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Introduction to Set Theory

• A set is a new type of structure, representing an 
unordered collection (group, plurality) of zero or 
more distinct (different) objects.

• Set theory deals with operations between, 
relations among, and statements about sets.

• Sets are ubiquitous in computer software 
systems.

• All of mathematics can be defined in terms of 
some form of set theory (using predicate logic).



Naïve set theory

• Basic premise: Any collection or class of objects 
(elements) that we can describe (by any means 
whatsoever) constitutes a set.

• But, the resulting theory turns out to be logically 
inconsistent! 
– This means, there exist naïve set theory propositions p such 

that you can prove that both p and ¬p follow logically from 
the axioms of the theory!

– ∴ The conjunction of the axioms is a contradiction!
– This theory is fundamentally uninteresting, because any 

possible statement in it can be (very trivially) “proved” by 
contradiction!

• More sophisticated set theories fix this problem.



Basic notations for sets

• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing 

all of its elements in curly braces: 
– {a, b, c} is the set of whatever 3 objects are 

denoted by a, b, c.
• Set builder notation: For any proposition 

P(x) over any universe of discourse, 
{x|P(x)} is the set of all x such that P(x).



Basic properties of sets

• Sets are inherently unordered:
– No matter what objects a, b, and c denote, 

{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);
multiple listings make no difference!
– If a=b, then {a, b, c} = {a, c} = {b, c} = 

{a, a, b, a, b, c, c, c, c}. 
– This set contains (at most) 2 elements!



Definition of Set Equality

• Two sets are declared to be equal if and only 
if they contain exactly the same elements.

• In particular, it does not matter how the set is 
defined or denoted.

• For example: The set {1, 2, 3, 4} = 
{x | x is an integer where x>0 and x<5 } = 
{x | x is a positive integer whose square

is  >0 and <25}



Infinite Sets

• Conceptually, sets may be infinite (i.e., not 
finite, without end, unending).

• Symbols for some special infinite sets:
N = {0, 1, 2, …}    The Natural numbers.
Z = {…, -2, -1, 0, 1, 2, …}  The Zntegers.
R = The “Real” numbers, such as 
374.1828471929498181917281943125…

• “Blackboard Bold” or double-struck font 
(ℕ,ℤ,ℝ) is also often used for these special 
number sets.

• Infinite sets come in different sizes!



Venn Diagrams

John Venn
1834-1923



Basic Set Relations: Member of

• x∈S (“x is in S”) is the proposition that 
object x is an ∈lement or member of set S.
– e.g. 3∈N, “a”∈{x | x is a letter of the alphabet}
– Can define set equality in terms of ∈ relation:
∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
“Two sets are equal iff they have all the same 
members.”

• x∉S :≡ ¬(x∈S)      “x is not in S”



The Empty Set

• ∅ (“null”, “the empty set”) is the unique set 
that contains no elements whatsoever.

• ∅ = {} = {x|False}
• No matter the domain of discourse,

we have the axiom ¬∃x: x∈∅.



Subset and Superset Relations

• S⊆T (“S is a subset of T”) means that 
every element of S is also an element of T.

• S⊆T ⇔ ∀x (x∈S → x∈T)
• ∅⊆S, S⊆S.
• S⊇T (“S is a superset of T”) means T⊆S.
• Note S=T ⇔ S⊆T∧ S⊇T.
• means ¬(S⊆T), i.e. ∃x(x∈S ∧ x∉T)

TS /⊆



Proper (Strict) Subsets & 
Supersets

• S⊂T (“S is a proper subset of T”) means 
that S⊆T but .  Similar for S⊃T.ST /⊆

S
T

Venn Diagram equivalent of S⊂T

Example:
{1,2} ⊂
{1,2,3}



Sets Are Objects, Too!

• The objects that are elements of a set 
may themselves be sets.

• E.g. let S={x | x ⊆ {1,2,3}}
then S={∅, 

{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}

• Note that 1 ≠ {1} ≠ {{1}} !!!!



Cardinality and Finiteness

• |S| (read “the cardinality of S”) is a 
measure of how many different elements 
S has.

• E.g., |∅|=0,    |{1,2,3}| = 3,   |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____

• If |S|∈N, then we say S is finite.
Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?



