
IIT Madras
Dept. of Computer Science & Engineering

CS 210
Foundations of Computer

Science

Debdeep Mukhopadhyay

Mathematical Reasoning

Foundations of Logic

Mathematical Logic is a tool for working with
elaborate compound statements. It includes:

• A language for expressing them.
• A concise notation for writing them.
• A methodology for objectively reasoning about

their truth or falsity.
• It is the foundation for expressing formal proofs

in all branches of mathematics.

Foundations of Logic: Overview
1. Propositional logic

2. Predicate logic and Quantifiers

3. Quantifiers and Logical Operators

4. Logical Inference

5. Methods of Proof

Propositional Logic

Propositional Logic is the logic of compound
statements built from simpler statements
using so-called Boolean connectives.

Some applications in computer science:
• Design of digital electronic circuits.
• Expressing conditions in programs.
• Queries to databases & search engines.

Topic #1 – Propositional Logic

George Boole
(1815-1864)

Definition of a Proposition
Assertion: Statement
Proposition: A proposition is an assertion which is

either true or false, but not both.
(However, you might not know the actual truth

value, and it might be situation-dependent.)
[Later in probability theory we assign degrees of certainty

to propositions. But for now: think True/False only!]

Topic #1 – Propositional Logic

Examples of Propositions

• “It is raining.” (In a given situation.)
• “Beijing is the capital of China.” • “1 + 2 =

3”
But, the following are NOT propositions:
• “Who’s there?” (interrogative, question)
• “La la la la la.” (meaningless interjection)
• “Just do it!” (imperative, command)

Topic #1 – Propositional Logic

A Paradox

• “I am lying”: Is he speaking the truth or lying?
True or False??
– Neither True nor False.
– If the statement is true, then he says he is lying, that

is if he says the truth he is lying
– If the statement is false, then his statement, “I am

lying” is false, which means he is telling the truth
– Thus, although it appears that the statement is a

proposition, this is not. As this cannot be assigned a
truth value.

An operator or connective combines one
or more operand expressions into a
larger expression. (E.g., “+” in numeric
exprs.)

Unary operators take 1 operand (e.g., −3);
binary operators take 2 operands (eg 3
× 4).

Propositional or Boolean operators
operate on propositions or truth values
instead of on numbers.

Operators / Connectives
Topic #1.0 – Propositional Logic: Operators

Some Popular Boolean
Operators

BinaryIFFBiconditional operator

BinaryIMPLIESImplication operator

⊕BinaryXORExclusive-OR operator

Disjunction operator

Conjunction operator

Negation operator

Formal Name

∨BinaryOR

∧BinaryAND

¬UnaryNOT

SymbolArityNickname

⇒

Topic #1.0 – Propositional Logic: Operators

⇔

The Negation Operator

The unary negation operator “¬” (NOT)
transforms a prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

Truth table for NOT:
p ¬p
T F
F T

T :≡ True; F :≡ False
“:≡” means “is defined as”

Operand
column

Result
column

Topic #1.0 – Propositional Logic: Operators

The Conjunction Operator

The binary conjunction operator “∧” (AND)
combines two propositions to form their
logical conjunction.

E.g. If p=“I will have salad for lunch.” and
q=“I will have chicken for dinner.”, then
p∧q=“I will have salad for lunch and

I will have chicken for dinner.”

Remember: “∧∧”” points up like an points up like an ““AA””, and it means , and it means ““∧∧NDND””

∧∧NDND

Topic #1.0 – Propositional Logic: Operators

• Note that a
conjunction
p1 ∧ p2 ∧ … ∧ pn
of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and ∧ operations together are suffi-
cient to express any Boolean truth table!

Conjunction Truth Table

p q p∧q
F F F
F T F
T F F
T T T

Operand columns

Topic #1.0 – Propositional Logic: Operators

The Disjunction Operator

The binary disjunction operator “∨” (OR)
combines two propositions to form their
logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
p∨q=“Either my car has a bad engine, or

my car has a bad carburetor.”
After the downward-
pointing “axe” of “∨∨””
splits the wood, yousplits the wood, you
can take 1 piece OR can take 1 piece OR
the other, or both.the other, or both.

