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How it started!

• Gateway Design Automation
• Cadence purchased Gateway in 1989.
• Verilog was placed in the public domain.
• Open Verilog International (OVI) was 

created to develop the Verilog Language 
as IEEE standard.
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The Verilog Language

• Originally a modeling language for a very efficient event-
driven digital logic simulator

• Later pushed into use as a specification language for 
logic synthesis

• Now, one of the two most commonly-used languages in 
digital hardware design (VHDL is the other)

• Virtually every chip (FPGA, ASIC, etc.) is designed in 
part using one of these two languages

• Combines structural and behavioral modeling styles
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Concurrency

• Verilog or any HDL has to have the power to 
model concurrency which is natural to a piece of 
hardware.

• There may be pieces of two hardware which are 
even independent of each other.

• Verilog gives the following constructs for 
concurrency:
– always
– assign
– module instantiation
– non-blocking assignments inside a sequential block
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However…

• The simulating machine is sequential.
• no-matter how many processors I have, I can 

write one more process which also have to be 
simulated concurrently.

• So, the processes are scheduled sequentially so 
that we have a feeling of parallelism: 
– like the desktop of our PC where we may open an 

editor, a netscape and so on. We have a feeling that 
they are executed parallely, but in reality there is a 
serialization involved.
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Race…

• So, always blocks (for example) are parallel…
• Even though they are not actually.
• So, which always block gets executed first? My 

simulation results will depend upon that!
• Standards do not say anything.
• It may be that the last always block is executed 

first…
• and so we have race!
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How do we overcome race?

• We shall see in the class…
• Try to think of a clean hardware and you 

will not have race



Dept of CSE, IIT Madras 8

Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
notg4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Verilog programs built from modules

Each module has 
an interface

Module may contain 
structure: instances of 
primitives and other 
modules
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Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
notg4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Identifiers not 
explicitly defined 
default to wires
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Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = b;
else f = a;

endmodule a

b
sel

f

Modules may contain one 
or more always blocks

Sensitivity list 
contains signals 
whose change 
triggers the 
execution of the 
block
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Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = b;
else f = a;

endmodule a

b
sel

f

A reg behaves like memory: 
holds its value until 
imperatively assigned 
otherwise

Body of an always
block contains 
traditional imperative 
code
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Mux with Continuous Assignment

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? b : a;

endmodule

a

b
sel

f

LHS is always set to the 
value on the RHS
Any change on the right 
causes re-evaluation
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Identifiers in Verilog

• Any Sequence of letter, digits, dollar sign, 
underscore.

• First character must be a letter or 
underscore.

• It cannot be a dollar sign.
• Cannot use characters such as hyphen, 

brackets, or # in verilog names



Dept of CSE, IIT Madras 14

Verilog Logic Values

• Predefined logic value system or value set
: ‘0’, ‘1’ ,’x’ and ‘z’;

• ‘x’ means uninitialized or unknown logic 
value

• ‘z’ means high impedance value.



Dept of CSE, IIT Madras 15

Verilog Data Types

• Nets: wire, supply1, supply0
• reg
• wire:
i) Analogous to a wire in an ASIC.
ii) Cannot store or hold a value.
• Integer



Dept of CSE, IIT Madras 16

The reg Data Type

• Register Data Type: Comparable to a variable in a programming 
language.

• Default initial value: ‘x’

• module reg_ex1;
reg Q; wire D;
always @(posedge clk) Q=D;

• A reg is not always equivalent to a hardware register, flipflop or 
latch.

• module reg_ex2; // purely combinational
reg c;
always @(a or b) c=a|b;
endmodule



Dept of CSE, IIT Madras 17

Difference between driving and 
assigning

• Programming languages provide variables that 
can contain arbitrary values of a particular type.

• They are implemented as simple memory 
locations.

• Assigning to these variables is the simple 
process of storing a value into the memory 
location.

• Verilog reg operates in the same way. Previous 
assignments have no effect on the final result.
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Example

• module assignments;
reg R;
initial R<=#20 3;
initial begin

R=5; R=#35 2;
end
initial begin

R<=#100 1;
#15 R=4;
#220;
R=0;

end
endmodule

The variable R is shared by all the 
concurrent blocks.

R takes the value that was last 
assigned.

This is like a hardware register which 
also stores the value that was last 
loaded into them.

But a reg is not 
necessarily a hardware 
register.
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Wire: helps to connect

• Consider a set of tristate drivers 
connected to a common bus.

• The output of the wire depends on all the 
outputs and not on the last one.

