
Dept of CSE, IIT Madras 1

Introduction
To

HDL

Verilog HDL

Debdeep Mukhopadhyay

debdeep@cse.iitm.ernet.in

Dept of CSE, IIT Madras 2

How it started!

• Gateway Design Automation
• Cadence purchased Gateway in 1989.
• Verilog was placed in the public domain.
• Open Verilog International (OVI) was

created to develop the Verilog Language
as IEEE standard.

Dept of CSE, IIT Madras 3

The Verilog Language

• Originally a modeling language for a very efficient event-
driven digital logic simulator

• Later pushed into use as a specification language for
logic synthesis

• Now, one of the two most commonly-used languages in
digital hardware design (VHDL is the other)

• Virtually every chip (FPGA, ASIC, etc.) is designed in
part using one of these two languages

• Combines structural and behavioral modeling styles

Dept of CSE, IIT Madras 4

Concurrency

• Verilog or any HDL has to have the power to
model concurrency which is natural to a piece of
hardware.

• There may be pieces of two hardware which are
even independent of each other.

• Verilog gives the following constructs for
concurrency:
– always
– assign
– module instantiation
– non-blocking assignments inside a sequential block

Dept of CSE, IIT Madras 5

However…

• The simulating machine is sequential.
• no-matter how many processors I have, I can

write one more process which also have to be
simulated concurrently.

• So, the processes are scheduled sequentially so
that we have a feeling of parallelism:
– like the desktop of our PC where we may open an

editor, a netscape and so on. We have a feeling that
they are executed parallely, but in reality there is a
serialization involved.

Dept of CSE, IIT Madras 6

Race…

• So, always blocks (for example) are parallel…
• Even though they are not actually.
• So, which always block gets executed first? My

simulation results will depend upon that!
• Standards do not say anything.
• It may be that the last always block is executed

first…
• and so we have race!

Dept of CSE, IIT Madras 7

How do we overcome race?

• We shall see in the class…
• Try to think of a clean hardware and you

will not have race

Dept of CSE, IIT Madras 8

Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
notg4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Verilog programs built from modules

Each module has
an interface

Module may contain
structure: instances of
primitives and other
modules

Dept of CSE, IIT Madras 9

Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
notg4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Identifiers not
explicitly defined
default to wires

Dept of CSE, IIT Madras 10

Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = b;
else f = a;

endmodule a

b
sel

f

Modules may contain one
or more always blocks

Sensitivity list
contains signals
whose change
triggers the
execution of the
block

Dept of CSE, IIT Madras 11

Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = b;
else f = a;

endmodule a

b
sel

f

A reg behaves like memory:
holds its value until
imperatively assigned
otherwise

Body of an always
block contains
traditional imperative
code

Dept of CSE, IIT Madras 12

Mux with Continuous Assignment

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? b : a;

endmodule

a

b
sel

f

LHS is always set to the
value on the RHS
Any change on the right
causes re-evaluation

Dept of CSE, IIT Madras 13

Identifiers in Verilog

• Any Sequence of letter, digits, dollar sign,
underscore.

• First character must be a letter or
underscore.

• It cannot be a dollar sign.
• Cannot use characters such as hyphen,

brackets, or # in verilog names

Dept of CSE, IIT Madras 14

Verilog Logic Values

• Predefined logic value system or value set
: ‘0’, ‘1’ ,’x’ and ‘z’;

• ‘x’ means uninitialized or unknown logic
value

• ‘z’ means high impedance value.

Dept of CSE, IIT Madras 15

Verilog Data Types

• Nets: wire, supply1, supply0
• reg
• wire:
i) Analogous to a wire in an ASIC.
ii) Cannot store or hold a value.
• Integer

Dept of CSE, IIT Madras 16

The reg Data Type

• Register Data Type: Comparable to a variable in a programming
language.

• Default initial value: ‘x’

• module reg_ex1;
reg Q; wire D;
always @(posedge clk) Q=D;

• A reg is not always equivalent to a hardware register, flipflop or
latch.

• module reg_ex2; // purely combinational
reg c;
always @(a or b) c=a|b;
endmodule

Dept of CSE, IIT Madras 17

Difference between driving and
assigning

• Programming languages provide variables that
can contain arbitrary values of a particular type.

• They are implemented as simple memory
locations.

• Assigning to these variables is the simple
process of storing a value into the memory
location.

• Verilog reg operates in the same way. Previous
assignments have no effect on the final result.

Dept of CSE, IIT Madras 18

Example

• module assignments;
reg R;
initial R<=#20 3;
initial begin

R=5; R=#35 2;
end
initial begin

R<=#100 1;
#15 R=4;
#220;
R=0;

end
endmodule

The variable R is shared by all the
concurrent blocks.

R takes the value that was last
assigned.

This is like a hardware register which
also stores the value that was last
loaded into them.

But a reg is not
necessarily a hardware
register.

Dept of CSE, IIT Madras 19

Wire: helps to connect

• Consider a set of tristate drivers
connected to a common bus.