∨∨

Topic #1.0 – Propositional Logic: Operators

Meaning is like “and/or” in English.

• Note that p∨q means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,
because it includes the
possibility that both p and q are true.

• “¬” and “∨” together are also universal.

Disjunction Truth Table

p q p∨q
F F F
F T T
T F T
T T T

Note
difference
from AND

Topic #1.0 – Propositional Logic: Operators

Nested Propositional
Expressions

• Use parentheses to group sub-
expressions:
“I just saw my old friend, and either he’s
grown or I’ve shrunk.” = f ∧ (g ∨ s)
– (f ∧ g) ∨ s would mean something

different
– f ∧ g ∨ s would be ambiguous

• By convention, “¬” takes precedence
over both “∧” and “∨”.
– ¬s ∧ f means (¬s) ∧ f , not ¬ (s ∧ f)

Topic #1.0 – Propositional Logic: Operators

A Simple Exercise

Let p=“It rained last night”,
q=“The sprinklers came on last night,”
r=“The lawn was wet this morning.”

Translate each of the following into English:
¬p =
r ∧ ¬p =
¬ r ∨ p ∨ q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”
“Either the lawn wasn’t wet this
morning, or it rained last night, or
the sprinklers came on last night.”

Topic #1.0 – Propositional Logic: Operators

The Exclusive Or Operator

The binary exclusive-or operator “⊕” (XOR)
combines two propositions to form their
logical “exclusive or” (exjunction?).

p = “I will earn an A in this course,”
q = “I will drop this course,”
p ⊕ q = “I will either earn an A for this

course, or I will drop it (but not both!)”

Topic #1.0 – Propositional Logic: Operators

• Note that p⊕q means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

• “¬” and “⊕” together are not universal.

Exclusive-Or Truth Table

p q p⊕q
F F F
F T T
T F T
T T F Note

difference
from OR.

Topic #1.0 – Propositional Logic: Operators

Note that English “or” can be ambiguous
regarding the “both” case!

“Pat is a singer or
Pat is a writer.” -

“Pat is a man or
Pat is a woman.” -

Need context to disambiguate the
meaning!

For this class, assume “or” means inclusive.

Natural Language is Ambiguous

p q p "or" q
F F F
F T T
T F T
T T ?

∨

⊕

Topic #1.0 – Propositional Logic: Operators

The Implication Operator

The implication p q states that p implies q.

I.e., If p is true, then q is true; but if p is not true,
then q could be either true or false.

E.g., let p = “You study hard.”
q = “You will get a good grade.”

p q = “If you study hard, then you will get a
good grade.” (else, it could go either way)

⇒

Topic #1.0 – Propositional Logic: Operators

antecedent consequent

⇒

Implication Truth Table

• p → q is false only when
p is true but q is not true.

• p → q does not say
that p causes q!

• p → q does not require
that p or q are ever true!

• E.g. “(1=0) → pigs can fly” is TRUE!

p q p→q
F F T
F T T
T F F
T T T

The
only
False
case!

Topic #1.0 – Propositional Logic: Operators

For simplicity, I shall denote the implication operator by the
symbol and the iff operator by ↔

Examples of Implications

• “If this lecture ends, then the sun will
rise tomorrow.” True or False?

• “If Tuesday is a day of the week, then I
am a bird.” True or False?

• “If 1+1=6, then Bush is president.”
True or False?

• “If the moon is made of green cheese,
then I am richer than Bill Gates.” True or
False?

Topic #1.0 – Propositional Logic: Operators

Why does this seem wrong?

• Consider a sentence like,
– “If I wear a red shirt tomorrow, then Arnold

Schwarzenegger will become governor of California.”
• In logic, we consider the sentence True so long

as either I don’t wear a red shirt, or Arnold wins.
• But in normal English conversation, if I were to

make this claim, you would think I was lying.
– Why this discrepancy between logic & language?

Resolving the Discrepancy

• In English, a sentence “if p then q” usually really
implicitly means something like,
– “In all possible situations, if p then q.”

• That is, “For p to be true and q false is impossible.”
• Or, “I guarantee that no matter what, if p, then q.”

