LOGICAL INFERENCE & PROOFs

Debdeep Mukhopadhyay Dept of CSE, IIT Madras

Defn

 A theorem is a mathematical assertion which can be shown to be true. A proof is an argument which establishes the truth of a theorem.

Nature & Importance of Proofs

- In mathematics, a proof is:
 - a correct (well-reasoned, logically valid) and complete (clear, detailed) argument that rigorously & undeniably establishes the truth of a mathematical statement.
- Why must the argument be correct & complete?
 - Correctness prevents us from fooling ourselves.
 - Completeness allows anyone to verify the result.
- In this course (& throughout mathematics), a very high standard for correctness and completeness of proofs is demanded!!

Overview

- Methods of mathematical argument (*i.e.*, proof methods) can be formalized in terms of *rules of logical inference*.
- Mathematical proofs can themselves be represented formally as discrete structures.
- We will review both <u>correct</u> & <u>fallacious</u> inference rules, & several proof methods.

Applications of Proofs

- An exercise in clear communication of logical arguments in any area of study.
- The fundamental activity of mathematics is the discovery and elucidation, through proofs, of interesting new theorems.
- Theorem-proving has applications in program verification, computer security, automated reasoning systems, etc.
- Proving a theorem allows us to rely upon on its correctness even in the most critical scenarios.

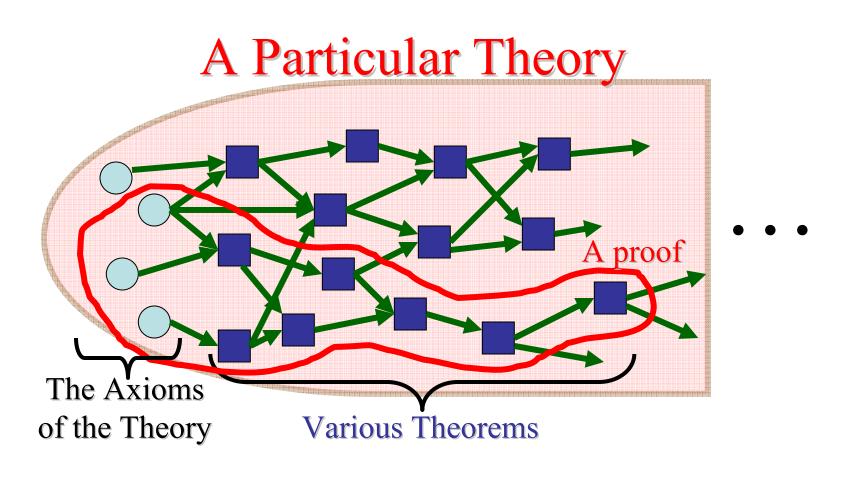
Proof Terminology

- Theorem
 - A statement that has been proven to be true.
- Axioms, postulates, hypotheses, premises
 - Assumptions (often unproven) defining the structures about which we are reasoning.
- Rules of inference
 - Patterns of logically valid deductions from hypotheses to conclusions.

More Proof Terminology

- Lemma A minor theorem used as a steppingstone to proving a major theorem.
- Corollary A minor theorem proved as an easy consequence of a major theorem.
- Conjecture A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)
- Theory The set of all theorems that can be proven from a given set of axioms.

Graphical Visualization



Inference Rules - General Form

- An Inference Rule is
 - A pattern establishing that if we know that a set of antecedent statements of certain forms are all true, then we can validly deduce that a certain related consequent statement is true.
- antecedent 1

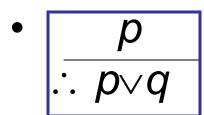
 antecedent 2 ...
 ∴ consequent
 - "therefore"

"∴" means

Inference Rules & Implications

- Each valid logical inference rule corresponds to an implication that is a tautology.
- antecedent 1 Inference rule
 antecedent 2 . .
 ∴ consequent
- Corresponding tautology:
 ((ante. 1) ∧ (ante. 2) ∧ ...) → consequent