• The output of the wire depends on all the
outputs and not on the last one.

• To model connectivity, any value driven by
a device must be driven continuously onto
that wire, in parallel with the other driving
values.

Dept of CSE, IIT Madras 20

Code
• module simple(A,B,C,sel,Z);

input A, B, C;
input [1:0] sel;
output Z;
reg Z;
always @(A or B or C or SEL)
begin

2’b00: Z=1’bz;
2’b01: Z=A;
2’b10: Z=B;
2’b11: Z=C;

endcase
end

endmodule

• module simple(A,B,C,sel,Z);
input A, B, C;
input [1:0] sel;
output Z;

assign Z=(SEL==2’b01)?A: 1’bz;
assign Z=(SEL==2’b10)?B:1’bz;
assign Z=(SEL==2’b11)?C:1’bz;

endmodule
Inferred as a multiplexer.

But we wanted drivers!

Dept of CSE, IIT Madras 21

Numbers

• Format of integer constants:
Width’ radix value;

• Verilog keeps track of the sign if it is
assigned to an integer or assigned to

a parameter.
• Once verilog looses sign the designer has

to be careful.

Dept of CSE, IIT Madras 22

Hierarchy

• Module interface provides the means to
interconnect two verilog modules.

• Note that a reg cannot be an input/ inout
port.

• A module may instantiate other modules.

Dept of CSE, IIT Madras 23

Instantiating a Module

• Instances of

module mymod(y, a, b);

• Lets instantiate the module,
mymod mm1(y1, a1, b1); // Connect-by-position

mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name

Dept of CSE, IIT Madras 24

Sequential Blocks

• Sequential block is a group of statements
between a begin and an end.

• A sequential block, in an always statement
executes repeatedly.

• Inside an initial statement, it operates only once.

Dept of CSE, IIT Madras 25

Procedures

• A Procedure is an always or initial
statement or a function.

• Procedural statements within a sequential
block executes concurrently with other
procedures.

Dept of CSE, IIT Madras 26

Assignments
• module assignments

// continuous assignments
always // beginning of a procedure

begin //beginning of a sequential block
//….Procedural assignments
end

endmodule

• A Continuous assignment assigns a value to a wire like a real gate
driving a wire.

module holiday_1(sat, sun, weekend);

input sat, sun; output weekend;

// Continuous assignment

assign weekend = sat | sun;

endmodule

module holiday_2(sat, sun, weekend);

input sat, sun; output weekend;

reg weekend;

always @(sat or sun)

weekend = sat | sun; // Procedural

endmodule // assignment

Dept of CSE, IIT Madras 27

Blocking and Nonblocking
Assignments

• Blocking procedural assignments must be
executed before the procedural flow can
pass to the subsequent statement.

• A Non-blocking procedural assignment is
scheduled to occur without blocking the
procedural flow to subsequent statements.

Dept of CSE, IIT Madras 28

Nonblocking Statements are odd!

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Dept of CSE, IIT Madras 29

Nonblocking Looks Like Latches

• RHS of nonblocking taken from latches
• RHS of blocking taken from wires

a = 1;
b = a;
c = b;

a <= 1;
b <= a;
c <= b;

1
a b c

“
”

a

b

c

1

“
”

Dept of CSE, IIT Madras 30

Examples
• Blocking:

always @(A1 or B1 or C1 or M1)
begin

M1=#3(A1 & B1);
Y1= #1(M1|C1);

end
• Non-Blocking:

always @(A2 or B2 or C2 or M2)
begin

M2<=#3(A2 & B2);
Y2<=#1(M1 | C1);

end

Statement executed at
time t+3 causing Y1 to be
assigned at time t+4

Statement executed at
time t causing Y2 to be
assigned at time t+1.
Uses old values.

Statement executed at
time t causing M1 to be
assigned at t+3

Statement executed at
time t causing M2 to be
assigned at t+3

Dept of CSE, IIT Madras 31

Order dependency of
Concurrent Statements

• Order of concurrent statements does not
affect how a synthesizer synthesizes a
circuit.

• It can affect simulation results.

Dept of CSE, IIT Madras 32

Order dependency of
Concurrent Statements

• always @(posedge clock)
begin: CONCURR_1

Y1<=A;
end

• always @(posedge clock)
begin: CONCURR_2

if(Y1) Y2=B; else Y2=0;
end

B

A

clk

Y1

Y2

Can you figure out the possible mismatch of simulation with synthesis results?

Dept of CSE, IIT Madras 33

Explanation of the mismatch

• The actual circuit is a concurrent process.
• The first and second flip flop are operating

parallel.
• However if the simulator simulates

CONCURR_1 block before CONCURR_2,
we have an error. Why?

• So, how do we solve the problem?

