Growth of Functions

Debdeep Mukhopadhyay
IIT Madras

Asymptotic Performance

e Exact running time of an algorithm is not always
required:
— When the input size of a problem is very large. Like,

In the insertion sort example if the number of
elements we had to sort are very large.

— Then the multiplicative constants and the lower order
terms can be neglected.
e How the running time of an algorithm
Increases when the input increases
unbounded ?

Growth of Functions

 For functions over numbers, we often need to
know a rough measure of how fast a function
grows.

* If f(x) Is faster growing than g(x), then f(x)
always eventually becomes larger than g(x) in
the limit (for large enough values of x).

« Useful In engineering for showing that one
design scales better or worse than another.

Growth of Functions

e Suppose you are designing a web site
to process user data (e.g., financial
records).

e Suppose database program A takes
f,(n)=30n+8 microseconds to process
any n records, while program B takes
fo(N)=n?+1 microseconds to process the
n records.

 Which program do you choose, knowing
you’ll want to support millions of users?

Visualizing Growth of Functions

« On agraph, as
you go to the

right, a faster 7
growing S
function S
eventually S
becomes %
larger... >

Increasing n —

Definition: O(g), at most order g

Let g be any function R—>R.

o Define “at most order g”, written O(g), to
be:
{f:R>R | F+ve c,k: vx>k: 0 <f(x) < cg(x)}

— “Beyond some point k, function fis at most a
constant c times g (i.e., proportional to g).”

— We are dealing with asymptotically
nonnegative elements of the set

* “fIs at most order g”, or “fis O(g)”, or
“f=0(g)” all just mean that feO(g).

Points about the definition

* Note that fis O(g) so long as any values of ¢
and k exist that satisfy the definition.

e But: The particular c, k, values that make the
statement true are not unique: Any larger
value of ¢ and/or k will also work.

* You are not required to find the smallest ¢ and
k values that work. (Indeed, in some cases,
there may be no smallest values!)

However, you should prove that the values you choose do work.

“Big-O” Proof Examples

e Show that 30n+8 is O(n).

— Show 3c¢,k: Vn>k: 30n+8 < cn.
e Let c=31, k=8. Assume n>k=8. Then
cn =31n=30n+ n> 30n+8, so 30n+8 < cn.

e Show that n’+1 is O(n?).

— Show 3c,k: Vn>k: n?+1 < cn?.

e Let c=2, k=1. Assume n>1. Then cn? = 2n? =
n%+n2 > n%+1, or n?+1< cn-.

Big-O example, graphically

e Note 30n+8 isn’t
less than n
anywhere (n>0).

T
 |tisn’t even IS
less than 31n ©
everywhere. = 30n+8
- Butitislessthan g cO(n)
&
>

31n everywhere to
the right of n=8.

Increasing n —

Definition: ®(g), exactly order g

o If feO(g) and geO(f) then we say “g and f
are of the same order’ or “f is (exactly or
tightly) order g” and write fe©(g).

« Another equivalent definition:
®(g) ={f:iR>R|
J+ve c,Cok Vx>k: 0 < c,g(x)<f(x)<c,g(x)}
* “Everywhere beyond some point k, f(x)
lies In between two multiples of g(x).”

Definition: €(g), at least order g

Let g be any function R—>R.

o Define “at most order g”, written O(g), to
be:
{f:R—>R | #ve c,k: VYx>k: f(x) 2 cg(x) 20 }

— “Beyond some point k, function fis at least a
constant c times g (i.e., proportional to g).”

 “Tis at least order g”, or “fis Q(g)”, or
“=Q(g)” all just mean that feQ(g).

Graphical Representation

c,9(n)
f(n)
c,9(n)
n>k f

f(n)

n>k

Increasing n — Increasing n —

f(n)=6(g(n))

f(n)=Q(g(n))

An Example of Tight Bound (®)

e Prove f(n)= %2 n*>-3n = ©(n?)

* In order to prove this we require
constants: c, and ¢, s.t. :
— ¢4n?< %2 n?-3n < ¢c,n?, for all n2n,
— ¢, <% -3/n £ c,, for all n2n,

n | 1| 2| 3| 4|5]| 6 | 7| 8
f(n) | -5/2| -1 | -1/2|-1/4 |-110| 0 |1/14 |>114

Set n,=7, c,=1/14, c,=1/2.
It is not important to have an unigue value, what is
important that one set of values exist.

For this class

 We shall be using the O-notation in the
class frequently

* Point to be kept in mind: /f running time is
O(n?)=> there is a function f(n) that is
O(n?) s.t. for any value of n=n,, no matter
what particular input of size n is chosen,
the running time for that input is bounded
from above by the value f(n).

Next Day Recurrences