• This can be expressed in predicate logic as:
– “For all situations s, if p is true in situation s, then q is

also true in situation s”
– Formally, we could write: ∀s, P(s) → Q(s)

• That sentence is logically False in our example,
because for me to wear a red shirt and for Arnold
to lose is a possible (even if not actual) situation.
– Natural language and logic then agree with each other.

English Phrases Meaning p → q
• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for

q”
• “q is necessary for

p”
• “q follows from p”
• “q is implied by p”

Topic #1.0 – Propositional Logic: Operators

If p is true, that is enough, q has to be true for the
implication to hold (sufficiency)

If q is false, p cannot be true; It is necessary that q be
true for p to be true (necessicity)

Converse, Inverse, Contrapositive

Some terminology, for an implication p → q:
• Its converse is: q → p.
• Its inverse is: ¬p → ¬q.
• Its contrapositive: ¬q → ¬ p.
• One of these three has the same meaning

(same truth table) as p → q. Can you
figure out which?

Topic #1.0 – Propositional Logic: Operators

How do we know for sure?

Proving the equivalence of p → q and its
contrapositive using truth tables:

p q ¬q ¬p p→q ¬q →¬p
F F T T T T
F T F T T T
T F T F F F
T T F F T T

Topic #1.0 – Propositional Logic: Operators

The biconditional operator

The biconditional p ↔ q states that p is true if and
only if (IFF) q is true.

p = “Bush wins the 2004 election.”
q = “Bush will be president for all of 2005.”
p ↔ q = “If, and only if, Bush wins the 2004

election, Bush will be president for all of 2005.”

Topic #1.0 – Propositional Logic: Operators

2004

I’m still
here!

2005

Biconditional Truth Table

• p ↔ q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of ⊕’s!
Thus, p ↔ q means ¬(p ⊕ q)

• p ↔ q does not imply
that p and q are true, or cause each other.

p q p ↔ q
F F T
F T F
T F F
T T T

Topic #1.0 – Propositional Logic: Operators

Boolean Operations Summary

• We have seen 1 unary operator (out of
the 4 possible) and 5 binary operators
(out of the 16 possible). Their truth
tables are below.

p q ¬p p∧q p∨q p⊕q p→q p↔q
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T

Topic #1.0 – Propositional Logic: Operators

Some Alternative Notations

Name: not and or xor implies iff
Propositional logic: ¬ ∧ ∨ ⊕ → ↔
Boolean algebra: p pq + ⊕
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:

Topic #1.0 – Propositional Logic: Operators

Bits and Bit Operations

• A bit is a binary (base 2) digit: 0 or 1.
• Bits may be used to represent truth

values.
• By convention:

0 represents “false”; 1 represents
“true”.

• Boolean algebra is like ordinary algebra
except that variables stand for bits, +
means “or”, and multiplication means
“and”.

Topic #2 – Bits

John Tukey
(1915-2000)

Bit Strings

• A Bit string of length n is an ordered series
or sequence of n≥0 bits.
– More on sequences in §3.2.

• By convention, bit strings are written left to
right: e.g. the first bit of “1001101010” is 1.

• When a bit string represents a base-2
number, by convention the first bit is the
most significant bit. Ex. 11012=8+4+1=13.

Topic #2 – Bits

Counting in Binary
• Did you know that you can count

to 1,023 just using two hands?
– How? Count in binary!

• Each finger (up/down) represents 1 bit.

• To increment: Flip the rightmost (low-order)
bit.
– If it changes 1→0, then also flip the next bit to the

left,
• If that bit changes 1→0, then flip the next one, etc.

• 0000000000, 0000000001, 0000000010, …
…, 1111111101, 1111111110, 1111111111

Topic #2 – Bits

Bitwise Operations

• Boolean operations can be extended to
operate on bit strings as well as single
bits.

• E.g.:
01 1011 0110
11 0001 1101
11 1011 1111 Bit-wise OR
01 0001 0100 Bit-wise AND
10 1010 1011 Bit-wise XOR

Topic #2 – Bits

Summary

You have learned
about:

• Propositions: What
they are.

• Propositional logic
operators’
– Symbolic notations.
– English equivalents.
– Logical meaning.
– Truth tables.

• Nested propositions.
• Alternative notations.
• Bits and bit-strings.
• Next section:

– Propositional
equivalences.

