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What is a relation?

* The mathematical concept of relation is
based on the common notion of
relationships among objects:

— One box is heavier than the other
— One man is richer than the other
— An event occurs prior to the other



Ordered n-tuple

* For n>0, an ordered n-tuple (or simply n-
tuple) with ith component a, is a sequence
of n objects denoted by <a,,a,,...,a,>. Two
ordered n-tuples are equal iff their ith
components are equal for all i, 1<=i<=n.

* For n=2, ordered pair
* For n=3, ordered triple



Cartesian Product

» Let {A,,A,,...,A } be an indexed collection of
sets with indices from 1 to n, where n>0. The
cartesian product, or cross product of the sets
A, through A, denoted by A, X A, X ... XA, or

< A is the set of n-tuples <a,,a,,...,a,>|a€A}.
When A=A, for all i, then x*, A will be denoted
by A",



Examples

« Let A={1,2}, B={m,n}, C={0}, D=9.
— AxB={<1,m><1,n>,<2,m>,<2,n>}
— AxC={<1,0>,<2,0>}
— AxD=®

« When A and B are real numbers, then AxB
can be represented as a set of points in
the Cartesian Plane. Let, A={x|1=x<2} and
B={y|0<y<1}. Then
— AxB={<x,y>| 1=x<2 A\ 0<y<1}



Theorems

1. AX(B U C)=(AXB) U (AXC)
2. AX(B N C)=(AXB) N (AXC)
3. (A U B)XC=(AXC) U (BXC)

4. (A N B)XC=(AXC) N (BXC)



Proof of 1

<X, y> Ax(BUC)= xe Arye(BuUC)
< Xe AAa(yeBvye()

< (xeAryeB)v(xe Aaye()

< (<X, y>e AxB)v(<x,y > AxC)

<X, Y >e (AxB)U(AxC)

The rest of the proofs are similar.




What is a relation mathematically?

Let A A,,...,A, be sets. An n-ary relation R on

x.1A is a subset of x_ A . If R=0, then R is
called the empty or void relation. If

R=x.,A then R is the universal relation. If A=A
for all i, then R is called an n-ary relation on A.

If n=1, unary
If n=2, binary
Ternary...



Number of n-ary relations

 If A hasr, elements, then <. A hasf[r,elements

. The number of n-ary relations is the cardinal
number of the power set of the cartesian
product of the Ass.

 Thus, the number of relations is

[In
2 i=1




Equality of relations

* Let R, be an n-ary relation onx! A and R, be an
m-ary relation onx” B. Then R,=R, iff n=m, and
A=B, for all i, 1=isn, and R,=R, are equal sets
of ordered n-tuples.

* Every n-ary relation on a set A, corresponds to
an n-ary predicate with A as the universe of

discourse.

* A unary relation on a set A is simply a subset of
set A.



Binary Relations



* They are frequently used in abstraction in
CS

* Various data structures, like trees and
graphs can be modeled as binary relations
and vice versa.

* We shall see techniques and methods to
analyze.



Binary Relations

Let A, B be any two sets.

A binary relation R from A to B, written (with signature)
R:A<B, is a subset of AxB.

— E.g., let<:NoN:={<nm>|n<m}

The notation a R b or aRb means <a,b>eR.

— E.g., a<bmeans (a,b)e <

If aRb we may say “a is related to b (by relation R)”, or
“a relates to b (under relation R)".
A binary relation R corresponds to a predicate function
Pr:AxB—{T,F} defined over the 2 sets A,B; e.g.,

“‘eats” = {<a,b>| organism a eats food b}




Domain and Co-domain

Let R be a binary relation over AxB.
Domain: Set A

Co-domain: Set B

<a,b>ER=> aRb

<a,b> € R => aRb



Complementary Relations

* Let R:A—B be any binary relation.

. Then,R/:A<—>B, the complement of R, is the
binary relation defined by
= {<a,b>| (a,b)gR}

Example: <= {(a,b) | (a,b)g<} = {(a,b) | —a<b} ==




Inverse Relations

* Any binary relation R:A~B has an inverse
relation R":B—A, defined by
R1:={(b,a)| (a,b)eR}.
E.g.,, <'={(b,a) | a<b} ={(b,a) | b>a} = >.
* E.g., If R:People—Foods is defined by
aRb < a eats b, then:

bR'a < bis eaten by a. (Passive
voice.)



Relations on a Set

* A (binary) relation from a set A to itself is
called a relation on the set A.

