Solving Recurrences

Debdeep Mukhopadhyay
IIT Madras



Recurrence Relations

* A recurrence relation (R.R., or just recurrence)
for a sequence {a,} is an equation that
expresses a, in terms of one or more previous
elements
a,, ..., a,_4 of the sequence, for all n>n,.

— le., just a recursive definition, without the base cases.

A particular sequence (described non-
recursively) is said to solve the given recurrence
relation if it is consistent with the definition of the
recurrence.

— A given recurrence relation may have many solutions.



Example

» Consider the recurrence relation
a, = 26,n—1 —dp o (I’IZZ).
* Which of the following are solutions?
a,=3n
a,=2"
a,=9



Further Examples

* Recurrence relation for growth of a bank
account with P% interest per given period:

M =M_ +(P100)M, _,
« Growth of a population in which each pair

of rabbit yield 1 new one every year after 2
years of their birth.

P =P _,+P._ _, (Rabbitsand
Fibonacci relation)



Solving Compound Interest RR

e M, =M_. +(PI100)M._.
= (1 + P/100) M.

=rM,_, (let r=1+ P/100)
= I’(I" Mn—2)
=rr(rM _5) ...and soon to...

= M,



Rabbits on an Island
(assuming rabbits are immortal)

Year Reproducing Young Total
pairs pairs pairs

1 0 1 1

2 0 1 1

3 1 1 2

4 1 2 3

5 2 3 5

6 3 5 8

Pn =Pn=1+ Pn-2




Further Explanation
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Tower of Hanol Example

* Problem: Get all disks from peg 1 to
peg 2.
— Only move 1 disk at a time.
— Never set a larger disk on a smaller one.

Question: Compute the number of steps HQ

Peg #1 Peg #2 Peg #3




]

Intuition

H,=1 is evident

-
—

So, H,=3

]
]







Hanol Recurrence Relation

* Let H = # moves for a stack of n disks.

* Optimal strategy:
— Move top n—1 disks to spare peg. (H, _;
moves)
— Move bottom disk. (1 move)

— Move top n—1 to bottom disk. (H,_, moves)
* Note: H =2H ., + 1



Solving Tower of Hanoi RR

H=2H_,+1
=2(2H, ,+1)+1 =2°H _,+2+1
=22(2H, _,+1)+2+1=23H_,+22+2+1

=21 H, +22+ | +2+1
=21 +2n2+  +2+1 (since H, = 1)

i=0

= 20— 1



Another R.R. Example

* Find a R.R. & initial conditions for the number of
bit strings of length n without two consecutive

O0s. Assume n = 3.

* We can solve this by breaking down the strings
to be counted into cases that end in 0 and in 1.

— For each ending in O, the previous bit must be 1, and
before that comes any qualifying string of length n—2.

— For each string ending in 1, it starts with a qualifying
string of length n—1.

 Thus,a,=a, ,+ a, ,. (Fibonaccirecurrence.)



Yet another R.R. example...

* Give a recurrence (and base cases) for
the number of n-digit decimal strings
containing an even number of O digits.

« Can break down into the following
Cases.
— Any valid string of length n—1 digits, with
any digit 1-9 appended.
— Any invalid string of length n—1 digits, + a 0.
*a,= 9an—‘I + (10n—1 - an—1)
=8a, ,+ 10",
— Base cases: a; = 1 (g), a; = 9 (1-9).



Catalan Numbers

Find a R.R for the number of ways we can

parenthesize the product of n+1 numbers, X,, X4,

...,X, to specify the order of multiplication. Call it
.

Define C,=C,=1 (its important to have proper base cases)

If N=2, (Xg-X1)-X5,Xg-(X4.X5)=>C,=2

— Note that C,=C,C,+C,C,=1+1=2

If N=3, ((Xg-X4)-X9)-X35 (Xp-X1)-(X5-X3); (Xg-(X1-X5))-X3; Xg-((X4-X5).X3) ;
Xo-(X1.(X5-X3))
=> C3=5

— Note that C,=C,C,+ C,C,+C,C,=2+1+2=5



Catalan Numbers

The final “.” operator is outside the scope of any

parenthesis.

The final . can be between any x, and x,,, out of the n+1

numbers.

How many ways can we have parenthesis as follows:

[X07&, Xl o[ X 15 X oz

X

Cy

Cn-k-1

— The “." can occur in after any x,, where k ranges from 0O to n-1
— S0, the total number of possible parenthesis is:

n—1
Z Ck Cn—k—l
i=0

Exact form of C,
can be computed using
Generating functions




Solving Recurrences

* A linear homogeneous recurrence of degree k
with constant coefficients (“k-LiHoReCoCo”) is a
recurrence of the form

a,=cqa,,+...+ca,,,
where the c; are all real, and ¢, # 0.