– How to prove them.

Propositional Equivalence

Two syntactically (i.e., textually) different
compound propositions may be the
semantically identical (i.e., have the same
meaning). We call them equivalent.
Learn:

• Various equivalence rules or laws.
• How to prove equivalences using symbolic

derivations.

Topic #1.1 – Propositional Logic: Equivalences

Tautologies and Contradictions

A tautology is a compound proposition that is
true no matter what the truth values of its
atomic propositions are!

Ex. p ∨ ¬p [What is its truth table?]
A contradiction is a compound proposition that

is false no matter what! Ex. p ∧ ¬p [Truth
table?]

Other compound props. are contingencies
(which is neither a tautology nor a contradiction)

Topic #1.1 – Propositional Logic: Equivalences

Logical Equivalence

Compound proposition p is logically
equivalent to compound proposition q,
written p⇔q, IFF the compound
proposition p↔q is a tautology.

Compound propositions p and q are logically
equivalent to each other IFF p and q
contain the same truth values as each
other in all rows of their truth tables.

Topic #1.1 – Propositional Logic: Equivalences

Ex. Prove that p∨q ⇔ ¬(¬p ∧ ¬q).

p q pp∨∨qq ¬¬pp ¬¬qq ¬¬pp ∧∧ ¬¬qq ¬¬((¬¬pp ∧∧ ¬¬qq))
F F
F T
T F
T T

Proving Equivalence
via Truth Tables

F
T

T
T

T

T

T

T
T
T

F
F

F

F

F
F
F

F

T
T

Topic #1.1 – Propositional Logic: Equivalences

Constructing Truth table

Construct a truth table for q ∧ ¬p → p.

T

F
F

p q ¬p
F F
F T
T F
T T

T
T

F
F

¬¬p ∧ q
F

q ∧ ¬p → p

T

T
T

F

Equivalence Laws

• These are similar to the arithmetic
identities you may have learned in
algebra, but for propositional equivalences
instead.

• They provide a pattern or template that
can be used to match all or part of a much
more complicated proposition and to find
an equivalence for it.

Topic #1.1 – Propositional Logic: Equivalences

Equivalence Laws - Examples

• Identity: p∧T ⇔ p p∨F ⇔ p
• Domination: p∨T ⇔ T p∧F ⇔ F
• Idempotent: p∨p ⇔ p p∧p ⇔ p
• Double negation: ¬¬p ⇔ p
• Commutative: p∨q ⇔ q∨p p∧q ⇔ q∧p
• Associative: (p∨q)∨r ⇔ p∨(q∨r)

(p∧q)∧r ⇔ p∧(q∧r)

Topic #1.1 – Propositional Logic: Equivalences

More Equivalence Laws

• Distributive: p∨(q∧r) ⇔ (p∨q)∧(p∨r)
p∧(q∨r) ⇔ (p∧q)∨(p∧r)

• De Morgan’s:
¬(p∧q) ⇔ ¬p ∨ ¬q
¬(p∨q) ⇔ ¬p ∧ ¬q

• Trivial tautology/contradiction:
p ∨ ¬p ⇔ T p ∧ ¬p ⇔ F

Topic #1.1 – Propositional Logic: Equivalences

Augustus
De Morgan
(1806-1871)

Defining Operators via
Equivalences

Using equivalences, we can define
operators in terms of other operators.

• Exclusive or: p⊕q ⇔ (p∨q)∧¬(p∧q)
p⊕q ⇔ (p∧¬q)∨(q∧¬p)

• Implies: p→q ⇔ ¬p ∨ q
• Biconditional: p↔q ⇔ (p→q) ∧ (q→p)

p↔q ⇔ ¬(p⊕q)

Topic #1.1 – Propositional Logic: Equivalences

An Example Problem

• Check using a symbolic derivation whether
(p ∧ ¬q) → (p ⊕ r) ⇔ ¬p ∨ q ∨ ¬r.

(p ∧ ¬q) → (p ⊕ r) ⇔
[Expand definition of →] ¬(p ∧ ¬q) ∨ (p ⊕ r)
[Defn. of ⊕] ⇔ ¬(p ∧ ¬q) ∨ ((p ∨ r) ∧ ¬(p ∧ r))
[DeMorgan’s Law]

⇔ (¬p ∨ q) ∨ ((p ∨ r) ∧ ¬(p ∧ r))
cont.

