Growth of Functions

Debdeep Mukhopadhyay IIT Madras

Asymptotic Performance

- Exact running time of an algorithm is not always required:
 - When the input size of a problem is very large. Like, in the insertion sort example if the number of elements we had to sort are very large.
 - Then the multiplicative constants and the lower order terms can be neglected.
- How the running time of an algorithm increases when the input increases unbounded?

Growth of Functions

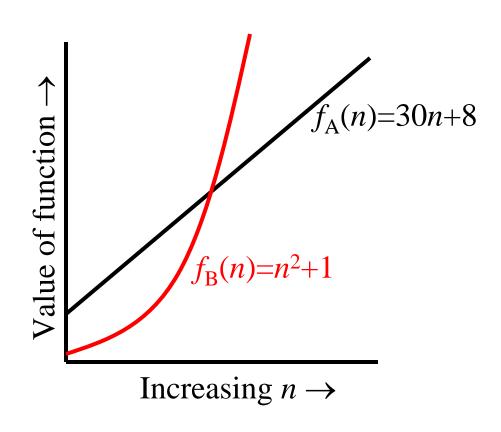
- For functions over numbers, we often need to know a rough measure of how fast a function grows.
- If f(x) is faster growing than g(x), then f(x)
 always eventually becomes larger than g(x) in
 the limit (for large enough values of x).
- Useful in engineering for showing that one design scales better or worse than another.

Growth of Functions

- Suppose you are designing a web site to process user data (e.g., financial records).
- Suppose database program A takes $f_A(n)$ =30n+8 microseconds to process any n records, while program B takes $f_B(n)$ = n^2 +1 microseconds to process the n records.
- Which program do you choose, knowing you'll want to support millions of users?

Visualizing Growth of Functions

 On a graph, as you go to the right, a faster growing function eventually becomes larger...



Definition: O(g), at most order g

Let g be any function $\mathbf{R} \rightarrow \mathbf{R}$.

 Define "at most order g", written O(g), to be:

```
\{f: R \rightarrow R \mid \exists + ve \ c, k: \forall x > k: \ 0 \le f(x) \le cg(x) \}
```

- "Beyond some point k, function f is at most a constant c times g (i.e., proportional to g)."
- We are dealing with asymptotically nonnegative elements of the set
- "f is at most order g", or "f is O(g)", or "f=O(g)" all just mean that $f \in O(g)$.

Points about the definition

- Note that f is O(g) so long as any values of c and k exist that satisfy the definition.
- But: The particular c, k, values that make the statement true are not unique: Any larger value of c and/or k will also work.
- You are **not** required to find the smallest c and k values that work. (Indeed, in some cases, there may be no smallest values!)

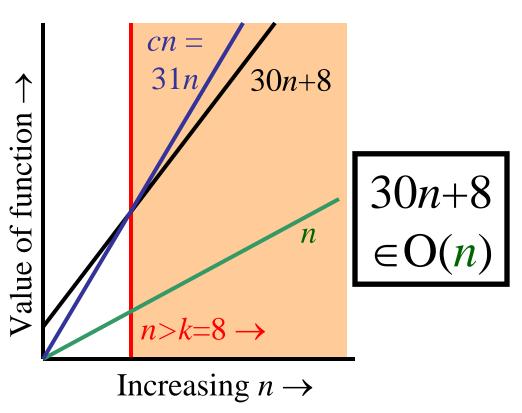
However, you should **prove** that the values you choose do work.

"Big-O" Proof Examples

- Show that 30n+8 is O(n).
 - Show $\exists c,k$: $\forall n>k$: $30n+8 \le cn$.
 - Let c=31, k=8. Assume n>k=8. Then cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.
- Show that n^2+1 is $O(n^2)$.
 - Show $\exists c,k$: $\forall n>k$: $n^2+1 \leq cn^2$.
 - Let c=2, k=1. Assume n>1. Then $cn^2 = 2n^2 = n^2 + n^2 > n^2 + 1$, or $n^2 + 1 < cn^2$.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.



Definition: $\Theta(g)$, exactly order g

- If f∈O(g) and g∈O(f) then we say "g and f are of the same order" or "f is (exactly or tightly) order g" and write f∈Θ(g).
- Another equivalent definition:

```
\Theta(g) \equiv \{f: R \rightarrow R \mid \exists + \text{ve } c_1 c_2 k \ \forall x > k: \ 0 \le c_1 g(x) \le f(x) \le c_2 g(x) \}
```

• "Everywhere beyond some point k, f(x) lies in between two multiples of g(x)."

Definition: $\Omega(g)$, at least order g

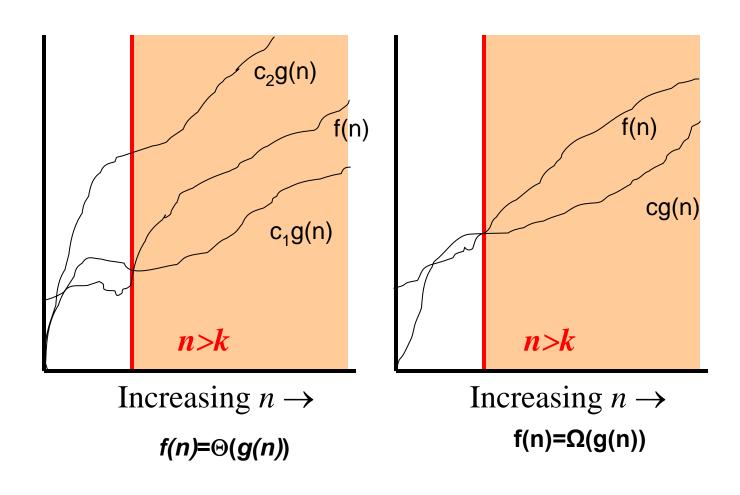
Let g be any function $\mathbf{R} \rightarrow \mathbf{R}$.

 Define "at most order g", written O(g), to be:

$\{f:R\rightarrow R\mid \exists +ve\ c,k:\ \forall x>k:\ f(x)\geq cg(x)\geq 0\}$

- "Beyond some point k, function f is at least a constant c times g (i.e., proportional to g)."
- "f is at least order g", or "f is $\Omega(g)$ ", or "f= $\Omega(g)$ " all just mean that $f \in \Omega(g)$.

Graphical Representation



An Example of Tight Bound (@)

- Prove $f(n) = \frac{1}{2} n^2 3n = \Theta(n^2)$
- In order to prove this we require constants: c₁ and c₂ s.t.:
 - $-c_1n^2 \le \frac{1}{2} n^2 3n \le c_2n^2$, for all $n \ge n_0$
 - $-c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$, for all n≥n₀

n	1	2	3	4	5	6	7	8
f(n)	-5/2	-1	-1/2	-1/4	-1/10	0	1/14	>1/14

Set n_0 =7, c_1 =1/14, c_2 =1/2.

It is not important to have an unique value, what is important that one set of values exist.

For this class

- We shall be using the O-notation in the class frequently
- Point to be kept in mind: If running time is
 O(n²)=> there is a function f(n) that is
 O(n²) s.t. for any value of n≥n₀, no matter
 what particular input of size n is chosen,
 the running time for that input is bounded
 from above by the value f(n).

Next Day Recurrences