* The solution is uniquely determined if k initial
conditions a,...a,_4 are provided. This follows
from the second principle of Mathematical
Induction.



Examples

f =f ,+f_,is a k-LiHoReCoCo
h.=2h_,+ 1 is not Homogenous
a.=a_.+a_ ,’is notlinear

b,=nb__ does not have a constant
co-efficient



Solving LiHoReCoCos

* The basic idea: Look for solutions of the
form a, = r’, where ris a constant not zero
(r=0 is trivial)

* This requires the characteristic ?quation:

N -1 —k rearrange
Lo e B

* The solutions (characteristic roots) can

yield an explicit formula for the sequence.



Solving 2-LiHoReCoCos

* Consider an arbitrary 2-LiHoReCoCo:
a, = Cq8p4 T Ca,
* It has the characteristic equation (C.E.):
rr—c,r—¢,=0
* Theorem 1: If the CE has 2 roots
r{#r,, then {a_} is a solution to the RR
iff a, = or," + a,r," for n>0
for constants a,, a..



Example

* Solve the recurrence a, = a,_, + 2a,_, given the
initial conditions a; =2, a, = 7.

» Solution: Use theorem 1.
-c=1,¢,=2

— Characteristic equation:
rr—r—2=0

— Solutions: r=[—(—1)£((-1)? — 4:1-(-2))"?] | 21 pr—
= (1£972)/2 = (1£3)/2,s0 r=2 or r=—1. quadriﬁc
— So a, = o, 2N + 0 (_1 )n_ formula here.)

ax’ +bx+c=0<

B —bi\/b2 —4ac
2a

X




Example Continued...

* To find a, and a,, solve the equations for the initial
conditions a, and ay:
a,=2=02°+a, (—1)°
a;=7=02"+a, (—1)
Simplifying, we have the pair of equations:
2=o04%a,
[ =204 — 0,
which we can solve easily by substitution:
o, =2—0q; 1 =204 (2—a4) = a4 — 2;
9=3a0q; a,=3; a,=1.
* Final answer: a,=32"—(—1)"

Check: {a,.0 =2,7,11,25,47,97 ...




Proof of Theorem 1

» Proof that a, = a,r,"+a,r," is always a
solution:
—We know r,? = c,r; + ¢, and r,* = c4r, + C,.
— Now we can show the proposed sequence
satisfies the recurrence a, = c.a, , + c,a, »:
C18p1 + Co8p o= Cq(aql" THanh)" 1) + Cy(ayry ™2 tanr,?)
= aqly72(C4r1+Cy) + anhH(CyrptCy)
= a1+ 0,22 = oy ook, = a,. O
This shows that if a, = a,r,"+a,r,", then {a } IS
a solution to the R.R. o B




The remaining part of the proof

If {a,} is a solution of R.R. then, a, = a,r,"+a,r,", for
n=0,1,2,...

Can complete proof by showing that for any initial
conditions, we can find corresponding a’s

— 4,=C= oyrytayh,

— 04 =(C-Cor)/(ri-r5); ax=(Cor-C)/(r-1,)

— But it turns out this is a solution only if r,#r,. So the
roots have to be distinct.

— The recurrence relation and the initial conditions
determine the sequence uniquely. It follows that

a, = aq"+a,r," (as we have already shown that this is a soin.)




The Case of Degenerate Roots

* Now, what if the C.E.
r> —c. — ¢, =0 has only 1 root ry?
 Theorem 2: Then,
a, = (a4 + a,n)r,", for all n>0,
for constants a4, a..




Example

« Solve: a,=6a,_,-9a,, with a,=1,a,=6

« CE is r2-6r+9=0 => r,=3

* S0, the general form of the soln is:
—a,=(a, + a,n)3"
— Solve the rest using the initial conditions



k-LIHOReCoCos

« Consider a k-LiHoReCoCo: &4, = ZCian_i
 [t's C.E. is: i=1

k

k k=i

rt— E cr =0
i=1

 Thm.3: If this has k distinct roots r;, then the
solutions to the recurrence are of the form:

k
. n
an T Zalrz

=]
for all >0, where the «; are constants.



Example

e Solve:

a,=6a, -11a,,*+6a, 5, with initial
conditions a,=2, a,=5 and a,=15.