The Power Set Operation

• The power set P(S) of a set S is the set of 
all subsets of S.  P(S) :≡ {x | x⊆S}.

• E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}.
• Sometimes P(S) is written 2S.

Note that for finite S,   |P(S)| = 2|S|.
• It turns out ∀S:|P(S)|>|S|, e.g. |P(N)| > |N|.

There are different sizes of infinite sets!



Review: Set Notations So Far

• Variable objects x, y, z; sets S, T, U.
• Literal set {a, b, c} and set-builder {x|P(x)}.
• ∈ relational operator, and the empty set ∅.
• Set relations =, ⊆, ⊇, ⊂, ⊃, ⊄, etc.
• Venn diagrams.
• Cardinality |S| and infinite sets N, Z, R.
• Power sets P(S).



Naïve Set Theory is 
Inconsistent

• There are some naïve set descriptions that 
lead to pathological structures that are not 
well-defined.
– (That do not have self-consistent properties.)

• These “sets” mathematically cannot exist.
• E.g. let S = {x | x∉x }.  Is S∈S?
• Therefore, consistent set theories must 

restrict the language that can be used to 
describe sets.

• For purposes of this class, don’t worry 
about it!

Bertrand Russel
1872-1970



Ordered n-tuples

• These are like sets, except that 
duplicates matter, and the order makes 
a difference.

• For n∈N, an ordered n-tuple or a 
sequence or list of length n is written 
(a1, a2, …, an). Its first element is a1, etc.

• Note that (1, 2) ≠ (2, 1) ≠ (2, 1, 1).
• Empty sequence, singlets, pairs, triples, 

quadruples, quintuples, …,  n-tuples.

Contrast with
sets’ {} 



Cartesian Products of Sets

• For sets A, B, their Cartesian product
A×B :≡ {(a, b) | a∈A ∧ b∈B }.

• E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)}
• Note that for finite A, B,   |A×B|=|A||B|.
• Note that the Cartesian product is not

commutative: i.e., ¬∀AB: A×B=B×A.
• Extends to A1 × A2 × … × An...

René Descartes 
(1596-1650) 



Review

• Sets S, T, U… Special sets N, Z, R.
• Set notations {a,b,...}, {x|P(x)}…
• Set relation operators x∈S, S⊆T, S⊇T, 

S=T, S⊂T, S⊃T.  (These form 
propositions.)

• Finite vs. infinite sets.
• Set operations |S|, P(S), S×T.
• More set ops: ∪, ∩, −.



The Union Operator

• For sets A, B, their∪nion A∪B is the set 
containing all elements that are either in A, 
or (“∨”) in B (or, of course, in both).

• Formally, ∀A,B: A∪B = {x | x∈A ∨ x∈B}.
• Note that A∪B is a superset of both A and 

B (in fact, it is the smallest such superset):
∀A, B: (A∪B ⊇ A) ∧ (A∪B ⊇ B)



• {a,b,c}∪{2,3} = {a,b,c,2,3}
• {2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} 

Union Examples

Think “The United 
States of America 
includes every 
person who worked 
in any U.S. state last 
year.” (This is how 
the IRS sees it...)



The Intersection Operator

• For sets A, B, their intersection A∩B is the 
set containing all elements that are 
simultaneously in A and (“∧”) in B.

• Formally, ∀A,B: A∩B={x | x∈A ∧ x∈B}.
• Note that A∩B is a subset of both A and B 

(in fact it is the largest such subset):
∀A, B: (A∩B ⊆ A) ∧ (A∩B ⊆ B)



• {a,b,c}∩{2,3} = ___
• {2,4,6}∩{3,4,5} = ______

Intersection Examples

Think “The 
intersection of 
University Ave. and 
W 13th St. is just 
that part of the road 
surface that lies on 
both streets.”

∅
{4}



Disjointedness

• Two sets A, B are called
disjoint (i.e., unjoined)
iff their intersection is
empty.  (A∩B=∅)

• Example: the set of even
integers is disjoint with
the set of odd integers.

Help, I’ve
been

disjointed!