Some Inference Rules



• $p \land q$ $\therefore p$

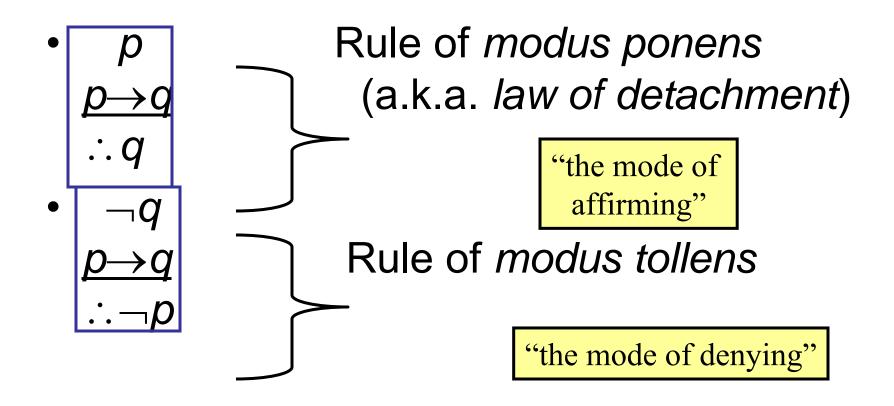
• p
q
∴ p∧q

Rule of Addition

Rule of Simplification

Rule of Conjunction

Modus Ponens & Tollens



Syllogism Inference Rules

• $p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$

Rule of hypothetical syllogism

• $p \vee q$ $\neg p$ $\therefore q$

Rule of disjunctive syllogism

Aristotle (ca. 384-322 B.C.)

Formal Proofs

- A formal proof of a conclusion C, given premises p₁, p₂,...,p_n consists of a sequence of steps, each of which applies some inference rule to premises or previously-proven statements (antecedents) to yield a new true statement (the consequent).
- A proof demonstrates that *if* the premises are true, *then* the conclusion is true.

Formal Proof Example

- Suppose we have the following premises:
 - "It is not sunny and it is cold."
 - "We will swim only if it is sunny."
 - "If we do not swim, then we will canoe."
 - "If we canoe, then we will be home early."
- Given these premises, prove the theorem
 "We will be home early" using inference rules.

Proof Example cont.

- Let us adopt the following abbreviations:
 - sunny = "It is sunny"; cold = "It is cold"; swim = "We will swim"; canoe = "We will canoe"; early = "We will be home early".
- Then, the premises can be written as:
 - (1) \neg sunny \land cold (2) swim \rightarrow sunny
 - (3) \neg swim \rightarrow canoe (4) canoe \rightarrow early

Proof Example cont.

Step

- 1. \neg sunny \land cold
- 2. ¬sunny
- 3. *swim*→*sunny*
- 4. *¬swim*
- 5. ¬swim→canoe
- 6. canoe
- 7. canoe→early
- 8. early

Proved by

Premise #1.

Simplification of 1.

Premise #2.

Modus tollens on 2,3.

Premise #3.

Modus ponens on 4,5.

Premise #4.

Modus ponens on 6,7.

Inference Rules for Quantifiers

```
• \forall x P(x) Universal instantiation
           (substitute any specific object o)
  ∴ P(o)
       (for g a general element of u.d.)
• P(g)
  \therefore \forall x P(x) Universal generalization
• ∃x P(x) Existential instantiation
  \therefore P(c) (substitute a new constant c)

    P(o)

           (substitute any extant object o)
  \therefore \exists x P(x) Existential generalization
```

Common Fallacies

- A fallacy is an inference rule or other proof method that is not logically valid.
 - A fallacy may yield a false conclusion!
- Fallacy of affirming the conclusion:
 - " $p \rightarrow q$ is true, and q is true, so p must be true." (No, because $F \rightarrow T$ is true.)
 - If he stole, he will be nervous when he is interrogated. He was nervous when interrogated, so he stole.

Fallacy

- Fallacy of denying the hypothesis:
 - " $p \rightarrow q$ is true, and p is false, so q must be false." (No, again because $F \rightarrow T$ is true.)
 - If his hands are full of blood, he has murdered. But he is sitting on his sofa, well dressed (without any sign of blood), so he did not murder.
 - He may have washed his hands !!!

Slightly complicated example

- Statement:
 - $\forall x[P(x) \lor Q(x)] \rightarrow \forall xP(x) \lor \forall xQ(x)$
 - Quick Check: P(x): x is even, Q(x): x is odd
- Fallacious Proof:

$$\forall x [P(x) \lor Q(x)] \leftarrow \rightarrow \neg \exists x \neg [P(x) \lor Q(x)]$$

$$\leftarrow \rightarrow \neg \exists x [\neg P(x) \land \neg Q(x)]$$

$$\Rightarrow \neg [\exists x \neg P(x) \land \exists x \neg Q(x)]$$

$$\leftarrow \Rightarrow [\neg \exists x \neg P(x) \lor \neg \exists x \neg Q(x)]$$

$$\leftarrow \Rightarrow \forall x P(x) \lor \forall x Q(x)$$
Remember we Proved in the last class
$$class$$

Fallacy of denying the antecedent

Circular Reasoning

- The fallacy of (explicitly or implicitly)
 assuming the very statement you are trying to
 prove in the course of its proof. Example:
- Prove that an integer n is even, if n^2 is even.
- Attempted proof: "Assume n^2 is even. Then $n^2=2k$ for some integer k. Dividing both sides by n gives n=(2k)/n=2(k/n). So there is an integer j (namely k/n) such that n=2j.

