CS 130 : Computer Systems - III

Shankar Balachandran Dept. of Computer Science & Engineering IIT Madras

Recap: On Functions

а	fO
0	0
1	0

а	f1
0	0
1	1

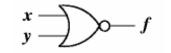
а	f2
0	1
1	0

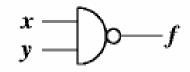
а	f3
0	1
1	1

а	b	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

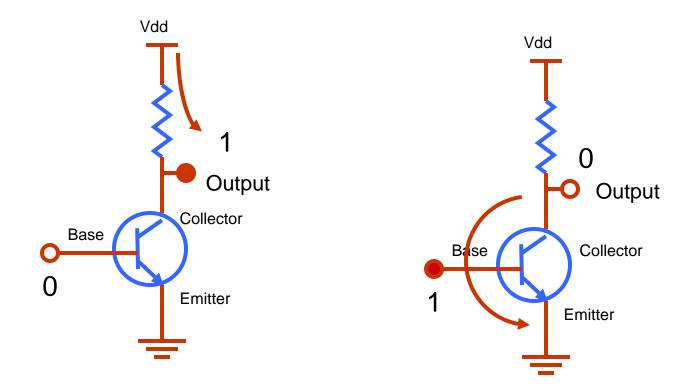
Recap : Abstraction Using Symbols, Equations and Tables

Gate	Schematic Symbol	Algebraic Function	Truth Table		
BUFFER		f = x	$\begin{bmatrix} x & f \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$		
AND	x = y = -f	f = xy	$\begin{array}{c c} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$		
OR		f = x + y	$ \begin{array}{c c} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} $		
XOR		$f = x \oplus y$	$\begin{array}{c c} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$		

