
Modeling Synchronous
Logic Circuits
Debdeep Mukhopadhyay

IIT Madras

Basic Sequential Circuits
• A combinational circuit produces output solely depending

on the current input.
• But a sequential circuit “remembers” its previous state.
• Its output depends on present inputs and previous state.

• Examples:
– Latches
– Registers
– Memory
– parallel to serial / serial to parallel converters
– Counters

Latch vs Registers
• Latch: Level sensitive device

– Positive Latches and Negative latches
– Can be realized using multiplexers

• Register: edge triggered storage element
– Can be implemented using latches
– Cascade a negative latch with a positive latch to

obtain a positive edge triggered register

• Flip flop: bi-stable component formed by the
cross coupling of gates.

Latches

• Cycle stealing is possible leading to faster
circuits

• Problem of timing analysis.

Latch inference using if
• module ….

always@(...)
begin

if(En1)
Y1=A1;

if(En2)
begin

M2<=!(A2&B2);
Y2<=!(M2|C2);

end
if(En3)

begin
M3=!(A3&B3);
Y3=!(M3|C3);

end

D
G

Q
~Q

A1

En1
Y1

D
G

Q
~Q

D
G

Q
~Q

A2

B2

C2

En2

Y2

A3

B3

C3

D
G

Q
~Q

En3

Y3

Modeling latches with present and
clear inputs

• begin
if(!Clear1)

Y1=0;
else if(En)

Y1=A1;

• begin
if(Clear2)

Y2=0;
else if(En)

Y2=A2;

Modeling latches with present and
clear inputs

• if(!Preset3)
Y3=1;

else if(En3)
Y3=A3;

• if(!Preset3)
Y3=1;

else if(En3)
Y3=A3;

D
G

Q
~Q

CLR

Modeling latches with present and
clear inputs

• if(Clear5)
Y5=0;

else if(Preset5)
Y5=1;

else if(En5)
Y5=A5;

D
G

Q
~Q

Clear5

Preset5

En5

A5
Y5

If there are no latches with a preset input In the library, equivalent
functionality is produced by using latches with a clear input.

CLR

Multiple gated latch

always @(En1 or En2 or En3 …)
if(En1==1)

Y=A1;
else if(En2==1)
Y=A2;

else if(En3==1)
Y=A3;

Try to synthesize and check
whether:

1. Is there a latch inferred?

2. Put an else statement. Is a latch
inferred now?

3. Put a default output assignment
before the if starts. Is a latch
inferred now?

4. Use the posedge keyword in the
trigger list, and repeat the above
experiments.

Other places of latch inferences

• Nested if: If all the possibilities are not
mentioned in the code.

• Case: In advertent. Not advisable to infer a
latch from case statement.
– may lead to superfluous latches.

• Nested case statements can also infer
latches.

The D-Flip Flop

• always @(posedge clk)
Y=D;

• A-Synchronous reset:
always @(posedge clk or posedge reset)

if(reset)
Y=0

else Y=D;

Resets

• Synchronous reset:
always @(posedge clk)

if(reset)
Y=0

else Y=D;

Combinational Block between two
flops

• always@(posedge clk)
begin
M <= !(A & B);
Y <= M|N;

end
assign N=C|D;

What will happen if a blocking assignment is used?

The first flip flop will become redundant…

Sequence Generators

• Linear Feedback Shift Registers

• Counters

LFSR Applications

• Pattern Generators
• Counters
• Built-in Self-Test (BIST)
• Encryption
• Compression
• Checksums
• Pseudo-Random Bit Sequences

(PRBS)

LFSR
Linear Feedback Shift Register (LFSR):

For pseudo random number generation
A shift register with feedback and
exclusive-or gates in its feedback or shift
path.
The initial content of the register is
referred to as seed.
The position of XOR gates is determined
by the polynomial (poly).

An LFSR outline

The feedback function (often called the taps) can be reprsesented
by a polynomial of degree n

A 4 bit LFSR

The feedback polynomial is p(x)=x4+x+1

A 4 bit LFSR
1111
0111
1011
0101
1010
1101
0110
0011
1001
0100
0010
0010
1000
1100
1110

Output sequence:
111101011001000...

All the 24-1 possible states are generated. This is called a maximal
length LFSR. So, the sequence depends on the feedbacks.

Types of feedbacks

• Feedbacks can be comprising of XOR
gates.

• Feedbacks can be comprising of XNOR
gates.

• Given the same tap positions, both will
generate the same number of values in a
cycle. But the values will be same.

• Permutation!

