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Part-I



The Sum Rule

• Two tasks T1 and T2 are to be performed. 
If the task T1 can be performed in m 
different ways and if the task T2 can be 
performed in n different ways. The two 
tasks cannot be performed 
simultaneously, then one of the two tasks 
(T1 or T2) can be performed in m+n ways.

• This can be generalised to k tasks.



Examples

• Suppose there are 16 boys and 18 girls in a 
class. We wish to select one of these students 
(either a boy or a girl) as the class 
representative. The number of ways of selecting 
a student (boy or girl) is 16+18=34.

• Suppose a library has 12 books on Mathematics, 
10 books on Physics, 16 books on Computer Sc 
and 11 books on Electronics. Suppose a student 
wishes to choose one of the books for study. He 
can do that in 12+10+16+11=49 ways.



Examples

• Suppose T1 is the task of selecting a prime 
number less than 10. T2 is say the task of 
selecting an even number less than 10. 
Thus T1=4 and T2=4.

• The task T of selecting a prime or even 
number less than 10 is 4+4-1=7 (why did 
we subtract 1?)



The Product Rule

• Suppose two tasks T1 and T2 are to be 
performed one after the other. If T1 can be 
performed in n1 different ways and for 
each of these ways T2 can be performed in 
n2 different ways, then both the tasks can 
be performed in n1n2 different ways.



Examples

• A person has 3 shirts and 5 ties. Then he 
has 3 χ 5 different ways of choosing a tie 
and a shirt.

• Suppose we wish to construct a password 
of 4 symbols: first two alphabets and last 
two being numbers. The total number of 
passwords is:
– 26x25x10x9 (wo repetitions)
– 262x102 (with repetitions)



Examples

• Suppose a restaurant sells 6 South Indian 
dishes, 4 North Indian dishes, 3 hot and 4 
cold beverages. If a student wants a 
breakfast which comprises of 1 South 
Indian dish and 1 hot beverage or 1 North 
Indian dish and 1 cold beverage, the total 
number of ways in which he chooses his 
breakfast is:
– 6x3+4x4 ways. (apply both the sum and 

product rules).



Examples

• A telegraph can transmit two different 
signals: a dot and a slash. What length of 
those symbols is needed to encode 26 
letters of the English alphabet and 10 
digits. 

• Number k length sequences is 2k.
• So, the number of non-trivial sequences of 

length n or less is:
2+22+23+…+2n=2n+1-2 ≥ 36 => n ≥ 5.



Examples
• Find the number of 3 digit even numbers with no 

repetition in digits.
• Let the number be xyz.
• z can be 0, 2, 4, 6, 8
• If z is 0, x cannot be 0, so it could be any of the 9 digits. 

y can be any of the 8 digits. So, there are 1x9x8=72 
ways.

• If z is not 0, x cannot be either 0 or the value which z has 
taken. So, there are 8 choices for z. There are still 8 
choices for y and hence there are 4x8x8=256 ways.

• Thus there are in total 72+256=328 ways (note that the 
choices are distinct and so we may apply the sum rule of 
counting).  



Examples

• How many among the first 100,000 
positive integers contain exactly one 3, 
one 4 and one 5 in their decimal 
representation.

• Answer is 5x4x3x7x7=2940.



Examples

• Find the number of proper divisors of 
441000.

• 441000=23325372.
• Number of divisors are : 

(3+1)(2+1)(3+1)(2+1)=144.
• If we subtract 2 cases, for the divisors 1 

and the number itself, we have 142 as the 
answer.



Permutations

• In some counting problems, order is important.
• Suppose we are given n distinct objects and we 

wish to arrange r of them in line. Since there are 
n ways of choosing the 1st object, then (n-1) 
ways of choosing the 2nd object and similarly the 
rth object may be chosen in (n-r+1) ways. Thus 
the total number of ways of choosing is:

n(n-1)…(n-r+1)=(n!)/(n-r)!=P(n,r)
The number of different arrangements of n distinct objects is P(n,n)=n! It
Is also called the permutation of n distinct objects. 



Handling multisets

• The objects in a multiset may not be 
distinct (as in a set). Suppose we are 
required to find the arrangement of n 
objects of which n1 are of one type, n2 are 
of some other type and so on till nk are of 
the kth type=> n1+n2+…nk=n. Then the 
number of permutations of the n objects is:

P(n,(n1,n2,…,nk))=(n!)/(n1!n2!...nk!)