• To model connectivity, any value driven by 
a device must be driven continuously onto 
that wire, in parallel with the other driving 
values.
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Code
• module simple(A,B,C,sel,Z);

input A, B, C;
input [1:0] sel;
output Z;
reg Z;
always @(A or B or C or SEL)
begin

2’b00: Z=1’bz;
2’b01: Z=A;
2’b10: Z=B;
2’b11: Z=C;

endcase
end

endmodule

• module simple(A,B,C,sel,Z);
input A, B, C;
input [1:0] sel;
output Z;

assign Z=(SEL==2’b01)?A: 1’bz;
assign Z=(SEL==2’b10)?B:1’bz;
assign Z=(SEL==2’b11)?C:1’bz;

endmodule
Inferred as a multiplexer. 

But we wanted drivers!
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Numbers

• Format of integer constants:
Width’ radix value;

• Verilog keeps track of the sign if it is 
assigned to an integer or assigned to 

a parameter.
• Once verilog looses sign the designer has 

to be careful.
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Hierarchy

• Module interface provides the means to 
interconnect two verilog modules.

• Note that a reg cannot be an input/ inout
port.

• A module may instantiate other modules.
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Instantiating a Module

• Instances of

module mymod(y, a, b);

• Lets instantiate the module,
mymod mm1(y1, a1, b1); // Connect-by-position

mymod mm2(.a(a2), .b(b2), .y(c2));  // Connect-by-name
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Sequential Blocks

• Sequential block is a group of statements 
between a begin and an end.

• A sequential block, in an always statement 
executes repeatedly.

• Inside an initial statement, it operates only once.
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Procedures

• A Procedure is an always or initial 
statement or a function.

• Procedural statements within a sequential 
block executes concurrently with other 
procedures.
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Assignments
• module assignments

// continuous assignments
always // beginning of a procedure

begin //beginning of a sequential block
//….Procedural assignments 
end

endmodule

• A Continuous assignment assigns a value to a wire like a real gate 
driving a wire.

module holiday_1(sat, sun, weekend);

input sat, sun; output weekend;

// Continuous assignment

assign weekend = sat | sun;

endmodule

module holiday_2(sat, sun, weekend);

input sat, sun; output weekend;

reg weekend;

always @(sat or sun)

weekend = sat | sun; // Procedural

endmodule // assignment
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Blocking and Nonblocking
Assignments

• Blocking procedural assignments must be 
executed before the procedural flow can 
pass to the subsequent statement.

• A Non-blocking procedural assignment is 
scheduled to occur without blocking the 
procedural flow to subsequent statements.
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Nonblocking Statements are odd! 

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b
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Nonblocking Looks Like Latches

• RHS of nonblocking taken from latches
• RHS of blocking taken from wires

a = 1;
b = a;
c = b;

a <= 1;
b <= a;
c <= b;

1
a b c

“
”

a

b

c

1

“
”
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Examples
• Blocking:

always @(A1 or B1 or C1 or M1)
begin

M1=#3(A1 & B1);
Y1= #1(M1|C1);    

end 
• Non-Blocking:

always @(A2 or B2 or C2 or M2)
begin

M2<=#3(A2 & B2);
Y2<=#1(M1 | C1);

end

Statement executed at 
time t+3 causing Y1 to be 
assigned at time t+4

Statement executed at 
time t causing Y2 to be 
assigned at time t+1.  
Uses old values.

Statement executed at 
time t causing M1 to be 
assigned at t+3

Statement executed at 
time t causing M2 to be 
assigned at t+3



Dept of CSE, IIT Madras 31

Order dependency of 
Concurrent Statements

• Order of concurrent statements does not 
affect how a synthesizer synthesizes a 
circuit.

• It can affect simulation results.
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Order dependency of 
Concurrent Statements

• always @(posedge clock)
begin: CONCURR_1 

Y1<=A;
end

• always @(posedge clock)
begin: CONCURR_2 

if(Y1) Y2=B; else Y2=0;
end

B

A

clk

Y1

Y2

Can you figure out the possible mismatch of simulation with synthesis results?
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Explanation of the mismatch

• The actual circuit is a concurrent process. 
• The first and second flip flop are operating 

parallel.
• However if the simulator simulates 

CONCURR_1 block before CONCURR_2, 
we have an error. Why?

