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Mathematical Reasoning



Foundations of Logic

Mathematical Logic is a tool for working with 
elaborate compound statements.  It includes:

• A language for expressing them.
• A concise notation for writing them.
• A methodology for objectively reasoning about 

their truth or falsity.
• It is the foundation for expressing formal proofs 

in all branches of mathematics.



Foundations of Logic: Overview
1. Propositional logic 

2. Predicate logic and Quantifiers

3. Quantifiers and Logical Operators

4. Logical Inference

5. Methods of Proof



Propositional Logic 

Propositional Logic is the logic of compound 
statements built from simpler statements 
using so-called Boolean connectives.

Some applications in computer science:
• Design of digital electronic circuits.
• Expressing conditions in programs.
• Queries to databases & search engines.

Topic #1 – Propositional Logic

George Boole
(1815-1864)



Definition of a Proposition
Assertion: Statement 
Proposition: A proposition is an assertion which is 

either true or false, but not both.
(However, you might not know the actual truth 

value, and it might be situation-dependent.)
[Later in probability theory we assign degrees of certainty

to propositions.  But for now: think True/False only!]
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Examples of Propositions

• “It is raining.” (In a given situation.)
• “Beijing is the capital of China.” • “1 + 2 = 

3”
But, the following are NOT propositions:
• “Who’s there?” (interrogative, question)
• “La la la la la.” (meaningless interjection)
• “Just do it!” (imperative, command)
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A Paradox

• “I am lying”: Is he speaking the truth or lying? 
True or False??
– Neither True nor False. 
– If the statement is true, then he says he is lying, that 

is if he says the truth he is lying
– If the statement is false, then his statement, “I am 

lying” is false, which means he is telling the truth
– Thus, although it appears that the statement is a 

proposition, this is not. As this cannot be assigned a 
truth value.



An operator or connective combines one 
or more operand expressions into a 
larger expression.  (E.g., “+” in numeric 
exprs.)

Unary operators take 1 operand (e.g., −3); 
binary operators take 2 operands (eg 3 
× 4).

Propositional or Boolean operators 
operate on propositions or truth values 
instead of on numbers.

Operators / Connectives
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Some Popular Boolean 
Operators

BinaryIFFBiconditional operator

BinaryIMPLIESImplication operator

⊕BinaryXORExclusive-OR operator

Disjunction operator

Conjunction operator

Negation operator

Formal Name

∨BinaryOR

∧BinaryAND

¬UnaryNOT

SymbolArityNickname

⇒
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The Negation Operator

The unary negation operator “¬” (NOT) 
transforms a prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

Truth table for NOT:
p ¬p
T F
F T

T :≡ True;  F :≡ False
“:≡” means “is defined as”

Operand
column

Result
column

Topic #1.0 – Propositional Logic: Operators



The Conjunction Operator

The binary conjunction operator “∧” (AND) 
combines two propositions to form their 
logical conjunction.

E.g. If p=“I will have salad for lunch.” and 
q=“I will have chicken for dinner.”, then 
p∧q=“I will have salad for lunch and

I will have chicken for dinner.”

Remember: “∧∧”” points up like an points up like an ““AA””, and it means , and it means ““∧∧NDND””

∧∧NDND
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• Note that a
conjunction
p1 ∧ p2 ∧ … ∧ pn
of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and ∧ operations together are suffi-
cient to express any Boolean truth table!

Conjunction Truth Table

p q p∧q
F F F
F T F
T F F
T T T

Operand columns
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The Disjunction Operator

The binary disjunction operator “∨” (OR) 
combines two propositions to form their 
logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
p∨q=“Either my car has a bad engine, or

my car has a bad carburetor.”
After the downward-
pointing “axe” of “∨∨””
splits the wood, yousplits the wood, you
can take 1 piece OR can take 1 piece OR 
the other, or both.the other, or both.

∨∨
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Meaning is like “and/or” in English.



• Note that p∨q means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,
because it includes the
possibility that both p and q are true.