* E.g., the “<" relation from earlier was
defined as a relation on the set N of
natural numbers.

* The identity relation |, on a set A is the set
{(a,a)|lacA}.



Representing Relations

— With a zero-one matrix.
— With a directed graph.



Using Zero-One Matrices

* To represent a relation R by a matrix
Mg = [my], let m; = 1if (a;,b;)eR, else 0.

« E.9.,A={1,2,3}, B={1,2}. Let R be the
relation from A to B containing (a,b) s.tais
in A and b is in B and a>Db.

* The 0-1 matrix = =
representation

When A=B, we have a square
matrix

0 0
M,=l1 0
11




So, what is complement of R?

« A={1,2,3}, B={1,2}. Let R be the relation from
A to B containing (a,b) s.taisin Aand b isin
B and a>b

« Complement of R = {(a,b)|not(a>b)}

={(a,b)|a<=b}
e 0-1 matrix is: 11
M. =0
_O O_

We can obtain by the element wise bit complement of the matrix.




Types of Relations

* Let R be a binary relation on A:

— R is reflexive if xRx for every x in A

— R is irreflexive if xRx for every x in A

— R is symmetric if xRy implies yRx for every x,y
in A

— R is antisymmetric if xRy and yRx together
Imply x=y for every x,y in A

— R is transitive if xRy and yRz imply xRz for
every x,y,z in A



Zero-One Reflexive, Symmetric

— These relation characteristics are very easy to
recognize by inspection of the zero-one

matrix.
1 any- O any-
thing thing
0
any- 1 any- O
thing thing
1 0
Reflexive: Irreflexive: Symmetric: Antisymmetric:
all 1’s on diagonal | all 0’s on diagonal all identical all 1’s are across
across diagonal from 0’s




Tell what type of relation

1 0
M, 1 1| (Reflexive, Symmetric)
0 1 1
1 1 0
M,=|1 0 1| (Neither Reflexive nor irreflexive, Symmetric)
0 1 1
1 1 0
M.,=|0 1 1| (Reflexive, Anti-Symmetric)
0 0 1




Operations on 0-1 Matrix

 Union and Intersection of relations can be
obtained by join and meet of the Binary
matrices

Mg or, =My vV Mg
Mg ~r, =My AMg




Operations on 0-1 Matrix

0
1
0
1
0
0

0

1

O_
0
1
0

oS = O




Composition of relations

R: A>B, S:B>C

SocR:A—>C
Suppose, A, Band C have m, nand p
elements

MS.[Su] (nxp) MR.[rIJ](mxn) MS R.[tu](mxp)
(a;,c;) belongs to S.R iff there is (a;,b,)

belonglng to R and (b,,c;) belonging to S for
some K.

Thus ;=1 iff =1 and s,;=1, for some k.
Thus, MSR—M O Mg




Example of composition

1 0]

0

0

0

0

M.=l1 1 0| Mg=[0 0 1




Using Directed Graphs

« A directed graph or digraph G=(Vg,E) is a set V of vertices
(nodes) with a set E;cVxVg of edges (arcs,links). Visually
represented using dots for nodes, and arrows for edges. Notice that

a relation R:A<~B can be represented as a graph Gg=(Vs=AUB,
E;=R).

_O O_ Edge set Eg
(blue arrows)
2 2
L I | 3
\ J
NodeYset Vs

(black dots)



Digraph Reflexive, Symmetric

It is extremely easy to recognize the
reflexivel/irreflexive/ symmetric/antisymmetric

properties by graph inspection.

0L
%9

)
Cb “e—e
Reflexive: [rreflexive:
Every node No node

has a self-loop

links to 1tself

e | T
e 7 e

R omo AR
Symmetric:  Antisymmetric:
Every link 1s No link 1s
bidirectional  bidirectional




A Question discussed in class

* Does symmetricity and transitivity imply
reflexivity ?
* Reason of doubt:
— aRb=>bRa (symmetricity)
— This implies aRa (transitivity)
— S0, R is reflexive!

Reflexive..

e Clarification: ¢ 7’) Symmetric, Transitive
% <i But not




Closure of Relations



Closure?

Let R be a relation on a set A
R may or may not have a property P

Define S, as the relation which has the property
P AND

S contains R AND

S Is the subset of every relation with property P
and which contains R

S is called the closure of Rw.r.t P
Closure may not exist.



Reflexive Closure

R={(1,1),(1,2),(2,1),(3,2)} on the set A={1,2,3}
s R reflexive?

