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Defn

• A theorem is a mathematical assertion 
which can be shown to be true. A proof is 
an argument which establishes the truth of 
a theorem. 



Nature & Importance of Proofs
• In mathematics, a proof is:

– a correct (well-reasoned, logically valid) and complete
(clear, detailed) argument that rigorously & 
undeniably establishes the truth of a mathematical 
statement.

• Why must the argument be correct & complete?
– Correctness prevents us from fooling ourselves.
– Completeness allows anyone to verify the result.

• In this course (& throughout mathematics), a 
very high standard for correctness and 
completeness of proofs is demanded!!



Overview 

• Methods of mathematical argument (i.e., 
proof methods) can be formalized in terms 
of rules of logical inference.

• Mathematical proofs can themselves be 
represented formally as discrete 
structures.

• We will review both correct & fallacious
inference rules, & several proof methods.



Applications of Proofs

• An exercise in clear communication of logical 
arguments in any area of study.

• The fundamental activity of mathematics is 
the discovery and elucidation, through 
proofs, of interesting new theorems.

• Theorem-proving has applications in 
program verification, computer security, 
automated reasoning systems, etc.

• Proving a theorem allows us to rely upon on 
its correctness even in the most critical 
scenarios.



Proof Terminology
• Theorem

– A statement that has been proven to be 
true.

• Axioms, postulates, hypotheses,
premises
– Assumptions (often unproven) defining the 

structures about which we are reasoning.
• Rules of inference

– Patterns of logically valid deductions from 
hypotheses to conclusions. 



More Proof Terminology
• Lemma - A minor theorem used as a stepping-

stone to proving a major theorem.
• Corollary - A minor theorem proved as an easy 

consequence of a major theorem.
• Conjecture - A statement whose truth value has 

not been proven. (A conjecture may be widely 
believed to be true, regardless.)

• Theory – The set of all theorems that can be 
proven from a given set of axioms.
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Inference Rules - General Form

• An Inference Rule is 
– A pattern establishing that if we know that a 

set of antecedent statements of certain forms 
are all true, then we can validly deduce that a 
certain related consequent statement is true. 

• antecedent 1
antecedent 2 …
∴ consequent           “∴” means 
“therefore”



Inference Rules & Implications

• Each valid logical inference rule 
corresponds to an implication that is a 
tautology.

• antecedent 1               Inference rule
antecedent 2 …
∴ consequent

• Corresponding tautology: 
((ante. 1) ∧ (ante. 2) ∧ …) → consequent



Some Inference Rules

• p Rule of Addition
∴ p∨q

• p∧q Rule of Simplification
∴ p

• p Rule of Conjunction
q

∴ p∧q



Modus Ponens & Tollens

• p Rule of modus ponens
p→q (a.k.a. law of detachment)
∴q

• ¬q
p→q Rule of modus tollens
∴¬p

“the mode of 
affirming”

“the mode of denying”



Syllogism Inference Rules

• p→q Rule of hypothetical
q→r syllogism

∴p→r
• p ∨ q Rule of disjunctive

¬p syllogism
∴ q

Aristotle
(ca. 384-322 B.C.)



Formal Proofs

• A formal proof of a conclusion C, given 
premises p1, p2,…,pn consists of a 
sequence of steps, each of which applies 
some inference rule to premises or 
previously-proven statements 
(antecedents) to yield a new true 
statement (the consequent).

• A proof demonstrates that if the premises 
are true, then the conclusion is true.



Formal Proof Example

• Suppose we have the following premises:
“It is not sunny and it is cold.”
“We will swim only if it is sunny.”
“If we do not swim, then we will canoe.”
“If we canoe, then we will be home early.”

• Given these premises, prove the theorem
“We will be home early” using inference rules.



Proof Example cont.

• Let us adopt the following abbreviations:
– sunny = “It is sunny”; cold = “It is cold”; 

swim = “We will swim”; canoe = “We will 
canoe”; early = “We will be home early”.

• Then, the premises can be written as:
(1) ¬sunny ∧ cold (2) swim → sunny
(3) ¬swim → canoe (4) canoe → early



Proof Example cont.

Step Proved by
1. ¬sunny ∧ cold Premise #1.
2. ¬sunny Simplification of 1.
3. swim→sunny Premise #2.
4. ¬swim Modus tollens on 2,3.
5. ¬swim→canoe Premise #3.
6. canoe Modus ponens on 4,5.
7. canoe→early Premise #4.
8. early Modus ponens on 6,7.



Inference Rules for Quantifiers

• ∀x P(x)
∴P(o) (substitute any specific object o)

• P(g) (for g a general element of u.d.)
∴∀x P(x)

• ∃x P(x)
∴P(c) (substitute a new constant c)

• P(o) (substitute any extant object o) 
∴∃x P(x)



Common Fallacies

• A fallacy is an inference rule or other 
proof method that is not logically valid.
– A fallacy may yield a false conclusion!

• Fallacy of affirming the conclusion:
– “p→q is true, and q is true, so p must be 

true.” (No, because F→T is true.)
– If he stole, he will be nervous when he is 

interrogated. He was nervous when 
interrogated, so he stole.