• “¬” and “∨” together are also universal.

Disjunction Truth Table

p q p∨q
F F F
F T T
T F T
T T T

Note
difference
from AND

Topic #1.0 – Propositional Logic: Operators



Nested Propositional 
Expressions

• Use parentheses to group sub-
expressions:
“I just saw my old friend, and either he’s 
grown or I’ve shrunk.” = f ∧ (g ∨ s)
– (f ∧ g) ∨ s would mean something 

different
– f ∧ g ∨ s would be ambiguous

• By convention, “¬” takes precedence
over both “∧” and “∨”.
– ¬s ∧ f means   (¬s) ∧ f  ,   not   ¬ (s ∧ f)
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A Simple Exercise

Let p=“It rained last night”, 
q=“The sprinklers came on last night,”
r=“The lawn was wet this morning.”

Translate each of the following into English:
¬p = 
r ∧ ¬p = 
¬ r ∨ p ∨ q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”
“Either the lawn wasn’t wet this 
morning, or it rained last night, or 
the sprinklers came on last night.”
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The Exclusive Or Operator

The binary exclusive-or operator “⊕” (XOR) 
combines two propositions to form their 
logical “exclusive or” (exjunction?).

p = “I will earn an A in this course,”
q = “I will drop this course,”
p ⊕ q = “I will either earn an A for this 

course, or I will drop it (but not both!)”
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• Note that p⊕q means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

• “¬” and “⊕” together are not universal.

Exclusive-Or Truth Table

p q p⊕q
F F F
F T T
T F T
T T F Note

difference
from OR.
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Note that English “or” can be ambiguous 
regarding the “both” case!

“Pat is a singer or
Pat is a writer.” -

“Pat is a man or
Pat is a woman.” -

Need context to disambiguate the 
meaning!

For this class, assume “or” means inclusive.

Natural Language is Ambiguous

p q p "or" q
F F F
F T T
T F T
T T ?

∨

⊕

Topic #1.0 – Propositional Logic: Operators



The Implication Operator

The implication p q states that p implies q.

I.e., If p is true, then q is true; but if p is not true, 
then q could be either true or false.

E.g., let p = “You study hard.”
q = “You will get a good grade.”

p q = “If you study hard, then you will get a 
good grade.” (else, it could go either way)

⇒
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antecedent consequent

⇒



Implication Truth Table

• p → q is false only when
p is true but q is not true.

• p → q   does not say
that p causes q!

• p → q   does not require
that p or q are ever true!

• E.g. “(1=0) → pigs can fly” is TRUE!

p q p→q
F F T 
F T T 
T F F 
T T T 

 

 

The 
only
False
case!
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For simplicity, I shall denote the implication operator by the 
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Examples of Implications

• “If this lecture ends, then the sun will 
rise tomorrow.” True or False?

• “If Tuesday is a day of the week, then I 
am a bird.” True or False?

• “If 1+1=6, then Bush is president.”
True or False?

• “If the moon is made of green cheese, 
then I am richer than Bill Gates.” True or
False?
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Why does this seem wrong?

• Consider a sentence like,
– “If I wear a red shirt tomorrow, then Arnold 

Schwarzenegger will become governor of California.”
• In logic, we consider the sentence True so long 

as either I don’t wear a red shirt, or Arnold wins.
• But in normal English conversation, if I were to 

make this claim, you would think I was lying.
– Why this discrepancy between logic & language?



Resolving the Discrepancy

• In English, a sentence “if p then q” usually really 
implicitly means something like,
– “In all possible situations, if p then q.”

• That is, “For p to be true and q false is impossible.”
• Or, “I guarantee that no matter what, if p, then q.”

• This can be expressed in predicate logic as:
– “For all situations s, if p is true in situation s, then q is 

also true in situation s”
– Formally, we could write: ∀s, P(s) → Q(s)

• That sentence is logically False in our example, 
because for me to wear a red shirt and for Arnold 
to lose is a possible (even if not actual) situation.
– Natural language and logic then agree with each other.



