
Modeling of Finite State
Machines

Debdeep Mukhopadhyay

Definition

• 5 Tuple: (Q,Σ,δ,q0,F)
• Q: Finite set of states
• Σ: Finite set of alphabets
• δ: Transition function

– Qχ Σ Q
• q0 is the start state
• F is a set of accept states. They are also

called final states.

Some Examples

1

What does this FSM do?
It accepts the empty string or any string that ends with

0
These set of strings which takes the FSM to its

accepting states are often called language of the
automaton.

0
1

0

Another Example

• Accepts strings that starts and ends with the
same bits.

10

1

0 1

1 0 0

A more complicated example

• FSM accepts if the running sum of the
input strings is a multiple of 3.

• RESET symbol resets the running sum to
0.

q0

2

2,<RESET>

2

q1

q2

0,<RESET> 1

1,<RESET>

0

01

Designing FSMs

• Its an art.
• Pretend to be an FSM and imagine the

strings are coming one by one.
• Remember that there are finite states.
• So, you cannot store the entire string, but

only crucial information.
• Also, you do not know when the string

ends, so you should always be ready with
an answer.

Example

• Design a FSM which accepts 0,1 strings
which has an odd number of 1’s.

• You require to remember whether there
are odd 1’s so far or even 1’s so far.

0
0

1

1

even odd

Example

• Design a FSM that accepts strings that
contain 001 as substrings.

• There are 4 possibilities
– No string
– seen a 0
– seen a 00
– seen a 001

Answer

• Note that their may be cases where design
of FSMS are not possible.

• Like design an FSM for strings which has
the same number of 0’s and 1’s.

1
0

1

q q0
0 1

0

q00 q001

How to model such FSMs?

Simple Model of FSM

Next state logic
(combinational)

Current State
Register

(sequential)

Output logic
(combinational)

Clock

Output

Inputs

Mealy Machine/Moore Machine

Next state logic
(combinational)

Current State
Register

(sequential)

Output logic
(combinational)

Clock

Mealy
OutputsInputs

Next state logic
(combinational)

Current State
Register

(sequential)

Output logic
(combinational)

Clock

Moore
Outputs

Inputs

Asynchronous Reset

Asynchronous Reset

Modeling FSMs using Verilog

Issues

• State Encoding
– sequential
– gray
– Johnson
– one-hot

Encoding Formats

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

0000
0001
0011
0111
1111
1110
1100
1000

000
001
011
010
110
111
101
100

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

One-hotJohnsonGraySequentialNo

Comments on the coding styles

• Binary: Good for arithmetic operations.
But may have more transitions, leading to
more power consumptions. Also prone to
error during the state transitions.

• Gray: Good as they reduce the transitions,
and hence consume less dynamic power.
Also, can be handy in detecting state
transition errors.

Coding Styles

• Johnson: Also there is one bit change, and can
be useful in detecting errors during transitions.
More bits are required, increases linearly with
the number of states. There are unused states,
so we require either explicit asynchronous reset
or recovery from illegal states (even more
hardware!)

• One-hot: yet another low power coding style,
requires more no of bits. Useful for describing
bus protocols.

Good and Bad FSM

FSM State Diagram

read write

delay

read write

delay

FSM_BAD FSM_GOOD

Reset

SlowROM SlowROM

Bad Verilog
always@(posedge Clock)
begin
parameter ST_Read=0,ST_Write=1,ST_Delay=3;
integer state;
case(state)

ST_Read:
begin

Read=1;
Write=0;
State=ST_Write;

end

Bad Verilog

ST_Write:
begin

Read=0;
Write=1;
if(SlowRam) State=ST_Delay;
else State=ST_Read;

end

Bad Verilog

ST_Delay:
begin

Read=0;
Write=0;
State=ST_Read;

end
endcase
end

Why Bad?

• No reset. There are unused states in the FSM.

• Read and Write output assignments also infer an
extra flip-flop.

• No default, latch is inferred.

• There is feedback logic.

Good verilog

always @(posedge Clock)
begin

if(Reset)
CurrentState=ST_Read;

else
CurrentState=NextState;

end

Good verilog

always@(CurrentState or SlowRAM)
begin

case(CurrentState)
ST_Read:

begin
Read=1; Write=0;
NextState=ST_Write;

end

Good Verilog

ST_Write:
begin

Read=0; Write=1;
if(SlowRAM) NextState=ST_Delay;
else NextState=ST_Read;

end

Good Verilog
ST_Delay:

begin
Read=0; Write=0; NextState=ST_Read;

end
default:

begin
Read=0; Write=0; NextState=ST_Read;

end
endcase

end

One Bad and four good FSMs

ST0

ST3
ST1

ST2

Reset

Y=1

Y=2

Y=3

Y=4

Control

Bad Verilog

always @(posedge Clock or posedge Reset)
begin

if(Reset) begin
Y=1;
STATE=ST0;

end

Bad verilog
else

case(STATE)
ST0: begin Y=1; STATE=ST1; end
ST1: begin Y=2;

if(Control) STATE=ST2;
else STATE=ST3;

ST2: begin Y=3; STATE=ST3; end
ST3: begin Y=4; STATE=ST0; end

endcase
end

Output Y is assigned under synchronous always block
so extra three latches inferred.

Good FSMs

• Separate CS, NS and OL

• Combined CS and NS. Separate OL

• Combined NS and OL. Separate CS

Next State (NS)
always @(control or currentstate)
begin

NextState=ST0;
case(currentstate)
ST0: begin

NextState=ST1;
end

ST1: begin …
…
ST3:

NextState=ST0;
endcase

end

Current State (CS)

always @(posedge Clk or posedge reset)
begin

if(Reset)
currentstate=ST0;

else
currentstate=Nextstate;

end

Output Logic (OL)

always @(Currentstate)
begin

case(Currentstate)
ST0: Y=1;
ST1: Y=2;
ST2: Y=3;
ST3: Y=4;

end

CS+NS
always@(posedge Clock or posedge reset)
begin

if(Reset)
State=ST0;

else
case(STATE)

ST0: State=ST1;
ST1: if(Control) …
ST2: …
ST3: STATE=ST0;

endcase
end

default not required
as it is in edge triggered

always statement

CS+NS
always @(STATE)

begin
case(STATE)
ST0: Y=1;
ST1: Y=2;
ST2: Y=3;
ST3: Y=4;
default: Y=1;
endcase

end

default required
as it is in combinational

always statement

NS+OL
always @(Control or Currentstate)
begin

case(Currentstate)
ST0: begin

Y=1;
NextState=ST1;

end
ST1: …
ST2: …
ST3: …
default: …

endcase
end

NS+OL

always @(posedge clock or posedge reset)
begin
if(reset)

Currentstate=ST0;
else

Currentstate=NextState;
end