Therefore *n* is

Circular reaso

How do

you show that j=k/n=n/2 is an integer, without **first** assuming that n is even?

A Correct Proof

We know that n must be either odd or even. If n were odd, then n^2 would be odd, since an odd number times an odd number is always an odd number. Since n^2 is even, it is not odd, since no even number is also an odd number. Thus, by modus tollens, n is not odd either. Thus, by disjunctive syllogism, n must be even.

This proof is correct, but not quite complete, since we used several lemmas without proving them. Can you identify what they are?

A More Verbose Version

- •Suppose n^2 is even $\therefore 2|n^2 \therefore n^2 \mod 2 = 0$.
- •Of course *n* mod 2 is either 0 or 1.
- •If it's 1, then $n=1 \pmod{2}$, so $n^2=1 \pmod{2}$
- •Now $n^2 \equiv 1 \pmod{2}$ implies that $n^2 \pmod{2} = 1$. So by the hypothetical syllogism rule,
 - $(n \mod 2 = 1) \text{ implies } (n^2 \mod 2 = 1).$
- •Since we know $n^2 \mod 2 = 0 \neq 1$, by modus tollens we know that $n \mod 2 \neq 1$.
- So by disjunctive syllogism we have that
 - $n \mod 2 = 0$ ∴ 2|n ∴ n is even. Q.E.D.

Proof Methods for Implications

For proving implications $p \rightarrow q$, we have:

- Direct proof: Assume p is true, and prove q.
- *Indirect* proof: Assume $\neg q$, and prove $\neg p$.
- *Vacuous* proof: Prove $\neg p$ by itself.
- Trivial proof: Prove q by itself.
- Proof by cases: Show $p \rightarrow (a \lor b)$, and $(a \rightarrow q)$ and $(b \rightarrow q)$.

Direct Proof Example

- Definition: An integer n is called odd iff n=2k+1 for some integer k; n is even iff n=2k for some k.
- Theorem: (For all numbers n) If n is an odd integer, then n² is an odd integer.
- **Proof:** If n is odd, then n = 2k+1 for some integer k. Thus, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Therefore n^2 is of the form 2j + 1 (with j the integer $2k^2 + 2k$), thus n^2 is odd. \square

Indirect Proof Example

- Theorem: (For all integers n)
 If 3n+2 is odd, then n is odd.
- **Proof:** Suppose that the conclusion is false, *i.e.*, that n is even. Then n=2k for some integer k. Then 3n+2=3(2k)+2=6k+2=2(3k+1). Thus 3n+2 is even, because it equals 2j for integer j=3k+1. So 3n+2 is not odd. We have shown that $\neg(n \text{ is odd}) \rightarrow \neg(3n+2 \text{ is odd})$, thus its contrapositive $(3n+2 \text{ is odd}) \rightarrow (n \text{ is odd})$ is also true. \square

Vacuous Proof Example

- **Theorem:** (For all n) If n is both odd and even, then $n^2 = n + n$.
- Proof: The statement "n is both odd and even" is necessarily false, since no number can be both odd and even. So, the theorem is vacuously true. □

Trivial Proof Example

- **Theorem:** (For integers *n*) If *n* is the sum of two prime numbers, then either *n* is odd or *n* is even.
- **Proof:** *Any* integer *n* is either odd or even. So the conclusion of the implication is true regardless of the truth of the antecedent. Thus the implication is true trivially.

 □

Proof by Contradiction

- A method for proving p.
- Assume $\neg p$, and prove both q and $\neg q$ for some proposition q. (Can be anything!)
- Thus $\neg p \rightarrow (q \land \neg q)$
- (q ∧ ¬q) is a trivial contradiction, equal to
 F
- Thus $\neg p \rightarrow \mathbf{F}$, which is only true if $\neg p = \mathbf{F}$
- Thus p is true.

Proof by Contradiction Example

- Theorem: $\sqrt{2}$ is irrational.
 - **Proof:** Assume $2^{1/2}$ were rational. This means there are integers i,j with no common divisors such that $2^{1/2} = ilj$. Squaring both sides, $2 = i^2/j^2$, so $2j^2 = i^2$. So i^2 is even; thus i is even. Let i=2k. So $2j^2 = (2k)^2 = 4k^2$. Dividing both sides by 2, $j^2 = 2k^2$. Thus j^2 is even, so j is even. But then i and j have a common divisor, namely 2, so we have a contradiction. □

Review: Proof Methods So Far

- Direct, indirect, vacuous, and trivial proofs of statements of the form $p \rightarrow q$.
- Proof by contradiction of any statements.
- Next: Constructive and nonconstructive existence proofs.

