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Divide & Conquer Algorithms

• Many types of problems are solvable by 
reducing a problem of size n into some 
number a of independent subproblems, 
each of size ≤⎡n/b⎤, where a≥1 and b>1.

• The time complexity to solve such 
problems is given by a recurrence 
relation:
– T(n) = a·T(⎡n/b⎤) + g(n)

Time to combine the 
solutions of the 

subproblems into a 
solution 

of the original problem.
Time for each subproblem



Why the name?

• Divide: This step divides the problem into 
one or more substances of the same 
problem of smaller size

• Conquer: Provides solutions to the bigger 
problem by using the solutions of the 
smaller problem by some additional work.



Divide and Conquer Examples

• Binary search: Break list into 1 sub-
problem (smaller list) (so a=1) of size 
≤⎡n/2⎤ (so b=2).
– So T(n) = T(⎡n/2⎤)+ 2 (g(n)=c constant)
– g(n)=2, because two comparisons are needed 

to conquer. One to decide which half of the 
list to use. Second to decide whether any 
term in the list remain.



Find the maximum and minimum of 
a sequence

• If n=1, the number is itself min or max
• If n>1, divide the numbers into two lists. 

Decide the min & max in the first list. Then 
choose the min & max in the second list.

• Decide the min & max of the entire list.
• Thus, 

T(n)=2T(n/2)+2



Fast Multiplication Example
• The ordinary grade-school algorithm takes 
Θ(n2) steps to multiply two n-digit numbers.
– Can we do better?

• Let’s find an asymptotically faster algorithm!
• To find the product cd of two 2n-digit base-b

numbers, c=(c2n-1c2n-2…c0)b and 
d=(d2n-1d2n-2…d0)b, first, we break c and d in 
half: 

c=bnC1+C0,      d=bnD1+D0
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Derivation of Fast Multiplication

Zero

(Multiply out
polynomials)

(Factor last term)

Three multiplications, each with n-digit numbers



Recurrence Rel. for Fast Mult.

Notice that the time complexity T(n) of the 
fast multiplication algorithm obeys the 
recurrence:

• T(2n)=3T(n)+Θ(n)
i.e.,

• T(n)=3T(n/2)+Θ(n)
So a=3, b=2.

Time to do the needed adds & 
subtracts of n-digit and 2n-digit
numbers



Solving the R.R

• We have seen some approaches before.
• We shall discuss some more useful 

techniques
• Let, n=bk, k is a positive integer

– f(n)=af(n/b)+g(n)
=a2f(n/b2)+ag(n/b)+g(n)
=a3f(n/b3)+a2g(n/b2)+ag(n/b)+g(n)

… =akf(n/bk)+Σk-1ajg(n/bj).
If n=bk, we have f(1) in place of n/bk.

0



Theorem

• Let f be a non-decreasing function satisfying: 
f(n)=af(n/b)+c, where n is divisible by b, a≥1, b 
is an integer greater than 1, and c is a positive 
real number. 

• Then 
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Theorem contd.

• When n=bk, we have further:
log
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1 2
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Examples

• f(n)=5f(n/2)+3, f(1)=7. Find f(2k), k is a positive 
integer

• f(n)=5kf(1)+3(1+5+52+…+5k-1)
=5kf(1)+3(5k-1)/4 [GP series]
=5k[f(1)+3/4]-3/4

Since, f(n) is a non-decreasing function, 
f(n) is              . 2log 5( )O n



Examples

• Estimate the number of searches in Binary 
Search

Solve: f(n)=f(n/2)+2
a=1=>f(n)=O(log2n)

• Estimate the number of comparsons to find 
the min-max of a sequence (using the algo
previously stated)
Solve: f(n)=2f(n/2)+2
f(n)= 2log 2( ) ( )O n O n=



The Master Theorem

Consider a function f(n) that, for all n=bk

for all k∈Z+,,satisfies the recurrence 
relation:

f(n) = af(n/b) + cnd

with a≥1, integer b>1, real c>0, d≥0.  
Then:
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Master Theorem Example

• Recall that complexity of fast multiply was:
T(n) = 3T(n/2) + Θ(n)

• Thus, a=3, b=2, d=1.  So a > bd, so case 3 
of the master theorem applies, so:

which is O(n1.58…), so the new algorithm is 
strictly faster than ordinary Θ(n2) multiply!
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