Topic #1.1 – Propositional Logic: Equivalences

Example Continued...
(¬p ∨ q) ∨ ((p ∨ r) ∧ ¬(p ∧ r)) ⇔ [∨ commutes]
⇔ (q ∨ ¬p) ∨ ((p ∨ r) ∧ ¬(p ∧ r)) [∨ associative]
⇔ q ∨ (¬p ∨ ((p ∨ r) ∧ ¬(p ∧ r))) [distrib. ∨ over ∧]
⇔ q ∨ (((¬p ∨ (p ∨ r)) ∧ (¬p ∨ ¬(p ∧ r)))
[assoc.] ⇔ q ∨ (((¬p ∨ p) ∨ r) ∧ (¬p ∨ ¬(p ∧ r)))
[trivail taut.] ⇔ q ∨ ((T ∨ r) ∧ (¬p ∨ ¬(p ∧ r)))
[domination] ⇔ q ∨ (T ∧ (¬p ∨ ¬(p ∧ r)))
[identity] ⇔ q ∨ (¬p ∨ ¬(p ∧ r)) ⇔ cont.

Topic #1.1 – Propositional Logic: Equivalences

End of Long Example

q ∨ (¬p ∨ ¬(p ∧ r))
[DeMorgan’s] ⇔ q ∨ (¬p ∨ (¬p ∨ ¬r))
[Assoc.] ⇔ q ∨ ((¬p ∨ ¬p) ∨ ¬r)
[Idempotent] ⇔ q ∨ (¬p ∨ ¬r)
[Assoc.] ⇔ (q ∨ ¬p) ∨ ¬r
[Commut.] ⇔ ¬p ∨ q ∨ ¬r
Q.E.D. (quod erat demonstrandum)

Topic #1.1 – Propositional Logic: Equivalences

(Which was to be shown.)

Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators: ¬ ∧ ∨ ⊕ → ↔
• Compound propositions: s :≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r …

Topic #1 – Propositional Logic

Predicate Logic
• Language of propositions not sufficient

to make all assertions needed in
mathematics
– x=3, x+y=z
– They are not propositions (Why?)
– However if values are assigned they do

• Consider the assertion:
– He is tall and dark
– These assertions are formed using

variables, in a template. The template is
called the predicate.

Topic #3 – Predicate Logic

Contd…

• Assertion : x is tall and dark.
– x is the variable
– “is tall and dark” is the predicate

Applications of Predicate Logic

It is the formal notation for writing perfectly
clear, concise, and unambiguous
mathematical definitions, axioms, and
theorems for any branch of mathematics.

Predicate logic with function symbols, the “=” operator, and
a few proof-building rules is sufficient for defining any
conceivable mathematical system, and for proving
anything that can be proved within that system!

Topic #3 – Predicate Logic

Other Applications

• Predicate logic is the foundation of the
field of mathematical logic, which
culminated in Gödel’s incompleteness
theorem, which revealed the ultimate
limits of mathematical thought:
– Given any finitely describable, consistent

proof procedure, there will still be some
true statements that can never be proven
by that procedure.

• I.e., we can’t discover all mathematical truths,
unless we sometimes resort to making guesses.

Topic #3 – Predicate Logic

Kurt Gödel
1906-1978

Practical Applications

• Basis for clearly expressed formal
specifications for any complex system.

• Basis for automatic theorem provers and
many other Artificial Intelligence systems.

Topic #3 – Predicate Logic

Subjects and Predicates

• In the sentence “The dog is sleeping”:
– The phrase “the dog” denotes the subject -

the object or entity that the sentence is about.
– The phrase “is sleeping” denotes the

predicate- a property that is true of the
subject.

• In predicate logic, a predicate is modeled
as a function P(·) from objects to
propositions.
– P(x) = “x is sleeping” (where x is any object).

Topic #3 – Predicate Logic

More About Predicates

• Convention: Lowercase variables x, y, z...
denote objects/entities; uppercase variables P,
Q, R… denote propositional functions
(predicates).