Inclusion-Exclusion Principle
• How many elements are in A∪B?

|A∪B| = |A| + |B| − |A∩B|
• Example: How many students are on 

our class email list?  Consider set E = I 
∪ M, 
I = {s | s turned in an information sheet}
M = {s | s sent the TAs their email 
address}

• Some students did both!
|E| = |I∪M| = |I| + |M| − |I∩M|



Set Difference

• For sets A, B, the difference of A and B, 
written A−B, is the set of all elements that 
are in A but not B.   Formally:

A − B :≡ {x | x∈A ∧ x∉B}
= {x | ¬(x∈A → x∈B) }

• Also called: 
The complement of B with respect to A.



Set Difference Examples

• {1,2,3,4,5,6} − {2,3,5,7,9,11} =
___________

• Z − N = {… , −1, 0, 1, 2, … } − {0, 1, … }
= {x | x is an integer but not a nat. 

#}
= {x | x is a negative integer}
= {… , −3, −2, −1}

{1,4,6}



Set Difference - Venn Diagram

• A−B is what’s left after B
“takes a bite out of A”

Set A Set B

Set
A−B



Set Complements

• The universe of discourse can itself be 
considered a set, call it U.

• When the context clearly defines U, we 
say that for any set A⊆U, the complement
of A, written    , is the complement of A
w.r.t. U, i.e., it is U−A.

• E.g., If U=N, 

A

,...}7,6,4,2,1,0{}5,3{ =



More on Set Complements

• An equivalent definition, when U is clear:

}|{ AxxA ∉=

A
U

A



Set Identities

• Identity:          A∪∅ = A = A∩U
• Domination:   A∪U = U  , A∩∅ = ∅
• Idempotent:      A∪A = A = A∩A
• Double complement: 
• Commutative:  A∪B = B∪A  , A∩B = B∩A
• Associative:    A∪(B∪C)=(A∪B)∪C ,

A∩(B∩C)=(A∩B)∩C

AA =)(



DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) 
DeMorgan’s Law for propositions.

BABA

BABA

∪=∩

∩=∪



Proving Set Identities

To prove statements about sets, of the form 
E1 = E2 (where the Es are set 
expressions), here are three useful 
techniques:

1. Prove E1 ⊆ E2 and E2 ⊆ E1 separately.
2. Use set builder notation & 

logical equivalences.
3. Use a membership table.



Method 1: Mutual subsets

Example: Show A∩(B∪C)=(A∩B)∪(A∩C).
• Part 1: Show A∩(B∪C)⊆(A∩B)∪(A∩C).

– Assume x∈A∩(B∪C), & show x∈(A∩B)∪(A∩C).
– We know that x∈A, and either x∈B or x∈C.

• Case 1: x∈B.  Then x∈A∩B, so x∈(A∩B)∪(A∩C).
• Case 2: x∈C. Then x∈A∩C , so x∈(A∩B)∪(A∩C).

– Therefore, x∈(A∩B)∪(A∩C).
– Therefore, A∩(B∪C)⊆(A∩B)∪(A∩C).

• Part 2: Show (A∩B)∪(A∩C) ⊆ A∩(B∪C). …



Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships 

in constituent sets.
• Use “1” to indicate membership in the 

derived set, “0” for non-membership.
• Prove equivalence with identical columns.



Membership Table Example

Prove (A∪B)−B = A−B.

AA BB AA∪∪BB ((AA∪∪BB))−−BB AA−−BB
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0



Membership Table Exercise

Prove (A∪B)−C = (A−C)∪(B−C).

A B C AA∪∪BB ((AA∪∪BB))−−CC AA−−CC BB−−CC ((AA−−CC))∪∪((BB−−CC))
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



Review

• Sets S, T, U… Special sets N, Z, R.
• Set notations {a,b,...}, {x|P(x)}…
• Relations x∈S, S⊆T, S⊇T, S=T, S⊂T, 

S⊃T.  
• Operations |S|, P(S), ×, ∪, ∩, −, 
• Set equality proof techniques:

– Mutual subsets.
– Derivation using logical equivalences.

S



Generalized Unions & Intersections

• Since union & intersection are 
commutative and associative, we can 
extend them from operating on ordered 
pairs of sets (A,B) to operating on 
sequences of sets (A1,…,An), or even on 
unordered sets of sets,
X={A | P(A)}.



