Functions

Debdeep Mukhopadhyay IIT Madras

Functions

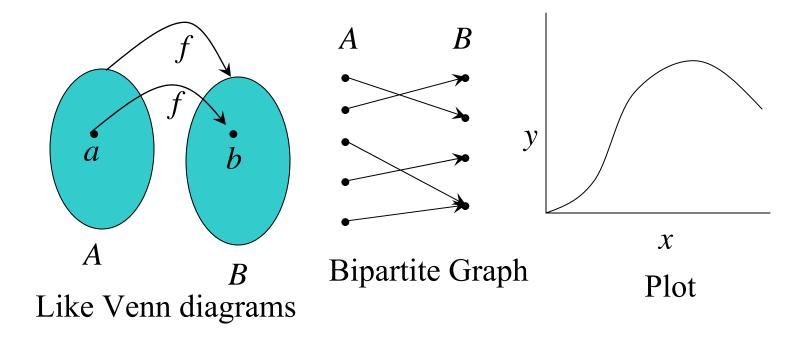
- From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in \mathbf{R}$ a particular value y=f(x), where $y \in \mathbf{R}$.
- But, the notion of a function can also be naturally generalized to the concept of assigning elements of *any* set to elements of *any* set. (Also known as a *map*.)

Function: Formal Definition

- For any sets A, B, we say that a function f from (or "mapping") A to B (f: $A \rightarrow B$) is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Some further generalizations of this idea:
 - A partial (non-total) function f assigns zero or one elements of B to each element $x \in A$.
 - Functions of *n* arguments; relations

Graphical Representations

• Functions can be represented graphically in several ways:



Functions We've Seen So Far

- A proposition can be viewed as a function from "situations" to truth values {T,F}
- A propositional operator can be viewed as a function from ordered pairs of truth values to truth values: e.g., v((F,T)) = T.

Another example:
$$\rightarrow$$
((**T**,**F**)) = **F**.

More functions

- A predicate can be viewed as a function from objects to propositions (or truth values): P := "is 7 feet tall";
 P(Mike) = "Mike is 7 feet tall." = False.
- A bit string B of length n can be viewed as a function from the numbers {1,...,n} (bit positions) to the bits {0,1}.
 E.g., B=101 → B(3)=1.

Still More Functions

- A set S over universe U can be viewed as a function from the elements of U to {T, F}, saying for each element of U whether it is in S. S={3}→ S(0)=F, S(3)=T.
- A set operator such as ∩,∪, can be viewed as a function from pairs of sets to sets.

- Example: $\cap((\{1,3\},\{3,4\})) = \{3\}$

Notations

- Sometimes we write Y^X to denote the set *F* of *all* possible functions $f: X \rightarrow Y$.
- This notation is especially appropriate, because for finite X, Y, we have $|F| = |Y|^{|X|}$.
- If we use representations F≡0, T≡1,
 2:={0,1}={F,T}, then a subset T⊆S is just a function from S to 2, so the power set of S (set of all such fns.) is 2^S in this notation.

Some Function Terminology

- If it is written that $f:A \rightarrow B$, and f(a)=b (where $a \in A \& b \in B$), then we say:
 - -A is the *domain* of *f*.
 - B is the codomain of f.
 - *b* is the *image* of *a* under *f*.
 - a is a pre-image of b under f.
 - In general, *b* may have more than 1 pre-image.
 - The range $R \subseteq B$ of f is $R = \{b \mid \exists a f(a) = b\}$.

We also say the *signature* of f is $A \rightarrow B$.

Range versus Codomain

- The range of a function might *not* be its whole codomain.
- The codomain is the set that the function is *declared* to map all domain values into.
- The range is the *particular* set of values in the codomain that the function *actually* maps elements of the domain to.

Range vs. Codomain - Example

- Suppose I declare to you that: "f is a function mapping students in this class to the set of grades {A,B,C,D,E}."
- At this point, you know *f*'s codomain is: {<u>S,A,B,C,D,E</u>}, and its range is unknown!
- Suppose the grades turn out all As and Bs.
- Then the range of *f* is <u>{A,B}</u>, but its codomain is <u>still {A,B,C,D,E}</u>!.

Function Operator Example

- +,× ("plus", "times") are binary operators over R. (Normal addition & multiplication.)
- Therefore, we can also add and multiply functions $f,g: \mathbb{R} \rightarrow \mathbb{R}$:

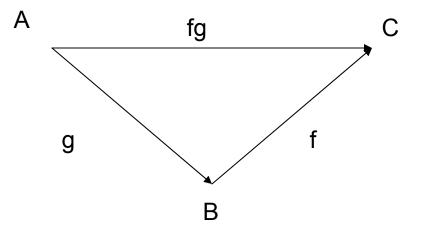
$$-(f+g): \mathbf{R} \rightarrow \mathbf{R}$$
, where $(f+g)(x) = f(x) + g(x)$