English Phrases Meaning p → q
• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for 

q”
• “q is necessary for 

p”
• “q follows from p”
• “q is implied by p”
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implication to hold (sufficiency)

If q is false, p cannot be true; It is necessary that q be 
true for p to be true (necessicity)



Converse, Inverse, Contrapositive

Some terminology, for an implication p → q:
• Its converse is: q → p.
• Its inverse is: ¬p → ¬q.
• Its contrapositive: ¬q → ¬ p.
• One of these three has the same meaning

(same truth table) as p → q.  Can you 
figure out which?

Topic #1.0 – Propositional Logic: Operators



How do we know for sure?

Proving the equivalence of p → q and its 
contrapositive using truth tables:

p q ¬q ¬p p→q ¬q →¬p
F F T T T T
F T F T T T
T F T F F F
T T F F T T
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The biconditional operator

The biconditional p ↔ q states that p is true if and 
only if (IFF) q is true.

p = “Bush wins the 2004 election.”
q = “Bush will be president for all of 2005.”
p ↔ q = “If, and only if, Bush wins the 2004 

election, Bush will be president for all of 2005.”
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2004

I’m still
here!

2005



Biconditional Truth Table

• p ↔ q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of ⊕’s!
Thus, p ↔ q means ¬(p ⊕ q)

• p ↔ q does not imply
that p and q are true, or cause each other.

p q p ↔ q
F F T
F T F
T F F
T T T
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Boolean Operations Summary

• We have seen 1 unary operator (out of 
the 4 possible) and 5 binary operators 
(out of the 16 possible).  Their truth 
tables are below.

p q ¬p p∧q p∨q p⊕q p→q p↔q
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T
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Some Alternative Notations

Name: not and or xor implies iff
Propositional logic: ¬ ∧ ∨ ⊕ → ↔
Boolean algebra: p pq + ⊕
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:
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Bits and Bit Operations

• A bit is a binary (base 2) digit: 0 or 1.
• Bits may be used to represent truth 

values.
• By convention: 

0 represents “false”; 1 represents 
“true”.

• Boolean algebra is like ordinary algebra 
except that variables stand for bits, + 
means “or”, and multiplication means 
“and”.

Topic #2 – Bits

John Tukey
(1915-2000)



Bit Strings

• A Bit string of length n is an ordered series 
or sequence of n≥0 bits.
– More on sequences in §3.2.

• By convention, bit strings are written left to 
right: e.g. the first bit of “1001101010” is 1.

• When a bit string represents a base-2 
number, by convention the first bit is the 
most significant bit.  Ex. 11012=8+4+1=13.
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Counting in Binary
• Did you know that you can count 

to 1,023 just using two hands?
– How?  Count in binary!

• Each finger (up/down) represents 1 bit.

• To increment: Flip the rightmost (low-order) 
bit.
– If it changes 1→0, then also flip the next bit to the 

left,
• If that bit changes 1→0, then flip the next one, etc.

• 0000000000, 0000000001, 0000000010, …
…, 1111111101, 1111111110, 1111111111 
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Bitwise Operations

• Boolean operations can be extended to 
operate on bit strings as well as single 
bits.

• E.g.:
01 1011 0110
11 0001 1101
11 1011 1111 Bit-wise OR
01 0001 0100 Bit-wise AND
10 1010 1011 Bit-wise XOR

Topic #2 – Bits



Summary

You have learned 
about:

• Propositions: What 
they are.

• Propositional logic 
operators’
– Symbolic notations.
– English equivalents.
– Logical meaning.
– Truth tables.

• Nested propositions.
• Alternative notations.
• Bits and bit-strings.
• Next section: 

– Propositional 
equivalences.

– How to prove them.



Propositional Equivalence

Two syntactically (i.e., textually) different 
compound propositions may be the 
semantically identical (i.e., have the same 
meaning).  We call them equivalent. 
Learn:

• Various equivalence rules or laws.
• How to prove equivalences using symbolic 

derivations.

