
Divide and Conquer Algorithms
and

Recurrence Relations

Debdeep Mukhopadhyay
IIT Madras

Divide & Conquer Algorithms

• Many types of problems are solvable by
reducing a problem of size n into some
number a of independent subproblems,
each of size ≤⎡n/b⎤, where a≥1 and b>1.

• The time complexity to solve such
problems is given by a recurrence
relation:
– T(n) = a·T(⎡n/b⎤) + g(n)

Time to combine the
solutions of the

subproblems into a
solution

of the original problem.
Time for each subproblem

Why the name?

• Divide: This step divides the problem into
one or more substances of the same
problem of smaller size

• Conquer: Provides solutions to the bigger
problem by using the solutions of the
smaller problem by some additional work.

Divide and Conquer Examples

• Binary search: Break list into 1 sub-
problem (smaller list) (so a=1) of size
≤⎡n/2⎤ (so b=2).
– So T(n) = T(⎡n/2⎤)+ 2 (g(n)=c constant)
– g(n)=2, because two comparisons are needed

to conquer. One to decide which half of the
list to use. Second to decide whether any
term in the list remain.

Find the maximum and minimum of
a sequence

• If n=1, the number is itself min or max
• If n>1, divide the numbers into two lists.

Decide the min & max in the first list. Then
choose the min & max in the second list.

• Decide the min & max of the entire list.
• Thus,

T(n)=2T(n/2)+2

Fast Multiplication Example
• The ordinary grade-school algorithm takes
Θ(n2) steps to multiply two n-digit numbers.
– Can we do better?

• Let’s find an asymptotically faster algorithm!
• To find the product cd of two 2n-digit base-b

numbers, c=(c2n-1c2n-2…c0)b and
d=(d2n-1d2n-2…d0)b, first, we break c and d in
half:

c=bnC1+C0, d=bnD1+D0

))((

)1()(

)(

)1()(

))()((

)(

))((

1001

0011
2

10001101

0011
2

000011111001

0011
2

00100111
2

0101

DDCCb

DCbDCbb

DCDCDCDCb

DCbDCbb

DCDCDCDCDCDCb

DCDCb

DCDCDCbDCb

DDbCCbcd

n

nnn

n

nnn

n

n

nn

nn

−−

++++=

+−−

++++=

−+−++

++=

+++=

++=

Derivation of Fast Multiplication

Zero

(Multiply out
polynomials)

(Factor last term)

Three multiplications, each with n-digit numbers

Recurrence Rel. for Fast Mult.

Notice that the time complexity T(n) of the
fast multiplication algorithm obeys the
recurrence:

• T(2n)=3T(n)+Θ(n)
i.e.,

• T(n)=3T(n/2)+Θ(n)
So a=3, b=2.

Time to do the needed adds &
subtracts of n-digit and 2n-digit
numbers

Solving the R.R

• We have seen some approaches before.
• We shall discuss some more useful

techniques
• Let, n=bk, k is a positive integer

– f(n)=af(n/b)+g(n)
=a2f(n/b2)+ag(n/b)+g(n)
=a3f(n/b3)+a2g(n/b2)+ag(n/b)+g(n)

… =akf(n/bk)+Σk-1ajg(n/bj).
If n=bk, we have f(1) in place of n/bk.

0

Theorem

• Let f be a non-decreasing function satisfying:
f(n)=af(n/b)+c, where n is divisible by b, a≥1, b
is an integer greater than 1, and c is a positive
real number.

• Then
log(), 1

()
(log), 1

b a

b

O n a
f n

O n a
⎧ >

= ⎨
=⎩

Theorem contd.

• When n=bk, we have further:
log

1 2

1 2

() ,
where (1) /(1), /(1)

b af n C n C
C f c a C c a
= +

= + − = − −

Examples

• f(n)=5f(n/2)+3, f(1)=7. Find f(2k), k is a positive
integer

• f(n)=5kf(1)+3(1+5+52+…+5k-1)
=5kf(1)+3(5k-1)/4 [GP series]
=5k[f(1)+3/4]-3/4

Since, f(n) is a non-decreasing function,
f(n) is . 2log 5()O n

Examples

• Estimate the number of searches in Binary
Search

Solve: f(n)=f(n/2)+2
a=1=>f(n)=O(log2n)

• Estimate the number of comparsons to find
the min-max of a sequence (using the algo
previously stated)
Solve: f(n)=2f(n/2)+2
f(n)= 2log 2() ()O n O n=

The Master Theorem

Consider a function f(n) that, for all n=bk

for all k∈Z+,,satisfies the recurrence
relation:

f(n) = af(n/b) + cnd

with a≥1, integer b>1, real c>0, d≥0.
Then:

⎪
⎩

⎪
⎨

⎧

>
=
<

∈
da

dd

dd

ban
bann
ban

nf
b if)(O

 if)log(O
 if)(O

)(
log

Master Theorem Example

• Recall that complexity of fast multiply was:
T(n) = 3T(n/2) + Θ(n)

• Thus, a=3, b=2, d=1. So a > bd, so case 3
of the master theorem applies, so:

which is O(n1.58…), so the new algorithm is
strictly faster than ordinary Θ(n2) multiply!

)(O)(O)(3loglog 2nnnT ab ==