Proving Existentials

- A proof of a statement of the form ∃x P(x) is called an existence proof.
- If the proof demonstrates how to actually find or construct a specific element a such that *P*(*a*) is true, then it is a *constructive* proof.
- Otherwise, it is nonconstructive.

Constructive Existence Proof

- Theorem: There exists a positive integer n
 that is the sum of two perfect cubes in two
 different ways:
 - equal to $j^3 + k^3$ and $l^3 + m^3$ where j, k, l, m are positive integers, and $\{j,k\} \neq \{l,m\}$
- **Proof:** Consider n = 1729, j = 9, k = 10, l = 1, m = 12. Now just check that the equalities hold.

Another Constructive Existence Proof

- **Theorem:** For any integer *n*>0, there exists a sequence of *n* consecutive composite integers.
- Same statement in predicate logic:
 ∀n>0 ∃x ∀i (1≤i≤n)→(x+i is composite)
- Proof follows on next slide...

The proof...

- Given n>0, let x = (n + 1)! + 1.
- Let $i \ge 1$ and $i \le n$, and consider x+i.
- Note x+i = (n+1)! + (i+1).
- Note (i+1)|(n+1)!, since $2 \le i+1 \le n+1$.
- Also (i+1)|(i+1). So, (i+1)|(x+i).
- \therefore x+i is composite.
- $\therefore \forall n \exists x \forall 1 \le i \le n : x+i \text{ is composite. Q.E.D.}$

Nonconstructive Existence Proof

Principle of extremum

- Theorem:
 - "There are infinitely many prime numbers."
- Any finite set of numbers must contain a maximal element, so we can prove the theorem if we can just show that there is no largest prime number.
- *i.e.*, show that for any prime number, there is a larger number that is *also* prime.
- More generally: For any number, ∃ a larger prime.
- Formally: Show $\forall n \exists p > n : p$ is prime.

The proof, using *proof by* cases...

- Given n>0, prove there is a prime p>n.
- Consider x = n! + 1. Since x > 1, we know $(x \text{ is prime}) \lor (x \text{ is composite})$.
- Case 1: x is prime. Obviously x>n, so let p=x and we're done.
- Case 2: x has a prime factor p. But if $p \le n$, then $x \mod p = 1$. So p > n, and we're done.

Proof by contradiction

Assume a largest prime number exists; call it p.
Form the product of the finite number of prime numbers,

```
- r = 2.3.5.7...p
```

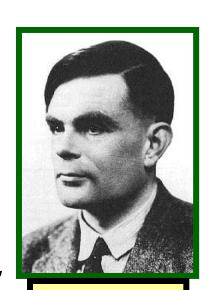
- Now inspect r+1: It cannot be divisible by any of the above prime numbers
- So, either r+1 is a prime or divisible by a prime greater than p (There is a fallacy in Stanat's proof).
- Thus, in either case there is a prime greater than p, and hence we have a contradiction
- Thus, there is no maximum prime number and the set is infinite.

Adaptive proofs

• Adapt the previous proof to prove that there are infinite prime numbers of the form 4k+3, where k is a non-negative integer.

The Halting Problem (Turing'36)

- The halting problem was the first mathematical function proven to have no algorithm that computes it!
 - We say, it is *uncomputable*.
- The desired function is Halts(P,I) :=
 the truth value of this statement:
 - "Program P, given input I, eventually terminates."
- Theorem: Halts is uncomputable!
 - I.e., There does not exist any algorithm A that computes Halts correctly for all possible inputs.
- Its proof is thus a non-existence proof.
- Corollary: General impossibility of predictive analysis of arbitrary computer programs.



Alan Turing 1912-1954

The Proof

Absurd makes a liar out of *HALT*, by doing the opposite of whatever *HALT* predicts.

- Given any arbitrary program HALT(P)
- Consider algorithm Absurd, defined as:

procedure Absurd:
 if HALT(Absurd)==T
 while T begin end

- Note that Absurd halts iff H(Absurd) = F.
- So H does **not** compute the function Halts!

Limits on Proofs

- Some very simple statements of number theory haven't been proved or disproved!
 - E.g. Goldbach's conjecture: Every integer n≥2 is exactly the average of some two primes.
 - \forall *n*≥2 \exists primes *p*,*q*: *n*=(*p*+*q*)/2.
- There are true statements of number theory (or any sufficiently powerful system) that can never be proved (or disproved) (Gödel).