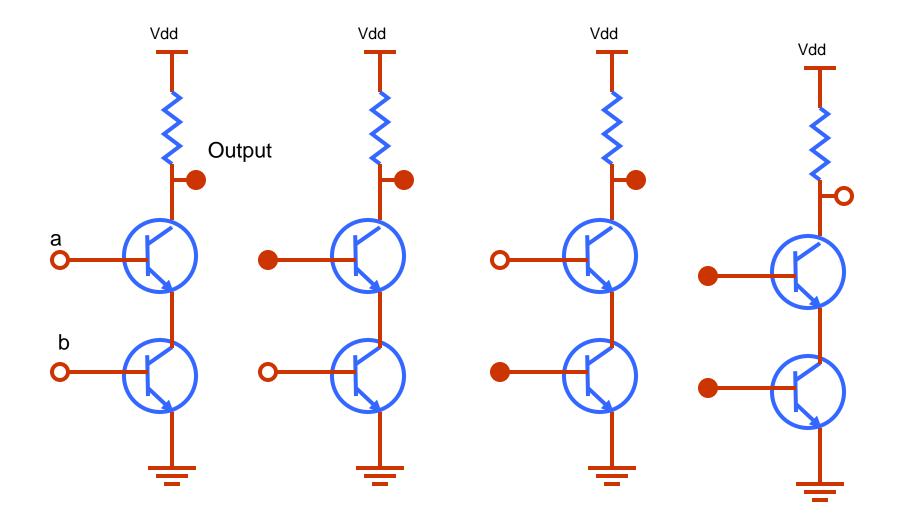


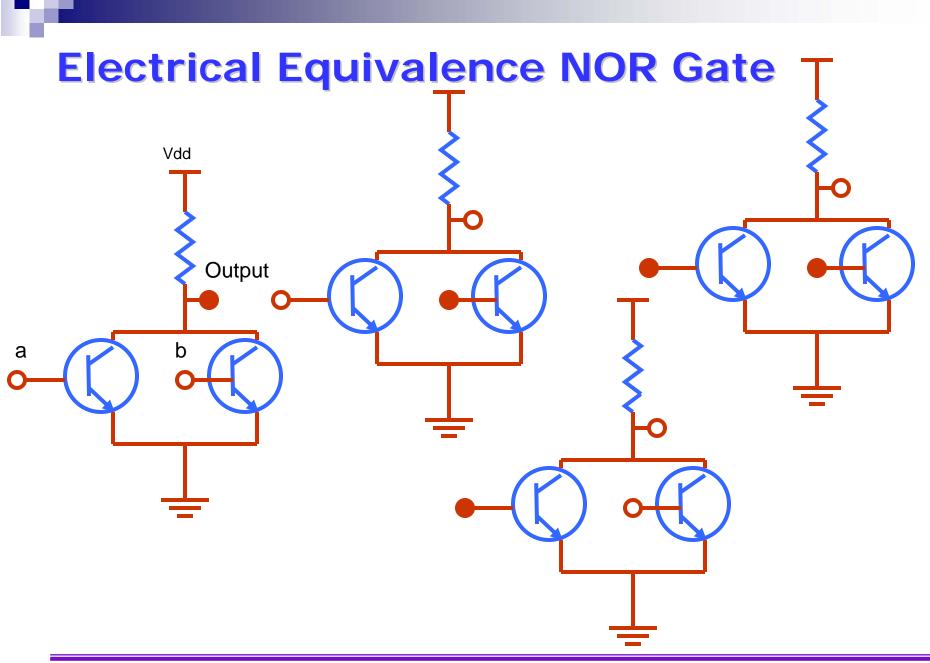


Electrical Equivalence NOT Gate (Inverter)