• Keep in mind that the result of applying a
predicate P to an object x is the proposition P(x).
But the predicate P itself (e.g. P=“is sleeping”)
is not a proposition (not a complete sentence).
– E.g. if P(x) = “x is a prime number”,

P(3) is the proposition “3 is a prime number.”

Topic #3 – Predicate Logic

Propositional Functions

• Predicate logic generalizes the
grammatical notion of a predicate to also
include propositional functions of any
number of arguments, each of which may
take any grammatical role that a noun can
take.
– E.g. let P(x,y,z) = “x gave y the grade z”, then

if
x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z) =
“Mike gave Mary the grade A.”

Topic #3 – Predicate Logic

Universes of Discourse (U.D.s)
• The power of distinguishing objects

from predicates is that it lets you state
things about many objects at once.

• E.g., let P(x)=“x+1>x”. We can then
say,
“For any number x, P(x) is true” instead
of
(0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...

• The collection of values that a variable x
can take is called x’s universe of
discourse.

Topic #3 – Predicate Logic

Types of predicates

• Consider a predicate: P(c1,c2,…,cn)
• Defn:

– Valid: Value of P is true for all choices of the
argument

– Satisfiable: Value of P is true for some value
of the argument

– Unsatisfiable: Value of P is never true for the
possible choices of the argument

Quantifier Expressions

• Quantifiers provide a notation that allows
us to quantify (count) how many objects in
the univ. of disc. satisfy a given predicate.

• “∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u.d., P holds.

• “∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d.
(that is, 1 or more) such that P(x) is true.

Topic #3 – Predicate Logic

The Universal Quantifier ∀

• Example:
Let the u.d. of x be parking spaces at IITM.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x),
∀x P(x), is the proposition:
– “All parking spaces at IITM are full.”
– i.e., “Every parking space at IITM is full.”
– i.e., “For each parking space at IITM, that space is full.”

Topic #3 – Predicate Logic

The Existential Quantifier ∃

• Example:
Let the u.d. of x be parking spaces at IITM.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x),
∃x P(x), is the proposition:
– “Some parking space at IITM is full.”
– “There is a parking space at IITM that is full.”
– “At least one parking space at IITM is full.”

Topic #3 – Predicate Logic

Question

• What is a predicate with zero variables
called?

Free and Bound Variables

• An expression like P(x) is said to have a
free variable x (meaning, x is undefined).

• A quantifier (either ∀ or ∃) operates on an
expression having one or more free
variables, and binds one or more of those
variables, to produce an expression
having one or more bound variables.

• Binding converts a predicate to a
proposition

Topic #3 – Predicate Logic

Example of Binding

• P(x,y) has 2 free variables, x and y.
• ∀x P(x,y) has 1 free variable, and one bound

variable. [Which is which?]
• “P(x), where x=3” is another way to bind x.
• An expression with zero free variables is a bona-

fide (actual) proposition
• An expression with one or more free variables is

still only a predicate: ∀x P(x,y)

Topic #3 – Predicate Logic

Nesting of Quantifiers

Example: Let the u.d. of x & y be people.
Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s)
Then ∃y L(x,y) = “There is someone whom x

likes.” (A predicate w. 1 free variable, x)
Then ∀x (∃y L(x,y)) =

“Everyone has someone whom they like.”
(A __________ with ___ free variables.)

Topic #3 – Predicate Logic

Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators: ¬ ∧ ∨ ⊕ → ↔
• Compound propositions: s ≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r …

Review: Predicate Logic

• Objects x, y, z, …
• Predicates P, Q, R, … are functions

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: [∀x P(x)] :≡ “For all x’s, P(x).”

[∃x P(x)] :≡ “There is an x such that P(x).”
• Universes of discourse, bound & free vars.

Quantifier Exercise

If R(x,y)=“x relies upon y,” express the
following in unambiguous English:

∀x(∃y R(x,y))=
∃y(∀x R(x,y))=
∃x(∀y R(x,y))=
∀y(∃x R(x,y))=
∀x(∀y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom
everyone relies upon (including himself)!
There’s some needy person who relies
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody,
(including themselves)!

Topic #3 – Predicate Logic

Natural language is ambiguous!

