
CS130 : Introduction to Computer Science
Writing Assignment

Answer the following questions. Your answers should not be more than 2
A4-sheets per question. Ensure that answer to each question is written on
separate sheets. Please write the answers neatly. Answers which violate the
above guidelines will not be evaluated. Please give independent answers,
while discussion is okay. Copying shall be dealt with strictly.

1 a) Compare the various formats of representing numbers in computers.
Discuss briefly with the help of examples. Mention which is the most
popular number representation and why do you think so? (10 marks)

 b) What do you mean by precision of representing a floating point number
in the IEEE standard? Explain with a small example. (5 marks)

2 Write a 2 page note on your notion of the subject “Computer Science”.
Subdivide the answer into the following 5 sections:

 i) A brief summary on the topic. Mention the difference between
 Computer Sc and Computer Engg.

ii) Mathematical Foundations and Concepts required.
iii) Relationship to rest of Engineering.
 iv) Applications in the modern day.
 v) Where do you think CS is heading to?

 (5 x 3=15 marks)

3. Recall that as a Computer Scientist, each problem that you would like to
solve using a computer program is a function from a domain to a range. The
domain is used to model the set of inputs to the program and the range is the
set of outputs expected from the program. For example, for the sorting
problem, the domain is the set of number sequences, and the range is the set
of sorted number sequences. As a special case for this question let us
consider the domain to be the set of {0,1}-sequences, and the range to be the
set {0,1}. How many functions exist between the given domain and range?
Given our axiom that computer programs evaluates functions, the next
question is, how many C-programs exist? What can you conclude from the

answers to the above two questions?
 (15 marks)

 4. Good Processor, Bad Processor: Suppose that n processors in a space
ship have been subjected to cosmic radiation. Fewer than half of them were
corrupted. We call the corrupted chips ``bad''. The uncorrupted chips are
called ``good''. Your mission is to identify a chip that you are sure is good.
You can use the chips to test each other: choose two chips T and S and use T
to test S. If T (the tester) is good, then it will correctly report whether S (the
subject) is good or bad. If T is bad, however, it will answer any way it
wishes. Think of a bad chip as answering adversarily about S, which is to
say, it will give whatever answer is least helpful to your testing strategy. In
other words, imagine that an intelligent adversary is determining the
behavior of the bad tester---an adversary who has access to and understands
your algorithm, and is choosing each bad tester's answer in such a way that
your algorithm takes as long as possible.

Design an algorithm that uses as few tests as possible to find one good chip.
Show that your algorithm is correct and find its worst-case running time
(i.e., number of tests). A single test is the operation of querying one
processor about the “goodness” of a different processor.

Ground Rules

The algorithm should be sequential (one test at a time) and deterministic (no
use of randomness).

The typeset answer must contain three clearly defined sections. The first
section (algorithm description) should clearly specify your algorithm. The
second section (correctness) should prove that your algorithm is correct and
in doing so should help us understand it. The third section (timing) should
show why your algorithm works within the timing bounds you state.

Make sure that your proof is clear and concise. It is important that you be
careful, but not overly verbose. If you can say the same thing in 10 words as
in 100, do so.

Grading

Assuming that your answer follows the ground rules and you prove your
algorithm's correctness and timing bounds, you will receive a grade that
depends on its running time. The grading scale is:

Running time Base Grade

Quadratic, 2()nΘ 7.5
Subquadratic, o(n2)

(an algorithm that is O(n2) but not
2()nΘ)

10.5

Linear, O(n) 12
4n 12.6
2n 13.5

1.5n 13.8
n-1 14.4
n-2 15

 (15 marks)
5) a) It was discussed in class that the two main elements that need to be
specified for a learning agent are the data and the bias. There is a third
component that needs to be specified: a learning algorithm. What is the need
for a learning algorithm? [Hint: Try to relate to the properties of an
algorithm.]

(6 marks)
 b)You are building an agent to play tic-tac-toe, where the objective is to
get three pieces in a row (row, column or diagonal). The agent employs the
following heuristic:
 - For every unblocked two in a row for self: +2
 - For every unblocked two in a row for opponent: -2
 - Win: +5
 - Loss: -5
 - Draw: 0 (neither agent has three pieces in a row, and the board
is full)

The agent employs a two step look ahead, (one self move and one opponent
move, assuming that both are using the same heuristic) before picking the a
move at the current board position. Given the above heuristic, what is the

move the agent that plays 'X' will pick from the board position shown
below? Show clearly the moves the agent will explore.

 O - -
 - - -
 X O –

(9 marks)

6. A set of logic gates can be called universal if they can collectively realize
the three Boolean operations AND, OR and NOT. For example, the set
comprising the three gates AND, OR and INVERTER is clearly universal.
Find out if the following sets are universal or not. Prove your answers using
truth tables or circuit diagrams.
a) A = {NAND}
b) B = {NOR}
c) C= {XOR}
d) D = {XOR, OR}
e) E = {MUX}. A multiplexer (called MUX in short) is a three-input gate. It
takes three inputs, in0, in1and sel and produces one output f. Input sel selects
one of the other two inputs to pass on to the

output. If sel=0, f=in0 else f=in1. Logically, f = (sel ' AND in0) OR (sel
AND in1). MUX is pictorially represented by the symbol depicted in Fig 1.

(15 marks)

 sel

in0

in1

f

M
U
X

 Fig 1