Topic #1.1 – Propositional Logic: Equivalences



Tautologies and Contradictions

A tautology is a compound proposition that is 
true no matter what the truth values of its 
atomic propositions are!

Ex. p ∨ ¬p [What is its truth table?]
A contradiction is a compound proposition that 

is false no matter what!  Ex. p ∧ ¬p  [Truth 
table?]

Other compound props. are contingencies
(which is neither a tautology nor a contradiction)

Topic #1.1 – Propositional Logic: Equivalences



Logical Equivalence

Compound proposition p is logically 
equivalent to compound proposition q, 
written p⇔q, IFF the compound 
proposition p↔q is a tautology.

Compound propositions p and q are logically 
equivalent to each other IFF p and q 
contain the same truth values as each 
other in all rows of their truth tables.
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Ex. Prove that p∨q ⇔ ¬(¬p ∧ ¬q).

p q pp∨∨qq ¬¬pp ¬¬qq ¬¬pp ∧∧ ¬¬qq ¬¬((¬¬pp  ∧∧  ¬¬qq))
F F
F T
T F
T T

Proving Equivalence
via Truth Tables

F
T

T
T

T

T

T

T
T
T

F
F

F

F

F
F
F

F

T
T
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Constructing Truth table

Construct a truth table for q ∧ ¬p → p.

T

F
F

p q ¬p
F F
F T
T F
T T

T
T

F
F

¬¬p ∧ q
F

q ∧ ¬p → p

T

T
T

F



Equivalence Laws

• These are similar to the arithmetic 
identities you may have learned in 
algebra, but for propositional equivalences 
instead.

• They provide a pattern or template that 
can be used to match all or part of a much 
more complicated proposition and to find 
an equivalence for it.
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Equivalence Laws - Examples

• Identity:             p∧T ⇔ p      p∨F ⇔ p
• Domination:      p∨T ⇔ T      p∧F ⇔ F
• Idempotent:       p∨p ⇔ p       p∧p ⇔ p
• Double negation:       ¬¬p ⇔ p
• Commutative:  p∨q ⇔ q∨p    p∧q ⇔ q∧p
• Associative:          (p∨q)∨r ⇔ p∨(q∨r)

(p∧q)∧r ⇔ p∧(q∧r)
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More Equivalence Laws

• Distributive:     p∨(q∧r) ⇔ (p∨q)∧(p∨r)
p∧(q∨r) ⇔ (p∧q)∨(p∧r)

• De Morgan’s:
¬(p∧q) ⇔ ¬p ∨ ¬q
¬(p∨q) ⇔ ¬p ∧ ¬q

• Trivial tautology/contradiction:
p ∨ ¬p ⇔ T p ∧ ¬p ⇔ F
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Augustus
De Morgan
(1806-1871)



Defining Operators via 
Equivalences

Using equivalences, we can define
operators in terms of other operators.

• Exclusive or:   p⊕q ⇔ (p∨q)∧¬(p∧q)
p⊕q ⇔ (p∧¬q)∨(q∧¬p)

• Implies:           p→q ⇔ ¬p ∨ q
• Biconditional: p↔q ⇔ (p→q) ∧ (q→p)

p↔q ⇔ ¬(p⊕q)
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An Example Problem

• Check using a symbolic derivation whether 
(p ∧ ¬q) → (p ⊕ r) ⇔ ¬p ∨ q ∨ ¬r.