• “Everybody likes somebody.”
– For everybody, there is somebody they like,

• ∀x ∃y Likes(x,y)
– or, there is somebody (a popular person)

whom everyone likes?
• ∃y ∀x Likes(x,y)

• “Somebody likes everybody.”
– Same problem: Depends on context,

emphasis.

[Probably more likely.]

Topic #3 – Predicate Logic

Game Theoretic Semantics
• Thinking in terms of a competitive game can help you tell

whether a proposition with nested quantifiers is true.
• The game has two players, both with the same

knowledge:
– Verifier: Wants to demonstrate that the proposition is true.
– Falsifier: Wants to demonstrate that the proposition is false.

• The Rules of the Game “Verify or Falsify”:
– Read the quantifiers from left to right, picking values of variables.
– When you see “∀”, the falsifier gets to select the value.
– When you see “∃”, the verifier gets to select the value.

• If the verifier can always win, then the proposition is true.
• If the falsifier can always win, then it is false.

Topic #3 – Predicate Logic

Let’s Play, “Verify or Falsify!”

Let B(x,y) :≡ “x’s month of birthday is the same as that of y”

Suppose I claim that among you:
∀x ∃y B(x,y)

Your turn, as falsifier:
You pick any x → (so-and-so)

∃y B(so-and-so,y)
My turn, as verifier:

I pick any y → (such-and-such)

B(so-and-so,such-and-such)

• Let’s play it in class.
• Who wins this game?
• What if I switched the

quantifiers, and I
claimed that
∃y ∀x B(x,y)?

Who wins in that
case?

Topic #3 – Predicate Logic

Still More Conventions

• Sometimes the universe of discourse is
restricted within the quantification, e.g.,
– ∀x>0 P(x) is shorthand for

“For all x that are greater than zero, P(x).”
=∀x (x>0 → P(x))

– ∃x>0 P(x) is shorthand for
“There is an x greater than zero such that
P(x).”
=∃x (x>0 ∧ P(x))

Topic #3 – Predicate Logic

More to Know About Binding

• ∀x ∃x P(x) - x is not a free variable in
∃x P(x), therefore the ∀x binding isn’t
used.

• (∀x P(x)) ∧ Q(x) - The variable x is outside
of the scope of the ∀x quantifier, and is
therefore free. Not a complete
proposition!

• (∀x P(x)) ∧ (∃x Q(x)) – This is legal,
because there are 2 different x’s!

Topic #3 – Predicate Logic

Commutavity of Quantifiers

• ∀x ∃y P(x,y)≠ ∃y∀x P(x,y)
• ∀x ∀y P(x,y)= ∀y∀x P(x,y)
• ∃ x ∃y P(x,y)= ∃y∃xP(x,y)

It is easy to disprove (give a counter-example)
Prove or disprove the above statements

Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,…
∀x P(x) ⇔ P(a) ∧ P(b) ∧ P(c) ∧ …
∃x P(x) ⇔ P(a) ∨ P(b) ∨ P(c) ∨ …

• From those, we can prove the laws:
∀x P(x) ⇔ ¬∃x ¬P(x)
∃x P(x) ⇔ ¬∀x ¬P(x)

• Which propositional equivalence laws
can be used to prove this?

Topic #3 – Predicate Logic

More Equivalence Laws

• ∀x ∀y P(x,y) ⇔ ∀y ∀x P(x,y)
∃x ∃y P(x,y) ⇔ ∃y ∃x P(x,y)

• ∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x))
∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x))

• Exercise:
See if you can prove these yourself.

– What propositional equivalences did you use?

Topic #3 – Predicate Logic

Review: Predicate Logic

• Objects x, y, z, …
• Predicates P, Q, R, … are functions

mapping objects x to propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: (∀x P(x)) =“For all x’s, P(x).”

(∃x P(x))=“There is an x such that P(x).”

Topic #3 – Predicate Logic

Defining New Quantifiers
As per their name, quantifiers can be used

to express that a predicate is true of any
given quantity (number) of objects.

Define ∃!x P(x) to mean “P(x) is true of
exactly one x in the universe of
discourse.”

∃!x P(x) ⇔ ∃x (P(x) ∧ ¬∃y (P(y) ∧ y≠ x))
“There is an x such that P(x), where there
is no y such that P(y) and y is other than
x.”