Example
• How many positive integers n can we form using 

the digits 3, 4, 4, 5, 5, 6, 7 if we wish to exceed 
5,00,000?

• The number is of the form : x1x2x3x4x5x6
• x1 can be either 5, 6, 7.
• When x1=5, the remaining 5 digits have to be a 

permutation of digits from the multiset
containing, 1(5),1(3),2(4),1(6) and 1(7). Thus the 
number of arrangements are: 5!/2!

• Answer is (5!/2!)+(5!/2!2)+(5!/2!2). 



Example

• In how many ways can n persons be seated at a 
round table if arrangements are considered the 
same when one can be obtained from the other 
by rotation?

• Let one of them be seated anywhere. The other 
(n-1) persons can be seated in (n-1)! ways. Thus 
the answer is (n-1)! ways.

• Can you tell what is the difference between a 
linear and a circular arrangement?



Examples

• Find the total number of positive integers 
that can be formed from the digits 1,2,3 
and 4 if no digits are repeated in one 
integer.

• Note that the integer cannot contain more 
than 4 digits.

• Let it contain 1 digit. No of such 
numbers=4



Examples

• Let it contain 2 digits. No of such 
numbers=4x3=12.

• No of 3 digit integers=4x3x2=24
• No of 4 digit integers=4x3x2x1=24
• Hence the total number of 

numbers=4+12+24+24=64.



Examples on Divisibility

• If k is a positive integer, and n=2k, prove 
that (n!)/2k is a positive integers.

• Consider symbols: x1,x1,x2,x2,…,xk,xk. The 
total number of symbols is 2k and there 
are k partitions of cardinality 2 each. 

• So, the total number of arrangements in 
the multi-set: (2k)!/(2!2!...2!)=(2k)!/(2)k.

• Thus, 2k| (2k)!.



Another example

• Prove that (n!)! is divisible by (n!)(n-1)!

• Set N=n!
• (n-1)!=n!/n=N/n.
• Thus we can consider a collection of N 

objects, which has (n-1)! partitions of 
cardinality n each.

• The number of arrangements is 
N!/(n!...n!)=N!/(n!)(n-1)!. Thus, (n!)(n-1)!

divides N!



Combinations

• Suppose, we are selecting (choosing) a 
set of r objects, from a set of n≥r objects 
without regard to order. 

• The set of r objects being selected is 
traditionally called combination of r 
objects. 



Relating to Permutations

• Let C(n,r) be the combination of r distinct objects 
that can be selected from n different objects.

• The r objects chosen may be arranged in r! 
different ways.

• Thus, the total number of arrangements of the r 
objects chosen from the n distinct 
objects=C(n,r)r!=P(n,r)

• Thus C(n,r)=P(n,r)/r!
• Note that C(n,r)=C(n,n-r)  



Examples

• How many committees of five with a given 
chairperson can be selected from 12 
persons?

• Select the given chairperson.
• Select the remaining 4 members from the 

11 persons (excluding the chairperson).
• Answer is C(11,4)



Examples

• Find the number of committees of 5 that 
can be selected from 7 men and 5 women 
if the committee is to consist of at least 1 
man and 1 woman.

• Without restriction: C(12,5)
• Selections with 5 men: C(7,5)
• Selections with 5 women: C(5,5)
• Answer is C(12,5)-C(7,5)-C(5,5).



Examples

• Find the number of 5 digit positive integers 
such that in each of them every digit is 
greater than the digit to the right.

• A set of 5 distinct digits can be selected in 
C(10,5) ways.

• Of the digits selected there is only 1 
arrangement, namely the descending 
order which is what we require.

• So, answer is 1xC(10,5).



Examples

• Find the number of ways of seating r out of 
n persons around a circular table and the 
others around another circular table.

• Answer is C(n,r)(r-1)! x (n-r-1)!



Examples

• Find the number of arrangements of the letters 
in TALLAHASSEE which have no adjacent A’s.

• The A’s have to be placed in the dashes:
—T—L—L—H—S—S—E—E—

• The number of possible arrangements of the 
remaining letters is M=8!/(2!)3.