(p ∧ ¬q) → (p ⊕ r) ⇔
[Expand definition of →] ¬(p ∧ ¬q) ∨ (p ⊕ r)
[Defn. of ⊕]    ⇔ ¬(p ∧ ¬q) ∨ ((p ∨ r) ∧ ¬(p ∧ r))
[DeMorgan’s Law]

⇔ (¬p ∨ q) ∨ ((p ∨ r) ∧ ¬(p ∧ r))
cont.
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Example Continued...
(¬p ∨ q) ∨ ((p ∨ r) ∧ ¬(p ∧ r)) ⇔ [∨ commutes]
⇔ (q ∨ ¬p) ∨ ((p ∨ r) ∧ ¬(p ∧ r)) [∨ associative]
⇔ q ∨ (¬p ∨ ((p ∨ r) ∧ ¬(p ∧ r))) [distrib. ∨ over ∧]
⇔ q ∨ (((¬p ∨ (p ∨ r)) ∧ (¬p ∨ ¬(p ∧ r)))
[assoc.] ⇔ q ∨ (((¬p ∨ p) ∨ r) ∧ (¬p ∨ ¬(p ∧ r)))
[trivail taut.]  ⇔ q ∨ ((T ∨ r) ∧ (¬p ∨ ¬(p ∧ r)))
[domination] ⇔ q ∨ (T ∧ (¬p ∨ ¬(p ∧ r)))
[identity]       ⇔ q ∨ (¬p ∨ ¬(p ∧ r)) ⇔ cont.
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End of Long Example

q ∨ (¬p ∨ ¬(p ∧ r))
[DeMorgan’s] ⇔ q ∨ (¬p ∨ (¬p ∨ ¬r))
[Assoc.]          ⇔ q ∨ ((¬p ∨ ¬p) ∨ ¬r)
[Idempotent]   ⇔ q ∨ (¬p ∨ ¬r)
[Assoc.]          ⇔ (q ∨ ¬p) ∨ ¬r 
[Commut.]      ⇔ ¬p ∨ q ∨ ¬r 
Q.E.D. (quod erat demonstrandum)

Topic #1.1 – Propositional Logic: Equivalences

(Which was to be shown.)



Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators: ¬ ∧ ∨ ⊕ → ↔
• Compound propositions: s :≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r …

Topic #1 – Propositional Logic



Predicate Logic
• Language of propositions not sufficient 

to make all assertions needed in 
mathematics
– x=3, x+y=z
– They are not propositions (Why?)
– However if values are assigned they do

• Consider the assertion:
– He is tall and dark
– These assertions are formed using 

variables, in a template. The template is 
called the predicate.
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Contd…

• Assertion : x is tall and dark.
– x is the variable
– “is tall and dark” is the predicate



Applications of Predicate Logic

It is the formal notation for writing perfectly 
clear, concise, and unambiguous 
mathematical definitions, axioms, and 
theorems for any branch of mathematics.  

Predicate logic with function symbols, the “=” operator, and 
a few proof-building rules is sufficient for defining any
conceivable mathematical system, and for proving 
anything that can be proved within that system!
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Other Applications

• Predicate logic is the foundation of the
field of mathematical logic, which 
culminated in Gödel’s incompleteness 
theorem, which revealed the ultimate 
limits of mathematical thought: 
– Given any finitely describable, consistent 

proof procedure, there will still be some
true statements that can never be proven
by that procedure.

• I.e., we can’t discover all mathematical truths, 
unless we sometimes resort to making guesses.

Topic #3 – Predicate Logic

Kurt Gödel
1906-1978



Practical Applications

• Basis for clearly expressed formal 
specifications for any complex system.

• Basis for automatic theorem provers and 
many other Artificial Intelligence systems.

Topic #3 – Predicate Logic



Subjects and Predicates

• In the sentence “The dog is sleeping”:
– The phrase “the dog” denotes the subject -

the object or entity that the sentence is about.
– The phrase “is sleeping” denotes the 

predicate- a property that is true of the 
subject.

• In predicate logic, a predicate is modeled 
as a function P(·) from objects to 
propositions.
– P(x) = “x is sleeping” (where x is any object).
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More About Predicates

• Convention:  Lowercase variables x, y, z...
denote objects/entities; uppercase variables P, 
Q, R… denote propositional functions 
(predicates).