Dept of CSE, IIT Madras 34

Solution

• always @(posedge clock)
begin
Y1<=A;
if(Y1==1)

Y2<=B;
else

Y2<=0;
end

With non-blocking assignments
the order of the assignments

is immaterial…

Dept of CSE, IIT Madras 35

Parameterized Design

• module vector_and(z, a, b);
parameter cardinality = 1;
input [cardinality-1:0] a, b;
output [cardinality-1:0] z;
wire [cardinality-1:0] z = a & b;

endmodule

• We override these parameters when we instantiate the module as:
module Four_and_gates(OutBus, InBusA, InBusB);
input [3:0] InBusA, InBusB; output[3:0] OutBus;
Vector_And #(4) My_And(OutBus, InBusA, InBusB);

endmodule

Dept of CSE, IIT Madras 36

Functions (cont’d)

• Function Declaration and Invocation
– Declaration syntax:

function <range_or_type> <func_name>;
<input declaration(s)>
<variable_declaration(s)>
begin // if more than one statement needed

<statements>
end // if begin used

endfunction

Dept of CSE, IIT Madras 37

Function Examples
Controllable Shifter

module shifter;
`define LEFT_SHIFT 1'b0
`define RIGHT_SHIFT 1'b1
reg [31:0] addr, left_addr,

right_addr;
reg control;

initial
begin

…
end
always @(addr)begin
left_addr =shift(addr,
`LEFT_SHIFT);
right_addr
=shift(addr,`RIGHT_SHIFT);

end

function [31:0]shift;
input [31:0] address;
input control;
begin
shift = (control==`LEFT_SHIFT)
?(address<<1) : (address>>1);

end
endfunction

endmodule

Dept of CSE, IIT Madras 38

How Are Simulators Used?

• Testbench generates stimulus and checks response
• Coupled to model of the system
• Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result
checker

Dept of CSE, IIT Madras 39

Looking back at our
multiplexer

• “Dataflow” Descriptions of Logic
//Dataflow description of mux
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
assign out = (~select & in0)

| (select & in1);
endmodule // mux2

Alternative:

assign out = select ? in1 : in0;

Dept of CSE, IIT Madras 40

TestBench of the Multiplexer

• Testbench
module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

initial
begin

s=0; a=0; b=1; expected=0;
#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;

end
initial

$monitor(
"select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
s, a, b, f, expected, $time);

endmodule // testmux

Dept of CSE, IIT Madras 41

A Car Speed Controller

SLOW

FASTSTOP

MEDIUM

Accelerate

Brake

Accelerate
Brake

Accelerate

Brake
~Brake

(~Accelerate) & (~ Brake)(~Accelerate) & (~ Brake)

Dept of CSE, IIT Madras 42

Car Controller Coding
module fsm_car_speed_1(clk, keys, brake, accelerate,

speed);
input clk, keys, brake, accelerate;
output [1:0] speed;
reg [1:0] speed;

parameter stop = 2'b00,
slow = 2'b01,
mdium = 2'b10,
fast = 2'b11;

Dept of CSE, IIT Madras 43

Car Controller (contd.)

always @(posedge clk or
negedge keys)

begin
if(!keys)
speed = stop;

else if(accelerate)
case(speed)
stop: speed = slow;

slow: speed = mdium;
mdium: speed = fast;
fast: speed = fast;

endcase

else if(brake)
case(speed)

stop: speed = stop;
slow: speed = stop;
mdium: speed = slow;
fast: speed = mdium;

endcase
else
speed = speed;

end

endmodule

Dept of CSE, IIT Madras 44

A Better Way!

• We keep a separate control part where the
next state is calculated.

• The other part generates the output from
the next state.

• We follow this architecture in the coding of
any finite state machines, like ALU, etc. (
to be discussed later)

Dept of CSE, IIT Madras 45

module fsm_car_speed_2(clk, keys,
brake, accelerate, speed);

input clk, keys, brake, accelerate;
output [1:0] speed;
reg [1:0] speed;
reg [1:0] newspeed;

parameter stop = 2'b00,
slow = 2'b01,
mdium = 2'b10,
fast = 2'b11;

always @(keys or brake or
accelerate or speed)

begin
case(speed)
stop:

if(accelerate)
newspeed = slow;

else
newspeed = stop;

slow:
if(brake)
newspeed = stop;

else if(accelerate)
newspeed = mdium;

else
newspeed = slow;

mdium:
if(brake)
newspeed = slow;

else if(accelerate)
newspeed = fast;

else
newspeed = mdium;

fast:
if(brake)
newspeed = mdium;

else
newspeed = fast;

default:
newspeed = stop;

endcase
end

always @(posedge clk or
negedge keys)

begin
if(!keys)
speed = stop;

else
speed = newspeed;

end

endmodule

Dept of CSE, IIT Madras 46

Conclusion : Write codes which can
be translated into hardware !

The following cannot be translated into hardware(non - synthesizable):
• Initial blocks

– Used to set up initial state or describe finite testbench stimuli
– Don’t have obvious hardware component

• Delays
– May be in the Verilog source, but are simply ignored

• In short, write codes with a hardware in your mind. In other words
do not depend too much upon the tool to decide upon the resultant
hardware.

• Finally, remember that you are a better designer than the tool.