Number of Taps
• For many registers of length n, only two taps

are needed, and can be implemented with a
single XOR (XNOR) gate.

• For some register lengths, for example 8, 16,
and 32, four taps are needed. For some
hardware architectures, this can be in the
critical timing path.

• A table of taps for different register lengths is
included in the back of this module.

One-to-Many and Many-to-
One

Implementation (a) has only a single gate delay between flip-flops.

Avoiding the Lockup State
Will Use XOR Form For Examples

We have an n-bit LFSR, shifting to the “right”

0n

Avoiding the Lockup State
Will Use XOR Form For Examples

The all ‘0’s state can’t be entered during normal operation but
we can get close. Here’s one of n examples:

0n

0 0 0 0 0 1

We know this is a legal state since the only illegal state is all
0’s. If the first n-1 bits are ‘0’, then bit 0 must be a ‘1’.

Avoiding the Lockup State
Will Use XOR Form For Examples

Now, since the XOR inputs are a function of taps, including
the bit 0 tap, we know what the output of the XOR tree will be:
‘1’.
It must be a ‘1’ since ‘1’ XOR ‘0’ XOR ‘0’ XOR ‘0’ = ‘1’.

0n

0 0 0 0 0 1

So normally the next state will be:

0n

1 0 0 0 0 0

Avoiding the Lockup State
Will Use XOR Form For Examples

But instead, let’s do this, go from this state:

0n

0 0 0 0 0 1

To the all ‘0’s state:

0n

1 0 0 0 0 0

Avoiding the Lockup State
Modification to Circuit

NOR of all bits
except bit 0

2n-1 states 2n states

Added this term

a) “000001” : 0 Xor 0 Xor 0 Xor 1 Xor 1 ⇒ 0
b) “000000” : 0 Xor 0 Xor 0 Xor 0 Xor 1 ⇒ 1
c) “100000” :

Verilog code

module …
always@(posedge clk or posedge rst)
begin

if(rst)
LFSR_reg=8’b0;
else
LFSR_reg=Next_LFSR_reg;

end

verilog
always @(LFSR_reg)

begin
Bits0_6_zero=~|LFSR_Reg[6:0];
Feedback=LFSR_Reg[7]^ Bits0_6_zero;

for(N=7;N>0;N=N-1)
if(Taps[N-1]==1)

Next_LFSR_Reg[N]=LFSR_Reg[N-1]^Feedback;
else
Next_LFSR_Reg[N]=LFSR_Reg[N-1];

Next_LFSR_Reg[0]=Feedback;
end

assign Y=LFSR_Reg;
endmodule

A Generic LFSR
module LFSR_Generic_MOD(Clk,rst,Y);
parameter wdth=8;
input clk,rst;
output [wdth-1:0] Y;
reg [31:0] Tapsarray [2:32];
wire [wdth-1:0] Taps;
integer N;
reg Bits0_Nminus1_zero, Feedback;
reg [wdth-1:0] LFSR_Reg, Next_LFSR_Reg;

always @(rst)
begin

TapsArray[2]=2’b11;
TapsArray[3]=3’b101;
…
TapsArray[32]=32’b10000000_00000000_00000000_01100010;

end
assign Taps[wdth-1:0]=TapsArray[wdth];

REST OF THE CODE IS SIMILAR TO THE PREVIOUS EXAMPLE

Counters

• A register that goes through a pre-
determined sequence of binary values
(states), upon the application of input
pulses in one or more than inputs is called
a counter.

• The input pulses can be random or
periodic.

• Counters are often used as clock dividers.

Timing Diagrams

• The outputs (Q0 ⇒ Q3) of the counter can be used
as frequency dividers with Q0 = Clock ÷ 2, Q1 =
Clock ÷ 4, Q2 = Clock ÷ 8, and Q3 = Clock ÷ 16.

Types
• Synchronous

– Using adders, subtractors
– Using LFSRs, better performance because of simple

circuits. Most feedback polynomials are trinomials or
pentanomials.

• Asynchronous:
– Ripple through flip flops
– each single flip flop stage divides by 2
– so, we may obtain division by 2n

– what if they are not powers of two? we require extra
feedback logic

– significantly smaller

Divide by 13 :
A synchronous design

always@(posedge clk or posedge rst)
begin

if(!rst)
begin

cnt<=startcnt;
Y<=0;

end

Divide by 13 :
A synchronous design

else
if(Count==EndCount)

begin
Count<=StartCount;
Y<=1;
end

Divide by 13 :
A synchronous design

else
begin

for(N=1;N<=3;N=N-1)
if(Taps[N])

Count[N]<=Count[N-1]~^Count[3];
else

Count[N]<=Count[N-1];
Count[0]<=Count[3];
Y=0;
end

end

Asynchronous Design

• Instantiate 4 DFFs.
• Ripple the clock through them
• Output is a divided by 16 clock.
• Use the output states and check when 13

clock cycles have elapsed.
• Use it to make the output bit high.
• Reset the Flip Flops
• Exercise: Write a verilog code!