• So, how do we solve the problem?
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Solution

• always @(posedge clock)
begin
Y1<=A;
if(Y1==1)

Y2<=B;
else

Y2<=0;
end

With non-blocking assignments
the order of the assignments 

is immaterial…
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Parameterized Design

• module vector_and(z, a, b);
parameter cardinality = 1;
input [cardinality-1:0] a, b;
output [cardinality-1:0] z;
wire [cardinality-1:0] z = a & b;

endmodule

• We override these parameters when we instantiate the module as:
module Four_and_gates(OutBus, InBusA, InBusB);
input [3:0] InBusA, InBusB; output[3:0] OutBus;
Vector_And #(4) My_And(OutBus, InBusA, InBusB);

endmodule
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Functions (cont’d)

• Function Declaration and Invocation
– Declaration syntax:

function <range_or_type> <func_name>;
<input declaration(s)>
<variable_declaration(s)>
begin // if more than one statement needed

<statements>
end // if begin used

endfunction
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Function Examples
Controllable Shifter

module shifter;
`define LEFT_SHIFT      1'b0
`define RIGHT_SHIFT     1'b1
reg [31:0] addr, left_addr, 

right_addr;
reg control;

initial
begin

…
end
always @(addr)begin
left_addr =shift(addr, 
`LEFT_SHIFT);
right_addr
=shift(addr,`RIGHT_SHIFT);

end

function [31:0]shift;
input [31:0] address;
input control;
begin
shift = (control==`LEFT_SHIFT) 
?(address<<1) : (address>>1);

end
endfunction

endmodule
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How Are Simulators Used?

• Testbench generates stimulus and checks response
• Coupled to model of the system
• Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result 
checker



Dept of CSE, IIT Madras 39

Looking back at our 
multiplexer

• “Dataflow” Descriptions of Logic
//Dataflow description of mux
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
assign out = (~select & in0) 

| (select & in1);
endmodule // mux2

Alternative:

assign out = select ? in1 : in0;
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TestBench of the Multiplexer

• Testbench
module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

initial
begin

s=0; a=0; b=1; expected=0;
#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;

end
initial

$monitor(
"select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
s, a, b, f, expected, $time);

endmodule // testmux
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A Car Speed Controller

SLOW

FASTSTOP

MEDIUM

Accelerate

Brake

Accelerate
Brake

Accelerate

Brake
~Brake

(~Accelerate) & (~ Brake)(~Accelerate) & (~ Brake)
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Car Controller Coding
module fsm_car_speed_1(clk, keys, brake, accelerate, 

speed);
input clk, keys, brake, accelerate;
output [1:0] speed;
reg [1:0] speed;

parameter stop   = 2'b00,
slow = 2'b01,
mdium = 2'b10,
fast = 2'b11; 
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Car Controller (contd.)

always @(posedge clk or 
negedge keys)

begin
if(!keys)  
speed = stop;

else if(accelerate)
case(speed)
stop: speed = slow;

slow: speed = mdium;
mdium: speed = fast;
fast: speed = fast;

endcase

else if(brake)
case(speed)

stop: speed = stop;
slow: speed = stop;
mdium: speed = slow;
fast: speed = mdium;

endcase
else
speed = speed;

end

endmodule
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A Better Way!

• We keep a separate control part where the 
next state is calculated.

• The other part generates the output from 
the next state.

• We follow this architecture in the coding of 
any finite state machines, like ALU, etc. ( 
to be discussed later)
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module fsm_car_speed_2(clk, keys, 
brake, accelerate, speed);

input clk, keys, brake, accelerate;
output [1:0] speed;
reg [1:0] speed;
reg [1:0] newspeed;

parameter stop   = 2'b00,
slow = 2'b01,
mdium = 2'b10,
fast = 2'b11; 

always @(keys or brake or 
accelerate or speed)

begin
case(speed)
stop:

if(accelerate) 
newspeed = slow;

else
newspeed = stop;

slow:
if(brake)
newspeed = stop;

else if(accelerate)
newspeed = mdium;

else
newspeed = slow;

mdium:
if(brake)
newspeed = slow;

else if(accelerate)
newspeed = fast;

else
newspeed = mdium;

fast:
if(brake)
newspeed = mdium;

else
newspeed = fast;

default:
newspeed = stop;

endcase
end

always @(posedge clk or 
negedge keys)

begin
if(!keys)
speed = stop;

else
speed = newspeed;

end

endmodule
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Conclusion : Write codes which can 
be translated into hardware !

The following cannot be translated into hardware( non - synthesizable):
• Initial blocks

– Used to set up initial state or describe finite testbench stimuli
– Don’t have obvious hardware component

• Delays
– May be in the Verilog source, but are simply ignored

• In short,  write codes with a hardware in your mind. In other words 
do not depend too much upon the tool to decide upon the resultant 
hardware. 

• Finally, remember that you are a better designer than the tool.