Fallacy

• Fallacy of denying the hypothesis:
– “p→q is true, and p is false, so q must be 

false.” (No, again because F→T is true.)
– If his hands are full of blood, he has 

murdered. But he is sitting on his sofa, well 
dressed (without any sign of blood), so he did 
not murder. 

– He may have washed his hands !!!



Slightly complicated example
• Statement: 

– ∀x[P(x) ∨ Q(x)] → ∀xP(x) ∨ ∀xQ(x)
– Quick Check: P(x): x is even, Q(x): x is odd

• Fallacious Proof:
∀x [P(x) ∨ Q(x)] ¬∃x¬ [P(x) ∨ Q(x)]

¬∃x[¬P(x) Λ ¬Q(x)]
¬ [∃x ¬P(x) Λ ∃x ¬Q(x)]
[¬ ∃x ¬P(x) ∨ ¬ ∃x ¬Q(x)]
∀xP(x) ∨ ∀xQ(x)

Fallacy of denying the antecedent

Remember we 
Proved in the last 

class



Circular Reasoning

• The fallacy of (explicitly or implicitly) 
assuming the very statement you are trying to 
prove in the course of its proof.  Example:

• Prove that an integer n is even, if n2 is even.
• Attempted proof: “Assume n2 is even.  

Then n2=2k for some integer k. Dividing both 
sides by n gives n = (2k)/n = 2(k/n). So there 
is an integer j (namely k/n) such that n=2j.  
Therefore n is even.”
– Circular reasoning is used in this proof.  Where?

How do
you show that j=k/n=n/2 is an integer, 
without first assuming that n is even?



A Correct Proof

We know that n must be either odd or even.  
If n were odd, then n2 would be odd, since 
an odd number times an odd number is 
always an odd number.  Since n2 is even, it 
is not odd, since no even number is also an 
odd number.  Thus, by modus tollens, n is 
not odd either.  Thus, by disjunctive 
syllogism, n must be even. ■

This proof is correct, but not quite complete,
since we used several lemmas without proving
them.  Can you identify what they are?



A More Verbose Version

•Suppose n2 is even ∴2|n2 ∴ n2 mod 2 = 0.  
•Of course n mod 2 is either 0 or 1. 
•If it’s 1, then n≡1 (mod 2), so n2≡1 (mod 2)
•Now n2≡1 (mod 2) implies that n2 mod 2 = 1.  
So by the hypothetical syllogism rule,

– (n mod 2 = 1) implies (n2 mod 2 = 1).  
•Since we know n2 mod 2 = 0 ≠ 1, by modus 
tollens we know that n mod 2 ≠ 1.  
•So by disjunctive syllogism we have that

– n mod 2 = 0 ∴2|n ∴ n is even. Q.E.D.



Proof Methods for Implications

For proving implications p→q, we have:
• Direct proof: Assume p is true, and prove 

q.
• Indirect proof: Assume ¬q, and prove ¬p.
• Vacuous proof: Prove ¬p by itself.
• Trivial proof: Prove q by itself.
• Proof by cases:

Show p→(a ∨ b), and (a→q) and (b→q).



Direct Proof Example
• Definition: An integer n is called odd iff n=2k+1

for some integer k; n is even iff n=2k for some k.
• Theorem: (For all numbers n) If n is an odd 

integer, then n2 is an odd integer.
• Proof: If n is odd, then n = 2k+1 for some 

integer k.  Thus, n2 = (2k+1)2 = 4k2 + 4k + 1 = 
2(2k2 + 2k) + 1.  Therefore n2 is of the form 2j + 
1 (with j the integer 2k2 + 2k), thus n2 is odd. □



Indirect Proof Example

• Theorem: (For all integers n) 
If 3n+2 is odd, then n is odd.

• Proof: Suppose that the conclusion is false, i.e., 
that n is even.  Then n=2k for some integer k.  
Then 3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1).  Thus 
3n+2 is even, because it equals 2j for integer j = 
3k+1.  So 3n+2 is not odd.  We have shown that 
¬(n is odd)→¬(3n+2 is odd), thus its contra-
positive (3n+2 is odd) → (n is odd) is also true. □



Vacuous Proof Example

• Theorem: (For all n) If n is both odd and 
even, then n2 = n + n.

• Proof: The statement “n is both odd and 
even” is necessarily false, since no 
number can be both odd and even.  So, 
the theorem is vacuously true. □



Trivial Proof Example

• Theorem: (For integers n) If n is the sum 
of two prime numbers, then either n is odd 
or n is even.

• Proof: Any integer n is either odd or 
even.  So the conclusion of the implication 
is true regardless of the truth of the 
antecedent.   Thus the implication is true 
trivially. □



Proof by Contradiction

• A method for proving p.
• Assume ¬p, and prove both q and ¬q for 

some proposition q.  (Can be anything!)
• Thus ¬p→ (q ∧ ¬q)
• (q ∧ ¬q) is a trivial contradiction, equal to 

F
• Thus ¬p→F, which is only true if ¬p=F
• Thus p is true.