How can we create an S (which is as small as
possible) containing R which is reflexive?

Add (2,2) and (3,3).
S is reflexive and contains R

Since, any reflexive relation on A must contain
(2,2) and (3,3), all such relations must be a
superset of S

S is hence the reflexive closure.




Generalization

* Define A={(a,a)la € A} (Diagonal Relation)
e S=ERUA
 Sis the reflexive closure of R.



Symmetric Closure

R={(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)} on the set
A={1,2,3}
Is R symmetric?

How can we create an S (which is as small as
possible) containing R which is symmetric?

Add (2,1) and (1,3).
S is symmetric and contains R

Since, any symmetric relation on A must contain
(2,1) and (1,3), all such relations must be a
superset of S

S is hence the symmetric closure.



Generalization

+ Define R"'={(b,a)|(a,b)ER}
* R={(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)}
- R'={(1,1),(2,1),(2,2),(3,2),(1,3).(2,3)}

« S=ER U R
={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1).(3,2)}

e S contains R

 All such relations contain S
* Thus, S is the symmetric closure.



Transitive Closure?

R={(1,3),(1,4).(2,1),(3,2)}

R Is not transitive.

So, add (1,2),(2,3),(2,4),(3,1).
Does it become transitive?

No, because say (3,2) and (2,4) are
members but not (3,4).

S0, transitive closure is not that easy.



Composition of R with itself :

Let R be a relation on set A
aRb => {(a,b) | (a,b)ER}

Let R be a relation on the set A. The
powers R", n=1, 2, 3, ... are defined
recursively by:

R'=R and R"'=R".R
Example: R={(1,1),(2,1),(3,2),(4,3)}
R=={(1,1),(2,1),(3,1),(4,2)}



Composition in DAG

* A path from ato b in DAG G, is a sequence
of edges (a,X,),(X4,X5),...,(X, 1,b) The path
has length n. A path of Iength n=1 that
begins and ends at the same vertex is
called a circuit or cycle.

 Theorem: Let R be a relation on a set A.
There Is a path of length n, where nis a
positive integer from a to b, iff (a,b) belongs
to R".




Proof

Base: There is a path from a to b of length 1, iff
(a,b) is in R.

Induction: Assume theorem is true for n

There is a path of length (n+1) between a and b,
Iff there is a path of length 1 between (a,c) and

there is a path of length of n between (c,b) for
some C.

Hence, there is such a path iff (a,c)€R and
(c,b) €ER" (inductive hypothesis)

But there is such an element c iff (a,b) ER"*1



Theorem

* The relation R on a set A is transitive iff

R"cR

« |If part: If R? is a subset of R (special case) then R is
transitive

* Else part:
— Trivial proof for n=1
— Assume if R is transitive R" is a subset of R.

— Consider (a,b)ER"'. Thus, there is an element c st (a,c) € R
and (c,b) € R". By hypothesis, (c,b) € R.

— But R is transitive, so (a,c) € R and (c,b) € R means (a,b) € R




Now lets look at the Problem of
Transitive Closure

* Define, the connectivity relation consisting

of the pairs (a,b) such that there is a path
of length at least one from a to b in R.

R =| JR"
n=l1

* Theorem: The connectivity relation is the
transitive closure

 Proof:
— R* contains R
— R* Is transitive




To show that R*Is the smallest!

« Assume a transitive S containing R

 R*is a subset of S* (as all paths in R are also
paths in S)

 Thus, we have

R*" < S" < S (as S is transitive we have S" < S)




Lemma

 Let, A be a set with n elements, and let R be a
relation on A. If there Is a path of length at least
onein R from ato b, then there is such a path with

length not exceeding n.
 Thus, the transitive closure Is

t(R) =LnJR‘

« Proof follows from the fact Rk is a subset of t(R)



Example

 Find the zero-one matrix of the transitive closure
of




Algorithm-1

 Procedure transitive-
closure(Mg)

A=Mg, B=A

fori=2 ton

begin Complexity:
A=A0 B n%(2n-1)(n-1)+n?(n-1)=0(n*)
B=BVA

end

B is the answer




Algorithm-2
(Roy-Warshall algorithm)

Based on the construction of 0-1 matrices,
Wy, W,,...,W_, where W,=Mg (0-1 matrix of the
relation).

Uses the concept of internal vertices of a path: If
there is a path (a,b), namely, (a,x;,X,,...X_4,D)

Internal vertices: X,,X,,... X4

The start vertex is not an internal vertex unless it
IS visited again, except as a last vertex

The end vertex is not an internal vertex unless it
has been visited before, except as a first vertex



So, what is the trick?