Generalized Union

• Binary union operator: A∪B
• n-ary union:

A∪A2∪…∪An :≡ ((…((A1∪ A2)∪…)∪ An)
(grouping & order is irrelevant)

• “Big U” notation:

• Or for infinite sets of sets:
∪

n

i
iA

1=

∪
XA

A
∈



Generalized Intersection

• Binary intersection operator: A∩B
• n-ary intersection:

A1∩A2∩…∩An≡((…((A1∩A2)∩…)∩An)
(grouping & order is irrelevant)

• “Big Arch” notation:

• Or for infinite sets of sets:
∩

n

i
iA

1=

∩
XA

A
∈



Representations

• A frequent theme of this course will be 
methods of representing one discrete 
structure using another discrete structure 
of a different type.  

• E.g., one can represent natural numbers 
as
– Sets: 0:≡∅, 1:≡{0}, 2:≡{0,1}, 3:≡{0,1,2}, …
– Bit strings: 

0:≡0, 1:≡1, 2:≡10, 3:≡11, 4:≡100, …



Representing Sets with Bit Strings

For an enumerable u.d. U with ordering 
x1, x2, …, represent a finite set S⊆U as 
the finite bit string B=b1b2…bn where
∀i: xi∈S ↔ (i<n ∧ bi=1).

E.g. U=N, S={2,3,5,7,11}, 
B=001101010001.

In this representation, the set operators
“∪”, “∩”, “⎯” are implemented directly by 
bitwise OR, AND, NOT!



Set Operations on 

• What is      and      ?  
• :  Also, called alphabet. Finite and nonempty 

set of symbols or characters.
• Each element of this set can form what is called 

string of length say l.
• The length denotes the number of characters in 

the string.
• : The empty string, l=0

∑

*∑
*∑

∑

Λ



What is 

• : set of all finite strings of symbols from the 
alphabet. This includes     (empty string).

• Definition:
– Let      be an alphabet. Then    is defined as follows:

1. (Basis)   
2. (Induction) If           and         , then            
3. (Extremal) Nothing is an element of the set     unless it can 

be constructed with a finite number of applications of clause 
1 and 2.

Λ

*∑

*∑

∑ *∑
*Λ∈Σ

*x∈Σ a∈Σ *ax∈Σ
*Σ

*

*

, { , },  { , , , , , , , , ,...}
, {0,1},   is the set of all finite binary sequences, 

including the empty sequence.

If a b then a b aa ab ba bb aaa aab
If then

Σ = Σ = Λ

Σ = ΣExamples:



Concatenation of strings 

• Let,     be an alphabet and x and y are 
elements of      . If x=a1a2…am and y=b1b2…bn
where ai,bj belongs to the alphabet and m,n are 
integers from 0,1,2,…. Then the concatenation 
of x with y, denoted by x.y, x||y or simply as xy
is the string: xy=a1a2…amb1b2…bn. If x=    , 
then xy=y for every y; similarly if y=    , then 
xy=x for every x.

Σ
*Σ

Λ
Λ



Concatenation of x with itself

• Defn: Let x be an element of     . For each n 
belongs to N, xn is defined as:

*Σ

0

1

1. 
2. n n

x
x x x+

= Λ

=

0 1 2, { , } and ,  , ,
{ | 0} denotes the set, { , , , ,...}n n

If a b x ab then x x ab x abab
S a b n S ab aabb aaabbb

Σ = = = Λ = =

= ≥ = Λ



Language

• Language over    is a subset of   .  Σ *Σ

( ) The set { , , } is a language over { , }
( ) The set of strings consisting of sequences of '  followed by 
sequences of ' :{ | , }n m

a a ab abb a b
b a s

b s a b n m N

Σ =

∈

Let A and B be languages over . The set product of A and 
B is denoted by A.B, or simply AB is the language:

{ | }AB xy x A x B

Σ

= ∈ ∧ ∈

Note: In general AB is not the same as BA. The set product is not 
commutative.