• Keep in mind that the result of applying a 
predicate P to an object x is the proposition P(x).  
But the predicate P itself (e.g. P=“is sleeping”) 
is not a proposition (not a complete sentence).
– E.g. if P(x) = “x is a prime number”,

P(3) is the proposition “3 is a prime number.”
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Propositional Functions

• Predicate logic generalizes the 
grammatical notion of a predicate to also 
include propositional functions of any
number of arguments, each of which may 
take any grammatical role that a noun can 
take.
– E.g. let P(x,y,z) = “x gave y the grade z”, then 

if
x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z) = 
“Mike gave Mary the grade A.”
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Universes of Discourse (U.D.s)
• The power of distinguishing objects 

from predicates is that it lets you state 
things about many objects at once.

• E.g., let P(x)=“x+1>x”.  We can then 
say,
“For any number x, P(x) is true” instead 
of
(0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...

• The collection of values that a variable x
can take is called x’s universe of 
discourse.
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Types of predicates

• Consider a predicate: P(c1,c2,…,cn)
• Defn:

– Valid: Value of P is true for all choices of the 
argument

– Satisfiable: Value of P is true for some value 
of the argument

– Unsatisfiable: Value of P is never true for the 
possible choices of the argument



Quantifier Expressions

• Quantifiers provide a notation that allows 
us to quantify (count) how many objects in 
the univ. of disc. satisfy a given predicate.

• “∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u.d., P holds.

• “∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d. 
(that is, 1 or more) such that P(x) is true.
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The Universal Quantifier ∀

• Example: 
Let the u.d. of x be parking spaces at IITM.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), 
∀x P(x), is the proposition:
– “All parking spaces at IITM are full.”
– i.e., “Every parking space at IITM is full.”
– i.e., “For each parking space at IITM, that space is full.”
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The Existential Quantifier ∃

• Example: 
Let the u.d. of x be parking spaces at IITM.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 
∃x P(x), is the proposition:
– “Some parking space at IITM is full.”
– “There is a parking space at IITM that is full.”
– “At least one parking space at IITM is full.”
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Question

• What is a predicate with zero variables 
called?



Free and Bound Variables

• An expression like P(x) is said to have a 
free variable x (meaning, x is undefined).

• A quantifier (either ∀ or ∃) operates on an 
expression having one or more free 
variables, and binds one or more of those 
variables, to produce an expression 
having one or more bound variables.

• Binding converts a predicate to a 
proposition
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Example of Binding

• P(x,y) has 2 free variables, x and y.
• ∀x P(x,y) has 1 free variable, and one bound 

variable.  [Which is which?]
• “P(x), where x=3” is another way to bind x.
• An expression with zero free variables is a bona-

fide (actual) proposition
• An expression with one or more free variables is 

still only a predicate: ∀x P(x,y)
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Nesting of Quantifiers

Example: Let the u.d. of x & y be people.
Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s)
Then ∃y L(x,y) = “There is someone whom x

likes.” (A predicate w. 1 free variable, x)
Then ∀x (∃y L(x,y)) =

“Everyone has someone whom they like.”
(A __________ with ___ free variables.)
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Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators: ¬ ∧ ∨ ⊕ → ↔
• Compound propositions: s ≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r …



Review: Predicate Logic

• Objects x, y, z, …
• Predicates P, Q, R, … are functions 

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: [∀x P(x)] :≡ “For all x’s, P(x).”

[∃x P(x)] :≡ “There is an x such that P(x).”
• Universes of discourse, bound & free vars.



Quantifier Exercise

If R(x,y)=“x relies upon y,” express the 
following in unambiguous English:

∀x(∃y R(x,y))=
∃y(∀x R(x,y))=
∃x(∀y R(x,y))=
∀y(∃x R(x,y))=
∀x(∀y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom 
everyone relies upon (including himself)!
There’s some needy person who relies 
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, 
(including themselves)!
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Natural language is ambiguous!

• “Everybody likes somebody.”
– For everybody, there is somebody they like,

• ∀x ∃y Likes(x,y)
– or, there is somebody (a popular person) 

whom everyone likes?
• ∃y ∀x Likes(x,y)

• “Somebody likes everybody.”
– Same problem: Depends on context, 

emphasis.

