CS 130 : Computer Systems - V

Shankar Balachandran (shankar@cse.iitm.ac.in) Dept. of Computer Science & Engineering IIT Madras

Sum := A XOR B

Multi-Bit Adder - Recap

About N-Bit Adder

- Multiple adder units cascade
- Each unit increments data size by 1 bit
- Scalable
 - Can be done for any *n*.
- Simple easy procedure to repeat. Very regular in structure
 - Can be automated easily
 - Can be verified easily

Let's Add *m* Numbers

Numbers are n-bits each

Analysis

How big should the adders be?

- A1 : *n* bits
- A2 : *n* bits
- A3 and A4 : *n* bits
- A5 and A6 : n + 1 bits;
 - In general, we don't know whether operands are big or not
- □ A7 : *n* + 2 bits
- How many full adders and half-adders?
- How many steps are needed to finish the operation?
 - A1, A2, A3 and A4 need not wait for any one
 - □ A5 and A6 should wait for (A1,A2) and (A3,A4) respectively
 - A7 must wait for A5 and A6
 - □ Three steps
- Summary : Three Steps, Seven Adders

Can we cut down on adders?

© September 4, 2007

Sequential and Parallel

Sequential

- One operation at a time
- Less resources
- More steps
- Parallel
 - Many operations at the same time
 - More resources
 - Less steps
- Are there sweet spots in between?
 - □ Yes!
 - Partly sequential, partly parallel

Example (1)

Trade-offs

- Life is all about trade-offs ③
- Adders occupy area
 - Assume unit area
 - Every adder used takes 1 unit of area
- Adders have delays
 - Assume unit delay
 - Every step takes 1 unit of delay
- What we did here is called the area-delay tradeoff analysis

Which Adder Scheme is Better?

- Define better ③
- In terms of area
 - Sequential
 - But slow
- In terms of delay
 - Parallel
 - But a lot of resources
- What about area delay product?
 - Combines area and delay
 - **Sequential** : 7
 - Parallel : 21
 - Combination(1): 8
 - **Combination** (2) : 12
 - Is Sequential better?
 - When does it stop to be better?

Comparison Metrics

Plane	DC to Paris	Speed	Passengers	Passengers/ Hr
Boeing 747	6.5 hours	610 mph	470	72.3
Concorde	3 hours	1350 mph	132	44

Which is faster?

Concorde

But is it better?

- □ For speed : yes
- Passengers carried per hour : No

Be Warned

- Comparison metrics should be chosen carefully
- Sometimes there is no agreement among engineers
- As an amateur engineer, how do you decide?
- Ask questions :
 - What is the design goal?
 - What are the design constraints?
 - What are the costs involved?
 - Are there established practices?