Properties of the set product

Let A, B, C and D be arbitrary languages over . The following relations 
hold:
(a) A = A=
(b) A{ }={ }A=A
(c) (AB)C=A(BC)
(d) If A B and C D, then AC BD
(e) A(B C)=AB AC
(f) (B C)A=BA CA
(g) A(B C) AB AC
(h)

Σ

Φ Φ Φ
Λ Λ

⊂ ⊂ ⊂
∪ ∪

∪ ∪
∩ ⊂ ∩

(B C)A BA CA∩ ⊂ ∩



Product of language

n

0

n+1 n

n

n
1 2 i

Let A be a language over . The language A  
is defined as follows:
1. A { }
2. A A A, for n
The language A  is the set product of A with itself n times. 
So, if z A ,  then z=w ... ,  where each wnw w

∑

= Λ

= ∈

∈

`

,  for each i 
from 1 to n.

A∈



Theorem
*Let A and B be subsets of ,  and let m and n be arbitrary elements of 

. Then,
(a) 
( )( )
( )

m n m n

m n mn

n n

A A A
b A A
c A B A B

+

Σ

=

=

⊂ ⇒ ⊂

`

Proof: part (a) and (b) is left as an exercise.
Part (c) follows from mathematical induction.



Kleene Closure or Star closure of A
* *

*

* 2

Let A be a subset of . Then the set A  is defined as:
                                     

That is A { } ...

n

n N

A A

A A
∈

Σ

=

= Λ ∪ ∪ ∪

∪

Positive Closure of A
* 

1

The set A is defined as:

                                     n

n

A A
∞

+

=

=∪



Examples

+

n

* n

*

(a) If A={a}, then 
         A { } { } { } ...
              = {a | 1}
         A {a | 0}
( ) { },

a aa aaa
n
n

b +

= ∪ ∪ ∪

≥

= ≥

Φ = Λ Φ = Φ



Properties of the language closure

We shall see the proves of some 
of the results in the class. Rest 
are left to you as an exercise

*

*

*

*

* *

* *

*

* * * * *

* *

* *

* * * *

( ) { }
( ) ,  for n 0
( ) ,  for n 1
( ) 
( ) 
( ) ( ) ( )
( ) ( ) ( )
( ) 
( ) { }
( ) ( )
( ) ( ) ( )
( ) 
( ) ( ) ( )

n

n

a A A
b A A
c A A
d A AB
e A B A
f A B A B
g A B A B
h AA A A A
i A A A
j A A A A
k A A A
l A A A A A
m A B A B

+

+

+ +

+

+

+ + +

+ + +

= Λ ∪

⊂ ≥

⊂ ≥

⊂

⊂

⊂ ⇒ ⊂

⊂ ⇒ ⊂

= =

Λ ∈ ⇔ =

= =

= =

= =

= ∪ = * * *( )A B∪



Dean Arden’s Theorem
• Proof outline:

*

*

Let A and B be arbitrary subsets of  such that A. 
Then the equation X=AX B has the unique solution X=A B

Σ Λ∉

∪

*

*

:
( ) ( )

                    ( )
( ) ( ) ( )
Thus, in general ( ) ( )n

X A B
X AX B X B X AX

X AB
X AB X AX X AAB

X A B X A B

⊇
= ∪ ⇒ ⊇ ∧ ⊇

⇒ ⊇
⊇ ∧ ⊇ ⇒ ⊇

⊇ ⇒ ⊇



Dean Arden’s Theorem
* :

Consider, ( ).
Thus,  or, .
Since, A  must belong to  or must have a non-empty 
prefix which belongs to  and the rest of the string is a shorter 
string in .
By the same reason the sho

X A B
x X

x B x AX
x B

A
X

⊆
∈

∈ ∈
Λ∉

rter string also belongs to  or we 
can remove another prefix string belonging to  and obtain another 
string in .
Since, the original string is a finite string after a finite number of steps 
we have 

B
A

X

*

a string in B. 
Thus, in a nutshell the original string must consist of a (possibly) empty 
sequence of prefixes, each belonging to , followed by a suffix which is 
in . Thus, .

A
B x A B∈

But does the solution always exist?



Examples

• If A={a}, B=Φ, then the equation X=AXUB, 
has the unique solution X=A*B= Φ

• If A={a,ab}, B={cc}, then the equation 
X=AXUB, has the unique solution 
X=A*B= {a,ab}*{cc}