[Probably more likely.]

Topic #3 – Predicate Logic



Game Theoretic Semantics
• Thinking in terms of a competitive game can help you tell 

whether a proposition with nested quantifiers is true.
• The game has two players, both with the same 

knowledge:
– Verifier: Wants to demonstrate that the proposition is true.
– Falsifier: Wants to demonstrate that the proposition is false.

• The Rules of the Game “Verify or Falsify”:
– Read the quantifiers from left to right, picking values of variables.
– When you see “∀”, the falsifier gets to select the value.
– When you see “∃”, the verifier gets to select the value.

• If the verifier can always win, then the proposition is true.
• If the falsifier can always win, then it is false.
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Let’s Play, “Verify or Falsify!”

Let B(x,y) :≡ “x’s month of birthday is the same as that of y”

Suppose I claim that among you: 
∀x ∃y B(x,y)

Your turn, as falsifier: 
You pick any x → (so-and-so)

∃y B(so-and-so,y)
My turn, as verifier: 

I pick any y → (such-and-such)

B(so-and-so,such-and-such)

• Let’s play it in class.
• Who wins this game?
• What if I switched the

quantifiers, and I
claimed that
∃y ∀x B(x,y)?

Who wins in that
case?
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Still More Conventions

• Sometimes the universe of discourse is 
restricted within the quantification, e.g.,
– ∀x>0 P(x) is shorthand for

“For all x that are greater than zero, P(x).”
=∀x (x>0 → P(x))

– ∃x>0 P(x) is shorthand for
“There is an x greater than zero such that 
P(x).”
=∃x (x>0 ∧ P(x))
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More to Know About Binding

• ∀x ∃x P(x) - x is not a free variable in 
∃x P(x), therefore the ∀x binding isn’t 
used.

• (∀x P(x)) ∧ Q(x) - The variable x is outside 
of the scope of the ∀x quantifier, and is 
therefore free.  Not a complete 
proposition!

• (∀x P(x)) ∧ (∃x Q(x)) – This is legal, 
because there are 2 different x’s!
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Commutavity of Quantifiers

• ∀x ∃y P(x,y)≠ ∃y∀x P(x,y)
• ∀x ∀y P(x,y)= ∀y∀x P(x,y)
• ∃ x ∃y P(x,y)= ∃y∃xP(x,y)

It is easy to disprove (give a counter-example)
Prove or disprove the above statements



Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,…
∀x P(x) ⇔ P(a) ∧ P(b) ∧ P(c) ∧ …
∃x P(x) ⇔ P(a) ∨ P(b) ∨ P(c) ∨ …

• From those, we can prove the laws:
∀x P(x) ⇔ ¬∃x ¬P(x)
∃x P(x) ⇔ ¬∀x ¬P(x)

• Which propositional equivalence laws 
can be used to prove this?  
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More Equivalence Laws

• ∀x ∀y P(x,y) ⇔ ∀y ∀x P(x,y)
∃x ∃y P(x,y) ⇔ ∃y ∃x P(x,y)

• ∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x))
∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x))

• Exercise: 
See if you can prove these yourself.

– What propositional equivalences did you use?
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Review: Predicate Logic

• Objects x, y, z, …
• Predicates P, Q, R, … are functions 

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: (∀x P(x)) =“For all x’s, P(x).”

(∃x P(x))=“There is an x such that P(x).”
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Defining New Quantifiers
As per their name, quantifiers can be used 

to express that a predicate is true of any 
given quantity (number) of objects.

Define ∃!x P(x) to mean “P(x) is true of 
exactly one x in the universe of 
discourse.”