Proof by Contradiction Example

• Theorem: is irrational.
– Proof: Assume 21/2 were rational.  This 

means there are integers i,j with no common 
divisors such that 21/2 = i/j.  Squaring both 
sides, 2 = i2/j2, so 2j2 = i2.  So i2 is even; thus i
is even.  Let i=2k.  So 2j2 = (2k)2 = 4k2.  
Dividing both sides by 2, j2 = 2k2.  Thus j2 is 
even, so j is even.  But then i and j have a 
common divisor, namely 2, so we have a 
contradiction. □
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Review: Proof Methods So Far

• Direct, indirect, vacuous, and trivial proofs 
of statements of the form p→q.

• Proof by contradiction of any statements.
• Next:  Constructive and nonconstructive

existence proofs.



Proving Existentials

• A proof of a statement of the form ∃x P(x) 
is called an existence proof.

• If the proof demonstrates how to actually 
find or construct a specific element a such 
that P(a) is true, then it is a constructive
proof.

• Otherwise, it is nonconstructive.



Constructive Existence Proof

• Theorem: There exists a positive integer n
that is the sum of two perfect cubes in two 
different ways:
– equal to j3 + k3 and l3 + m3 where j, k, l, m are 

positive integers, and {j,k} ≠ {l,m}
• Proof: Consider n = 1729,  j = 9, k = 10, 

l = 1, m = 12.  Now just check that the 
equalities hold.



Another Constructive 
Existence Proof

• Theorem:  For any integer n>0, there 
exists a sequence of n consecutive 
composite integers.

• Same statement in predicate logic:
∀n>0 ∃x ∀i (1≤i≤n)→(x+i is composite)

• Proof follows on next slide…



The proof...

• Given n>0, let x = (n + 1)! + 1.
• Let i ≥ 1 and i ≤ n, and consider x+i.
• Note x+i = (n + 1)! + (i + 1).
• Note (i+1)|(n+1)!, since 2 ≤ i+1 ≤ n+1.
• Also (i+1)|(i+1).  So, (i+1)|(x+i).  
• ∴ x+i is composite.  
• ∴ ∀n ∃x ∀1≤i≤n : x+i is composite. Q.E.D.



Nonconstructive Existence 
Proof

• Theorem:
“There are infinitely many prime numbers.”

• Any finite set of numbers must contain a 
maximal element, so we can prove the 
theorem  if we can just show that there is no
largest prime number.

• i.e., show that for any prime number, there is 
a larger number that is also prime.

• More generally: For any number, ∃ a larger 
prime.

• Formally: Show ∀n ∃p>n : p is prime.

Principle of extremum



The proof, using proof by 
cases...

• Given n>0, prove there is a prime p>n. 
• Consider x = n!+1.  Since x>1, we know 

(x is prime)∨(x is composite).
• Case 1: x is prime.  Obviously x>n, so let 

p=x and we’re done.
• Case 2: x has a prime factor p.  But if p≤n, 

then x mod p = 1.  So p>n, and we’re 
done.



Proof by contradiction
• Assume a largest prime number exists; call it p. 

Form the product of the finite number of prime 
numbers, 
– r=2.3.5.7…p

• Now inspect r+1: It cannot be divisible by any of 
the above prime numbers

• So, either r+1 is a prime or divisible by a prime 
greater than p (There is a fallacy in Stanat’s proof).

• Thus, in either case there is a prime greater than 
p, and hence we have a contradiction

• Thus, there is no maximum prime number and 
the set is infinite.



Adaptive proofs

• Adapt the previous proof to prove that 
there are infinite prime numbers of the 
form 4k+3, where k is a non-negative 
integer.



The Halting Problem (Turing‘36)

• The halting problem was the first 
mathematical function proven to 
have no algorithm that computes it!  
– We say, it is uncomputable.

• The desired function is Halts(P,I) :≡
the truth value of this statement: 
– “Program P, given input I, eventually terminates.”

• Theorem: Halts is uncomputable!
– I.e., There does not exist any algorithm A that 

computes Halts correctly for all possible inputs.
• Its proof is thus a non-existence proof.
• Corollary: General impossibility of predictive 

analysis of arbitrary computer programs.

Alan Turing
1912-1954



The Proof

• Given any arbitrary program HALT(P)
• Consider algorithm Absurd, defined as:

procedure Absurd:
if HALT(Absurd)==T
while T begin end

• Note that Absurd halts iff
H(Absurd) = F.

• So H does not compute the function 
Halts!

Absurd makes a 
liar out of HALT, by 
doing the opposite 
of whatever HALT

predicts.



Limits on Proofs

• Some very simple statements of number 
theory haven’t been proved or disproved!
– E.g. Goldbach’s conjecture: Every integer n≥2 

is exactly the average of some two primes.
– ∀n≥2 ∃ primes p,q: n=(p+q)/2.

• There are true statements of number 
theory (or any sufficiently powerful system) 
that can never be proved (or disproved) 
(Gödel).


