CS 130 : Computer Systems - II

Shankar Balachandran (shankar@cse.iitm.ac.in)
Dept. of Computer Science & Engineering
IIT Madras

Recap

Differentiate Between 0's and 1's

Truth Tables

а	b	AND		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

а	b	OR		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

а	NOT
0	1
1	0

Recap

Only configuration which turns bulb ON

Logical OR

Only configuration in which bulb is OFF

Logical NOT

Algorithm

Logic Functions

- Truth Table for *n* inputs
- Just like mathematical functions that you have learnt
- AND, OR and NOT are the most basic logic functions
- Two other important functions
 - XOR pronounced ex-or
 - When both are same, output = 0
 - XNOR pronounced ex-nor

	XNOR
0	1
1	0
0	0
1	1
	1

		XOR
0	0	0
0	1	1
1	0	1
1	1	0

Relationship Between XOR and XNOR

		XOR
0	0	0
0	1	1
1	0	1
1	1	0

		XNOR
0	0	1
0	1	0
1	0	0
1	1	1

- Whenever XOR is 0, XNOR is 1
- Whenever XOR is 1, XNOR is 0
- XOR(a,b) = NOT (XNOR(a,b))
- Also
 - \square XNOR(a,b) = NOT (XOR(a,b))

Let's Enumerate Logic Functions

- One variable : a
- What are the possible functions on *a*?
- Let's do the truth tables

а	f0
0	0
1	0

а	f1
0	0
1	1

а	f2
0	1
1	0

а	f3
0	1
1	1

Four Functions of One Variable

- f0 : Equivalent to 0
- f1 : Equivalent to a
- f2 : Equivalent to NOT(a)
- f3 : Equivalent to 1
- Notation :
 - □ NOT(A) is denoted as a
 - Pronounced a-bar
- Let's rewrite f's as functions of a
 - \Box f0 = **0**
 - □ f1 = a
 - \Box f2 = \overline{a}
 - □ f3 = **1**

Functions of Two Variables

- Variables a and b
- Let's enumerate all functions
 - In Truth Table form

а	b	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

0 AND

XOR OR XNOR

1

Functions of Two Variables (Contd.)

A few tough functions

0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0	a b	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0 1 0 0 0 0 0 0 1	0 0			0	0	0	0			1		1	1	1	1	1	
1 0 1 1 0 0 0 1 1 0 0 1	0 1			0	0	1	1			0		0	0	1	1	1	
	1 0			1	1	0	0			0		1	1	0	0	1	
	1 1			0	1	0	1			0		0	1	0	1	0	

a b b

© September 4, 2007 Introduction

Functions of Two Variables (contd.)

A few complex functions

0 0 0 1 1 1 1	f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f	f11	f10	f9	f8	f7	f6	f5	f4	f3	f2	f1	f0	b	а
		1			1				0		0			0	0
		0			0				1		0			1	0
		1			0				<u>'</u>		1			0	1
		1			0				0		1			4	

NOT(AND)

Functions of Two Variables (contd.)

Most complex functions

а	b	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0			0		0							1		1		
0	1			0		1							0		1		
1	0			1		0							1		0		
1	1			0		0							1		1		

a AND (NOT b)

(NOT a) AND b

a OR (NOT b)

(NOT a) OR b

Summary of functions

- One variable 4 functions
- Two variable 16 functions
- N variables 2^{2^N} functions
 - Can you prove this?
- Just like mathematical functions
 - □ Given a function f on N variables, $f(x_1, x_2, ..., x_N)$ is unique
 - $x_1, x_2, ..., x_N \varepsilon (0,1)$
- The functions can be enumerated
 - Gets very large soon though

AND, OR and NOT

- Form a Universal Set
 - All functions can be expressed as combinations of AND, OR and NOT
- Eg:XOR

?			XOR
	0	0	0
	0	1	1
	1	0	1
	1	1	0

$$XOR(a,b) = (a AND b) OR$$

$$(a AND \overline{b})$$

Eg:XNOR
XNOR(a,b) = (a AND b) OR
(a AND b)

	XNOR
0	1
1	0
0	0
1	1
	1

Abstraction Using Symbols

Gate	Schematic Symbol	Algebraic Function	Truth Table
BUFFER	x — f	f = x	$\begin{bmatrix} x & f \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$
AND	x	f = xy	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
OR	$x \longrightarrow -f$	f = x + y	$ \begin{array}{c c} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array} $
XOR	$rac{x}{y}$ $rac{-f}{y}$	$f = x \oplus y$	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} $

Abstraction Using Symbols

Gate	Schematic Symbol	Algebraic Function	Truth Table
NOT (Inverter)	x — >>>— f	$f = \overline{x}$	$\begin{bmatrix} x & f \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$
NAND	x	$f = \overline{xy}$	x y f 0 0 1 0 1 1 1 0 1 1 1 0
NOR	$x \longrightarrow f$	$f = \overline{x + y}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
XNOR (Equivalence)	$\begin{bmatrix} x \\ y \end{bmatrix}$ f	$f = \overline{x \oplus y}$ $= x \odot y$	$ \begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $

Electrical Equivalence NOT Gate (Inverter)

r,e

Electrical Equivalence NAND Gate

Equivalence

Х	у	NAND
0	0	1
0	1	1
1	0	1
1	1	0

у	NOR
0	1
1	1
0	1
1	0
	0 1

Let's Implement XOR

■ $XOR(a,b) = (\overline{a} \text{ AND } b) OR (a \text{ AND } \overline{b})$

XOR Using Gates

Electrical Circuits

- Voltages, Currents
- Resistors, transistors etc.
- Well known device behaviors
 - Equations for current, voltage etc.
- Lots of details !!
 - Work out XOR with transistors
- Evaluation of a function
 - Simulate and see
 - Apply rules of the devices

Truth Tables

- Logical function
 - Abstraction
- Do not have to worry about implementation
 - All nasty transistor diagrams are gone
- Machine understandable
 - You can look up along the row and column for values
- Enumeration
 - Can get clumsy very easily

Gates

- Abstraction of Functions
 - Different from truth tables
- Gates and Truth tables are equivalent
 - One can be transformed to another
- The abstraction using gates is also useful
 - Easy to draw schematics than write truth tables
 - Or writing functions directly
 - A nice visual representation

To Ponder

- Why need different levels of abstraction?
- Hints:
 - Human vs Computer understandability
 - Scalability
 - Larger functions
 - More variables
 - Automation
 - Correctness of results
 - Can you verify?
 - How can you automate verifying?
- We will address some of the issues in the next class