» Construct, W, =[w;*], where w;{9=1, if
there is a path from v, to v, such that all the
interior vertices of this path are in the set
{V{,V,,...,V,}, and O otherwise.

« W =M;". Can you see why?

» But construction of W_is easy than the
boolean product of matrices.



Construct W,

- w;0=1, if there is a path from v, to v; such
that aII the interior vertices of thls path are
in the set {v,,v,,...,v,}, and O otherwise.

Vi T \/ / vj
Internal Nodes from set {v,,v,,...,V, 1}
Internal Nodes from /Q\ Internal Nodes from
set {v,,Vy, ...,V 1} Vk Voo Viy STV Vo Vi)
Vi,Vo,. Vg

v, C/ CASE-2 Vi

CASE-1



Computing W,

o W= w IV (wy CIA wy 1) - 2 oper

* Procedure Warshall-transitive-closure(Mg)
W=Mg
for k=1 to n

begin
fori=1ton
begin
forj=1 ton Complexity:
w;iK= wi TV (wy A wy ke11) (2n2)n=0(n3)
end

end
end W is the answer Mz*




Equivalence Relation



Definition

« Three important characteristics of the notion
“equivalence’:
— Every element is equivalent to itself (reflexivity)

— If a is equivalent to b, then b is equivalent to a
(symmetry)

— If a is equivalent to b, and b is equivalent to c, then a
is equivalent to c (transitivity)
* A binary relation R on a set A is an equivalence
relation if R Is reflexive, symmetric and
transitive.



Modular equivalences:
Congruence Modulo m

R={(a,b)]a =b(mod m)
Reflexive as aRa

Symmetric:

— If aRb=>m|(a-b)=>(a-b)=km, where k is an integer
— Thus, (b-a)=-km=>m|(b-a)=>bRa

Transitive:

— aRb=>(a-b)=k;m

— bRc=>(b-c)=k,m

— S0, (a-c)=(a-b)+(b-c)=(k,+k,)m=>m|(a-c)=>aRc



Equivalence Class

 Let R be an equivalence relation on a set A. The
set of all the elements that are related to an
element a of A is called the equivalence class of
a. It is denoted by [a]g. When only one relation is
under consideration, one can drop the subscript
R.

* [a]g={s|(a,s)ER}. Any element in the class can
be chosen as the representative element in the
class.



Example

aRb iff a=b or a=-b

R is an Equivalence relation (exercise)
What is the equivalence class of an
integer a”?

[a] Rz{-a’a}



Example

* \What are the equivalence classes of O and
1 for congruence modulo 47?

. [0]={...,-8,-4,0,4,8,...}
. [11=...,-7,-3,1,5,9,...}

* The equivalence classes are called
congruent classes modulo m.




Partitions

 Let R be an equivalence relation on a set
A. These statements are equivalent if:

1. aRb

2. [a]=][b]

3. [a]N[b]#Qd
o 1=>2=>3=>1



Theorem

 Let R be an equivalence relation on set
A.

1. For, all a, bEA, either [a]=[b] or [a]N[b]=O

2. UXCA[X]zA

Thus, the equivalence classes form a
partition of A. By partition we mean a
collection of disjoint nonempty subsets of
A, that have A as their union.



Why both conditions 1 and 2 are
required?

* In the class we had a discussion, saying

that is 1 sufficient and does 2 always
hold?

 Lets consider the following example:
Define over the set A={y|y €I*}
R={(a,b)|b=a%}.
Thus (1,1),(2,4) are members of R.
» Consider the class: [x]={s|(X,s)E€R}



Pictographic Representation

* S0, we see that we have
classes which satisfy
property 1
(here for distinct a and b, the
intersection of [a] and [b] is
always null)

« But the union of the partitions

IS not the set A. It's a subset
of A

« For equivalence classes it is
exactly A.

* Property 1 and 2 together
define equivalence classes.




Quotient Set

 Let R be an equivalence relation on A. The
quotient set, A/R, is the partition {[a]z|a€A}. The
guotient set is also called A modulo R or the
partition of A induced by R.

« Equivalence classes of R form a partition of A.
Conversely, given a partition {A\|i €1} of A, there
IS an equivalence relation R that has the sets, A,
as its equivalence classes.

— Equivalence relations induce partitions and partitions
Induce equivalence relations



