rbp), %eax

addl %eax, -16(%rbp)

addl $2, -12(%rbp)

.L2:

movl -20(%rbp), %eax

cmpl %eax, -12(%rbp)

jle .L3

Ans.

movl $1, -12(%rbp) # c = 1

movl $0, -16(%rbp) # b = 0

jmp .L2 # goto .L2

.L3:

movl -12(%rbp), %eax # eax = Mem[rbp-12] (c)

addl %eax, -16(%rbp) # Mem[rbp-16](b) = b + eax (c)

addl $2, -12(%rbp) # Mem[rbp-2](c) = c + 2

.L2:

movl -20(%rbp), %eax # eax = Mem[rbp-20](a)

cmpl %eax, -12(%rbp) # compare Mem[rbp-12](c), eax (a)

jle .L3 # if c <= a goto .L3

The C code is

c=1;

b=0;

L:

if(c <= a) {

b = b + c;

c = c + 2;

goto L;

}

Equivalent C code

c=1;

b=0;

while(c <= a) {

b = b + c;

c = c + 2;

}

The sum of odd integers in the range of 1 to n is computed in b.

3. A relocatable ELF file is mapped to the address space of a process.

(a) The variable elfhP of type Elf64_Ehdr * stores the starting ad-
dress of the map. How do you use the following fields of the ELF
header (Elf64_Ehdr) to find the address of the (i) section header ta-
ble and (ii) the address of its string table entry.
e_shoff, e_shstrndx, e_shentsize.

(b) The variable shP of type ‘Elf64_Shdr *’ stores the address of the
section header table and textOff is the offset of “.text” within
the section header string table. How do you find the address of the
section header corresponding to .text section using sh_name field of
the section header structure? [3+3]

Ans.

(a) The address of section header table is elfP -> e_shoff. The address
of the section header entry of its string table is
elfhP->e_shoff+elfhP->e_shstrndx*elfhP->e_shentsize.

(b) The section header entry for the .text section can be obtained by
the C code
while(shP->sh_name != textOff) shP = shP+1;

4. Consider the regular expression 0∗1(10∗1 + 01∗0)∗.

(a) Construct a DFA corresponding to the regular expression whose states
are sets of dotted regular expressions (items). The start state is
q0 : {(•0)∗1(10∗1 + 01∗0)∗, 0∗ • 1(10∗1 + 01∗0)∗}.

(b) Construct the syntax tree corresponding to the augmented regular
expression: (0∗1(10∗1 + 01∗0)∗)#. Decorate each node with firstpos
and lastpos data. Compute followpos for different positions and draw
the corresponding non-deterministic finite automaton (NFA).

[5+7]

Ans.

(a) The states and the transition table are:

q0 : {(•0)∗1(10∗1 + 01∗0)∗,
0∗ • 1(10∗1 + 01∗0)∗}

q1 : {0∗1(•10∗1 + 01∗0)∗

0∗1(10∗1 + •01∗0)∗

0∗1(10∗1 + 01∗0)∗•}
q2 : {0∗1(10∗1 + 0(•1)∗0)∗

0∗1(10∗1 + 01∗ • 0)∗}
q3 : {0∗1(1(•0)∗1 + 01∗0)∗

0∗1(10∗ • 1 + 01∗0)∗}

CS NS on Input
0 1

→ q0 q0 q1
∗ q1 q2 q3
q2 q1 q2
q3 q3 q1

q0 q1

q2

q3

0

1

0 0

1

1

1

0

(b) The abstract syntax tree is as follows:

0

* 1

0

*
1 1

+

*

#

(4)

(9)

(1)

(2)

(3) (5)

(1,1)

(1,1) (2,2)

(3,3)

(4,4)

(4,4)
(5,5)

(9,9)

({1,2},2)

({1,2}, {2,5,8})

({1,2}, 9)

(3,{3,4})

(3,5)

({3,6}, {5,8})

({3,6}, {5,8})

(6,6)

0 (8)

(6,8)

(7,7)*

1
(7)

(7,7)

0
(6)

(6,{6,7})

followpos() for different positions are as follows:

Position Follow Positions
1 {1, 2}
2 {3, 6, 9}
3 {4, 5}
4 {4, 5}
5 {3, 6, 9}
6 {7, 8}
7 {7, 8}
8 {3, 6, 9}
9

1 2 3 4 5

6789

0

0 1

1 1

1

1

0
0

1

1

1
1

0

0
0

0
1

0