Topic #3 – Predicate Logic

More about Quantifiers

• State True or False with reasons:
– ∀ distributes over Λ
– ∀ distributes over ∨
– ∃ distributes over Λ
– ∃ distributes over ∨
– ∃x[P(x) Λ Q(x)] → ∃xP(x) Λ ∃xQ(x)
– ∀x[P(x) ∨ Q(x)] → ∀xP(x) ∨ ∀xQ(x)

Prove or disprove:
∃x[P(x) Q(x)] ⇔[∃xP(x) ∃xQ(x)]

∃x[P(x) Q(x)] ⇔ ∃x[¬P(x) ∨ Q(x)]
⇔∃x[¬P(x)] ∨ ∃xQ(x) ⇔ ¬∀xP(x) ∨ ∃xQ(x)
⇔∀xP(x) ∃xQ(x)

Hence we are to check:
[∀xP(x) ∃xQ(x)] ⇔ [∃xP(x) ∃xQ(x)]

Truth Table

1
1
0
1
n.a
n.a
0
1

1
1
1
1
n.a
n.a
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

∃xP(x)
∃xQ(x)

∀xP(x)
∃xQ(x)

∃xQ(x)∃xP(x)∀xP(x)

Building Counter-example

• Build the counter-example, so that we
satisfy the line of the truth-table which
makes the difference:
– Here, ∀xP(x)=0, ∃xP(x)=1, ∃xQ(x)=0
– Example: P(x) is satisfiable and Q(x) is

unsatisfiable
– P(x): x=0, Q(x): x ≠ x.

Some Number Theory
Examples

• Let u.d. = the natural numbers 0, 1, 2, …
• “A number x is even, E(x), if and only if it is

equal to 2 times some other number.”
∀x (E(x) ↔ (∃y x=2y))

• “A number is prime, P(x), iff it’s greater than 1
and it isn’t the product of two non-unity
numbers.”
∀x (P(x) ↔ (x>1 ∧ ¬∃yz x=yz ∧ y≠1 ∧ z≠1))

Topic #3 – Predicate Logic

Goldbach’s Conjecture (unproven)

Using E(x) and P(x) from previous slide,
∀E(x>2): ∃P(p),P(q): p+q = x

or, with more explicit notation:
∀x [x>2 ∧ E(x)] →

∃p ∃q P(p) ∧ P(q) ∧ p+q = x.
“Every even number greater than 2

is the sum of two primes.”

Topic #3 – Predicate Logic

Deduction Example

• Definitions:
s :≡ Socrates (ancient Greek philosopher);
H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”.

• Premises:
H(s) Socrates is human.
∀x H(x)→M(x) All humans are mortal.

Topic #3 – Predicate Logic

Prove, Socrates is mortal!!

Deduction Example Continued

Some valid conclusions you can draw:
H(s)→M(s) [Instantiate universal.] If Socrates is human

then he is mortal.
¬H(s) ∨ M(s) Socrates is inhuman or mortal.
H(s) ∧ (¬H(s) ∨ M(s))

Socrates is human, and also either inhuman or mortal.
(H(s) ∧ ¬H(s)) ∨ (H(s) ∧ M(s)) [Apply distributive law.]
F ∨ (H(s) ∧ M(s)) [Trivial contradiction.]
H(s) ∧ M(s) [Use identity law.]
M(s) Socrates is mortal.

Topic #3 – Predicate Logic

Another Example

• Definitions: H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”; G(x) :≡ “x is a god”

• Premises:
– ∀x H(x) → M(x) (“Humans are mortal”) and
– ∀x G(x) → ¬M(x) (“Gods are immortal”).

• Show that ¬∃x (H(x) ∧ G(x))
(“No human is a god.”)

Topic #3 – Predicate Logic

Summary

• From these sections you should have learned:
– Predicate logic notation & conventions
– Conversions: predicate logic ↔ clear English
– Meaning of quantifiers, equivalences
– Simple reasoning with quantifiers

• Upcoming topics:
– Introduction to proof-writing.
– Then: Set theory –

• a language for talking about collections of objects.

Topic #3 – Predicate Logic