 $-(f \times g): \mathbb{R} \rightarrow \mathbb{R}$, where $(f \times g)(x) = f(x) \times g(x)$

Function Composition Operator

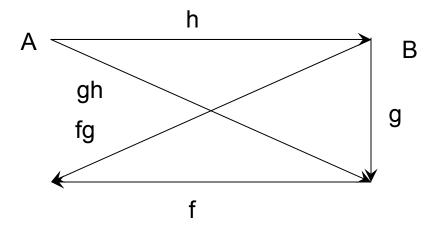
- For functions $g:A \rightarrow B$ and $f:B \rightarrow C$, there is a special operator called *compose* (" \circ ").
 - It <u>composes</u> (creates) a new function out of *f* and *g* by applying *f* to the result of applying *g*.
 - -We say $(f \circ g): A \rightarrow C$, where $(f \circ g)(a) := f(g(a))$.
 - -Note $g(a) \in B$, so f(g(a)) is defined and $\in C$.
 - Note that \circ (like Cartesian \times , but unlike +, \wedge , \cup) is non-commuting. (Generally, $f \circ g \neq g \circ f$.)

Commutative Diagram



 Each commutation (path) in the graph represents a composite of functions which appear as labels in the path.

Composition is Associative



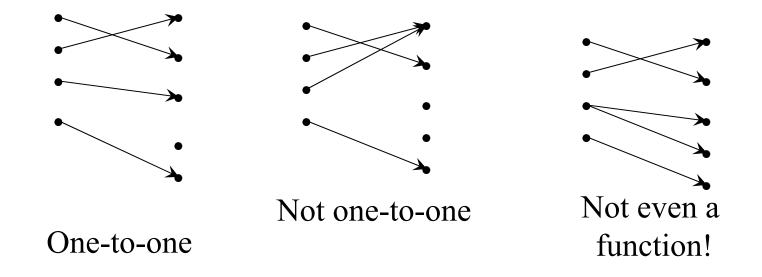
f(gh)=(fg)h (Associative)

One-to-One Functions

- A function is one-to-one (1-1), or injective, or an injection, iff every element of its range has only 1 pre-image.
 - Formally: given $f: A \rightarrow B$,
 - "*x* is injective" := $(\neg \exists x, y: x \neq y \land f(x) = f(y))$.
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have same cardinality. What about codomain?

One-to-One Illustration

• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:



Sufficient Conditions for 1-1ness

- For functions *f* over numbers, we say:
 - f is strictly (or monotonically) increasing iff x > y $\rightarrow f(x) > f(y)$ for all x, y in domain;
 - f is strictly (or monotonically) decreasing iff $x > y \rightarrow f(x) < f(y)$ for all x, y in domain;
- If *f* is either strictly increasing or strictly decreasing, then *f* is one-to-one. *E.g. x*³
 - Converse is not necessarily true. E.g. 1/x
 - Here the domain is the set of integers

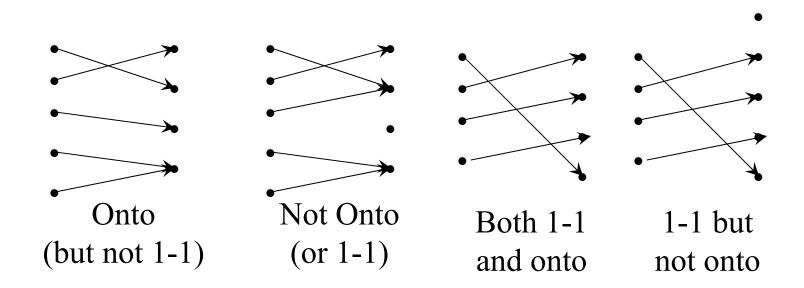
In general, the definitions hold when the domain and codomain of a function are linearly ordered.

Onto (Surjective) Functions

- A function f:A→B is onto or surjective or a surjection iff its range is equal to its codomain (∀b∈B, ∃a∈A: f(a)=b).
- Think: An *onto* function maps the set *A* <u>onto</u> (over, covering) the *entirety* of the set *B*, not just over a piece of it.
- *E.g.*, for domain & codomain R, x³ is onto, whereas x² isn't. (Why not?)

Illustration of Onto

• Some functions that are, or are not, *onto* their codomains:



Bijections

- A function f is said to be a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto.
- For bijections $f:A \rightarrow B$, there exists an *inverse of* f, written $f^{-1}:B \rightarrow A$, which is the unique function such that $f^{-1} \circ f = I_A$

- (where I_A is the identity function on A)

- A Permutation on set A is a bijective function on A.
- Permutation is closed under composition.
 - Take two bijective functions and compose them. You have another permutation.

Some properties

- If f and g are surjective, then fg is surjective
- If f and g are injective, then fg is injective
- If f and g are bijective, then fg is bijective.

