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Foreword

• Power of computers come from their ability 
to repeat the same task

• Computer science uses essentially three 
problem solving tools:
– Data Models: Abstractions used to describe 

problems. Like graphs, logic etc. 
Programming languages, like C, Lisp, Prolog 
supports various abstractions. E.g. in C we 
see, char, int, float and even structures, 
pointers. 



Foreword
• Data Structures: Sometimes the data models of 

the language which we are using are unable to 
handle the data model we wish to represent. For 
that we study data structures. These are 
programming language constructs used to 
represent data models.

• Algorithm: Techniques used to obtain solutions 
by manipulating data as represented by data 
models, data structures.



The connection with repetition

• Many concepts in data models are repetitions. 
– Like lists: Either empty or is one element followed by 

another, then another and so on.
– Iterative Definition

• Recursion: A closely related technique, in which 
a concept is defined, indirectly or directly by 
itself
– Lists is either empty or is an element followed by a 

list.



First Principle

• A powerful, rigorous technique for proving 
that a predicate P(n) is true for every
natural number n, no matter how large.

• Essentially a “domino effect” principle.
• Based on a predicate-logic inference rule: 

P(0)
∀n≥0 (P(n)→P(n+1))
∴∀n≥0 P(n)



Outline of an Inductive Proof

• Want to prove ∀n P(n)…
• Base case (or basis step): Prove P(0).
• Inductive step: Prove ∀n P(n)→P(n+1).

– E.g. use a direct proof:
– Let n∈N, assume P(n). (inductive hypothesis)
– Under this assumption, prove P(n+1).

• First Principle of Induction then gives ∀n
P(n).



Generalizing Induction
• Can also be used to prove ∀n≥c P(n) for 

a given constant c∈Z, where maybe c≠0.
– In this circumstance, the base case is to 

prove P(c) rather than P(0), and the 
inductive step is to prove ∀n≥c 
(P(n)→P(n+1)).

• Induction can also be used to prove
∀n≥c P(an) for an arbitrary series {an}.

• Can reduce these to the form already 
shown.



Second Principle of Induction

• Characterized by another inference rule:
P(0)

∀n≥0: (∀0≤k≤n P(k)) → P(n+1)
∴∀n≥0: P(n)

• Difference with 1st principle is that  the 
inductive step uses the fact that P(k) is 
true for all smaller k<n+1, not just for k=n.

P is true in all previous cases



Induction Example (1st princ.)

• Prove that the sum of the first n odd 
positive integers is n2.  That is, prove:

• Proof by induction.
– Base case: Let n=1.  The sum of the first 1 

odd positive integer is 1 which equals 12.
(Cont…)
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Example cont.

• Inductive step: Prove ∀n≥1: P(n)→P(n+1).
– Let n≥1, assume P(n), and prove P(n+1).

2

2

1

1

1

)1(
12

)1)1(2()12()12(

+=

++=

−++⎟
⎠

⎞
⎜
⎝

⎛
−=− ∑∑

=

+

=

n
nn

nii
n

i

n

i
By inductive

hypothesis P(n)



Another Induction Example

• Prove that ∀n>0, n<2n.  Let P(n)=(n<2n)
– Base case: P(1)=(1<21)=(1<2)=T.
– Inductive step: For n>0, prove P(n)→P(n+1).

• Assuming n<2n, prove n+1 < 2n+1.
• Note n + 1 < 2n + 1  (by inductive hypothesis)

< 2n + 2n (because 1<2=2⋅20≤2⋅2n-1= 2n)
= 2n+1

• So n + 1 < 2n+1, and we’re done.



Example of Second Principle
• Show that every n>1 can be written as a product 

p1p2…ps of some series of s prime numbers.  Let 
P(n)=“n has that property”

• Base case: n=2, let s=1, p1=2.
• Inductive step: Let n≥2. Assume ∀2≤k≤n: P(k).

Consider n+1.  If prime, let s=1, p1=n+1.
Else n+1=ab, where 1<a≤n and 1<b≤n.
Then a=p1p2…pt and b=q1q2…qu. Then n+1= 
p1p2…pt q1q2…qu, a product of s=t+u primes.



Another 2nd Principle Example
• Prove that every amount of postage of 

Rs 12 or more can be formed using just 
Rs 4 and Rs 5 stamps.

• Base case: 12=3(4), 13=2(4)+1(5), 
14=1(4)+2(5), 15=3(5), so ∀12≤n≤15, 
P(n).

• Inductive step: Let n≥15, assume 
∀12≤k≤n P(k).  Note 12≤n−3≤n, so 
P(n−3), so add a Rs 4 stamp to get 
postage for n+1.