CE is r3-6r’+11r-6=0 => (r-1)(r-2)(r-3)=0
Thus the soln is:

a.=(a,1"+ a,2"+ a,3")
Solve the rest.



Degenerate k-LiIHoOReCoCos

* Suppose there are t roots ry,...,r; with
multiplicities m,,...,m,. Then:

(mi —1 \

[
— 2 : 2 : J |y
i=1 \_j=0 Y,

for all =0, where all the « are constants.




Example

« Solve: a . =-3a, ,-3a,,-a,,, a,=1, a,=-
1,a,=-1

« CEis: r+3r+3r+1=(r+1)3=0 => r=-1 with
multiplicity 3.

* S0, soln s :
— ap=(ay+ apr+ agr?)(-1)"
— Complete the rest.



LiNoReCoCos

Linear nonhomogeneous RRs with
constant coefficients may (unlike
LIHOReCoCos) contain some terms F(n)
that depend only on n (and not on any
a;’s). General form:

a =ca, +..+ca,,+ Fh

NG _J
e

The associated homogeneous recurrence relation
(associated LiHoReCoCo). F(n) is not identically zero.




Solutions of LiNoReCoCos

A useful theorem about LINoReCoCos:
—If a,, = p(n) is any particular solution to the

LINOReCoCo i
a, = (Z cl.anl.j +F(n)
i=1

— Then all its solutions are of the form:
an = p(n) + h(n)!
where a, = h(n) is any solution to the
associated homogeneous RR _ :/ica j




LiINoReCoCo Example

* Find all solutions to a, = 3a,_,+2n. Which
solution has a, = 37

— Notice this is a 1-LiINoReCoCo. lts associated
1-LiHoReCoCo is a, = 3a,_,, whose solutions
are all of the form a, = a3". Thus the
solutions to the original problem are all of the

form
a,=p(n)+ a3". So, all we need to do is find

one p(n) that works.



Trial Solutions

* If the extra terms F(n) are a degree-t polynomial
In n, you should try a degree-t polynomial as the

particular solution p(n).

* This case: F(n)is linearsotry a, = cn + d.
cn+d = 3(c(n—1)+d) + 2n (for all n)
(2c+2)n + (2d-3¢) =0 (collect terms)
Soc=-1and d=-3/2.

So a,=-—n—3/2 is a solution.

* Check: a,.q ={-5/2,-7/2,-9/2, ... }



Finding a Desired Solution

* From the previous, we know that all
general solutions to our example are of the

form:
a =-n-—3/2+ a3".
Solve this for o for the given case, a, = 3:
3=-1-23/2+ a3’
a=11/6
 The answeris a,=—-n—3/2+(11/6)3".



Double Check Your Answer!

» Check the base case, a,=3:
a =-n-3/2+(11/6)3"
—1 —3/2 + (11/6)31
=212 —-3/12+11/2=-5/2+11/2=6/2 =3

» Check the recurrence, a, = 3a,_,+2n:
—n - 3/2 + (11/6)3" = 3[~(n—1) — 3/2 + (11/6)3""]+2n
= 3[-n— 1/2 + (11/6)3"1] + 2n
=-3n—3/2 + (11/6)3" +2n = —n—3/2 + (11/6)3" m

a;



Theorem

« Suppose that {a,} satisfies the LiNoReCoCo,
a,=ca,q +...+ca,,+F(n), wherec,,
C,, ..., C, are real numbers and F(n)=(bnt+b,_,nt
+...+by)s", where b’s and s are real numbers.

« When s is not a root of the CE, there is a
Particular solution of the form: (p;n+p,_n*
1+...+py)s".

 When s is a root of this CE and its muiltiplicity is
m, there is a particular solution of the form:
NM(pn'+py Nt +pg)s”



State the Particular Solutions

RR: a,=6a, -9a,,+F(n)
CE has a single root 3, with multiplicity 2.
F(n)=3n Particular Solution: pyn23"
F(n)=n3" Particular Solution:
nZ (p4N+pg)3"

F(n)=n22" Particular Solution:

(P2n“+p n+pg)3"°
F(n)=(n%+1)3" Particular Solution:

N2(pyn2+pyn+pg)3"°



Be Careful when s=1

Example: a,=a,_+n, a,=1
CE: r=1, with multiplicity 1
F(n)=n, Particular Solution is n(p,n+p,)

Solve for p, and p, using the recurrence
equation

Write the solution: ¢ (solution to the associated
homogenous RR) + Particular Solution

Solve for ¢ using a,=1 and obtain a,=n(n+1)/2