• The dashes can be filled in N=C(9,3).
• Thus, the total number of arrangements=MN



Example
• How many arrangements are possible for 11 

players, such that the batting order among A, B 
and C is A <<B<< C.

• Soln 1: Fix A in posn 1, B in posn 2. C can come 
in 9 places. Move B to 3, C can come in 8 
places…so on till 1. Thus, there are 9x10/2 
ways.

• Move A to posn 2, there are 8x9/2 ways.
• A can be in 9 positions, from 1 to 9.
• The other 8 players may be arranged in 8! ways.



• Thus there are in total: 8!Σk(k+1)/2, where 
k runs from 1 to 9.

• Soln2: There are 11 places. Select 3 
positions for A, B and C. This can be done 
in C(11,3) ways. Of each selection there is 
only way which satisfies the ordering.

• The other places can be arranged in 8! 
ways.



Example

• Thus, there are in total C(11,3)x8! ways.
• Thus the result is 11!/3!
• Can you explain the answer in some other 

way?



Pascals Triangle 
• Pascals formula:

• Proof is simple: LHS is no of ways of selecting k distinct objects 
from n distinct objects.

• We can treat the problem in two mutually disjoint ways: 
– A (in which an object say x is always selected). This can be done in 

C(n-1,r-1) ways.
– B (in which the object x is never selected). This can be done in C(n-

1,r) ways.
• The proof follows from the sum rule.
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Illustration of the proof
• n=5, k=3, S={x,a,b,c,d}
• A={(x,a,b),(x,a,c),(x,a,d),(x,b,c),(x,b,d),(x,c,d)}. 

Upon deleting x we obtain the number of 
possible ways of selecting 2 distinct objects from 
4 distinct objects, C(4,2).

• B={(a,b,c),(a,b,d),(a,c,d),(b,c,d)}. The number of 
possible ways of selecting 3 distinct objects from 
4 distinct objects, C(4,3).

• Thus result is C(4,2)+C(4,3) from the sum rule. 
This is equal to C(5,3).



Binomial Theorem

• Binomial Theorem for a positive integer n:

• The coefficients of xryn-r is called the 
binomial coefficient.
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Computing Binomial Coefficients 
without Computing factorials

146414

13313

1212

111

10

43210n/k



Another way of looking

• Define paths in the triangle with moves 
which are either vertically downward or 
which are diagonally to the right.

• Let Pth(n,k) be the number of paths from 
the entry C(0,0) to the entry C(n,k) 



Another way of looking

• Pth(0,0)=1, Pth(n,0)=1, Pth(n,n)=1
• For k<n, Pth(n,k)=Pth(n-1,k-1)+Pth(n-1,k)
• Thus we have the same recurrence 

relation and the same initial conditions as 
C(n,r).

• Thus, Pth(n,r)=C(n,r)



Multinomial Theorem

• For positive integers n and t, the coefficients of  
in the expansion of                     is:

n!/(n1!n2!...nt!)  

31 2
1 2 3 ... tn nn n

tx x x x 1 2 3( ... )n
tx x x x+ + +



Combinations of multisets
• Let S be a multiset with objects of k types, each 

with an infinite repetition number. Then the 
number of r combinations is equal to 
– C(r+k-1,k-1)=C(r+k-1,r)

• Proof Outline: The multiset is {∞(a1), ∞(a2),…, 
∞(ak)}. Any r combination can be represented as 
the multiset {x1(a1),x2(a2),…xk(ak)} st. 
x1+x2+…+xk=r.

• We require integral solutions to the above 
equations.



Combinations of multisets

• We have to divide the line into k subparts.
• Add k-1 stickers labeled as ‘*’. Thus we have 

(r+k-1) distinct objects. Select (k-1) objects from 
them. Each selection will correspond to one 
such division.

• Thus, we have C(r+k-1,k-1) ways.

1 2 r



Examples

• A bakery boasts 8 varieties of doughnuts. 
If a box contains a dozen, how many 
boxes can you buy?

• Thus the bakery has 8 varieties, with a 
(possibly) large number of each. 

• Select 12 dougnuts, with repetitions of a 
variety.

• Thus, we have                                        
C(12+8-1,8-1)=C(12+8-1,12).