∃!x P(x) ⇔ ∃x (P(x) ∧ ¬∃y (P(y) ∧ y≠ x))
“There is an x such that P(x), where there 
is no y such that P(y) and y is other than 
x.”
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More about Quantifiers

• State True or False with reasons:
– ∀ distributes over Λ
– ∀ distributes over ∨
– ∃ distributes over Λ
– ∃ distributes over ∨
– ∃x[P(x) Λ Q(x)] → ∃xP(x) Λ ∃xQ(x)
– ∀x[P(x) ∨ Q(x)] → ∀xP(x) ∨ ∀xQ(x)



Prove or disprove:
∃x[P(x) Q(x)] ⇔[∃xP(x) ∃xQ(x)]

∃x[P(x) Q(x)] ⇔ ∃x[¬P(x) ∨ Q(x)]
⇔∃x[¬P(x)] ∨ ∃xQ(x) ⇔ ¬∀xP(x) ∨ ∃xQ(x) 
⇔∀xP(x) ∃xQ(x)

Hence we are to check:
[∀xP(x) ∃xQ(x)] ⇔ [∃xP(x) ∃xQ(x)]



Truth Table

1
1
0
1
n.a
n.a
0
1

1
1
1
1
n.a
n.a
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

∃xP(x)
∃xQ(x)

∀xP(x)
∃xQ(x)

∃xQ(x)∃xP(x)∀xP(x)



Building Counter-example

• Build the counter-example, so that we 
satisfy the line of the truth-table which 
makes the difference:
– Here, ∀xP(x)=0, ∃xP(x)=1, ∃xQ(x)=0
– Example: P(x) is satisfiable and Q(x) is 

unsatisfiable
– P(x): x=0, Q(x): x ≠ x.



Some Number Theory 
Examples

• Let u.d. = the natural numbers 0, 1, 2, …
• “A number x is even, E(x), if and only if it is 

equal to 2 times some other number.”
∀x (E(x) ↔ (∃y  x=2y))

• “A number is prime, P(x), iff it’s greater than 1 
and it isn’t the product of two non-unity 
numbers.”
∀x (P(x) ↔ (x>1 ∧ ¬∃yz  x=yz ∧ y≠1 ∧ z≠1))

Topic #3 – Predicate Logic



Goldbach’s Conjecture (unproven)

Using E(x) and P(x) from previous slide,
∀E(x>2): ∃P(p),P(q): p+q = x

or, with more explicit notation:
∀x [x>2 ∧ E(x)] →

∃p ∃q P(p) ∧ P(q) ∧ p+q = x.
“Every even number greater than 2 

is the sum of two primes.”
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Deduction Example

• Definitions:
s :≡ Socrates (ancient Greek philosopher);
H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”.

• Premises:
H(s)                        Socrates is human.
∀x H(x)→M(x)      All humans are mortal.
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Deduction Example Continued

Some valid conclusions you can draw:
H(s)→M(s)    [Instantiate universal.] If Socrates is human

then he is mortal.
¬H(s) ∨ M(s)                         Socrates is inhuman or mortal.
H(s) ∧ (¬H(s) ∨ M(s))  

Socrates is human, and also either inhuman or mortal.
(H(s) ∧ ¬H(s)) ∨ (H(s) ∧ M(s))      [Apply distributive law.]
F ∨ (H(s) ∧ M(s))                              [Trivial contradiction.]
H(s) ∧ M(s)                                             [Use identity law.]
M(s)                                                          Socrates is mortal.
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Another Example

• Definitions:  H(x) :≡ “x is human”; 
M(x) :≡ “x is mortal”; G(x) :≡ “x is a god”

• Premises:
– ∀x H(x) → M(x) (“Humans are mortal”) and
– ∀x G(x) → ¬M(x) (“Gods are immortal”).

• Show that ¬∃x (H(x) ∧ G(x))
(“No human is a god.”)
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Summary

• From these sections you should have learned:
– Predicate logic notation & conventions
– Conversions: predicate logic ↔ clear English
– Meaning of quantifiers, equivalences
– Simple reasoning with quantifiers

• Upcoming topics: 
– Introduction to proof-writing.
– Then: Set theory –

• a language for talking about collections of objects.
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