Can you solve the problem without 
strong induction?

• Intuition:
– If there are Rs 4 stamps to make stamp worth 

Rs n, replace one of them by a Rs 5 stamp. 
You will get stamps worth Rs (n+1)

– If there are no Rs 4 stamps. Then, all are Rs 5 
stamps. As, n ≥ 15, so there must be atleast 3 
Rs 5 stamps. So, change any 3 of the Rs 5 
stamps to 4 Rs 4 stamps. You again get 
stamps worth Rs (n+1)



Can you prove without induction?

• A possible proof outline:
– Any number, n can be expressed as:

• n=5x or 5x+1 or 5x+2 or 5x+3 or 5x+4 
• If n=5x or 5x+4, nothing is to be done
• If n=5x+1 <=> n=5(x-1)+6 

<==>n=5(x-2)+4.4. Thus this also 
satisfies the claim. Except that we have the 
condition, x≥2 => n ≥16.

• Likewise, we can complete the remaining cases.



An Interesting Problem

• Let, n be a positive integer. Show that any 
2nx2n chessboard with one square 
removed can be tiled using L-shaped 
pieces, where these pieces cover 3 
squares at a time.

Tiling a 2x2 Chessboard with one square removed



Proof Outline

• Let P(n) be the proposition that any 2nx2n

chess-board can be tiled, with the  
L-shaped pieces.

• Base Step: From the previous diagram, 
we know P(1) is true

• Inductive Step: Assuming that P(k) is 
true, we show that P(k+1) is true.



Proof (contd)

• Can you follow the proof? Complete the 
proof.



The Well Ordering (WO) Property

• Every nonempty set of nonnegative integers has 
a least element.

• Prove the division algorithm: if a is an integer 
and d is a positive integer, then there are unique 
integers q and r with 
0 ≤ r < d and a=dq+r

Proof Outline: Form a set S of non-negative 
integers of the form, a-dq, where q is an integer. 
Then S is non-empty and so has a least 
element, r=a-dq0 (from the well-ordering 
property)



• Integer r is non-negative and r<d. 
Otherwise we can have a smaller element 
in S
– e.g. if r=d+r0, then d+r0=a-dq0

– then, r0=a-(d+1)q0 so, r0<r
• Hence, there are integers q and r, with      

0 ≤ r < d. Actually, q and r are unique. Can 
you prove that? Hint: r<d



Infinite Descent

• Used to show that for a propositional 
function P(n), P(k) is false for all +ve
integers k.

• Proof method: Assuming that P(k) is true 
for at least one integer, k, then from the 
W.O. principle, there is a smallest integer 
s, for which P(s)

• The method finds an s’<s, for which P 
holds. Thus leading to a contradiction.



Example
• Prove       is irrational.

– Let 21/2=m/n and such solution exists, m,n>0
– Let, S be the set of the (+ve) denominators of the 

fractions. So there is an element, N which is the 
least element of the set. (So, N is the smallest 
denominator of ratios of two +ve numbers which 
equal to 21/2).

– Show that, 21/2=(2N -M)/(M-N)
– 1<M/N=21/2<2  => N<M<2N => 0<M-N<N. 
– So, M-N is +ve and also < N. Thus, we have a 

contradiction. 

2



Why is mathematical Induction valid?

• We know, P(1) is T, P(k) P(k+1) is T for all +ve
integers k.

• Suppose, P(n) does not hold, for some +ve n. 
So, the set S, which contains the +ve integers 
which make the proposition invalid is non-empty. 
Hence, from the W.O principle, there is a least 
element in the set, say m. So, P(m) is F, but 
P(m-1) is T. 

• But, then using Modus Ponens, P(m) is T!!
• Contradiction, that P(m) is F. So, S must be 

empty. QED.



A final example

• In a round robin tournament, every player 
plays every other player exactly once. 
Each match has a winner or loser. We say 
that P1, P2,…,Pk forms a cycle of length k, 
if P1 beats P2, P2 beats P3,…,Pk beats P1. 
Prove, that if k≥3, there must be a cycle of 
three players. 



Proof Outline
• The statement of the proof says, if there is a 

cycle then…So, we assume we have a cycle 
and go ahead…

• So, the set S of the +ve integers, for which there 
is a cycle is not empty. From the W.O principle 
there has to be a minimum element in the set. 
Let, it be k.

• So, P1, P2, P3,…, Pk forms a cycle. So, consider 
P1, P2, P3. If they form a cycle nothing is to be 
proved. Thus, P1 must beat P3. Thus, we can 
remove P2 from the cycle of length k and get a 
cycle of length k-1. Thus, contradicting that k 
was least. 



Next day Order Analysis of 
Algorithms