Pros and Cons
of

Synchronous and Asynchronous
Resets

Problem of Choice

• Quite a complex issue.

• All of us know the importance of the reset
button. When our PC does not work!

• Less understood, less emphasized.

• Require to a treatment to perform an informed
design.

Some Points
• Reset style depends on the ASIC design style,

the application and where the flip flop is located.
• If we design considering all the unused states

(like the 2n-2n states in a Johnson’s Counter),
we should be able to do reset from any possible
state.

• A power on reset is required if the designer used
the unused states as don’t cares to do
optimization.

• Often an explicit reset is not required if the flop is
a part of shift register, just wait for some clock
cycles. These are often called follower flops

Good Reset

• Synchronous Reset:
module goodFFstyle (

output reg q2,
input d, clk, rst_n);
reg q1;
always @(posedge clk)

if (!rst_n) q1 <= 1'b0;
else q1 <= d;

always @(posedge clk)
q2 <= q1;

endmodule

Bad Reset
module badFFstyle (

output reg q2,
input d, clk, rst_n);

reg q1;
always @(posedge clk)
if (!rst_n) q1 <= 1'b0;
else begin

q1 <= d;
q2 <= q1;

end
endmodule

Bad Hardware

Unnecessary use of a loadable flip flop

Good Hardware

This is one of the few cases where a multiple always block
is adviced.

Pros of Synchronous Resets

• Flip flop size is less. Although the gate
count increases.

• Circuit is 100% synchronous.
• Sometimes the reset may be an internally

generated signal and may have glitches.
• Work as a filter for such reset glitches.
• However there can be a metastability if the

glitches occur near the clock edges.

Cons

• Not all ASIC libraries do have them
• Need a pulse stretcher to ensure that reset

stays when the clock goes high
• Simulation issues can creep in, due to x-

logic.
• Its often an annoying fact that you can do

reset only when there is a clock. What if
the clock is disable, say to save power?

• And would like to start the block.

Good Reset Again!

• Asynchronous Reset:
module good_async_resetFFstyle (

output reg q,
input d, clk, rst_n);

always @(posedge clk or negedge rst_n)
if (!rst_n) q <= 1'b0;
else q <= d;

endmodule

Pros
• Data Path is clean.

Less gates on the
data path.

module ctr8ar (
output reg [7:0] q,
output reg co;
input [7:0] d;
input ld, rst_n, clk;
always @(posedge clk or negedge

rst_n)
if (!rst_n) {co,q} <= 9'b0; // async

//reset
else if (ld) {co,q} <= d; // sync load
else {co,q} <= q + 1'b1; // sync

increment
endmodule

Cons

• Difficult static Timing Analysis is hard.
• If the reset net is not derived from the

input, they have to disable for scan based
test (DFT issues).

• Glitches in the reset signal can be a
problem.

• De-assertion of the reset could be an
issue. If it happens near the active clock
edge meta-stability can occur.

Two main Cons…
• Reset Recovery Time: Time between the de-

assertion of reset and the next active clock
edge. If this is not obeyed, meta-stability can
occur.

• Reset removal is asynchronous: Consider, the
reset going to more than one flop. Due to the
different propagation time in either or both the
reset and the clock signal, some flops may be in
reset state, while others may have gone passed
the reset state.

And Ugly Reset

• Two flip-flops are required to synchronize the reset signal to the
clock pulse

• The second flip-flop is used to remove any metastability that might
be caused by the reset signal being removed asynchronously and
too close to the rising clock edge.

• You also have the best of asynchronous reset.
• Only reset becomes ugly!

Reset using the reset synchronizer

module async_resetFFstyle2 (
output reg rst_n,
input clk, asyncrst_n);
reg rff1;
always @(posedge clk or negedge asyncrst_n)
if (!asyncrst_n) {rst_n,rff1} <= 2'b0;
else {rst_n,rff1} <= {rff1,1'b1};
endmodule

Conclusion

• We have seen various kinds of resets.

• Resets that are good, bad and ugly.

• One thing is clear reset is not simple. They
should be carefully handled.

