
Trees and Binary Relations

Debdeep Mukhopadhyay
IIT Madras

Outline

• Tree : definition and its relation with binary
relations

• Properties
• Expressions:

– Balancedness
– Infix, Postfix and Prefix

• Expression Trees
• Traversal of Trees: Inorder, Postorder and

Preorder

Trees and Relations

• They are an important class of binary
relations

• They have many applications in CS: data
structures, design of algorithms, analyzing
networks etc

• Can be expressed and formalized using
Directed Graphs (Digraphs)

Trees and Relations

• A Tree is a digraph with a nonempty set of
nodes such that:
– (i) there is exactly one node, called the root, which

has indegree 0
– (ii) every node other than the root has indegree 1
– (iii) for every node a of the tree, there is a directed

path from the root to a.
• Alternate Defn: A tree is a connected, directed

acyclic graph (see your graph theory text book)

Examples

Trees

Not-Trees

Terms
Root

Father

Son

Leaf

Height=2

Restriction on the paths help to
traverse all the nodes of the tree
algorithmically and perform more
efficient searches than general
digraphs.

Properties

• They are many
• Few important results:

– There is a unique directed path from the root r
to any node a.

– Every directed path is a simple path

– There are no loops on nodes of trees

Restricted Trees

• Applications of trees involve restricted
classes

• If every node has n or fewer sons, it is
called n-ary tree.

• If every node has either n or zero sons
they are called complete n-ary trees.

• We shall be dealing with binary trees in
more detail.

One Application of Trees to CS:
Manipulation of Expressions

Normal form of Expressions
• Expressions of all kinds are defined recursively
• Basis: Variables, Integers and Real Numbers

• Induction: If E1 and E2 are arithmetic
operations:
1. E1+E2
2. E1-E2
3. E1χE2
4. E1/ E2

5. If E is an arithmetic expression, then so is (-E)
(prefix operator)

Infix operators

Balanced Parenthesis

• ((a+b)χ((c+d)-e)): Balanced
• Definition of “balanced parenthesis” is

governed by two rules (iterative rule):
1. A balanced string has an equal number of left and

right parenthesis.
2. As we move from left to right along the string, the

profile of the string never becomes negative. Here
the profile is the running total of the number of left
parenthesis minus the number of right parenthesis.

Recursive Rule

• Basis: The empty string is balanced
• Induction: If x and y are strings of

balanced parenthesis, then (x)y is also a
string of balanced parenthesis.

• Both the notions can be proved to be
same.

Infix, Postfix and Prefix
• Infix: A+B
• Postfix: AB+
• Prefix: +AB
• Convert A+(B*C) from Infix to Postfix form:

– A+(BC*)
– A(BC*)+
– ABC*+

• The only rule that has to be remembered is:
– the operations with higher precedence are converted first, and
– that after a portion of the expression has been converted into

postfix it is to be treated as a single operand.

Advantage of Postfix form

• Do not need to remember precedences
• No parenthesis required
• Very easy to evaluate
• For an expression of length N, the order is

O(N).

Evaluate Postfix Expression
• Evaluate: 23+8*
• Push the operands, 2, 3 until you get an

operator.

• When you get the operator +, pop the two top-
most elements and apply the operator on them.
Then push the result, 5 into the stack. Continue
pushing 8. Then apply * to 8 and 5 (after
popping them). Thus, the expression evaluates
to 40.

2 3

5 8 40

Converting an infix to postfix form

• Lets concentrate on the expression:
– a+b*c+(d*e+f)*g
– We shall convert the infix string to postfix.
– Correct answer is: abc*+de*f+g*+
– An easy way of implementing shall involve

stacks.

• + has lowest priority, (has highest priority.
• Start with an empty stack.
• When an operand is read, it is placed onto the output.
• Operators are pushed into a stack, including the (.
• If we see a), we pop the stack, writing the symbols until

we see the (. Note we do not output (.
• If we see operators like +, * we push them into the stack

if their priority is higher than the element at the stack top.
• If we see operators like (, we push them into the stack.
• Finally, if the end of the stack is reached pop the stack

and write the output.

Example

• a+b*c+(d*e+f)*g

+

ab

*
+

abc

+

abc*+

(
+

abc*+d

*
(
+

abc*+de

Example

• a+b*c+(d*e+f)*g

+
(
+

abc*+de*f

+

abc*+de*f+

*
+

abc*+de*f+g

abc*+de*f+g*+

Expression Trees
• Expression Trees are binary trees and compact

representations of expressions
• We shall discuss a technique to convert postfix

expressions to trees.
• Method:

– If the symbol is an operand, create a one-node tree
and push its pointer to a stack.

– If the symbol is an operator, we pop twice to obtain
pointers T1 and T2 to two trees.

– If T1 is first popped, then form a tree with the operator
as root. The left child points to T2 and right to T1.
Then push the new pointer to the stack.

Example

abc*+de*f+g*+

a b c

a

b c

*

a

b c

*

d e+

Example

b c

*

d e

+

a

* f

b c

*
d e

+

a

* f

+ g

Example

b c

*

d e

+

a * f

+ g

*

b c

*

d e

+

a * f

+ g

*

+

Height of the tree

• A binary tree with n nodes, n>0, is of height at
least

• Once, the tree is constructed we need to
traverse the tree.

• There are three distinct methods for traversal:
– Inorder
– Preorder
– Postorder

• The techniques may be recursively defined

log n⎢ ⎥⎣ ⎦

Inorder

1. Traverse the left tree(wrt root), in order.
2. Traverse the root.
3. Traverse the right tree(wrt root), in order.

3 5

4

2

1

Example: Labels define the order
of traversal

Preorder

1. Traverse the root.
2. Traverse the left tree(wrt root), in order.
3. Traverse the right tree(wrt root), in order.

4 5

3

1

2

Example: Labels define the order
of traversal

Postorder

1. Traverse the left tree(wrt root), in order.
2. Traverse the right tree(wrt root), in order.
3. Traverse the root.

2 3

4

5

1

Example: Labels define the order
of traversal

Traversing the expression tree

• Postorder
Traversal

• abc*+de*f+g*+
(gives back the
postfix
expression)

b c

*

d e

+

a * f

+ g

*

+

Evaluate the expression tree
• Use Recursion
1. If the root is an

operand, return
value.

2. Else evaluate the left
tree.

3. Evaluate the right
tree.

4. Apply the operator on
the two returned
results.

5. Return the result.

b c

*

d e

+

a * f

+ g

*

+

Result: a+b*c+(d*e+f)*g

A possible representation
• #define OPERATOR 0
• #define OPERAND 1
• struct nodetype{

shortint utype;
union{

char chinfo;
float numinfo;

}info;
struct nodetype *left;
struct nodetype *right;
};

typedef struct nodetype *NODEPTR;