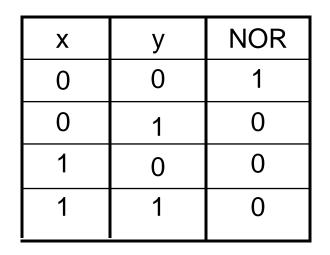
Electrical Equivalence NAND Gate

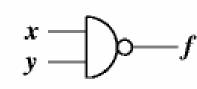


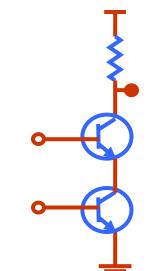


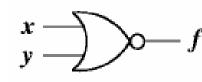
Equivalence

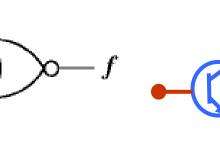
Х	У	NAND
0	0	1
0	1	1
1	0	1
1	1	0









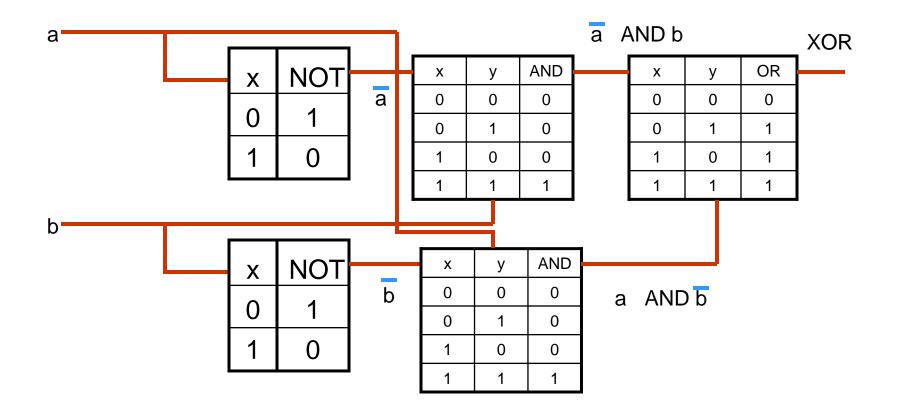


© September 4, 2007

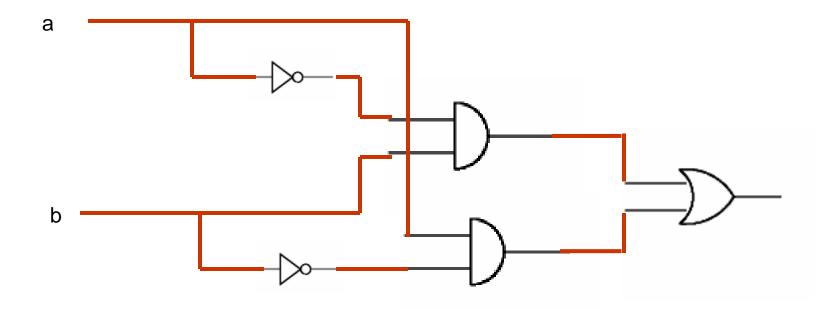
Introduction

Let's Implement XOR

• $XOR(a,b) = (\overline{a} AND b) OR (a AND \overline{b})$



XOR Using Gates



Electrical Circuits

- Voltages, Currents
- Resistors, transistors etc.
- Well known device behaviors
 - Equations for current, voltage etc.
- Lots of details !!
 - Work out XOR with transistors
- Evaluation of a function
 - Simulate and see
 - Apply rules of the devices

Truth Tables

- Logical function
 - Abstraction
- Do not have to worry about implementation
 - All nasty transistor diagrams are gone
- Machine understandable
 - You can look up along the row and column for values
- Enumeration
 - Can get clumsy very easily

Gates

- Abstraction of Functions
 - Different from truth tables
- Gates and Truth tables are equivalent
 - One can be transformed to another
- The abstraction using gates is also useful
 - Easy to draw schematics than write truth tables
 - Or writing functions directly
 - A nice visual representation

To Ponder

- Why need different levels of abstraction?
- Hints:
 - Human vs Computer understandability
 - Scalability
 - Larger functions
 - More variables
 - Automation
 - Correctness of results
 - Can you verify?
 - How can you automate verifying?

Let's Do Some Arithmetic

- **5** + 5 =
- **34 + 65 =**
- **139 + 217 =**
- **558 + 404 =**
- 2279 + 656 =
- **5**3412 + 21387 =
- 883092 + 642190 =

How Did You Perform the Arithmetic?

- Not how well, just how ☺
- For small numbers
 - Lookup sums in memory
 - 5 + 5 =
 - **34 + 65 =**
- For medium sized numbers
 - Partly lookup, partly add
 - 139 + 217 =
 - **558 + 404 =**
- For large numbers
 - □ Add starting from right; use carries etc.
 - 2279 + 656 =
 - 53412 + 21387 =
 - 883092 + 642190 =
 - □ For every digit, you looked up the value in your memory though

Let's Think About Our Process

- Why lookup for small number arithmetic?
 - Have been doing it for a long time
 - Very few to remember
- What happened in medium numbers?
 - Do rough summations starting from left side
 - Adjust with values from the rightmost digits
 - Still manageable partly in your mind
- For large numbers :
 - Probably did not even consider starting from left
 - We know there is a methodical procedure
 - Play it safe??
 - Probably less error if you start from right
 - Easy to verify your answer also

Many Design Issues are Those of Scale

- The operation itself was simple : addition
 - Complexity at different stages are dealt with different strategies
 - Larger the numbers, a different approach was required
- The same strategy is not useful everywhere
- As problems get larger, more resources are required
- A methodical rather than ad-hoc technique must be employed

Let's Do Another Task

- Try and remember the results of the following operations and the sequence of the results
 - □ 3 + 5 = □ 4 + 9 =
 - **1**4 + 27 =
 - **2**3 + 6 =

Now, repeat the results to me :

Similar Task

- Remember the results
 - □ 4 + 3 = □ 2 + 7 =
 - **1** + 5 =
 - **9** + 12 =
 - **3** + 8 =
 - **11 + 6 =**
 - □ 8 + 4 =
 - **10 + 1 =**
- Now, repeat the values to me :

What Happened Now?

- Operator is the same everywhere
- Operands are all small
 - Why unable to remember values in the second case?
- Computations were all small
- Remembering values were hard though
- Again an issue of scale
 - **D** Few numbers, easy to remember
 - More of them, gets harder to remember
- Scale is not only an issue with operations
 - It is also an issue with storage