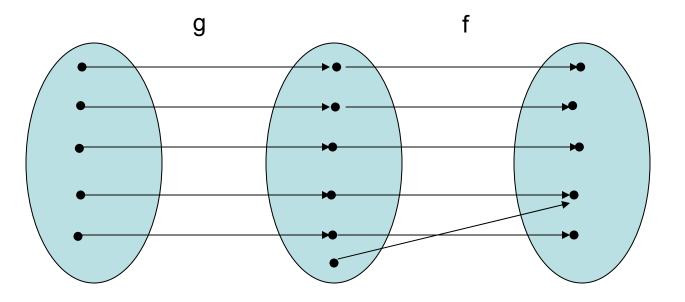
Some more properties

- If fg is surjective, then f is surjective
- If fg is injective, then g is injective
- If fg is bijective, then f is surjective and g is injective.

Explanation of 2nd Point of last slide

- Define g: $A \rightarrow B$, f: $B \rightarrow C$, fg: $A \rightarrow C$
- Let a≠b belong to A. Since fg is injective, we have f(g(a)) ≠ f(g(b)).
- Now, g(a) ≠ g(b), as otherwise we have a contradiction.
- Hence, g is injective.
- But is f also injective? As, if $g(a)=k_1$ and $g(b)=k_2$, and $k_1 \neq k_2 => f(k_1) \neq f(k_2)$.

Pictorial Representation



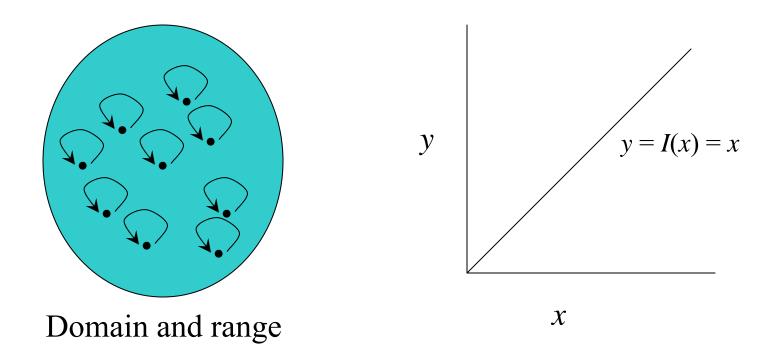
- fg is injective
- Hence, g is injective.
- But f is not injective.

The Identity Function

- For any domain *A*, the *identity function* $I:A \rightarrow A$ (variously written, I_A , **1**, **1**_A) is the unique function such that $\forall a \in A$: I(a) = a.
- Some identity functions you've seen:
 -+ing 0, ·ing by 1, ∧ing with T, ∨ing with F, ∪ing with Ø, ∩ing with U.
- Note that the identity function is always both one-to-one and onto (bijective).

Identity Function Illustrations

• The identity function:



Application

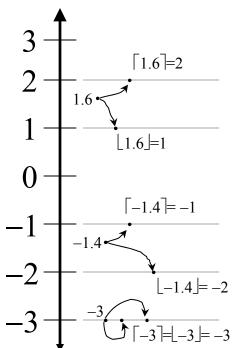
- In a computer, the function mapping the machine's <u>state at clock cycle #t</u> to its <u>state at</u> <u>clock cycle #t+1</u> is called the computer's *transition function*.
- If the transition function happens to be reversible (a bijection), then the computer's operation, in theory, requires <u>no energy</u> <u>expenditure</u>.

A Couple of Key Functions

- In discrete math, we will frequently use the following two functions over real numbers:
 - The *floor* function $\lfloor \cdot \rfloor$: $\mathbb{R} \to \mathbb{Z}$, where $\lfloor x \rfloor$ ("floor of x") means the largest (most positive) integer $\leq x$. *I.e.*, $\lfloor x \rfloor$:= max($\{i \in \mathbb{Z} | i \leq x\}$).
 - The *ceiling* function $\lceil \cdot \rceil$: $\mathbb{R} \rightarrow \mathbb{Z}$, where $\lceil x \rceil$ ("ceiling of x") means the smallest (most negative) integer $\geq x$. $\lfloor x \rfloor$:= min({ $i \in \mathbb{Z} | i \geq x$ })

Visualizing Floor & Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbb{Z}$, $\lfloor -x \rfloor \neq - \lfloor x \rfloor \&$ $\lceil -x \rceil \neq - \lceil x \rceil$
- Note that if $x \in \mathbb{Z}$, $\lfloor x \rfloor = \lceil x \rceil = x$.



Plots with floor/ceiling

- Note that for f(x)=[x], the graph of f includes the point (a, 0) for all values of a such that a≥0 and a<1, but not for the value a=1.
- We say that the set of points (*a*,0) that is in *f* does not include its *limit* or *boundary* point (*a*,1).
 - Sets that do not include all of their limit points are generally called *open sets*.
- In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Plots with floor/ceiling: Example

• Plot of graph of function $f(x) = \lfloor x/3 \rfloor$:

