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Abstract

With the advent of electronic commerce and portable devices for communications, cryp-
tology has become an exceedingly important science in the present day. The diversity of
applications in which crypto-algorithms have to operate have increased and hence the re-
quirement for efficient algorithms have grown. The present thesis deals primarily with the
design and analysis of Cellular Automata (CA) based cryptosystems. Motivated by the fact
that all prior ciphers based on CA have been found to be vulnerable to attacks, the present
work first develops cryptographic primitives using Cellular Automata. Various CA based
structures have been identified and characterized. The primitives exhibit interesting prop-
erties which are necessary to build crypto-applications like block ciphers and key agreement

protocols.

Subsequently, the thesis develops a programmable CA based architecture called CASBox
to generate cryptographically robust Substitution Bozes (S-Bozes). The work then investi-
gates the effect of key mizing in block ciphers through addition modulo 2™ inplace of xoring.
Finally the above concepts developed are combined to give rise to a block cipher named
SPAMRC. In this construction the permutation layer is also designed using CA structures
and is also self-invertible. The number of rounds of SPAMRC required to provide secu-
rity against Linear and Differential Cryptanalysis is computed taking into consideration the

effect of key mizing through addition.

The thesis then characterizes a special class of CA to generate expander graphs and then
uses it to construct a hardware efficient one-way function, whose hardness depends on the
combinatorial properties of expander graphs. The one-way function is then used to develop
a new Cellular Automata based key agreement protocol. Since the key agreement technique
does not use modular exponentiation it is suitable for low power appliances. The security of

the protocol is proved in the formal model of Bellare and Rogaway.

The last part of the thesis deals with the evaluation of two standard cryptographic algo-
rithms and their implementations. AES-Rijndael has been adopted by NIST as the world-

wide standard for block ciphers. The present work proposes a fault based attack against Ri-



vi

jndael. A step by step approach has been described how an attacker induces a fault, detects
the nature of the fault induced and accordingly use different strategies to evaluate the key.
The results of the attack have been compared with existing research in this area and has been
found to be the strongest fault attack on AES. Finally the thesis deals with the customization
of Cellular Message Encryption Algorithm (CMEA) developed by the Telecommunications
Industry Association and widely used for wireless networks. Results show that with suitable
modifications CMEA can be transformed into a strong cipher, which is essential for wireless

security.
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Chapter 1

Introduction

In today’s world security of information is a fundamental necessity not only for mil-
itary and diplomatic messages but also for private communications. Today’s era of
communication has increased the importance of financial data exchange, image pro-
cessing, biometrics and e-commerce transactions which in turn has made data security
an important issue. Cryptology is defined as the science concerned with communica-
tions in secure form. The goal of cryptology is thus construction of schemes, which
can maintain desired security, even after malicious attempts. Cryptology consists of
cryptography and cryptanalysis. The former involves the study and application of
various techniques through which information may be rendered unintelligible to all
but the intended receiver. On the other hand cryptanalysis is the science and art of
breaking cryptosystems and recovering the secret information.

Design of cryptographic schemes is a daunting task. One cannot rely on intuitions
regarding the typical state of the environment. Cryptography attempts to prove that
the obtained designs are secure, using all available knowledge about possible attacks.
On the other hand, cryptanalysis examines the cryptosystems for vulnerabilities and
finds out practical attacks against the cryptographic schemes.

Recently, there has been a shift of focus in cryptology. Today’s cryptology not
only provides confidentiality, authentication, data integrity and non-repudiation, but
has also the added task of providing security in menacing environments. Cryptol-
ogy is a strange field of science. As opposed to other fields of science which has
to work mostly against nature, cryptology works against a powerful, malicious ad-
versary, often referred to as the eaves-dropper. The adversary attacking the system
will try to manipulate the environment into conducive states and try to break the
system by adopting strategies which the designer may have not envisioned. For the
attacker it suffices to show a single successful weakness of the cryptosystem. A se-
cured cryptosystem has to withstand all such types of attacks. This tussle between
the cryptographer and the cryptanalyst has continued for ages.



2 1. Introduction

1.1 Motivation

With the ever increasing growth of data communication in the field of e-commerce
transactions and mobile communication data security has gained utmost importance.
However the conflicting requirements of power, area and throughput of such applica-
tions make hardware cryptography an ideal choice. The advantages of hardware for
cryptography are as follows:

1. Dedicated hardware devices can run encryption routines concurrently with the
host computer which runs other applications. This parallel processing helps to
significantly speed up the processes.

2. As hardware solutions are tamper proof, hardware based cryptography ensures
confidentiality, integrity and authentication of cryptographic keys. Thus the
keys can be safely stored inside the hardware. On the other hand software can
be manipulated and the key can be reverse engineered by a determined attacker.

However, hardware is more expensive than software, especially if many hardware
devices are required. Memory is yet another constraint for hardware designs. Hence
the algorithms must be tailored properly for hardware implementations. They should
be compact, scalable and modular to reduce the overall cost of production.

With this motivation the thesis analyzes both conventional and standard crypto-
graphic algorithms, which are conducive for hardware implementations. In this search
for hardware friendly cryptographic algorithms the primary tool used is the Cellular
Automata (CA). The CA based architectures are regular, cascadable and also with
lesser inter-connects, a feature helpful for VLSI designs. This motivates to employ
CA for the design of cryptographic algorithms. Further, both the inter-connections
and the number of clock cycles of the CA based structures may be programmed.
This aids in the development of reconfigurable architectures. Last but not the least,
the randomness provided by CA based functions passes also the test set by Donald
Knuth[1]. Inspite of its many advantages, endeavours of obtaining ciphers based on
Cellular Automata have been successfully cryptanalyzed. The primary reasons behind
such attacks are the affine structures of CA and the lack of well-defined primitives
required for cryptographic algorithms. The present work first develops CA based
primitives like agreement functions, non-linear transformations, S-Boxes, one-way
functions etc. The design of S-Box architectures, which are cryptographically robust
and are also scalable, are of interest to the crypto-community. The work shows how
to apply Cellular Automata in the design of such S-Boxes. Although, S-Boxes provide
non-linearity and much needed security against cryptanalysis to block ciphers, an in-
teresting technique to increase the security margin is through the use of arithmetic
operations, like integer addition. Such operations are easy to implement in hardware
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and may reduce the total number of rounds required to prevent attacks. With this
motivation, key mixing through integer addition in place of the conventional xor have
been studied. The development of hardware efficient one-way functions are of utmost
requirement, as conventional one-way functions based on modular exponentiation are
not satisfactory in terms of area-delay product. The thesis also shows how to realize
an efficient one-way function, combining the algebraic properties of CA and the com-
binatorial properties of a special class of graph, known as Expander Graphs. The CA
based primitives are applied to construct block ciphers and key agreement algorithms.

The thesis subsequently looks at standard cryptographic algorithms like AES (Ad-
vanced Encryption Standard), which is the world-wide standard for block ciphers and
Cellular Message Encryption Algorithm, which is the standard algorithm for wireless
CDMA networks. The complexity of the implementation of algorithms like the AES
raises concerns regarding their reliability. Research is therefore needed to analyze
cryptographic algorithms in an environment where fault is induced, either acciden-
tally or intentionally. The work adds to the existing literature on fault attacks on the
AES algorithm.

Finally, the thesis customizes the successful cryptanalysis of the CMEA algo-
rithm. Cellular Message Encryption Algorithm (CMEA) [2] has been developed by
the Telecommunications Industry Association (TIA) to encrypt digital cellular phone
data. CMEA is one of the four cryptographic primitives specified for telecommuni-
cations and is designed to encrypt the control channel, rather than the voice data
of cellular phones. In March 1997, Counterpane Systems and UC Berkeley jointly
[3] published attacks on the cipher showing it had several weaknesses. The present
work revisits the CMEA algorithm and customizes it into a modified algorithm called
CMEA-I which prevents the previous attacks on CMEA and also provides better
security margin against Linear and Differential cryptanalysis compared to CMEA.

1.2 Contribution of the Thesis

The contribution of the thesis may be summarised as follows:

e Characterization of Complemented Cellular Automata: In the present
work a class of complemented null boundary Cellular Automaton has been char-
acterized. One particular class of complemented CA with rule 153 has been
studied and it has been proved that the cycle lengths are equal irrespective of
the number of cells. The exact dependence of the cycle lengths on the number
of cells has been formulated. There are no existing rules to relate the separate
cycles formed by the CA. Thus the entire state space cannot be used and this
leads to worries for the application of the CA in cryptography. The current
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work develops new rules which govern the transition between the cyclic sub-
spaces. These properties promise the CA to function as an ideal candidate for
cryptographic algorithms.

e Design of CASBox, a programmable structure to generate S-Boxes
using CA: In this work the Theory of Cellular Automata has been applied,
to the best of our knowledge for the first time to generate robust S-Boxes on
hardware. The work discusses how a special class of linear group CA, called
the maximum length CA can generate cryptographically strong S-Boxes. In
short the generated S-Boxes are balanced, satisfy Strict Avalanche Criterion,
have high non-linearity of the component functions as well as their non-zero
linear combinations, have high algebraic degree and are robust against linear
and differential cryptanalysis. The work shows that the CA based S-Box, called
CASBox, is programmable, modular, and generates a large number of S-Boxes
all of which are equally cryptographically strong. The architecture proposed
in the work has been implemented on a Xilinx XCV-1000 FPGA platform and
the results show that the structure is efficient and scalable. The proposed CA
based S-Box construction is extremely efficient due to the inherent parallelism
in Cellular Automata transformations. Also as the chosen maximum length
CA has a three neighbourhood cell the length of the interconnects would be less
compared to an LF'SR based S-Box, a feature helpful for VLSI implementations.

e Key Mixing in Block Ciphers through Addition modulo 2" and its
effect on linear cryptanalysis: In Substitution-Permutation Network (SPN)
like AES, DES the key mixing step is performed by key xoring where the key bits
are simply xored (that is added without carry) with the data bits before each
round and after the last round. The present work investigates if the replacement
of key xoring step in block ciphers by modular integer addition of the key shall
help to reduce the bias of linear expressions and hence foil Linear Cryptanalysis.

e Design of SPAMRC, Construction of a CA based Block Cipher: A
block cipher named SPAMRC (Substitution Permutation Addition Message
Round Cipher) is proposed using the above constructions. The diffusion layer,
named as CAMixColumn is a self-invertible linear MDS (Maximum Distance
Separable) mapping implemented using a maximum length CA. Finally the
number of rounds required to provide sufficient security margin against Linear
and Differential cryptanalysis are computed taking into account the effect of
key mixing through addition modulo 2" in place of xoring.

e Expander Graphs based on Cellular Automata and its application in:

1. The development of one-way functions: The one-way function is
based on the combinatorial properties of expander graphs generated by a
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special class of Cellular Automata, called Two Predecessor Single Attrac-
tor CA (TPSA-CA). The proposed architecture has been implemented in
Verilog HDL and has been verified using RTL simulations using Mentor
Graphics ModelSim SE. The Verilog RTL has been prototyped on a Xil-
inx Virtex XCV1000 FPGA (pkg bg560). Analysis show that the resource
utilization increases linearly with the input size and the forward trans-
formation is efficient. However, the complexity of inverting the one-way
function appears to be intractable.

2. The development of Key Agreement algorithm using Cellular
Automata: The proposed protocol performs the initial key agreement
with authentication and key confirmation using three message exchanges.
The designed one-way function is used by two communicating parties A and
B to derive the session key K4p with the desired property of keyfreshness.
The one-way function is also used for authentication and key confirmation.
Finally, the protocol has been shown to be secured in the Bellare Rogaway
model.

e Fault Based Side-Channel Attack on AES-Rijndael:

In this work we present a fault based side-channel attack on AES. Attack strate-
gies have been proposed, when the attacker is able to induce byte level faults in
the last three rounds of the block cipher AES. Extensive experimentations have
been performed on a PC and it has been found that the key can be obtained
using only two faulty ciphertexts in few seconds. The experimental results have
been presented and compared with previous fault attacks against AES.

e Customization of Cellular Message Encryption Algorithm (CMEA):
Cellular Message Encryption Algorithm (CMEA) proposed by the Telecommu-
nications Industry Association has been successfully cryptanalyzed in March
1997 jointly by Counterpane Systems and UC Berkeley. This motivates the
requirements for alternatives. In this work the algorithm has been first stud-
ied to comprehend the reasons for the successful attacks and finally customized
so that the existing attacks do not work. The customized CMEA algorithm,
named CMEA-I has been found to have better security margins against Linear
and Differential cryptanalysis than CMEA without compromising the efficiency
in implementation.
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1.3 Organization of the Thesis

The rest of the dissertation is organized as follows:

e Chapter 2: The chapter presents a survey on works related to the construction
of ciphers. In particular, reports on existing works in the design of block ciphers
have been presented. A brief note on side-channel attacks and their counter-
measures has also been reported. The chapter further mentions works on the
design and analysis of key agreement protocols and one-way functions. The
chapter finally comments on the future directions of cryptography.

e Chapter 3: The design and analysis presented in this work are based on the
Theory of Cellular Automata (CA). Hence in this chapter the mathematical
background of the work is presented. The chapter also includes preliminaries
regarding some desirable cryptographic properties which are often used in the
cryptanalysis of block ciphers.

e Chapter 4: The chapter presents the characterization of complemented CA
with rule 153 and generalizes it to a class of CA structures with the same char-
acterization. The work reveals that the properties may find useful applications
in cryptography.

e Chapter 5: The chapter deals with the construction of S-Box based on Cellular
Automata based structures. The chapter presents both theoretical and practical
foundations to show that such CA based S-Boxes (named as CASBox) generate
programmable, modular, scalable and cryptographically strong S-Boxes.

e Chapter 6: The chapter deals with the effect of key mixing through addi-
tion modulo 2" instead of xoring on Linear Cryptanalysis (LC). The chapter
theoretically estimates the effect of such a key mixing on the security of block
ciphers against LC and also experimentally verifies the results with the help of
an example block cipher.

e Chapter 7: The chapter develops a CA based block cipher, named SPAMRC
based on the developed results. The chapter also presents the construction of
an MDS diffusion layer using CA based rules. The work computes the security
margin of four rounds of the cipher against Linear and Differential cryptanalysis,
taking into consideration the extra security margin provided by key mixing using
addition in place of xoring.

e Chapter 8: The chapter presents the construction of one-way functions based
on expander graphs using Cellular Automata. The chapter also presents a key
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agreement protocol using the one-way function. The protocol has been proved
to be secure in the Bellare Rogaway model.

e Chapter 9: The chapter presents a new fault based attack on the AES algo-
rithm. The work shows through examples how induced faults at the input of
eighth, ninth and tenth rounds may be used to compute the key. Finally the
work has been compared to existing fault attacks.

e Chapter 10: The chapter studies the successful cryptanalysis of the CMEA
algorithm and customizes it to prevent the attacks. The security margin of
the customized cipher has been evaluated in the light of Linear and Differential
cryptanalysis.

e Chapter 11: The chapter concludes the dissertation and suggests some future
directions of research in this area of work.






Chapter 2
A Survey

... Of Secrecy I am Silence...”

2.1 Introduction

The art of keeping message secret is cryptography, while cryptanalysis is the study
attempted to defeat cryptographic techniques. Cryptography is used to protect in-
formation from illegal access. It largely encompasses the art of building schemes
(ciphers) which allow secret data exchange over insecure channels[4]. The need of
secured information exchange is as old as civilization itself. It is believed that the
oldest use of cryptography was found in non-standard hieroglyphics carved into mon-
uments from Egypt’s Old Kingdom. In 5 BC the Spartans developed a cryptographic
device, called scytale to send and receive secret messages. The code was the ba-
sis of Transposition ciphers, in which the letters remained the same but the order
is changed. This is still the basis for many modern day ciphers. The other major
ingredient of many modern day ciphers is Substitution ciphers, which was used by
Julius Caesar and is popularly known as Caesar’s shift cipher. In this cipher, each
plaintext character was replaced by the character 3 places to the right in the alphabet
set modulo 26. However in the last three decades cryptography has grown beyond
designing ciphers to encompass also other activities like design of signature schemes
for signing digital contracts. Also the design of cryptographic protocols for securely
proving one’s identity has been an important aspect of cryptography of the modern
age. Yet the construction of encryption schemes remains, and is likely to remain,

*”Maunam Caivasmi Guhyanam Jnanam”, Bhagavad Gita, Vibhuti-yoga, Sloka 38
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a central enterprise of cryptography [5]. The primitive operation of cryptography is
hence encryption. The inverse operation of obtaining the original message from the
encrypted data is known as decryption. Encryption transforms messages into repre-
sentation that is meaningless for all parties other than the intended receiver. Almost
all cryptosystems rely upon the difficulty of reversing the encryption transformation
in order to provide security to communication [6]. Cryptanalysis is the art and sci-
ence of breaking the encrypted message. The branch of science encompassing both
cryptography and cryptanalysis is cryptology and its practitioners are cryptologists.
One of the greatest triumph of cryptanalysis over cryptography was the breaking of a
ciphering machine named Enigma and used during World war 2. In short cryptology
evolves from the long lasting tussle between the cryptographer and cryptanalyst.

For many years many fundamental developments in cryptology outpoured from
military organisations around the world. One of the most influential cryptanalytic
papers of the twentieth century was William F. Friedman’s monograph [7] entitled
The Index of Coincidence and its Applications in Cryptography. For the next fifty
years research in cryptography was done in a secret fashion, with the exception of the
revolutionary contribution of Claude Shannon’s paper ” The communication Theory
of Secrecy Systems”, which appeared in the Bell System Technical Journal in 1949[8].

However after the world wars cryptography became a science of interest to the
research community. The Codesbreaker by David Kahn produced the remarkable
history of cryptography [9]. The significance of this classic text was that it raised the
public awareness of cryptography. The subsequent development of communication
and hence the need of privacy in message exchange also increased the impetus on
research in this field. A large number of cryptographers from various fields of study
began to contribute leading to the rebirth of this field. Horst Fiestel [10] began the
development of the US Data Encryption Standard (DES) and laid the foundation
of a class of ciphers called as private or symmetric key algorithms. The structure
of these ciphers became popular as the Fiestel Networks in general. Symmetric key
algorithms use a single key to both encrypt and decrypt. In order to establish the
key between the sender and the receiver they required to meet once to decide the
key. This problem commonly known as the key exchange problem was solved by
Martin Hellman and Whitfield Diffie [11] in 1976 in their ground breaking paper New
Directions in Cryptography. The developed protocol allows two users to exchange a
secret key over an insecure medium without any prior secrets. The work not only
solved the problem of key exchange but also provided the foundation of a new class of
cryptography, known as the public key cryptography. As a result of this work the RSA
algorithm, named after the inventors Ron Rivest, Adi Shamir and Leonard Adleman,
was developed[12]. The security of the protocol was based on the computational task
in factoring the product of large prime numbers.

Cryptology has evolved further with the growing importance of communications
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and the development in both processor speeds and hardware. The modern day cryp-
tographer has thus more work than merely jumbling up messages. He has to look
into the application areas in which the cryptographic algorithms have to work. The
transistor has become more powerful. The development of the VLSI technology (now
in submicrons) have made the once cumbersome computers faster and smaller. The
more powerful computers and devices will allow the complicated encryption algo-
rithm run faster. The same computing power is also available to the cryptanalysts
who will now try to break the ciphers with a straight forward brute force analysis.
The world has thus changed since the DES was adopted as the standard crypto-
graphic algorithm and DES was feeling its age. Large public literature on ciphers and
the development of tools for cryptanalysis urged the importance of a new standard.
The National Institute for Standards and Technology (NIST) organized a contest for
the new Advanced Encryption Standard (AES) in 1997. The block cipher Rijndael
emerged as the winner in October 2000 due to its features of security, elegance in
implementations and principled design approach. Simultaneously Rijndael was eval-
uated by cryptanalysts and a lot of interesting works were reported. Cryptosystems
are inherently computationally complex and in order to satisfy the high throughput
requirements of many applications, they are often implemented by means of either
VLSI devices or highly optimized software routines. In recent year such cryptographic
implementations have been attacked using a class of attacks which exploits leaking
of information through side-channels like power, timing, intrusion of faults etc. In
short as technology progresses new efficient encryption algorithms and their imple-
mentations will be invented which in turn shall be cryptanalyzed in unconventional
ways. Without doubt cryptology promises to remain an interesting field of research
both from theoretical and application point of view.

2.2 Cryptography - Some Technical Details

The aim of the cryptographer is to find methods to secure and authenticate messages.
The original message is called the plaintext and the encrypted output is called the
ciphertext. A secret key is employed to generate the ciphertext from the plaintext.
The process of converting the plaintext to the cipher text is called encryption and the
vice versa is called decryption. The cryptographer tries to keep the massages secret
from the attacker or intruder. A cryptosystem is a communication system encom-
passing a message source, an encryptor, an insecure channel, a decryptor, a message
destination and a secure key transfer mechanism. The scenario of a cryptographic
communication is illustrated in Fig. 2.1.

The goal of the cryptanalyst is to thwart the efforts of the cryptographer by
breaking the cipher. He is a powerful entity who studies the cipher and uses algebraic
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Figure 2.1: Secret Key Cryptosystem Model

and statistical techniques to attack a cryptographic scheme. A cryptanalytic attack
is a procedure through which the cryptanalyst gains information about the secret
key. Attacks are classified according to the level of a-priori knowledge available to
the cryptanalyst.

A Ciphertext-only attack is an attack where the cryptanalyst has access to
ciphertexts generated using a given key but has no access to the corresponding plain-
texts or the key. A Known-plaintext attack is an attack where the cryptanalyst
has access to both ciphertexts and the corresponding plaintexts, but not the key.

A Chosen-plaintext attack is an attack where the cryptanalyst can choose
plaintexts to be encrypted and has access to the resulting ciphertexts, again their
purpose being to determine the key.

A Chosen ciphertext attack is an attack in which the cryptanalyst can choose
ciphertexts and can obtain the corresponding plaintext. The attacker has access to
the decryption device.

The attacks are measured against a worst case referred to as the brute force
method. The method is a trial and error approach, whereby every possible key is
tried until the correct one is found. Any attack that permits the discovery of the
correct key faster than the brute force method, on average, is considered successful.
An important principle known as the Kerckhoff’s principle states that, the secrecy
of a cipher must reside entirely in the key. Thus an enemy will have a complete
knowledge of the cipher but shall not know the key. A secured cryptographic scheme
should withstand the attack of such a well-informed adversary.

There are two distinct types of ciphers.
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e Private-key (or secret-key or symmetric) ciphers.

e Public-key ciphers.

These types differ in the manner in which keys are shared. In symmetric-key
or private-key cryptography both the encryptor and decryptor use the same key.
Thus, the key must somehow be securely exchanged before secret key communication
can begin (through a secured channel, Fig. 2.1). In public key cryptography the
encryption and decryption keys are different.

In such algorithms we have a key-pair, consisting of:

e Private Key, which must be kept secret and is used to decrypt messages.

e Public Key, which can be freely distributed and is used to encrypt messages.

The two parties namely Alice and Bob are communicating with each other and
have their own key pair. They distribute their public keys freely. Alice encrypts the
message intended for Bob, using Bob’s public key. The resulting ciphertext can then
be decrypted only using Bob’s private key.

Public and Private (or symmetric) Key algorithms have complementary advan-
tages and disadvantages. They have their specific application areas. Symmetric Key
ciphers have higher data throughput but the key must remain secret at both the ends.
Thus in a large network there are many key pairs that should be managed. Sound
cryptographic practice dictates that the key should be changed frequently for each
communication session. The throughputs of the most popular public-key encryption
methods are several orders of magnitude slower than the best known symmetric key
schemes. In a large network the number of keys required are considerably smaller
and needs to be changed less frequently. In practice thus public-key cryptography is
used for efficient key management while symmetric key algorithms are used for bulk
data encryption. Since the present thesis deals with symmetric key algorithms, it has
been elaborated in the subsequent discussions.

2.2.1 Symmetric-Key Cryptography

The symmetric-key algorithms can be divided into two types:

e Block Ciphers

e Stream Ciphers
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Block ciphers operate on blocks of plaintexts and ciphertexts. Identical plaintext
blocks always encrypt to identical ciphertext blocks for a given key. The algorithm
DES uses 64 bit as block size whereas Rijndael uses 128 bits. The security of the
cipher depends on the block sizes for the data and the key. From the Kerckhoft’s
principle as the key space becomes bigger the probability of success of the adversary
reduces, thus increasing the security of the scheme. Stream ciphers are a class of
encryption algorithms that encrypt individual characters (usually binary digits) of
a plaintext message one at a time, using an encryption transformation which varies
with time. A Vernam Cipher is a stream cipher in which the key length is the same
as the message. The ciphertext is generated by adding the message to the key digit
by digit. For the special case where the key is used only once the cipher is termed as
one time pad. Shannon proved in 1949 that the cipher was perfectly secure and hence
is unbreakable. However such a one-time pad is not feasible as the key size becomes
too large.

As a significant portion of our work is based on block ciphers, we focus on such
type of cryptographic schemes.

Block Ciphers

The block ciphers are a widely researched topic in the present cryptoworld. Security
and efficient implementations are two of the most important design objectives of such
ciphers. Shannon’s principle of confusion and diffusion are applied in the designs
of block ciphers. Confusion obscures the relationship between the plaintext and the
ciphertext. This work to make the relationship between the statistics of the plaintext
and the ciphertext as complicated as possible. Diffusion dissipates the redundancy
of the plaintext by spreading it over the ciphertext. Product or iterated cipher is one
whereby confusion and diffusion are achieved by the repeated application of the same
simple ciphers. This helps the iterated cipher achieve security goals while being easily
implementable at the same time. The cipher structure which is repeated is known as
the round.

Mathematically a block cipher is the following pair of functions:

E:Zbx 70 — 21
D:Zkx 70— 71

E is the encryption function which converts an n bit plaintext to an n bit cipher-
text using a k bit key. D is the corresponding decryption function, which converts
the n bit ciphertext to the n bit plaintext. Here, n is referred to as the block size,
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while £ is the size for key. The block ciphers are product ciphers and comprise of
repetition of the same structure denoted by the function E;. The number of rounds
in the block cipher is r. Each round of the block cipher has an independent share of
key K;, where K; is known as the round key and is generated by a Key Scheduling
Algorithm from the input key K. Thus, for an n bit plaintext and k£ bit input key
E(P,K)=E,(...(E2(E1(P,K;),K>3))...),K,). The rounds are more or less identical
with minimal variations in the first and last rounds. Also it may be noted that there
must be a key mixing layer at the beginning of the block cipher as otherwise the first
encryption may be undone as it is invertible.

In modern ciphers there are two different types of confusion. One of them is
key dependent while the other one is independent of key. Key dependent confusions
are generally obtained by the bit-wise xor of key bits and the plaintexts. Non-linear
transformations are used to obtain key independent confusions. The non-linear step is
often implemented by means of a look-up table, often named as the substitution box
or the S-Box. The S-Box design is one of the most important aspects of the design
of ciphers. If the S-Box did not provide non-linearity to the cipher the cascading
of the rounds could be represented by a simple step. Thus with a linear S-Box any
number of rounds is equivalent to a single application of a different S-Box. The S-Box
provides non-linearity to the cipher which provides the much needed confusion and
helps to ward off cryptanalysis.

Cryptanalysis of Block Ciphers

The strength of a cipher can be measured by its resistance to known cryptanalytic
techniques. The attacks types, as mentioned earlier, can be broadly categorised into
(i) ciphertext only, (ii) known plaintext, (iii) chosen plaintext and (iv) chosen cipher-
text.

Various attacks were developed in order to evaluate the strengths of block ci-
phers. Among the notable attacks were Hellman’s time-memory trade-off attack [13],
meet-in-the-middle attack [14], key degeneracy attack [15, 16], maximum likelihood
estimation [17], method of formal coding [18] and related key [19]. In recent years
several cryptanalysis of block ciphers have been published to assess the security of
various ciphers. Reduced variants of the Advanced Encryption Standard (AES) has
been cryptanalyzed and has led to large number of attacks against block ciphers
[20, 21, 22, 23]. Recently a class of attacks have been proposed against AES Rijndael
which uses overdefined equations [24, 25, 26]. The new kind of attack known as the
algebraic attack [27, 24, 26] brings new design criteria to the surface. The algebraic
attacks exploit the existence of low degree equations and once a system of nonlinear
multivariate equations of low degree is obtained, it is solved by efficient methods like
XL [28]. However two of the most powerful cryptanalytic techniques are:
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e Differential Cryptanalysis [29]: In 1990 Eli Biham and Ali Shamir introduced
the method. Let us consider a pair of known plaintexts (z; and zo) maintaining
a fixed difference, measured by the bitwise xor of z; and z5. Due to the nature
of the round transform the corresponding difference in the ciphertext depends
upon the key. Thus by encrypting a large number of pairs of plaintexts, all with
a given difference, and examining the difference in the ciphertexts it is possible
to gain knowledge about the key.

e Linear Cryptanalysis [30]: Linear Cryptanalysis was proposed by Mitsuru Mat-
sui in 1993. The approach was based on the linear approximations to the non-
linear S-Box. The basic premise is that the linear approximation of a non-linear
S-Box will hold with a certain probability. By chaining such linear approxima-
tions one approximate the entire cipher through a linear equation.

Several attacks combine these cryptanalytic techniques to obtain new attacks e.g.,
differential-linear attacks [31], miss-in-the-middle attacks [32, 33], boomerang attacks
[34] and bilinear attacks [35]. Recently Eli Biham has further proposed some new
kinds of attacks named as differential-bilinear attacks, combinations of differential
and linear attacks and combinations of differential, bilinear and boomerang attacks
(36].

Side Channel Attacks on Block Ciphers

From around mid 90’s, a new research area that has gained focus is side channel
cryptanalysis. The research area analyzes the unintended information leakage that
is provided by naive implementations of a secure mathematical algorithm and its
impact on the extraction of the secret key material. Research shows that while the
efforts to carry out such attacks are low, the development of proper countermeasures is
nontrivial. Related implementation based attacks are known as fault analysis that try
to exploit intended leakage in implementations of cryptographic algorithms. Both the
kinds of attacks are of practical importance for the development of secured products.

The attacks are of two nature: active, which change the environmental conditions
and also sometimes physically open the cryptographic device. Another class of attack
is the passive attack, which simply observes the inherent leakage of the cryptographic
device and evaluates the secret key used. The leaked information may be the timing
information (timing attack) [37, 38| or power consumption (power attack) [39]. In
1996 Paul Kocher described a method in which the keys of RSA were compromised
by measuring the execution time of the overall cryptographic operation [37]. In 1999,
a more effective side-channel cryptanalysis technique was introduced by Paul Kocher
etal, where the power consumption of the device was analyzed to evaluate the key



2.2. Cryptography - Some Technical Details 17

[39]. There are two variants of the attack: simple power analysis and differential
power analysis [40]. After the discovery of these kinds of attacks several improved
attacks which exploit these side-channels [41, 42, 43, 44, 45, 46, 47] and their com-
binations have been discovered [48, 49, 50]. New design criteria for the important
components of cipher, like the S-Boxes, are proposed to prevent side-channel attacks
[561, 52]. The effect is so strong that modifications are being suggested in the normal
Electronic Design Automation (EDA) of Integrated Circuits [53]. In order to prevent
the resistance against side-channel analysis different logic styles are also proposed
[54].

After the advent of smart cards, the implementations of the cryptographic al-
gorithms inside the card were evaluated in the light of side channel cryptanalysis.
Various countermeasures have been suggested to make the implementations robust
against these kinds of attacks. An interesting technique proposed to counter the
side-channel attacks is the concept of masking [55, 56, 57]. Essentially this method
randomize the computations depending on the secret key and make the information
leakage of an implementation unpredictable to an attacker.

Another class of side-channel attacks is known as fault based cryptanalysis. Fault
attacks aim to cause errors during the processing of a cryptographic device. Hence
the cryptographic device enters a modified execution path or returns erroneous cryp-
tograms. Finally mathematical cryptanalysis is applied to exploit the wrong cryp-
tograms and determine the secrets.

The attacks are based on assumptions regarding the control on fault location and
fault occurence time and which are formally known as fault models.

In 1996, Dan Boneh, Richard A. DeMillo and Richard J. Lipton reported that
certain implementations of RSA and other algorithms are vulnerable assuming that
a certain transient fault occurred during the processing[58]. Shortly after in 1996,
Eli Biham and Adi Shamir announced the approach of Differential Fault Analysis
against secret key cryptosystems[59]. Here the same plaintext is encrypted and it is
assumed that faults occur in the last three rounds of DES. The faulty cryptograms
thus obtained are used to derive the key used in the encryptions. In 1999, Oliver
Kommerling and Markus Kuhn reported that for the generation of faults, glitches in
the external power lines in the internal clock lines are quite useful in practice[60].
A new kind of fault inductions were revealed in 2002, as semi-invasive optical fault
inductions were presented by Sergei Skorobogatov and Ross Anderson [61]. These
attacks allow specific control on a single register and gives great armoury to a fault
based cryptanalysis. An alternative semi-invasive approach using eddy currents were
proposed by Jean-Jacques Quisquater and David Samyde[62].

In short there are two kinds of fault based attacks.

e Simple Fault Analysis: It exploits a direct relationship between a faulty re-



18 2. A Survey

sult and the secret key in the implementation. Often the sequence of operations
are disturbed in order to develop new attacks.

e Differential Fault Analysis: This class of attacks need a certain number of
faulty results using the same cryptographic key which are caused in a transient
way. The faulty results are used to reduce the key space. Note, that the practical
relevance of an attack strongly depends on the fault model used.

The impact of fault attacks have grown much recently after the work proposed
in [61]. The Advanced Encryption Standard (AES) has also been analyzed in the
perspective of fault based attacks. Differential Fault Analysis (DFA) on AES was
reported in [63]. Another fault based attack on AES was reported in [64]. P. Dusart
etal [65] performs a Differential Fault Analysis on AES and shows that using a byte
level fault induction anywhere between the eighth round and ninth round the attacker
is able to break the key with 40 faulty ciphertexts. Finally, [66] shows that when a
byte level fault occurs at the input of the eighth round or the input of the ninth round
of a ten round AES-128 algorithm, an attacker can retrieve the whole AES-128 key
with only two faulty ciphertexts.

In order to prevent fault based side channel attacks it is required that the crypto-
graphic device itself checks that the result obtained is correct. In the simplest way,
this can be done by computing the same operation twice. The implementation should
be capable to detect modifications of security variables. For block ciphers which are
invertible, the result can be checked by calculating the inverse operation and checking
whether the cryptogram gives the message back.

For an underlying hardware countermeasure, Sergei P. Skorobogatov and Ross J.
Anderson proposed self-timed dual-rail-logic circuits that include an alarm mecha-
nism.

Finally note, that there are not any sufficient countermeasures in case the attacker
has an ideal fault control using short-timed multiple fault injections. This makes
the design and analysis of fault attack preventing cryptographic implementations an
important field of research.

2.2.2 Design of SPN ciphers resistant to Linear and Differ-
ential Attacks
Substitution-Permutation Networks (SPN) are practical product ciphers. In these

structures a basic module is repeated and each such modules are known as rounds.
The rounds are composed of the following operations:
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1. Key mixing layer o(k), in which the key (k) is mixed to the data using simple
key xoring (®)

2. Non-linear layer, commonly known as Substitution Boxes or S-Boxes. The S-
Boxes in SPN ciphers are necessarily bijective in SPN ciphers as opposed to
Feistel networks where they need not be so.

3. The diffusion layer #, which is linear with respect to .

The first part of the thesis deals with the construction of an SPN cipher using
Cellular Automata (CA) based structures. Though the application of CA to realize
substitution and permutation blocks with proven margin against Linear Cryptanal-
ysis (LC) and Differential Cryptanalysis (DC) is novel and central to the present
dissertation, the history of SPN ciphers and their design criteria have been set from
around mid 70’s by many eminent researchers. We provide a brief survey on some of
the important works in this area.

2.2.3 Design of S-Boxes: The Substitution Layer

Design of the block ciphers is largely dependent on the robustness of its S-Box. Weak-
ness of the S-Box is often compensated by increasing the number of rounds of a block
cipher. But if the objective is to design a cipher which is fast and also secure, the
number of rounds has to be less and at the same time the S-Boxes must be amenable
to efficient implementations. Thus it is imperative to design efficient S-Boxes which
are defiant against cryptanalysis. In order to design proper S-Boxes design criteria
were searched for by several researchers [67, 68, 69, 70, 71]. The component functions
of the above constructions were quadratic and did not satisfy the Strict Avalanche
Criterion (SAC). The works were improved in the methodology proposed in [72].

One of the constructions proposed in [73] is based on what is known as the
Maiorana-McFarland method.

Definition 2.1 [74] The class of Maiorana-McFarland (n,m)-functions is the set of

those functions F' which can be written in the form:
e11(y) - Pim(y)
F(z,y) = x X : : + H(y), (z,y) € F5 x F;
eri(y) - erm(y)

where r and s are two integers satisfying r+s = n, H is any (s, m)-function and, for

every index i < r and every index j < m, @;; 15 a Boolean function on F3.
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Any Maiorana-McFarland’s (n, m)-function F' can be written in the form:

F(z,y) = (@ T (y) ® ha(y), .-, @ﬂfz%m(y) ® him(y))

where H = (hy,...,h,). After denoting, for each i < m, by ¢; the (s,r) function
which admits the Boolean functions ¢y;, ..., ¢,; for coordinate functions, we can
rewrite the above relation as:

F(r,y) = (.61(y) @ hi(y), .-, 7.0m(y) ® him(y))

The construction proposed in [73] is built out of Linear Feedback Shift Regis-
ters (LFSRs) and is based on the Maiorana-McFarland construction technique. The
construction may be briefly stated as follows: Let f;, + = 1,2,...,m be Maiorana
functions and so has the form, f;(z) = fi(xy,22) = mi(z1).22 + ¢i(x1), where 7,
is a permutation of the space Zg/ * and g; is a function from Z;f/ % to Z,. Then

f = (fi, fo,---, fm) is perfect nonlinear if every nonzero linear combination of the
permutation 7;, ¢ = 1,2, ..., m is again a permutation of ZS/Z. In the above method
n > 2m.

One way of constructing was presented through LFSRs, thus making the im-
plementation efficient. The length of the LFSR was n/2 with a primitive feedback

polynomial. Then A as well as its power represent permutations in Z, /2,

Also the LFSRs with primitive feedback polynomials generates maximal length
sequences. The principle to generate a perfect nonlinear S-Box with n input variables
and m output variables, where n > m was therefore to take a n/2 shift register with
a primitive feedback polynomial. The input block was divided into two equal halves
of n/2 bits, x; and z,. The first bit of the output block of length m is obtained
by calculating the dot product z;.z5. To obtain the second bit the shift register is
applied and the dot product of the LFSR’s new output state and the x5 is computed.
In this manner every shift of the register produces a new output digit.

Another interesting method of systematically generating cryptographically robust
S-Boxes was presented in [72]. The method is based on an interesting combinatorial
structure called group Hadamard matrices. The authors demonstrated that their
method is superior to previous approaches and generates promising S-Boxes in terms
of defiance against Linear and Differential cryptanalysis, SAC fulfilling properties,
high nonlinearity and algebraic degrees. In [75] authors show that strong S-Boxes
may be generated using two basic techniques:

1. Concatenating Bent Functions
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2. Concatenating Linear Functions

However it was shown in [76] that all the proposed constructions for good can-
didates for S-Boxes are based on, what is known as the Maiorana-McFarland Con-
struction. All the primary constructions presented in [77, 78, 79, 80] are based on
this principle.

While the constructions of strong S-Boxes is an important aspect of cryptographic
design, the other important aspect is the design, analysis and implementation of large
strong S-Boxes. Although many desirable properties of S-Boxes have been studied, it
is also a challenge to develop efficient scalable architectures for S-Boxes. For example
the design techniques presented in [81] to realize n x n S-Boxes does not scale properly
with the value n. In [82] a practical S-Box design has been described where it has been
stated that the construction of large cryptographically strong S-Boxes are difficult
and requires huge computational resources. The paper suggests that the creation of
large cryptographically good S-Boxes with bent functions as ingredients have proven
more difficult that originally expected. The algorithm proposed and the supporting
experimentations showed that it took between 15 and 30 days on a Pentium 90 for
an 8 x 32 S-Box with good cryptographic properties.

In [83] a method has been described for obtaining cryptographically strong 8 x 8
S-Boxes. However the performance of the generated S-Boxes are much inferior com-
pared to possible S-Boxes that can be constructed for such dimensions. Recently an
interesting construction of S-Boxes based on the Maiorana-McFarland methodology
has been proposed in [84]. The software implementation of the proposed method has
been presented in [85] where the authors claim that the work was the first practical
software implementation of a general framework to generate cryptographically robust
n X m S-Boxes. However, the construction requires table lookup of the order 2™,
which makes it infeasible for a hardware implementation where m is large. Indeed
we require bijective S-Boxes where m = n in block ciphers and the current algebraic
attacks [86, 87] obviates the requirement that the size of the S-Boxes are equal to
or more than eight. Hence the design of scalable architectures for cryptographically
robust S-Boxes is an important future area of research.

2.2.4 Design of D-Boxes: The Diffusion/Permutation Layer

The other important component of an SPN block cipher is the permutation layer or
D-Box. The purpose of the diffusion layer is to provide avalanche effect. It implies
that there should be no correlation between linear combinations of the input and the
output. It also implies that small input changes should cause large output changes.
Also to produce a small output change a large input change is necessary. This effect
is quantized with the parameter branch number 3. Let wy(a) denote the Hamming
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weight of a, i.e., the number of non-zero components of a. Then the branch number
of the linear transformation 6, is

B(0) = minazo(wn(a) +wa(0(a)))

Here S gives a measure of the worst case diffusion and is a lower bound of num-
ber of operational S-Boxes, more formally known as active S-Boxes. Hey and Tavares
(88, 89, 90] showed that when the permutation layer of an SPN cipher is a diffusive lin-
ear transformation it improves the avalanche characteristics of a cipher and improves
the security margin of the block cipher against Linear and Differential Cryptanalysis
(30, 29]. Informally avalanche characteristics implies that for a good cipher a change
in one bit of the input should change half of the output bits. It was shown that with
the help of such linear transformations one can find upper bounds for differential
characteristic probability [29] and also probabilities for linear approximations [30] as
a function of number of rounds of the cipher. An interesting class of linear trans-
formations is the Maximum Distance Separable (MDS) codes [91]. The use of such
linear transformations was first proposed by Vaudenay in [92] and then utilized in the
cipher Shark [93] and the cipher Square [94]. This class of linear transformations has
the advantage that the number of S-Boxes involved in any two rounds of the linear
transformation is maximum theoretically possible. For a linear (n, k, d) code over any
field, d < n—k+1. Codes with d = n—k+1 are called Maximum Distance Separable
Codes or MDS codes for short [91]. The MDS codes are described by the following
result[91]: An (n, k, d) code with generator matrix G = [I|A], where A is a k x (n—k)
matrix, is MDS if and only if every square submatrix (formed from any ¢ rows and i
columns, for any i = 1,2, ..., min{k,n — k}) of A is nonsingular.

In [95] two construction methods for involutional linear transformations based on
MDS (Maximum Distance Separable) Codes were provided. The first method is a
random construction. They proposed that the m X m matrix

A= ( An Aﬁ)
AL @Ay Ay

where Aj; is a random m/2 X m/2 matrix, is an involution over GF(2"). For
n = 8 a random search for a matrix A with the above structure and which has all the
square submatrix nonsingular takes a few seconds.

The other method is based on an algebraic construction which is described by the
following result:
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Lemma 2.1 Given xo,...,Zn—1 and yi,...,Yn—1, the matric A = [a;;], 0 < 4,5 <
n — 1 where a;; = ﬁ is called a Cauchy matriz. It is known that:
det(A) — H0§i<j§n—1(xj — i) (y; — i)

[o<icj<n1(@i + y;5)

Hence provided the z; and y; are distinct and z; +y; # 0 for all 4, j it follows that
any square submatrix of the Cauchy matrix is nonsingular. There are various other
interesting works in literature

Literature provides various other construction techniques to generate linear trans-
formations which may be efficiently implemented for block ciphers [96]. In the search
of optimized MDS mappings the use of Hadamard matrices are also used [97, 96].
Given k elements ay, ..., ax_1, a Hadamard matrix A is constructed with each entry
A; j = ayg;. Each Hadamard matrix A over a finite field has the following properties:
A? = I, where v is a constant and [ is the identity matrix. When + is 1, the mapping
is involutional. The circulant nature of the Hadamard matrices help to reduce the
search space in which the MDS mappings are searched.

2.3 Design of Key Establishment Protocols

The underlying principle behind the design of secured systems is that secrecy must
lie entirely in the key. The principle is known as the Kerckhoff’s principle and was
first postulated by a nineteenth century cryptographer named A. Kerckhoffs [9].

Hence establishing the key between the sender and receiver in a two party scenario
and among all the legal players in a multiple party scenario is a challenging task.
In this work we concentrate on two party key establishment. Such a multi-party
algorithm is known as protocol, defined as a sequence of steps precisely specifying the
actions required of two or more parties in order to achieve a specified objective.

Technically key establishment is defined as follows[98]:

Definition 2.2 Key Establishment is a process or protocol whereby a shared secret

becomes available to two or more parties, for subsequent cryptographic use.
There are two broad categories of key establishment protocols:

e Key Transport protocol is a process or protocol whereby a shared secret becomes
available to or more parties, for subsequent cryptographic use.
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e Key Agreement protocolis a key establishment technique where one party creates
or otherwise obtains a secret value, and secretly transfers it to the other parties.

Key establishment can also be categorised depending upon the manner in which
the key is generated. They are known as:

e Key pre-distribution is a method to establish the key whereby the resulting
established keys are completely determined a priori by initial keying material.

e Dynamic key establishment is a method in which the key established by a
fixed pair (or group) of users varies on subsequent executions of the protocols.
This makes the protocols immune to known-key attacks.

Further the key establishment protocols may be categorised into two types: (i)
Trusted server based and (ii) without trusted servers.

In the first type of protocol there is a centralized or trusted party. This party is
referred to by a variety of names: trusted third party, trusted server, authentication
server, key distribution center (KDC), key translation center (KTC) and certification
authority (CA). Example of such type of protocols are [99, 100, 101]. The other type
of key establishment protocols are those which do not depend on a trusted server,
but rather depend on an apriori shared secret[102, 103].

However there are certain central goals which a secured protocol must satisfy. We
enlist them in the following for a two party key establishment protocol. We assume
that the protocol is played by two players, Alice (A) and Bob(B). The aims of the
protocol are[98]:

1. At the end of the protocol the value of K 45 should be known to both A and B,
but no other parties (except a trusted central server S if there is any).

2. A and B should know that K 4p is newly generated.

The eaves-dropper, Eve (F) observes the messages exchanged between A and B.
The attacker F and the environment is modelled by certain assumptions and the
protocol is proved to be secured in such a model. The strength of such a proof
however depends on the practicality of such assumptions.

The basic assumptions are:

1. The adversary is able to eavesdrop on all messages sent in a cryptographic
protocol.
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2. The adversary is able to alter all messages sent in a cryptographic protocol
using any information available. In addition the adversary can re-route any
message to any other principal. This includes the ability to generate and insert
completely new messages.

3. The adversary may be a legitimate protocol participant (an insider) or an ex-
ternal party (an outsider) or a combination of both.

4. An adversary is able to obtain the value of the session key K,p used in any
sufficiently odd previous run of the protocol.

5. The adversary may start any number of parallel protocol runs between any
principals including different runs involving the same principals and with same
principals taking the same or different protocol roles.

(2

3-{KABa B, NA}KAS; {KAB; Aa NB}KBS

. 1.B, N,
4{Kap, A, N},

Figure 2.2: A Key Establishment Protocol

2.4, B, N4, Ng

Fig. 2.2 provides an example protocol[98] among three entities A, B and a trusted
server S. The aim of the protocol is to provide A and B with an established key K s5
at the end of the protocol, which they can use subsequently for communication. Any
other party except the trusted server (i.e the adversary) should not be able to know
the value of the key. Note that in the protocol the message format {M }k is used to
indicate that the message M is encrypted with the key K. As a matter of general
principle it is not possible to establish an authenticated session key without existing
secure channels already being available[104]. The principle can be stated formally and
proved. Therefore for the secure establishment of keys it is essential that keys are
already shared between the different principles or certified public keys are available.
In the protocol depicted in Fig. 2.2 the keys K45 and Kpgg are used to indicate the
shared keys between A and S and between B and S respectively.

A cryptographic protocol is made of various components, each of which has got
their separate functionalities. For example in the above protocol, the encryption
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function is used to provide security against the adversary under the first security
assumption. In order to safe-guard against the second assumption, the messages
transfered should be authenticated so that the attacker does not alter the messages.
Hence the identifier (A and B) are included in the encrypted messages. Since the
attacker does not have the keys K45 and Kpgg, he cannot alter the messages. The
property is again based on the assumption that the encryption function is a strong
encryption algorithm and satisfies a property known as non-malleability. The identity
of the senders of the messages should be included to take care of the third assumption.

The session key is ideally changed in each session. This reduces the chance of
cryptanalysis, as it provides less cryptogram which has been encrypted with the same
key to the attacker. Also the key might be leaked due to various reasons, like insecure
storage, betrayal of insiders and negligence on one of the parties involved. In short
it should not be possible for any one to establish forcefully an old key by replaying
old messages. For this the technique used, as shown in the messages of the depicted
protocol, is called the challenge-response technique using nonces.

Definition 2.3 A nonce is a random value generated by one party and returned to

that party to show that the message is newly generated.

In the protocol shown the values N4 and Np are known as nonces.

Cryptographic protocols are built out of various cryptographic functions. There
are essentially four kinds of cryptographic functions or primitives, as they are often
called, being used in the operation of the protocols.

e Encryption Function: They include both private and public key encryption
mechanisms, in order to provide confidentiality to the input message. Public
Key encryption is denoted by the symbol E4(M), for the encryption of message
M with the public key A. Similarly, {M}x denotes symmetric encryption of
message M with shared key K.

A strong encryption provides security to the message against chosen plaintext
and chosen ciphertext attacks.

e Message authentication code (MAC): They are a family of functions pa-
rameterised by a key K such that MACk (M) takes a message of arbitrary
length and outputs a fixed length value. The transformation satisfies the fol-
lowing two conditions:

1. It is computationally easy to calculate M ACk(m) given K and m.

2. Given any number of M AC values for a given K, it is computationally hard
to find any valid M AC value for any new message, without the knowledge
of K.
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The M AC function is used to provide authentication and data integrity by
appending a M AC' to a message which may be either in clear or encrypted. On
receipt of the M AC, only the recipient who has the correct key can recompute
the M AC and verify that it is the same as that received.

e Digital Signature: These class of algorithms consist of three set of compo-
nents, a key set K, a message set M, and a signature set S together with the
following three algorithms:

1. A key generation algorithm, which outputs a valid signature key £ € K
and a valid verification key k~! € K.

2. A signature generation algorithm, which takes an element m € M and a
signature key £ € K and outputs an element s € S, the signature of the
message m using the signature key.

3. A verification function, which takes a signature s € S, a message m € M,
and a verification key k' € K and outputs an element v € {0,1}. Ifv =1
then we say the signature is valid or if v = 0 then the signature is invalid.

Digital signature provides non-repudiation. Although it is not a typical property
of authentication and key establishment protocols, they are sometimes necessary
for some kind of protocols.

e One-way Functions: A function f : X — Y is one-way if it is computationally
easy to calculate y = f(x) given z € X, but computationally difficult to find
any x with f(z) =y for almost all values of y € Y.

The one-way functions find several uses in protocol designs. They are used
as MAC (message authentication codes) [105]. They are also used as M DC
(manipulation detection codes). In such cases without the knowledge of the
message the adversary is unable to alter the message without destroying the
correctness of the M DC'.

Apart from these, one-way functions provide key freshness to the agreed key. It
means that for the key establishment protocols, each user of the key is able to
verify that it is new and not replayed from an old session.

For example, let two users A and B both choose inputs N4 and Ng to derive a
new session key. Let the form of the function be, Ksp = f(Na, Np).

A desirable property of the function f is that it should not be possible for A or
B to force an old value of K 4 even if the other’s input is known. This means
that each user has independent assurance that the session key is new or fresh.
Thus, if B knows A’s contribution N4, he should be able to compute his share
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Np so that an old key K94 is generated. Mathematically he should not be able
to solve, Np in the equation:

K% = f(Na,Ng)
= ¢g(Ng)

The above condition implies that the function g must be a one-way function.

2.4 Key Agreement Protocols and their Security
Analysis

The majority of the key establishment protocols deal with the scenario where there
are exactly two players, A and B. This is commonly known as the two-party case. The
key establishment protocols depend on symmetric key or public key cryptography. As
mentioned, the protocols use various cryptographic algorithms or primitives in order
to achieve data integrity, authentication, non-repudiation and other features. More
specifically in this thesis we shall be dealing with a two party key agreement protocol
which also provides authentication and key confirmation.

The definition of key agreement protocol is first stated[106, 107].

Definition 2.4 Key Agreement Protocol: A key agreement protocol or mecha-
nism is a key establishment technique in which a shared secret is derived by two (or
more) parties as a function of information contributed by, or associated with, each of

these (ideally) such that no party can predetermine the resulting value.

The general format of such protocols requires each principal to select an indepen-
dent input to the key. In the two party scenario between A and B let the contributions
from A and B be r4 and rp respectively. The players (A and B) then send each other
messages constituted of their contributions (r4 or rg) along with other messages (as-
sociated with their identities etc.). The session key is then derived usually in two
stages:

1. The random inputs 74, g and the long term keys are combined to form a shared
secret, Z p.

2. The shared secret and possibly other inputs are transformed by a key derivation
function, which is typically a one-way hash function.
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Table 2.1: Meet in the middle attack on the basic D-H protocol

A C B
T‘AERZq
thg =g — =ty —— > TCERZq
tc =g"¢ ——tc——> TBERZq
< ——=tc—— ZAC:tZXC <——tgp—— 1lp=4g?
Zap =tg Zop =ty Zap =17

Recently the goal of such protocols has become more difficult. It is commonly
known as the authenticated key agreement (AK) problem. In the AK problem A
merely desires that only B can possibly compute the key, and not that B has actually
computed the key. If A wants to make sure that B really has computed the agreed key,
then key confirmation is incorporated into the key agreement protocol. The resulting
goal is then called authenticated key agreement with key confirmation (AKC)[108].

The most celebrated key agreement protocol is the Diffie-Hellman (D-H) key
exchange[11]. In the basic D-H protocol, two principals A and B agree publicly
on an element g that generates a multiplicative group G. They select random vari-
ables r4 and rg respectively in the range between 1 and the order of G. A computes
ta = g™ and B calculates tg = ¢g"B. They subsequently exchange the values and
both of them derive the shared secret Z p = ¢"4"B.

This value can be calculated by A (or B) using the private information 74 (rg) and
the public information received ¢g"8 (¢g™4). The security of the D-H protocol against
passive eaves-dropping, lies on the assumption that it is infeasible to compute the
value of Z,p from the values of ¢"4 and ¢"2. This is known as the D-H assumption.

However the D — H protocol provides no authentication and can break in the face
of meet-in-the-middle attack (table 2.1). Adversary C' masquerades as B to A and
as A to B. Both A and B complete a normal run of the protocol, but both share keys
with C, namely ¢"4"¢ and ¢"°"5.

Several key agreement protocols have been developed subsequently which are
based on the D-H protocol. The protocols based on the D-H assumption have the
following advantages:

e The protocols may be generalized to work in any abelian group.

e The protocols based on D-H provide forward secrecy, which means that dis-
closure of the long-term secret key does not compromise on the security of
exchanged keys from earlier runs.
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However there are some protocols which are not dependent on the D-H assumption.

The advantage of the non D-H based protocols are:

e There can be computational savings over D-H by reducing the number of ex-

pensive operations

e Keys can be guaranteed to be random even if one of the inputs become known,

a property which is lacking in the D-H based protocols

An example of a key agreement protocol, widely used for the internet, is the
SKEME (Secure Key Exchange Mechanism for Internet) protocol[109]. It supports
both D-H based and non D-H based key derivation. It is a compact protocol that
supports a variety of realistic scenarios and security models over Internet. It provides
clear tradeoffs between security and performance as required by the different scenarios
without incurring in unnecessary system complexity. The SKEME protocol brings to
the surface various requirements of a key agreement protocol:

1.

Periodic Key Refreshment: It should be possible to update the session key used
periodically at low computational cost.

. Forward Secrecy: This mode though sometimes essential may be occasionally

sacrificed at the cost of efficiency.

Key Separation: Different cryptographic functions should use different keys, so
that the compromise of one key does not lead to the compromise of the others.

Privacy and anonymity: Along with confidentiality of the data, it may be nec-
essary to hide the identity of the communicating parties. One of the goals of
the protocol is to hide the identity of the attackers.

Efficiency and Simplicity: Key exchange operations may strongly vary on their
computational requirements. Protocol design involves delicate tradeoffs between
security and performance.

. Algorithm independence: The protocol needs to define the underlying crypto-

graphic primitives in a functional level, but not to depend on particular imple-
mentations.

As large number of cryptographic protocols for key agreement have been pro-
posed, several attacks (table 2.2) against them have also been developed. Abadi
and Needham have proposed a set of principles intended to provide rules of thumb
for designers of protocols[110]. They were derived from the common errors of proto-
cols and by following them the chances of attacks against protocols reduce. However
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Table 2.2: Some common attacks against cryptographic protocols

Eavesdropping | The adversary captures the message transferred

Modification Adversary alters the messages transferred

Replay Adversary records a message and then transfers to a different
party, possibly during a later instance

Preplay Adversary engages in a run of the protocol
prior to a run by the legitimate principals

Reflection Adversary sends back messages to the sender

Denial Adversary prevents or hinders legitimate

of Service principals from completing the protocol

Typing Adversary replaces a protocol message with

Attack another type of message

there can be no guarantee regarding the fact that after following the principles the
protocols cannot be attacked. This emphasises the need for provable security of the
cryptographic protocols.

The approach uses a mathematical model that defines a protocol in which a power-
ful adversary plays a central role. The adversary essentially controls all the principals
and can initiate protocol runs between any principals at any time. Insider attacks
are modelled by allowing the adversary to corrupt any principals and the adversary
can also obtain previous keys. Cryptographic algorithms are also modelled as specific
transformations. For example many complexity-theoretic proves rely on a technique
known as random oracles[111]. This model assumes that a hash function works in an
idealised fashion, it returns true random values each time it is used. However if the
input is the same then it returns the same output. Security of protocols is defined
in terms of matching conversations (for authentication) and indistinguishability (for
confidentiality of keys).

The treatment of computational complexity analysis for key establishment proto-
cols was made popular by Bellare and Rogaway[112]. They provided the first formal
model of adversary capabilities with an associated definition of security. Recently a
related model has been developed in [113], which introduces modular proof models.
However some drawbacks were subsequently found and modified in[114]. Fundamen-
tally all the proving techniques have two basic requirements for security. First, two
parties who have completely matching sessions (or partners) are required to accept
the same session key. Secondly, no adversary or anyone other than the legitimate
parties involved will learn about the session key at the end of the protocol. How-
ever the Bellare Rogaway model is one of the most popular models for proving the
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security of key agreement protocols [108, 98] and it is always desirable to prove a
new cryptographic protocol in this model. The model has been described in details
in section 8.7 where a proposed protocol has also been proved to be secure in the
model.

2.5 Design of efficient one-way functions

Several attempts to develop practical and secure symmetric-key algorithms and key
agreement protocols have been published in literature. However the current tech-
niques to develop symmetric-key algorithms do not prove that the problem of break-
ing the cryptosystem is as hard as that of solving any hard theoretic problem[115].
Likewise, although formal proofs reduce the problem of attacking a protocol into well
known problems, like the D— H assumptions, the number of such problems are limited
in literature. Further, considering the demand of increased traffic in on-line commu-
nication the need for such hard problems have increased. An ideal candidate for such
type of functions are known as one-way functions. Informally, one-way functions are
class of mathematical operations in which the forward transformation is computa-
tionally efficient but the inverse is not. Classical examples of such kinds of functions
which have been employed for building cryptosystems are enlisted below[106]:

1. Integer Factoring Problem: Given a positive integer n, find its prime factors.

2. RSA Problem: Given a positive integer n that is a product of two distinct odd
primes p and ¢, a positive integer e such that ged(e, (p—1)(¢—1)) =1, and an
integer ¢ find an integer m such that m® = ¢(mod n).

3. Discrete Logarithm Problem (DLP): Given a prime p, a generator « of Z (multi-
plicative group), and an element 3 € Z*, find the integer z, 0 < x < (p—2), such
that o® = B(mod p). The Generalized Discrete Logarithm Problem (GDLP) is
that given a finite cyclic group G of order n, a generator « of GG, and an element
B € G, find an integer z, 0 < x < (n — 1), such that o® = §.

4. Diffie Hellman Problem (DHP): Given a prime p, a generator a of Z;, and the
elements a®mod p and a’mod p find a®mod p.

5. Subset Sum Problem: Given a set of positive integers {ai,as,...,a,} and a
positive integer s, determine whether or not there is a subset of the a;-s that
sums to s.

However the majority of the cryptographic algorithms based on the first three
four number theoretic problems can be shown to be dependent on solving the DLP.
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However the cryptographic algorithms based on such type of problems use modular
exponentiation and are computationally expensive. On the other hand cryptographic
algorithms developed on the Subset Sum Problem, like the famous Merkle-Hellman
Knapsack[116] are computationally efficient. Hence at first there was lot of opti-
mism regarding the Knapsack cryptosystem. The reasons were not only due to its
efficiency, but also the fact that its security seemed to be guaranteed due to the NP-
completeness of the Subset Sum problem. However the system was actually shown to
be based on a subproblem of the the Subset Sum problem and was hence cryptana-
lyzed by Shamir[117]. Soon after Brickell [118] and others showed how to undermine
the security of variants and generalizations of the Merkle-Hellman technique. The dra-
matic break of most knapsack based crypto algorithms, made cryptosystems based
on combinatorics less popular.

An additional possible reason for this was due to the theorem of Bassard[119]. It
states that the cracking problem for a cryptosystem based on one-way function cannot
be NP-hard unless NP=coNP. However as the problems based on combinatorics tend
to either have a polynomial time algorithm or have NP-hard complexity, it was felt
that one-way functions (or hard problems) based on combinatorics were probably of
no use for cryptography. Such an interpretation was probably premature as there are
several problems in combinatorics which are hybrid combinatorial /algebraic problems
and hence does not satisfy the theorem proposed in [119]. The fact that such type
of one-way functions can lead to efficient algorithms have motivated researchers to
continue their search. Literature shows that two types of one-way functions based on
combinatorics have been recently studied. The first one is the T-functions proposed
by Alexander Klimov and Adi Shamir[120], while the later one is based on a special
type of graphs, known as expander graphs and is proposed by Goldreich[115].

A T-function is a mapping from m n-bit words to k n-bit words in which each
bit i of any of the outputs (for 0 < ¢ < n) can depend only on bits 0,1,...,7 of the
inputs. These class of functions have been applied to develop various cryptographic
primitives, like stream ciphers, MDS mappings, invertible mappings and also one-way
functions[121, 122, 123, 120]. The work proposed in [120] shows efficient techniques
to find T-functions which are invertible.

Let f(z) and g(z) be arbitrary permutations over n-bit words. Although it seems
that it is difficult to construct "random looking” f(z) and g(z) such that f(x), g(z)
and f(z) @ g(x) are all permutations, using the techniques proposed in [120] one can
construct such T-functions. As a special case if the function g(x) is an identity, then
the resultant function is @ f(z). It is known from [124], that if f(z) is a random
function then f(x) + z is hard to invert. However if such a proposition also applies
for a T-function was to be inspected.

The one-way function proposed in [115] is a function (rather a collection of func-
tions), f,, that maps strings in {0,1}" to {0,1}". It uses as parameters two sets of
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values:

e A collection (of size n) of small overlapping subsets of [n], C' = {S; : |Si| =
d; S; € [n];i € [n]} (typically d is chosen to be of the order of log(n))

e A predicate IT : {0,1}¢ — {0,1}

For every string, z = 125 . .. x,, in {0, 1}", computing f,(x) involves first project-
ing x onto each of the subsets on the collection (if S; = {41, 7o, ..., 4} then the projec-
tion of x on S;, denoted by zg; is a string of length d which is given by z;1Z;5 ... Z;4)
and then evaluating the predicate II on each of the n projections, thus giving us the
n bit values which represent the output string. In other words, f,(x) is the bit string
in {0,1}" equal to:

H($S1)H($sz) .. -H(l‘sn)

It was shown that although the function in the forward direction is quite simple,
inverting the function is apparently a hard problem if the collection C has some
desirable combinatorial properties. Specifically, it was shown that if C is an expanding
collection i.e for some k, every subset of C' containing k subsets of [n] be such that
the union of these & subsets is of the form &+ 60(n), then the problem of inverting the
function does not seem to have an efficient solution.

The function was experimented with a special type of graphs, known as the ex-
pander graphs. Various types of expander graphs were experimented upon, like ran-
dom, Alon’s Geometric Expanders[125], Ramanujan Expanders of Lubotzky, Phillips
and Sarnak[126], Gaber-Galil’s [127] expander.

The security analysis of the one-way function show that the inverting algorithm’s
time complexity was exponential in the expansion rate of the graph[115, 128]. It was
also shown that the performance of inverting algorithms deteriorated with the increase
in the degree d of the graph. It was clearly pointed out in [128] that the security of the
one-way function increases with the increase in the value of the parameter d. However
the implementation of such a scheme becomes a worry. Thus construction of good
expander graphs which has large values of d and yet be easily implemented shall be
interesting and conducive for the practical realization of such one-way functions.

2.6 Conclusions: Where are we heading to?

Cryptography has evolved with time. According to Bruce Schneier many of the at-
tacks like linear, boomerang and slide are more often mathematical arguments rather
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than computer demonstrations. Thus no AES traffic can be decrypted using the
present techniques. The security margin in the ciphers are sufficient to make these
attacks irrelevant. Thus it is an open question how long will the tools remain theoret-
ical. It is the diversity of the application areas which forces the modern cryptographer
to design different algorithms, rather than its security concerns. At present it is tough
to design ciphers which are fast and secure at the same time. This is because most
ciphers are secure after sufficiently many rounds. But then the ciphers become slow.
This makes the development of security algorithms under conflicting requirements of
high throughput, low area and less power a daunting task.

In this work we deal with the design and analysis of various cryptographic al-
gorithms. We search for cryptographic primitives, which are amenable to efficient
implementations and still provide sufficient security margin. In this endeavour we
have used a special type of machine, known as the Cellular Automata. The basic
mathematical background of this class of machine has been dealt with in the next
chapter.






Chapter 3

Mathematical Background

The thesis deals with the development of efficient cryptographic algorithms suited
specifically for hardware. The primary tool used in this effort is the Cellular Automata
(CA). A detailed treatment on the theory of CA may be found in [129]. The current
chapter presents a preliminary overview on the theory of CA. Finally, we also detail
the cryptographic properties of robust S-Boxes which are used in the cryptanalysis of
block ciphers.

3.1 Preliminaries on Cellular Automata

Stephen Wolfram [130] pioneered the investigation of Cellular Automata (CA) as
mathematical models for self-organizing statistical systems. The structure of CA can
be investigated as a discrete lattice of cells where each cell has a storage element
(DFF) and a combinational logic (CL) (Fig. 3.1).

The DFF's can assume either the value 0 or 1. The next state of a cell (Fig. 3.2)
is assumed to depend on itself and on its two neighbours (left or right) and this is
known as three neighbourhood dependency. The logic of the CL block determines
the rule of the CA. The state of the CA at any instant of time is then denoted by
the concatenation of the values held by the individual DFF's at that instant. The
CA evolves in discrete time steps according to the rule of the automaton which in
turn depends on the logic of the CL blocks. In our construction we have used a null
boundary CA, which means that the left (right) neighbour of the leftmost (rightmost)
terminal cell is connected to logic 0 state. If the CA has n cells then the state at any
instant may be represented as X;, where X; = {qo(?), ¢1(¢),-..,qn-1(t)}. Here, ¢;(?)
denotes the state of the i** cell at the ¢"* instant of time. Clearly the state of the
i" cell at the (¢ + 1)™ instant of time is denoted by ¢;(t + 1) and can be expressed

37
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Xt .................
CELLO CELL1 CELl‘_ (n-1)
DEE DFF DFF
= | =
Xt+1 .................

Figure 3.1: The CA Structure

as: ¢;(t+1) = flgi—1(t), ¢(t), gi+1(t)], where f is the local transition function realized
by the CL[129]. Each combinational logic thus represents a function f, which is
inherently a boolean function and can be expressed in the form of a truth table. The
decimal equivalent of the output is conventionally called the rule number for the cell.

Clock
dk Output
D Flip Flop Q
D
From left Combinational Logic | Fromright
neighbour neighbour

Figure 3.2: CA cell

Definition 3.1 Rule of a CA: If the next state function of a cell is expressed in the
form of a truth table, then the decimal equivalent of the output is called rule number
of the Cellular Automaton.

Example 3.1 As an example rules 90 and 150 are described in table 3.1.

Table 3.1 shows the next states computed according to rules 90 and 150. The top
row shows all the possible configurations of the left, self and right cells at instant t.

The states at the instant of time (t + 1) are computed according to the rules.
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Table 3.1: Rules 90 and 150

Neighbourhood State: 111 110 101 100 011 010 001 000
Next State: 0 1 0 1 1 0 1 0  (rule 90)
Next State: 1 0 0 1 0 1 1 0 (rule 150)

From the above table it is evident that the combinational logic for rule 90 and 150

are respectively:

rule 90:  q;(t+ 1) Gi—1(t) ® qiy1(t)
rule 150: ¢;(t+1)= ¢ 1(t) ® ¢(t) ® ¢i+1(2)

On minimization, the truth tables for the rules 15,51, 60, 85, 90, 102, 105, 150, 165,
170,195, 204 and 240 result in the logic functions noted in the table 3.2, where ¢;(t)
denotes the state of the i® CA cell at the ¢ time instant, ¢;_; and g;4; refers to the
state of its left and right neighbours.

Table 3.2: Additive CA rules

Complement Non-complement

Rule Logic function Dependency Rule Logic function
195 gi—1(t) ® ¢;(t) left & self 60 gi—1(t) ® ¢;(t)

165 Gi—1(t) ® qis1(t) left & right 90 Qi—1(t) ® qiv1(t)
153 ¢i(t) ® qiva(t) self & right 102 gi(t) ® qir1(t)

105 | g;1(t) ® q;(t) ® g1 (t) | left & self & right | 150 | g;_1(t) & ¢;(t) & ;41 (1)
85 gi+1(t) right 170 git1(t)

51 g (t) self 204 i (t)

15 gi-1(t) left 240 gi—1(t)

The following definitions of the theory of CA have been used in the discussion on
the work.

Definition 3.2 Additive and Non-additive CA: If the rule of a CA cell involves
only XOR logic, then it is called a linear rule. A CA with all the cells having linear
rules 1s called a linear CA. Rules involving XNOR logic are referred to as comple-
mented rules. A CA having a combination of XOR and XNOR rules is called an
additive CA. The rules with AND-OR logic are non-additive rules.



40 3. Mathematical Background

Definition 3.3 If all the CA cells obey the same rule then the CA is said to be a
uniform CA, otherwise it is a hybrid CA.

Definition 3.4 Null Boundary CA: A CA is said to be a Null Boundary CA if
the left (right) neighbour of the leftmost (rightmost) terminal cell is connected to logic
0 state.

Definition 3.5 Periodic Boundary CA: A CA is said to be a Periodic Boundary

CA if the extreme cells are adjacent to each other.

Definition 3.6 Characteristic Matrix of a CA: An n-cell CA s characterized
by an n x n matriz operating over GF(2). The characteristic matriz T is constructed

as:

1, if the next state of the ith cell
T[i,j] = depends on the present state of the ;™ cell
0, otherwise

Example 3.2 A four cell null boundary CA with rule vector < 90,150,90, 150 > is
characterized by the characteristic matriz,

o O = O
[ R
- o = O
==

The characteristic polynomial of the matriz is obtained by constructing the matriz

[T] + z[I] and computing the corresponding determinant.

T 1 0

1 1+x2 1 0
T+ 2l =
[ a:] 0 1 T

0 0 1 1+=x

The characteristic polynomial of the Cellular Automaton is p(z) = z* +z + 1.



3.1. Preliminaries on Cellular Automata 41

With the definition of the characteristic matrix 7', thus the state transition of a
linear CA can be described by the equation:

Y = T(X)

In the above equation 7" is an n X n matrix to represent the characteristic matrix
of an n cell CA. The input state of the CA is denoted by the n-bit vector X while YV
denotes the output bit vector of the CA. The CA based structure for the characteristic
matrix shown in example 3.2 is depicted in Fig. 3.3.

Input State
X

L J J < CELL3

CELL 1 CELL 2

Output State
Y % 1 % Y3

Figure 3.3: A Cellular Automaton Based Structure

Definition 3.7 Group CA: If the CA under the transformation of operation with
T forms a cycle and there exists an integer m such that T™ = I (identity matriz) the
CA is called a group CA.

A Group CA is characterized by the following theorem:

Theorem 3.1 A CA is a group CA iff the determinant det T=|T|=1, where T is the

characteristic matriz of the CA.

It is evident that the rule shown in example 3.2 is of a group CA. In fact the
CA of example 3.2 has an additional property, that the transition matrix is of a
maximum length CA.
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Definition 3.8 Maximum Length CA: An n-cell maximum length CA is char-
acterized by the presence of a cycle of length (2" — 1) with all non-zero states. The

characteristic polynomial of such a CA is primitive.

The CA illustrated in example 3.2 is that of a four cell maximum CA. This can
be noted by the fact that the characteristic polynomial p(z) = 2*+2z+1 is a primitive
polynomial of GF(2%). Thus all the non-zero states lie in one cycle of 2* — 1 = 15
elements. Table 3.3 enlists the hybrid rules for maximum length CA for various sizes
of the Automaton. In this table "1’ refers to rule 150 while ‘0’ means rule 90.

In contrast to the maximum length CA, when all the non-zero states does not lie
in a cycle, the CA is called non-maximum length CA.

Theorem 3.2 A group CA has cycle lengths of p or factors of p with a non-zero
starting state iff det[T? ® 1] = 0.

Proof: If there exists a cycle of length p for a state X then,

™X) = X
= TP (X) = 0
=det(I"®I) = 0

Conversely, from the theory of matrices it is known [131] that if det (T? & I) = 0,
then there exists at least one non-zero state X such that

(e I)(X) =
=Tr(X) = X

=)

Hence the result. O

Lemma 3.1 If the order (og) of the group CA characterized by T is a non-prime

number, then the cycle lengths are equal to its factors only.

Proof: Let the order of the group CA be og = m. Assume that there exists a cycle
of length p such that p does not divide m. Thus, m can be expressed as m = pxq+7;
g, r being integers and 0 < r < p. Since, there exists a cycle of length p, there is a
non-zero state X for which p is the smallest integer such that 7?(X) = X.

Now, T™(X) = TP.T7(X)
TT_T(qfl)p(Tp(X))
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Table 3.3: Maximum length hybrid CA rules

Number of CA cells Rule Cycle Length
4 0101 15
5 11001 31
6 010101 63
7 1101010 127
8 11010101 255
9 110010101 511
10 0101010101 1,023
11 11010101010 2,047
12 010101010101 4,095
13 1100101010100 8,191
14 01111101111110 16,383
15 100100010100001 32,767
16 1101010101010101 65,535
17 01111101111110011 131,071
18 010101010101010101 262,143
19 0110100110110001001 524,287
20 11110011101101111111 1,048,575
21 011110011000001111011 2,097,151
22 0101010101010101010101 4,194,303
23 11010111001110100011010 8,388,607
24 111111010010110101010110 16,777,215
25 1011110101010100111100100 33,554,432
26 01011010110100010111011000 67,108,863
27 000011111000001100100001101 134,217,727
28 0101010101010101010101010101 268,435,455
29 10101001010111001010001000011 229 _1
30 111010001001101100101000111101 230 _ 1
31 0100110010101101111101110011000 231 _1
32 01000110000010011011101111010101 232 _1
33 000011000100111001110010110000101 233 1
34 0011110000101101000011000110111010 234 1
35 01010111101111011001110101001010011 235 _1
36 101001100100100011111010110000100011 236 _ 1
37 0010010110011110101101011000010110011 237 _1
38 00011100101011110110011001111000010011 238 _1
39 110100010111110110111100110011101101100 239 _1
40 0000111011001010101111100100001011100101 240 _ 1
41 01101011111110100001011001100011110000111 241 1
42 001001111110110011100101001001100111100110 242 1
43 0011101011100010111000100001011010110010010 243 1
44 00111100111101110101101110000100101011000010 244 _ 1
45 001101001011001101101001000100110001101001101 245 1
46 0001001010011001010001101000101100111011010110 246 _ 1
47 00111001011111100111001010100100010111000001101 247 1
48 000110000110111110010010100111010001111000001111 248 _ 1
49 0010110111101100100011001011111000101110110011001 249 _ 1
50 10011010011011000000110001101000101100100010010110 250 _ 1
51 000100001011101010100001011010011101000101000010111 251 _ 1
52 0011001000110111101110111111100010001111010111000110 252 _ 1
53 10000111001010001000001001001100101110111110110010101 253 _1
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U7(x)
Ur(I7. (X))
()

q
q

T T
T T¢
= T".1T(

_ 7 T7(X)
= T'(X)
= T"(X) = T'(X)

Since, by hypothesis p is the smallest integer for a specific X, and since r < p, it
immediately follows that such an r cannot exist. Thus p is a factor of n. O

3.1.1 Cycle set characterization of group CA

The characteristic polynomial of a linear machine like linear CA is given by the
determinant of the matrix (7' + 1), where T is the characteristic matrix representing
the global state transition function of the machine. Factors of this characteristic
polynomial are called the Factor polynomials.

Flspas [132] has characterized the cycle sets in the state-transition diagram of
linear machines by considering the factors of their characteristic polynomial. Some
of the important results are noted below.

1. Nonrepeated factors: Let the characteristic polynomial ¢(z) be factored into
irreducible factors:

¢(x) = d1(2)$s(2) . .. ¢r(2)

The cycle structure S; corresponding to the factor polynomial ¢;(z) is given by
1-cycle plus p; cycles of length k;, where u; = (2" — 1)/k;, n; being the degree
of ¢;(x), and k;, the smallest integer such that, ¢;(z) divides z*i + 1. This cycle
structure is represented as [1, u;(k;)].

If [1, pu1(k1)] and [1, po(k2)] be the cyclic structures corresponding to two ir-
reducible factors ¢;(xz) and ¢o(z), then the cycle structure of the product

¢1($)¢2(5’3) is given by [1aM1(k1)aM2(k2)aM(k)]a where p = M1M290d(1f1,k2)a and
k= lcm(kl, Ifg)

2. Repeated factors: If ¢(x) be an irreducible polynomial with period k&, then
the cycle structure of a machine with minimal polynomial [¢(z)]" is given by
[1, ' (k")], where, k' = k2™, such that, 27! < r < 2" and i/ = %,
where d is the degree of ¢(x).
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3. Finally, each matrix T is completely characterized by a set of elementary divisors
(131, 133):

[pi ()], [pi(2)]2, ..., [ps(x)]¥"i54=1,2,...r, r being the rank of T.
Each p;(z) is a distinct irreducible factor polynomial of the characteristic poly-
nomial ¢(x), and e;; > e > ... > €;,. The minimal polynomial [131, 133]
m(z) of T, is the product of the highest degree elementary divisors [p;(z)]%.

Thus the cycle set can be easily computed by knowing the elementary divisors
and applying the rules for product and repeated factors as noted in the earlier

960 OQQ
o)
@
(10] (1)

Figure 3.4: The State Transition Diagram of a Nonmaximum Length CA

For example, the characteristic matrix of the CA shown in Fig 3.4 is

0100
1010
= 0101
0010
On diagonalization,
1 00 0
010 0
T+ Iz = 00 1 0
000 (22+x+1)?

Hence its characteristic (as well as minimal) polynomial is (2% + x + 1)%. Now the
cycle structure corresponding to (z® +x + 1) is [1,1(3)]. This is because k; is equal to
3 (since the polynomial divides z® +1 ) and pu; = (22—1)/3 = 1 (Case of Nonrepeated
factors). To derive the cycle structure for the whole CA, the case of Repeated factors
needs to be considered. Here the value of r is 2. Hence, r; = 1. Thus, k' = 3.2 =
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6; and ' = 2e@-1) _ o Hence, the cycle structure of the whole CA is [1, 1(3),

2(6)], that is, one cycle of length 1, one cycle of length 3, and two cycles of length 6.

Let us consider another 3 cell CA whose characteristic polynomial is given by
(z +1)(z* + z + 1). The cyclic structure corresponding to (z + 1) is [1,1(1)] since
k; is equal to 1 (since it divides x + 1 ) and p; = (2 —1)/1 = 1. As noted earlier,
the cyclic structure corresponding to (z? + z + 1) is [1,1(3)]. Therefore, the cyclic
structure corresponding to (z + 1)(z? + x + 1) is given by [1, 1(1), 1(3)].

Characterization of non-group CA

In the state-transition graph of a group CA, every state has got a unique predecessor.
Thus, all states lie on a disjoint set of cycles. There is another class of CA, in which
some of the states are not reachable from any state. Moreover, the reachable states
have got 2% (k > 0) predecessors. This type of cellular automata are known as non-
group cellular automata. The characteristic matrix of such a CA is singular in nature,
in contrast to a group CA for which the matrix is non-singular.

A non-group CA is characterized by the following theorem:

Theorem 3.3 A CA is a non-group CA iff the determinant det T=|T|=0, where T

is the characteristic matriz of the CA.

Fig 3.5 displays the structure of a 4-cell non-group CA along with its character-
istic matrix 7" and its state-transition behaviour. Other relevant features of the state
transition behaviour are also noted in Fig 3.5. Another non-group CA in which the
cyclic states lie on cycles of length unity only is shown in Fig 3.6 while Fig 3.7
displays a non-group CA with complemented rules.

The state-transition graphs of linear non-group CA, as illustrated in Fig 3.5 and
3.6, consist of a number of cyclic states lying on one or more cycles. Other states form
inverted trees rooted at one of the cyclic states. Such inverted trees are henceforth
referred to as simply trees.

Definition 3.9 The cycles in the state-transition diagram of a non-group CA are
referred to as attractors. Thus an attractor is a cycle of length i(i > 1). A state
with a self-loop is referred to as a graveyard state (or single cycle attractor). A
single cycle attractor is simply referred to as an attractor in subsequent discussions.
For linear CA, the 0-state (that is all 0’s binary pattern, represented as decimal ‘0°)

always forms a cycle of length 1 (that is an attractor).
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Figure 3.5: Structure and state-transition graph of a 4-cell linear CA with
rule < 102,60, 90, 60 >
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Figure 3.6: Structure and state-transition graph of a 4-cell linear CA with
rule < 102,102, 60,60 >
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Figure 3.7: Structure and state-transition graph of a 4-cell complemented
CA

Definition 3.10 The tree rooted at a cyclic state a is denoted as a-tree. The set of
states in a-tree is also referred to as a-basin (Fig 3.6). The terms basin and tree

are used interchangeably.

Definition 3.11 The depth of a CA is defined to be the minimum number of clock
cycles required to reach the nearest cyclic state from any non-reachable state in the
state-transition diagram of the CA. The depth of both the CA illustrated in Figs 3.5,
3.6 s 2.

A few fundamental results characterizing the number of predecessors of a reachable
state and the number of attractors in a non-group CA are noted below. The first
lemma specifies the number of predecessors of the all-zero state. It may be noted here
that the null-space [131] of a matrix consists of all such vectors which are transformed
to the all-zero vector when premultiplied by the matrix.

Lemma 3.2 If d is the dimension of the null space of the characteristic matriz of a
non-group CA, then the total number of predecessors of the all-zero state (state 0) is
2¢.



3.1. Preliminaries on Cellular Automata 49

Theorem 3.4 The number of predecessors of a reachable state and that of the state

‘0’ in a non-complemented non-group CA are equal.

Next result specifies the number of reachable/non-reachable states in the state-
transition diagram of a non-group CA. Fraction of all reachable/non-reachable states
has been identified by Martin [134] for uniform CA with the help of polynomial
algebra. However, in general for any additive CA (uniform/hybrid), the fraction of
reachable/non-reachable states can be enumerated from the knowledge of the number
of predecessors of a reachable state, or the rank of the corresponding characteristic
matrix.

Lemma 3.3 If a state is reachable from k predecessors for a CA, then only 1/k of

the total states are reachable.

An attractor state x for a n-cell non-group CA is characterized by the relation,

Tx = =
= (T'®I)r = 0 where, I is the n x n identity matrix

Lemma 3.4 In an n cell non-complemented CA with characteristic matriz T, the

number of attractors is 2" ", where r is the rank of the (T @ I) matriz.

The depth of a CA, as illustrated in Fig 3.6, can be computed directly from
the minimal polynomial [131] of the characteristic matrix. This is elaborated in the
following theorem.

Theorem 3.5 If for the largest value k, =% divides the minimal polynomial of the
characteristic matriz of an n-cell CA, then the depth of the state-transition graph of
the CA 1is k.

A special class of non-group CA is the Two Predecessor Single Attractor Cellular
Automata (TPSA-CA), where the number of attractors is two. There is a single
attractor state and all the elements form an inverted tree like structure.

In the following section we present an overview regarding the cryptographic prop-
erties of a robust S-Box which are used in the security analysis of block ciphers.
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3.2 Definitions related to the Security Analysis of
a Block Cipher

Definition 3.12 Balancedness: The vector space of n tuples of elements from GF (2)
is denoted by V,,. Let f be a (Boolean) function from V, to GF(2). The truth table
of [ is defined as (f (o), f(a1),...,f (aan 1)), where a;, i = 0,1,...,2" — 1, denote
vectors in Vy,. f is said to be balanced if its truth table has an equal number of zeroes

and ones.

Definition 3.13 Affine Function: We call h(z)=a1z1 & ... ® a,z, & ¢ an affine
function where x = (x1,...,2,) and aj,c € GF(2). In particular, h will be called a

linear function if ¢ = 0.

Definition 3.14 Hamming Weight: The Hamming weight of a vector x, denoted by
W (x), is the number of ones in x.

Definition 3.15 Hamming Distance: Let f and g be functions on V,,. Then d(f, g)
=> F2)29(z) 1, where the addition is over the reals, is called the Hamming distance
between f and g.

Definition 3.16 Non-linearity: Let vg,... Yon+1_1 be the affine functions on V,.
Then Ny = min;—g,. on+1—1 d(f i) is called the non-linearity of f. It is well-known
that the non-linearity of f on V,, satisfies Ny < 2"7127/271 when n is even.

Definition 3.17 Bias of linear approrimation: Let the linear approximation be of
the form:

where X; represents the i-th bit of the input X = [X1, Xs,...] and Y; represents

the j-th bit of the output Y = [Y1,Y5,...]. This equation is representing the exclusive
OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expression will
hold with probability 1/2. If p; is the probability with which the expression holds then
the bias is defined as |p; — 1/2|.
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Definition 3.18 Robustness of S-Box [72]: Let F=(fi,...,fs) be an n x s S-boz,
where f; is a function on V,, 1 =1,...;s, andn > s. We denote by L the largest value
in the difference distribution table of F', and by R the number of non-zero entries in
the first column of the table. In either case the value 2™ in the first row is not counted.

Then we say that F' is e-robust against differential cryptanalysis, where € is defined

by

e= (1—R/2")(1—L/2") (3.1)

3.3 Conclusion

Chapters 2 and 3 report the background on which the present dissertation is based.
Chapters 4 to 10 describe the contribution of the thesis. The characterization of a
special class of Cellular Automata and its applicability to the construction of crypto-
graphic algorithms have been dealt with in the next chapter.






Chapter 4

Characterization of a Class of
Complemented Group Cellular

Automata

4.1 Introduction

Almost all cryptographic applications depend on the underlying strength of primi-
tives. Certain basic blocks are repeatedly applied in order to build various crypto-
graphic applications like block ciphers and key agreement protocols. The requirement
on these sub-components or functions are varied and depends on the applications
which are built out of them. The functions must satisfy certain cryptographic prop-
erties like non-linearity and avalanche criterion. For the functions to be used for the
development of block ciphers the mappings must be invertible. With the advent of
electronic commerce and portable devices for communications, cryptographic imple-
mentations have become exceedingly important. Hence, it is also imperative for the
designers of crypto-algorithms that the functions are easily amenable to both soft-
ware and hardware realizations. In the present work the fundamental block used to
develop the cryptographic primitives is the Cellular Automaton (CA).

The Cellular Automaton (CA) was first introduced by J. von Neumann for mod-
elling self-reproducible configurations. Wolfram [135] suggested simplification of the
automaton with local inter-connections. The authors of [134] have used algebraic
techniques to give an extensive analysis of the global properties of non-complemented
Cellular Automaton (CA) with periodic boundary conditions. The systems were
found to be irreversible and found to evolve through transients to attractors consist-
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ing of a large number of configurations (Fig. 4.1).

Attractor States T Yansi ent States

AN

Figure 4.1: Cellular Automaton Evolution

The work reported in [134] concentrates on a class of Cellular Automata which
exhibit the simplifying feature of ”additivity”. The configurations of such a Cellular
Automaton satisfy an ”additive superposition” principle, which allows a natural rep-
resentation of the configurations by characteristic polynomials. The time evolution
of the configurations is represented by iterated multiplication of their characteristic
polynomials by fixed polynomials. The algebraic properties of these polynomials are
then analyzed to determine the dependence of cycle lengths on the number of cells (or
sites). In [136] and [129] the complemented Cellular Automaton has been proposed
and studied using matrix algebra. However the works provide no final conclusion
regarding the dependence of the length of the cycle spaces on the number of cells of a
complemented Cellular Automaton. In summary, the nature of the complemented CA
was not easily amenable to both algebraic and matrix analysis. In this work comple-
mented CA has been characterized and it has been proved that the cycle lengths are
equal irrespective of the number of cells. The exact dependence of the cycle lengths
on the number of cells has been formulated. There are no rules in existing literature
which can relate the separate cycles that are formed by the CA. Without such rules
a Cellular Automaton does not allow for the transition from one cycle to another.
Thus the entire state space cannot be effectively used and this leads to worries for
the application of the CA in cryptography [129]. The current work develops new
rules which govern the transitions between the cyclic subspaces of complemented CA.
These properties promise the CA to function as an ideal candidate for cryptographic
algorithms [137, 138].

The chapter also shows a novel method how to extend the rule of the Cellular
Automaton to a more generalized structure with the same characterization and same
rules. The extension shows that the same set of properties hold for CA structures
which does not complement the entire state vector of the automaton. Possible appli-
cations of the developed properties in cryptography have been finally proposed in the
work.
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The outline of the chapter is as follows: Section 4.2 details the characterization of
the complemented CA. The state spaces of the complemented Cellular Automaton are
related in section 4.3. Section 4.4 extends the characterization of the complemented
CA to a more generalized structure. Section 4.5 proposes possible applications of the
CA in design of cryptographic algorithms. The chapter is concluded in section 4.6.

4.2 Characterization of Complemented CA

A Cellular Automaton (CA ) consists of a number of cells arranged in a regular manner,
where the state transitions of each cell depends on the states of its neighbours. The
next state of a particular cell is assumed to depend only on itself and on its two
neighbours (3-neighbourhood dependency). The state x of the 5™ cell at time (¢ + 1)
is denoted as zi,; = f(zj',2¢,2}""), where z denotes the state of the i*" cell at
time ¢ and f is the next state function called the rule of the automata [135]. Since
f is a function of 3 variables, there are 22* or 256 possible next state functions. The
decimal equivalent of the output column in the truth table of the function is denoted
as the rule number. The next state function for different rules are stated below as
examples:

Rule 90 rh =z ol
Rule 150 : i, =ai " +2i + 2}t
Rule 51 Ti = T}

Rule 153 zi,, =i+ 2jt!
Rule 195 i =z 4+l

In the above next state functions + denotes bitwise xor.

Definition 4.1 Complemented CA: If the rules of the CA involve XNOR logic
then the rules are called complemented rules. For example the rules 153 and 195 are
instances of such rules. The corresponding CA is known as complemented Cellular
Automaton, the state transition of which is characterized by the transition matriz
(T). This class of Cellular Automata have also been referred to as the fundamental
transformations[129].

The complemented CA with rule 153 has been characterized in this chapter and
it has been verified that the rule 195 has also the same characterization and hence
omitted. Also the characterization has been extended to a more general class of
complemented CA in section 4.4.
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The rule 153 represented as (z} + zi™), is the additive complement of rule 102
represented as (z¢ + x¢™). It is known that [129] if a cellular automaton with rule

153 is fed with an initial seed of X, then the cellular automaton produces an output
T(X) =T(X)+ IF, where [ is a unit matrix and F is all one vector. Hence, we

have X, T(X) and 72(X ) members of the same cycle. Physically, an n-cell uniform
CA having rule 153 evolves with equal number of cyclic states.

The following existing lemmas are cited without proof for convenience.

Lemma 4.1 [133] If R is a space generated by a linear operator G (say), then the
space can be decomposed into cyclic subspaces

R211+12++It

such that the minimal polynomial of each of these cyclic subspace is a power of an
wrreducible polynomial.

Lemma 4.2 [139] If the degree of an irreducible polynomial is m, then the period of
this polynomial is (2™ — 1).

Lemma 4.3 [182] If the period of an irreducible polynomial p(x) is k then the period
of [p(x)) is kq", where ¢" 1 < j < q", q being the modulus.

Based on the above results we prove the following results, in order to characterize
the state transitions of the complemented Cellular Automata.

Theorem 4.1 The CA having rule T and number of cells ranging from (2871 +1) to

2% have mazimum cycle length of m = 2F.

Proof: Let us consider the cycle structure of ¥ = T(X), where T is the n X n
matrix of rule 102.

110 0
011 . .0
0011.0

0000 .1
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For the linear CA having characteristic matrix 7', R is the space generated by
the linear operator T. The characteristic polynomial of the n-cell CA is given by
pa(z) = (x + 1) = [p1(2)]", where pi(x) = (1 + z).

Thus according to lemma 4.1, the space generated by the linear operator 7' can
be decomposed into cyclic subspaces. The minimal polynomial of each of the cyclic
subspace is a power of the irreducible polynomial (14 z). Clearly, the cyclic subspace
with maximum length is due to pe(z) = (1 + z)".

By lemma 4.2, period of p;(z)=(1+z) is k = 2" — 1 = 1. Period of py(z) can be
found by lemma 4.3. In this case, the modulus ¢ = 2 and £ = 1. So the period of
pa(z) is 2" where 271 < n < 27
or, [log(n)] < r < [log(n)] + 1.

So, the period of py(x) and hence the maximum cycle length of the CA generated
by the linear operator 7' is always some power of 2.

From the inequality 27! < n < 27, if the number of cells n is of the form 2* we
have 27! < 28 < 27, Thus, k=r and hence the maximum cycle length is 2*.

If, n is of the form 2¥ +1, we have 27! < (2 +1) < 2" = r>kandr—1< k+1
= k <7 < k+2. Since r is an integer, r = k + 1 and the period of py(z) is 2F*1
(since the period of po(z) is a power of 2). Hence the maximum size of a CA that
evolves cycle length of 2% is 2%, Thus the maximum size of the CA that evolves cycle
length of 2¥~1 is 2F~1,

Thus, if the number of cells range from 2¥~! 4 1 to 2* the maximum cycle length
is 2%.

U

Thus the maximum cycle length of a CA with characteristic matrix 7" is 2%, where
the number of cells (n) range from (2¢~! + 1) to 2*.

Let the global state of an n-cell CA be represented by the vector X.

Theorem 4.2 [129] If T” denotes p times application of the complemented CA op-
erator 7', then,

T'X) = (I+T+T*+...+T").F+T7.(X) (4.1)

where 7" is the matrix of the corresponding non-complemented CA and F' is the all

one vector.

In order to evaluate the cycle structure of the complemented CA with rule T the
following lemmas are developed.
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Lemma 4.4 If there exists a maximum cycle of length k for the linear CA charac-
terized by operator T, then there will exist either a cycle of length k or 2k for the
complemented CA characterized by T.

Proof:  Since, k£ is the maximum length of the cycles in the state transitions of
the CA characterized by operator T, T = I. Let, the length of a cycle for the
complemented CA be nk + r, where r < k.

——nk+r

Thus, T (X) =X and T = I.

Hence, X = T™™7(X)+[I+T+T?+...+ T F
= T"(X)+[I+T+T*+...+T*F
+TI+T+T?+ ...+ T 1F

>T4+THX = [[+T+T*+...+T*YF
AT I+ T+ T+ ...+ T"1F
= (I +T)(I+T)X = (I+T)I+T+T*+...+T*F
+I+T)I+T+T?+...+TYYF
> I+THI+T)X = (I+T™F+(I+T")F
> {IT+THI+T)X+IF) = 0

If (I +T") # 0, for solution of X to exist rank(l + T)=rank(l + T, F). Here
(I +T,F) is the augmented matrix constructed from the matrix (I + 7T') and the all
one vector F'.

But the lower row of I 4+ T is zero, so the rank is less than n, the order of the
matrix 7. But F' is an all one vector, so the ranks cannot be equal.

Thus, (I + 77)=0. Since r < k, hence this is not possible. Thus we arrive at a
contradiction. Thus the maximal cycle length of the complemented CA is of the form
nk, where n is a natural number.

Let X be the current state. The state of the complemented CA after m cycles is
given by T (X)=[[ + T +T? + ... T™ '|F + T™(X). If k is the order of the group
generated by T, then T* = I. Now to show T also generates a group it is needed to
show that there exists an m = k' such that [[+T+T?+...+T¥-']=0and T¥ = I.
For k' = 2k,

I+T+T?+T3+. . .+ T 4 T4 TH 4 T2
I+T+T?>+T>+ ... TFY+[I+T+T?+T3+ ... TFYT*
=[I+T+T>+T?+.. . T[T +T*]
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=0, since T% = 1.
Also, T* = (T*)? = I. So, the length of the cycles generated by T is less than or equal

to 2k. Thus combining with the previous part, the cycle length of the complemented
CA is either £ or 2k. U

Next, the condition for determining whether the order is k or 2k is stated, where
k denotes the maximum cycle length of the linear CA characterized by the matrix 7.
Let, the term diff;, be defined as the difference between the states of the complemented
CA (characterized by T) and the linear CA (characterized by T') after k clock cycles.

If both the linear CA (T') and the complemented CA (7) have initial states X and k
clock cycles are applied we have:

diff, = T'(X)+T"X)
= [[4+T+T*+.. . TFUF +THX) + TH(X)
= [+T+T*+... T"F

Thus if diff, = 0 and the maximum cycle length of the linear CA is k, we have:

T (X) = TH(X) + diff,=T*(X) = X.

Therefore it diffy = 0 both the state transitions T and T will have length k, else
the cycle lengths of the state transition 7' is 2k.

Theorem 4.3 Let k be the mazimum cycle length generated by the linear CA char-
acterized by the matriz T. Then if the number of cells of the Cellular Automaton is

not a power of 2, diffy = 0, whereas if the number of cells is a power of 2, diff, # 0.

Proof: Case 1: diff, # 0 if the number of cells is a power of 2 (n=2")

Let the base case be denoted by m=1 and hence the number of cells of the Cellular
Automaton is 2. Thus the corresponding characteristic matrix 7" is a 2 x 2 matrix

denoted by:
11
01

The maximum cycle length generated by the 2 cell CA is 2 by theorem 4.1 and
thus the value of £ is 2.

T =
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. 10 11 0 1
e ([3 04 [3 e[

which is not zero, thus the base case is satisfied.

F

Let, the number of cells be n = 2™ and hence the characteristic matrix T is of
size n x n. By theorem 4.1 the maximum cycle length generated by the CA is n.
Thus 7™ = I and we need to prove that diff, # 0.

For convenience of proof we denote the characteristic matrix of an n-cell CA by
the matrix 7. Similarly, the corresponding matrix for an n/2 cell CA is denoted by
T, /2 and so on.

Also since n = 2™, we have T = I,,, where I, is the identity matrix of order n.
So, n/2 = 2™~ ! and hence, by theorem 4.1 the maximum cycle length generated by
the n/2 cell CA is n/2 = T://ZZ = I,o. Here I/, is the identity matrix of order n/2.
Thus,

L2 + Ty = 0 (42)

The n x n matrix 7;, can be written recursively in the form:

Tn/2 An/2

T, =
0 T

where A,/ is the following n/2 x n/2 matrix denoted as:

o 0o 0 ... ... 0
0
0 0 O 0
An/2:
! 0O 0 ... ... 0 |

The corresponding powers of 7}, are computed as follows:

Tz/Q (Tn/2An/2 + An/2Tn/2)

0 T? 1o

T2 =

n

Tore (T3pAns2 + TupaAns2Tose + AnpaTy ) }

T3 :{ n
/2 0 T;j’/2
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Similarly,
— T:/_; (Tg/ngn o+ T 3 A, 0T + ...+ Ty A, /QT;L/;?’ + A, /QTT’;/—QQ)
n - -1
0 T:/Q
Thus, diff, = ( Iy 0O The Apjo Tﬁ/g To2An)2 + AnjoThy2 4
" 0 Iy 0 Ty 0 77,
—1 —2 -3 -3 —2
-1
0 T:/z
_ o By,
0 O

It may be noted that in the above form we have used the following facts and notations:

e ( denotes the corresponding zero matrix.
o (LnjotTopp+ T2+ AT = (Lnjo+ o)) Lot T ot T2+ ATl ) =0,
since I/ + T://; =0 (by equation 4.2).
e Also, B,/ is an n/2 x n/2 matrix and is equal to:
Bnio = Apjp+ (TppAnjs+ AppaTop) + ...+ (Tg/;?An/2 +...4+ A4, /QTg/—;’)
= o+ Tapp + T2+ + Tty VAnpsTnge + Tupy + o+ +Thl3 )
(since T:://; =1I,9)

0 Byuu
0 0

0 By

0 , where o represents matrix multiplication

oAn/Qo

In the above form B,/ is an n/4 x n/4 matrix, similarly obtained in the second stage

of the decomposition.

Thus, B,y = (In/4+Tn/4+T3/4+...+T7?//:—1)An/4(1n/4+:rn/4+T§/4+...+T://f—1)
(since T://f = Ip,/4)
O Bn/s 0 Bn/g
— A
0o o | 7o o
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Applying this decomposition recursively after 7 stages we have:

201
Thus, Byjpi = (Injai +Topoi + Tajgi 4o+ T;’//Q,. )Any2i (Injai + Ty joi + Tapgi 4+

n/2t—1
et T )

(since T://;; = I,,/2i)

0 Bn/ZH'l

0 0 ° (An/2l) °

0 0

O Bn/2i+1 ]

Thus after m — 1 stages:

D G

Thus, By =

)
o O
)
jan)
ja)
jan)
jem)
jam)
)
jan)
jam)
)

o o
o O
[en)

[en

)
jam)
jam)
jam)




4.2. Characterization of Complemented CA 63

Using this recursively,

0 0 | 1
0 0 | 0
0 ... 0 | ... ... 0
diﬁn:[g BS/Q}F: - - — — — — —|F+#o0
|
0 0 0 | 0 ... 0|

This proves that when n is a power of 2, the maximum cycle length £ generated
by the linear CA is n. Thus, k¥ = n and diff, = diff, # 0. The result when n is not a
power of 2 is proved in case 2.

Case 2: diff, = 0 if the number of cells is not a power of 2 (n = 2™ — [,
[ <2m)

The characteristic matrix of a CA with size n = 2™+ can be written as

1 1 0 | 0 \
0 1 1 | 0 \
0 0 1 1 | 0 Tiam+1_1) |
Tomyr= | ... .0 .0 o0 o] | = |
1|1 |
_ _ _ _ _ | _ - — _ -
| 0 0 0 0 | 1] | 00 0 | 1]

Here T(9m+1_;) is the characteristic matrix of the Cellular Automaton with size
2™+l _ 1 and the number of cells is not a power of 2.

From theorem 4.1 the maximum cycle length of both the automata having
2m+l 1 and 2™*! cells is 2™,

Since the number of cells in the automata characterized by the matrix Tom is a
power of 2 we may use the result proved in case 1 to evaluate:
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_ | .
|
|
_— IQm+1_1 |
(IQm+1 + Tomer + ...+ T22m+1 _1) = | -+
|
|
0 0 0 | 1|
_ ‘ - - ‘ -
| |
| m—+1 ‘
T2m+1_1 { T22m+1__]_1 }
+.o+
| |
| |
0 0 0 | 1| 0 0 0 | 1.
"0 0 0 ] 1T
0 0 0 .l o
0 0 0 .l o
.o
- .o
o
o
0 0 0 | 0

From theorem 4.1 it is evident that the maximum cycle length generated by the
linear automata characterized by Toym+1_; is k = 2™+
Thus diff,=diffynir =(Ioms1_y + Tomt1 g +T2ss |+ ...+ T 1 )F = 0.
Likewise for a CA of size 2! — [ (I < 2™) and characteristic matrix Tym+1_; the
maximum cycle length k¥ = 2™+,
Thus the value of diffy = (Iym+1_; + Tom+1_ 4+ T2uss_, + ...+ Tnss })F = 0.
Thus if the size of the CA is not a power of 2, diff, = 0. This completes the proof.

0
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Theorem 4.4 The length of cycle for an n-cell CA, having rule T, is
[ = 2llognl+l >0 (4.3)

Proof: The result is trivial for n = 2. Using the result that if the number of cells
of the linear CA (with transition matrix T') range from 2*~! + 1 to 2¥ the maximum
cycle length is 2 (table 4.1).

Table 4.1: Maximum Cycle Length

Range for the Maximum

number of cells | Cycle Length
2 2
3-4 4
5-8 8
9-16 16
17 - 32 32
(2n—1 + 1) _ (2n) on

Thus, the maximum length of the cycles generated by the linear CA is 2[t9(m)1,
From theorem 4.3, if k is the maximum cycle length of the linear CA and the number
of cells is not a power of 2, diff, = 0. In that case by lemma 4.4, the length of the
complemented CA is also k. But if the number of cells is a power of 2, diff, # 0.
Then, the length of the complemented CA is 2k. Now,

_ [ llog(n)] +1, n#2"
tog(m)] ={ [+ 7 (4.9
Thus, the length of an n-cell complemented CA (n > 2) is formulated by
9[log(n)] — 9llog(n)]+1 n# 2%
= 2‘2[l0g(n)'| — 2|_log(n)]—|—1 n= 2k (45)
This completes the proof for n > 2. O

In order to explain the characteristics derived so far in the chapter the following
example is provided.
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Example 4.1 In this example we consider a 5 cell complemented CA with rule 153.
Thus, the state transition of the CA is defined as:

11000 1
01100 1

Y=1001 10| +|1]|=TX)+IF=T(X).
000 11 1
00001 1

The cycle structure of the CA with transition matriz T (rule 102) is derived using
the above properties. The notations used and the theoretical background of the com-
putation are described in section 3.1.1. To restate, the characteristic polynomial
of the characteristic matrixz of the group CA solely decides the cycle structure. Each
factor of the characteristic polynomial, ¢;(x) contributes p; cycles of length k;. The
characteristic polynomial of the CA with characteristic matriz T is (1 + z)°. Hence
the cycle structure depends on the five factors, (1+z),(1+2)% (1+2z)3, (1+z)* and
(1+z)5.

Contribution of the term (1 + z): u; = 1 and ky = 1. Thus, this term
contributes one cycle of length 1.

Contribution of the term (1 + z)%: py = 1 and ky = 2. Thus, this term

contributes one cycle of length 2.

Contribution of the term (1 + x)3: u3 = 1 and ks = 4. Thus, this term
contributes one cycle of length 4.

Contribution of the term (1+z)% py = 247 1-19®1 = 2 gnd k, = 2/le9™)1 = 4,
Thus, this term contributes two cycles of length four.

Contribution of the term (1+2)% s = 2°7 1710901 = 2 gnd ks = 219G =8,
Thus, this term contributes two cycles of length eight.

Thus, the overall cycle structure is [1,1(1),1(2),3(4), 2(8)], the first cycle being
for the all zero data. Also it may be noted that the number of cells is 5, which is

between 22 + 1 and 23. Hence the mazimum length of a cycle is 2> = 8, according to
theorem 4.1. The cycle structure is depicted in Fig. 4.2.

The state spaces of the corresponding complemented CA is depicted in Fig. 4.3.
The length of each cycle is as characterized in theorem 4.4, 2ll9®)I+1 — 23 — g
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Figure 4.2: The State Space of a 5 cell CA with rule 102

Figure 4.3: The State Space of a 5 cell complemented CA with rule 153
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The following theorems find out the inter-relationships among these cycles (marked
as R1 and R2 in Fig. 4.3). The objective is to find out a new set of rules which
can help elements to migrate from any position of the state space to another. The
relation between the state spaces is hence searched subsequently in the chapter.

4.3 Relation between the state spaces of Comple-
mented CA

Theorem 4.5 Every element, X of a cycle generated by CA with rule T when mapped
by the rule, X + T(X) + TZ(X), also lie in a cycle.

Proof: Given X,T(X), T (X) and T°(X) are members of the same cycle. In the
following equations, + means simple xor operation.

T(X) = TX)+IF
T(X) = T*X)+({I+T)F (4.6)

Let the rule map X to an element €;, such that :

6 = X+T(X)+T(X) (4.7)
or,eg = X+T(X)+T*X)+TF (4.8)

The same rule when applied on the next element, 7'(X) we have,

& = T(X)+IF+[T*X)+ I +T)F]+[T*X)+ ([ +T+T?F]
or,eg = T(X+T(X)+T*(X)+TF)
€y = T(El) (49)
Therefore, €; and €, lie in the same cycle. U

=2

E‘heorem 4.6 If X, T(X),T (X),... lie in one cycle, then X + T(X) +TQ(X),

T(X)+ TZ(X) +T (X),... lie on a different non-intersecting cycle.

Proof: From, theorem 4.5, ¢; = T(¢;), as they are members of the same cycle.

To prove that ¢; and X do not belong to the same cycle, it is required to prove
that no A exists such that, ¢, = T)‘(X). Here ) is lesser than the cycle length (1) of
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the complemented CA. Thus, 0 < X < 2l(egn)I+1  where n is the number of cells of
the CA.
In other words, there does not exist any A such that:

X+T(X)+TX(X)+TF =T (X) =TNX) + [[ + T + ...+ T|F.
We prove the theorem by contradiction.

Case 1: Let A exist and be even.

LHS = X+T(X)+T*X)+TF
(I+T+T*(X)+TF

RHS = T*X)+[I+T+...+T*"F

x

= : + ( +...+
n—1

0 0 1 x 0 0 1
(even number of terms) + ...+ )F
0 0 1

xO - .

= . —+ : = :

Hence, we have a contradiction, that is 2"~ = zn—1,

Case2: Let A be odd. It may be observed from the evolution of the CA that the
0™ bit of TA(X) can be represented as:
(2% +21) + () +27) + (5@ +27) + 4 (@ ).

Here, () denotes the number of ways selecting 7 elements from a set of n elements
also commonly represented as "C,.
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As X is odd, we may express it as 2t 4+ 1, for some positive integer ¢. Hence, the
0™ bit of T*(X) can be expressed as:

(«® 4+ z') + 2t) (" + 2?) +t(2t — D (z* +2°) +... = (¥ +2") +t@2t - 1) (2 +2%) +...
(as 2t = 0 mod 2)

Therefore the 0 bit of T*(X) depends on z° and z!'. But it depends upon z? if
t(2t — 1) is odd = t is odd (as 2t — 1 is always odd).

Thus the 0% bit of 7*(X) depends on z° z! and z? if ¢ is odd i.e if X is of the
form 4p + 3, where p is a positive integer. If ¢ is even, i.e if A is of the form 4p + 1,
the 0% bit of T*(X) depends on 2°, 2! but not z2.

Similarly, if X is of the form 4p + 1, the i** bit of T*(X) depends on z?, z*! but
not *2. On the contrary if \ is of the form 4p + 3, the i bit of T*(X) depends on
2!, z'T! and also z'*2.

Likewise, if the exponent of T, A had been even and of the form 4p, then the 5%
bit of T*(X) depends on z'. Similarly, if the form of A be 4p + 2 then the i** bit of
T*(X) depends on z' and z*2. We tabulate the dependence of the i bit of T*(X)
on the bits 2°, ' and z? depending on the nature of the exponent A in table 4.2.

Table 4.2: Dependence of i bit of 7*(X) on input bits

Exponent (A) | Input Bit Position
4p T
4p +1 .’Ei, xi—H
4p +9 .’Ei, xi+2
Ap + 3 gf it git?

Thus, the i** bit of [I +T +T?+T3](X) depends on z° + (2 + z'1) + (2 + 2*+2) +
(z* + 2"t 4+ 2+2) and hence none of z¢, /! and z°2, as we are having modulo 2 sum.

= if A is of the form 4p+1, then the 5% bit of [[+T+.. . +T* (X) = [[+T+...+
T?|(X) = ([+T+T*+ T3+ T I+T+T*+T3+. . AT* I+ T+T*+T°+T*)(X),
thus depends only on z°.

Similarly, if ) is of the form 4p + 3, the ™ bit of [ + T + ... + T* (X)) =
T+T+...+T*P2(X)=(I+T+T*+T3+TI+T+T*+T3+...+T* 41+
T+T?+ T3 +T*?[I+T+T?)(X), thus depends on z* + '+ + 2.

Hence, we have for A = 4p + 1,
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xo P e ‘TO
1 1 1 n 0 _ o1 1 0 : n 1
. | 1 R | ) 1
xnfl xnfl
0O 0 ... 1 1 0o 0 ... 1 1

Hence, we have a contradiction, that is
(xn—Z + xn—l) — m

Similarly, we have for A = 4p + 3,

cee e e xo : Che e e e e xo E
1 1 1 A I I D PP B I R
T N 0 T N 0
0 0 ... 1 ] 0 0 ... 1 .

Hence, we have a contradiction, that is
(z" 3+ a2 4+ g 1) = (an=3 + zn=2 4 zn~1). This completes the proof. O

Corollary 4.1 X +T(X) + TZ(X), X +T(X)+ TS(X), construct non-intersecting
cycles.

In order to migrate from one state transition cycle of the complemented CA to another
we require some rules. Next, we construct two rules R1 and R2 for the same.

Construction of rules: The following operations are defined as rules:

2

RI(X)=X+T(X)+T (X) (4.10)

3

and, R2(X) =X +T(X) + T (X) (4.11)
Corollary 4.2 R1 and R2 are commutative i.e R1(R2(X)) = R2(R1(X)). Applying,

the rules on X shows that both the operations produce the same result.

Proof: The proof follows directly from the definition of the rules R1 and R2.

Thus, R1(X) = X +T(X)+T (X)
X+ [T(X)+IF]|+[T*(X)+ (I +T)F]
= (I+T+T)X+TF

Similarly, R2(X) = X +T(X)+T (X)
= X+ [T(X)+IF)+[T*X)+{I+T+T*F)]
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= (I+T+THX+ (T+T*F

Thus, LHS = RI1[(I+T+T%)(X)+ (T +T*F]
= (I+T+THI+T+T*X)+(T+T?)F)+TF
= I+T+THI+T+T*(X)+T'F)

Similarly, RHS = R2[(I+T +T?)(X)+TF]
= (I+T+T)I+T+T*X)+TF)+(T+T*F
= I+T+T*»I+T+T*(X)+T"F)
Hence, LHS = RHS. U

Corollary 4.3 R1(T"(X)) = T"(R1(X)), where a is any index.
Proof:

LHS = R1(T*(X))
= (I+T+T»HT'(X))+TF
= (I+T+T)(T*X)+{I+T+...+T"HYF)+TF
= T°U+T+THX)+[({+T+THI+T+...+T* )+ T|F
= T°(I+T+THX)+[[+T+T°+...+T*+T*"|F
RHS = T'(R1(X))

T(I+T+THX+TF|+(I+T+...+T*HF

(
= T*(RIX)+{U+T+...+T*"HF
= T
= T*U+T+THX+[T+T+T*+...+ T+ TF

Hence, LHS = RHS. U

Corollary 4.4 Ta(Rl(RQ(Tb(X)))) = Tb(RQ(Rl(Ta(X)))), where a and b are in-

dices.

Proof: Using corollary 4.3, we have the following:

LHS = T“(R1(R2(T"(X))))
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Likewise,

RHS = T (R2(R1

= RUT"(R2(T"(X))))
= RI(R2T"(T'(X))))

S

>

N NN
P P
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,applying corollary 4.2

In the above deduction we have used the fact that applying a times and then b
times the complemented CA, is the same as that applying b times followed by the «a
times application of the CA. This may be easily followed if we consider that the state

transition of the complemented CA are cyclic in nature = T (Tb(X ) =T

Combining the

Corollary 4.5

==b =—a
(I7(X)).
above facts, LHS = RHS. (|

Ri(a+b) = Rl(a)+ R1(b)+TF
R2(a+b) = R2(a)+R2(b)+ (T +T*F

Proof: The proof follows directly from the definition of R1 and R2.

Rl(a+b) = (I+T+T*)(a+b)+TF

Likewise,

R2(a+b) =

= [I+T+T)a+TF|+[I+T+T*)b+TF|+TF
= Rl(a) + R2(b)+TF

(I+T+T%*(a+b)+(T+THF
(I+T+T*a+ (T+THF+[I+T+T)b+ (T +T*F)+ (T +T*F
R2(a) + R2(b) + (T + T*)F
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The transition rules derived in the chapter is explained with the help of the fol-
lowing example.

Example 4.2 Let us consider the cyclic subspaces generated by the complemented
CA in example 4.1. Let, the value of X in corollary 4.4 be 6 and let the values
of a = 2 and b = 4. Thus, the operation of TZR1R2(74(6)) = TZR1R2(3O) =
T2R1(20) = T2(13) = 7. The corresponding operation T'R2R1 (72(6)) also yields the
value T4R2R1(0) = T4R2(1) = 74(15) = 7. The result thus supports corollary 4.4.

4.4 Generalization of the Automaton

The above characterization is for complemented Cellular Automaton where all the bits
of the state vector are complemented (xoring with the all one vector F'). In the present
section we show a technique to construct other Cellular Automata transitions for
which the same characterization holds. The state transition of the general automaton
is represented by 7.

Lemma 4.5 If A is a linear and invertible matriz, the cycle structure of the trans-
formation T is the same as T, = A.(T).A™ L.

Proof: Let the length of the cycles of the transformation T be [. Thus T =1 ,
where [ is the identity matrix.

Let us evaluate

Y = T)(X)

(AT.AYAT.A™Y) ... (I times)(AT.A7)(X)
(AT A .(AT.A Y. (AT.A ) (X)

= (AT A YH(X)

= (AA Y (X)Eince, T (A (X)) = A H(X)]

= AATNX)

= X

Thus the cycle structure of 7 and T, are same. O

Hence, the cycle lengths of the transitions Ty have the same dependence as that
of the CA with transition defined by T. The Cellular Automaton constructed from
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the original CA with rule T has a transition defined by T, = A.(T).A'. Here the
operator A is linear and represented by any invertible matrix. The following lemma
shows how the next state can be computed from an initial seed X.

Lemma 4.6 If a Cellular Automaton with transition defined by T, = A.(T).A™?
is formed we can estimate the next state of a seed X by the equation T,(X) =
ATA™Y(X) + AF.

The following lemmas show that the same rules R1 and R2 are applicable for the
Cellular Automaton with transition rule 7.

Lemma 4.7 FEvery element, X of a cycle generated by CA with rule T, when mapped
by the rule, X + T,(X) 4+ T7(X), also lie in a cycle.

Proof: Given X, T,(X),T;(X) and T;(X) are members of the same cycle.

T,(X) = ATA™'(X)+ AF
THX) = AT’A'(X)+A(I+T)F
TH(X) = AT°AT'(X)+A(I+T+T*)F

Let the rule map X to an element ¢;, such that :
e = X+Ty(X)+T(X)
or,e; = AI+T+T)AY(X)+ ATF
The same rule when applied on the next element, 7,(.X) we have,
€& = [ATAN(X)+ AF]+[AT?A'(X)+ A+ T)F) +
[ATPA Y (X)+ A+ T +T*F]
or,eo = T,(AI+T+T?)A ' (X)+ ATF)
€y = Tg(ﬁl) (412)
O

Lemma 4.8 If X, Ty(X),T;(X),... lie in one cycle, then X + To(X) + T7(X),
To(X) + T;(X) + T (X),... lie on another non-intersecting cycle.
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Lemma 4.9 X + Ty(X) 4+ T}(X),X + T,(X) + T}(X), construct non-intersecting

cycles.

Construction of rules: The following operations are defined as rules:

RI(X) = X+T,(X)+T(X)
and, R2(X) = X +T,(X)+T,(X)

Lemma 4.10 R1 and R2 are commutative i.e RIR2(X)=R2R1(X). Applying, the

rules on X shows that both the operations produce the same result.
Lemma 4.11 R1(T; (X)) = T, (R1(X)), where a is any index.

Lemma 4.12 T/R1R2(T}(X)) = T)R2R1(T}(X)), where a and b are indices.

The rules are used to migrate from one cyclic subspace generated by T, to another.
The inter-relations promise the development of CA-based cryptographic algorithms
which are illustrated in the next section.

4.5 Possible Applications in Cryptography

The fact that the simple underlying rules of the CA can be efficiently implemented
and repeated applications of these simple rules can demonstrate complex behaviors
have lured researchers to develop CA based ciphers [140, 141, 142, 143, 144, 145, 137,
138]. However the previous efforts have been successfully cryptanalyzed. The reasons
behind the negative results should not be attributed to the CA, which on the contrary
is a wonderful machine conducive for cipher design. The properties discovered and
characterized in the chapter may be used to develop or construct new encryption and
key agreement algorithms. For the purpose of completeness we conclude with the
application of the generalized CA to the construction of key agreement protocols and
Block Ciphers.

4.5.1 Key Agreement Protocols

Key agreement protocols are mechanisms which establish the keys before the onset
of private key algorithms. The private key algorithms use the key which is settled
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between the legitimate sender and receiver through a key agreement protocol. The
shared key or secret is derived by two or more parties as a function of the information
provided by each party. Ideally the key should not be derivable by either of the
parties alone. Such partial key algorithms thus establish key on the fly. Key freshness
is important, that is the key should change frequently. Thus less data is encrypted
by the same key, thus the eavesdropper has lesser probability of success. Further
the amount of damage done due to the revelation of a key is reduced if the key is
frequently changed.

The class of the group CA characterized with the matrix 7, (characterized in this
chapter) exhibit an interesting agreement property which may be used to vary the ses-
sion key fast at a very low overhead. Fig. 4.4 shows the state space cycles generated
by the transformation 7,. P1 is an initial point of agreement of two parties. From
lemma 4.12 it is evident that if X is processed according to the transformations,
T¢R1R2T} or TYR2R1TY, then the state X follows two distinct paths and finally
converge at a point P, which is the second point of agreement.

P1( Agreement 1)

Figure 4.4: Agreement Property of the State Spaces

The agreement property may be used to vary an agreed key frequently at a low
overhead. Let A and B be two parties with an agreed key K;. In order to alter the
key, A generates r4 €g [0,! — 1] and computes 14 = R1[T;4(K:)] + f(K1), where
f is a one-way function. Here [ is the length of the cycles in the state transition of
the generalized automata and R1 is one of the rules of the generalized complemented
automata.

Likewise, B generates rp €g [0,! — 1] and computes x5 = R2[T,? (K1)] + f(K,).
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R2 is the other rule described in the previous section.

After z4 and xp are exchanged both the principals compute the new session key
using an agreement property. The new session key is Ky = RI[T;4{R2(T;2(K,)}].
The agreement property can be formally stated with the following theorem.

Theorem 4.7 A computes K} from the knowledge of xp (the public information),
ra (the private information) and the initially agreed key K,. B computes KY from
the knowledge of x4 (the public information), rg (the private information) and the

initially agreed key K,. Then Kl = K, thus they both agree on a new derived key.

Proof: The proof follows directly from the characterization presented in the pre-
vious section. A calculates Ky = T;4[R1{R2[T;?(K,)]}] and B computes Ky =
Trs [R2{ RL[TA (K]} .

From the properties of the generalized automata, Ky = Kj = K. Thus they both
agree on a new key K. O

The generalized automata helps to introduce randomness into the session key and
the smaller cycles make the process fast. Finally the pseudo-randomness of x4 and
xp has been verified using standard tests for randomness. In Fig. 4.5 the results
of the avalanche analysis have been presented. The X-axis shows the number of bits
affected, while the Y-axis shows the corresponding frequencies. The Avalanche Test
is based upon the fact that a 1-bit change in the plain text should change half of
the bits in the ciphertext[105]. A pair of input sequences have been taken and the
function is applied upon both of them. The number of bit-differences in the output
sequence are noted. The mean of the distribution should be n/2 and the standard
deviation, \/npgq, where n is the block-size and p = ¢ = 1/2 (binomial probability).
The simulation has been performed on a huge set of data with n = 128 and on the
average 60 bits (= 128/2) get affected. The result thus supports the criterion.

However the above sequence of operations depends on the assumption that a ses-
sion key has already been established. In order to achieve the initial key agreement we
use a specially designed Cellular Automata structure and is discussed in chapter 8.

4.5.2 Block Ciphers

Diffusion is a necessary step for the security of block ciphers [146]. The Diffusion Layer
(D-Box) may be efficiently realized through the generalized complemented Cellular
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Figure 4.5: Avalanche Test Results

Automata, characterized by the transition matrix Tj,. The cyclic property of the CA
leads to the fact that the same transformation may be used both to encrypt as well as
to decrypt the data. For example, if [ is the group length of the complemented CA,
we have Té = I. Thus if the D-Box is characterized by the transformation D = Tgl/ 2
the same transformation performs both encryption and decryption. In this case two
points may be observed:

1. The value of [ should be constant for a fixed n. In other words all the cycles
should be of equal length and independent of input data.

2. The length of the cycles should be linear with the number of cells, which in turn
is proportional to the block size of the cipher. Since, the block size decides the
security parameter of the cipher, it has to be kept large. The linear dependency
of the cycle length and the block size (n) is required to make both the encryption
and decryption operations fast (as the number of clock cycles required both to
encrypt and decrypt are linear with n).

The characterized Cellular Automata satisfies both the requirements. However
D = T_é/ ? cannot be used because of Avalanche Property [105]. In order to obtain
good Avalanche effect the matrix A of T, is to be appropriately chosen and the
encryption and decryption algorithms should be made respectively:

Ty(enc) = Tgl/zf1
T,(dec) = Té/”l
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Thus the diffusion layer helps in developing transformations which can be used
both to encrypt and decrypt data. Also the component has good Avalanche Property
as elaborated in[138].

However the diffusion obtained by the linear layer has to be combined appro-
priately with non-linear components (often referred to as S-Boxes) to protect the
block cipher against Linear and Differential Cryptanalysis. However the non-linearity
should not disturb the cyclic property and hence the self-invertibility of the general-
ized complemented CA. We propose to construct the round as r = f~'oc’ o f, where
f is the non-linear layer which has an inverse f~!. Here c is the generalized CA and
17 the number of clock cycles it is applied.

One of the interesting properties of the construction is that the structure can
be programmed easily to perform both encryption and decryption. Encryption is
achieved when ¢ = n — 1, while the round performs decryption when i = n+1. Apart
from having self-invertibility, the non-linear components do not disturb the cyclic
nature of the linear CA as the cyclic structure of the transformation 7} = ¢ is the
same as that of 75 = r = f~! o ¢’ o f. Further, the round has a fast forwardness

T l

Add Modulo 2 Round

c Diffusion Box (n-1/n+1)

" Inverse

. S-Boxes
f = |
I
‘ : Key
; ®
Y

Figure 4.6: The CA based round

property [137] resulting in high speed ciphers.
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Fast Forwardness: The transformation 75 has the advantage of fast forwardness.
This may be observed as follows:

T'X) = (fTf )"
@A (mtimes) f(T1(f71)))--) (X)
= fITf(X)

Thus the transformation 75 can be made to iterate without requiring the non-linear
function to be iterated. Since the non-linear function is more computation intensive
this reduces the cost of the operation and is amenable to efficient implementations.

Below we present construction of the non-linear S-Boxes using a very simple non-
linear rule. The claim is that although much stronger S-Boxes are possible with
Cellular Automata (as we show subsequently), here we present an approach to build
S-Boxes using extremely simple underlying rules. We show that this first level at-
tempt to generate S-Boxes is quite interesting and also satisfy some of the important
properties of a good S-Box.

A Cursory attempt to generate S-Boxes using Simple Rules

In order to construct the S-Box using Cellular Automata, we first require a non-linear
Cellular Automata rule which is reversible. Also, the Cellular Automata based S-Box
should satisfy the various properties required for a robust S-Box design [72]. A skewed
version of rule 30 is:

i i i+1 i+2
Tiyr = T D (zi™ +2y77).

The inverse rule for the non-linear CA may be obtained, as the above rule is invertible,
unlike rule 30 CA. However, a serious flaw with it is that the last bit in it passes
unchanged. To avoid this, we propose to use ”cycles” of this simple rule. After each
cycle the output is completely reversed, that is the last bit becomes the first, the
second last the second and so on. It is interesting to observe that the robustness of
the thus developed S-Box is a function of the number of clock cycles. We fix the
number of cycles of the simple non-linear rule required to obtain a cryptographically
strong S-Box. Indeed, we show that the robustness of the S-Box is comparable to
some of the strongest S-Boxes obtained in the paper of [72], with the advantage that
the implementation is very simple. The idea of repeating simple rules to obtain the
behavior is also in conformation with the concept envisaged by [135].
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Table 4.3: Non-linearity for different bits and rounds for the S-Box

No of bits | Number of cycles | Non-linearity | Maximum non- Ratio
(Ny) linearity (N7*") | (N;/N7®)

4 4 4 6 0.67

4 8 4 6 0.67

8 4 64 120 0.53

8 8 82 120 0.68

Evaluation of the S-Box

The S-Box is a crucial component of Substitution Permutation Networks. The S-
Boxes are supposed to be defiant against Linear Cryptanalysis (LC) and Differential
Cryptanalysis (DC). For this they should satisfy various properties like high non-
linearity, balancedness, robustness against differential cryptanalysis and small biases
of linear approximations.

Non-linearity and Balancedness:

First, the non-linearity of the S-Box output bits should be high and also they
should represent a balanced boolean function. If we consider an m bit S-Box, the
non-linear CA (mentioned earlier) gives us a permutation on V,,, that is, we have an
invertible mapping. So the enumeration of the truth tables of the output bits show
that all the possible elements of V,,, appear. Thus the truth table of each output bit
has an equal number of zeros and ones, resulting in the balancedness of the output
function. Now, a balanced boolean function cannot attain the highest non-linearity,
but it should be close to the maximum non-linearity value. As already mentioned in
chapter 3 the maximum non-linearity value for a function on V,, is 2m~1 — 2m/2-1,
when m is even. As described before we iterate the simple non-linear rule over some
”cycles”. Our observation is that as the number of cycles increase the non-linearity
of the S-Box varies and gradually approaches its maximum value. The non-linearity
of the S-Box for different number of bits and cycles is tabulated in table 4.3.

Based on the above result we choose to construct a S-Box on 8 bits. Thus each
bit is a boolean function of 8 bits and has a high non-linearity. We, next perform a
Linear Cryptanalysis and show that the biases obtained are less. In order to facilitate
the representation we tabulate the result for a 4 bit S-Box, although the 8 bit Linear
Approximation Table is even better.

Linear Cryptanalysis:

Linear Cryptanalysis essentially deals with the probability of approximating the
input and output of non-linear functions, used in the block cipher with linear expres-
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sions [147, 148]. The approach in linear cryptanalysis is to determine expressions of
the form below which have a high or low probability of occurrence [147, 148]

Let us consider an expression of the form:
<XZ'1€BXZ'2€B"'X’L.1J, >@<}/jl®}/j2"'®}/j’u >:0
where X; represents the i-th bit of the input X = [X;, X5, ...] and Y; represents

the j-th bit of the output Y = [¥7, Y3, ...]. This equation represents the exclusive OR
of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expression will
hold with probability 1/2. It is the deviation from the probability of 1/2 (bias) for an
expression to hold that is exploited in linear cryptanalysis: the further away a linear
expression is from holding with a probability of 1/2, the better the cryptanalyst is
able to apply linear cryptanalysis. We thus prepare a linear approximation table 4.4
for the non-linear S-Box of the cipher round. Each element in the table represents the
number of matches between the linear equation represented in hexadecimal as ” Input
Sum” and the sum of the output bits represented in hexadecimal as ” Output Sum”
minus 8. The hexadecimal value representing a sum, when viewed as a binary value
indicates the variables involved in the sum. As we can see from table 4.4 the biases
are small and thus the corresponding equations will offer no considerable help for the
cryptanalysis. This table is comparable to the table that we obtain while doing a
similar analysis for the S-Boxes of DES.

Differential Cryptanalysis:

Next, we evaluate the robustness of the S-Box against Differential Cryptanalysis
(DC). Differential cryptanalysis takes the advantage of entries with high values in the
difference distribution tables of S-Boxes employed by block ciphers. The difference
distribution table for a n x s S-Box is a 2" x 2° matrix. The rows of the matrix,
indexed by the vectors in V,,, represent the change in the input, while the columns,
also indexed by the vectors in V,, represent the change in the output of the S-Box.

An entry in the table indexed by (AX, AY') indicates the number of input vectors
which when changed by AX (bitwise XOR), result in a change in the output by AY
(bitwise XOR).

From the definition of robustness against DC, stated in chapter 3, it is evident
that the values of L and R have to be less. That is, in addition to the requirement
of having no large values, the difference distribution table of an S-Box should also
contain as less non-zero entries as possible in its first column [72].

We again observe that the robustness against Differential Cryptanalysis varies with
the number of ”cycles” of the S-Box. The robustness of the non-linear transformation
of our cipher for different values of the number of bits in a block and the number of
cycles are shown in table 4.5. It follows from the above tables that among all the
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Table 4.4: Linear Approximation Table for 4 bit S-Box

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o8 0 0o 0 0 00 0 0 0O 0 O O o0 0 O
170 -2 2 0 0 2 2 4 0 -2 -2 4 0 2 -2 0
210 2 2 0 2 0 4 -2 0 2 -2 4 2 0 0 2
310 4 0 0 2 -2 2 2 0 4 0 0 2 -2 2 2
44/0 0 2 2 2 2 0 0 2 -2 4 0 0 -4 -2 2
510 2 0 2 2 0 -2 4 2 0 -2 4 0 2 0 2
610 2 4 2 0 -2 0 2 2 0 2 4 -2 0 2 0
710 0 2 2 0 O 2 -2 2 -2 0 0 6 2 0 O
8|0 0 0o 0 -2 2 2 -2 4 4 0 0 -2 2 -2 2
90 2 2 0 2 0 O -2 0 -2 2 0 -2 4 4 2
(0 2 2 0 4 -2 2 0 0 2 2 0 0 2 -2 A4
1/0 4 0 0 0 0 4 0 4 0 0 0 0 O0 0 4
120 0 2 2 4 0 -2 2 -2 2 4 0 2 2 0 0
3({0 2 0 6 0 2 0 2 2 0 2 0 2 0 2 O
40 2 4 2 -2 0 2 0 2 0 -2 0 0 -2 4 -2
506 0 -2 2 2 6 O O -2 2 0 0 0 0 2 -2

values, the ratios for non-linearity and e-robustness against differential cryptanalysis
are the highest when the block size is 8 bits and the number of cycles is 8.

The performance of the S-Box, with respect to the powerful Differential Crypt-
analysis may be compared with that of the some of the standard S-Boxes in literature
(table 4.6). The table shows that the robustness of the DES S-Boxes are very poor
with respect to that of the S-Boxes constructed in [72]. We see that the S-Box con-
structed out of the simple non-linear rule of a CA is comparable to that presented in
[72]. The elegance of the CA based S-Box is that it is simple and easy to implement.

Table 4.5: e-robustness against Differential Cryptanalysis

Number | Number € L | R | Maximum €(€,,) | Ratio(e/€y,)
of bits | of cycles value of

4 4 0.6250 | 6 | O 0.875 0.71

4 8 0.5000 | 8 | 0 0.875 0.57

8 4 0.8125 |48 | 0 0.992 0.82

8 8 0.9297 | 18 | 0 0.992 0.94
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Table 4.6: Comparison of robustness against Differential Cryptanalysis

| S-Box | Robustness (e) |

S, (DES) 0.316

S, (DES) 0.363

S, (DES) 0.316

S, (DES) 0.469

S (DES) 0.387

Ss (DES) 0.367

S, (DES) 0.340

S (DES) 0.328
72] 0.875

72] 0.96875

72] 0.992

CA based S-Box 0.9297

4.6 Conclusion

In summary, the present work investigates the state spaces of a class of complemented
cellular automaton. New properties have been proved which relate the state spaces
of the cellular automaton. The properties help to use the entire state space. The
characterization has been extended to a more general class of CA structures. In this
chapter it is shown that the state transitions of the generalized CA has an agreement
property which may be applied to vary the session key generated by a key agreement
algorithm at a fast rate with a low overhead. Further a technique has been proposed
to develop a self invertible round of a block cipher whose diffusion layer may be
implemented through the generalized CA. The chapter also presents a novel way to
introduce non-linearity into the diffusion layer through repeated applications of a non-
linear rule of a CA. Results have been furnished to demonstrate that the non-linear
layers (S-Boxes) are cryptographically robust. However Cellular Automata may be
applied more systematically to develop programmable S-Boxes with provable security
margins, as discussed in the next chapter.






Chapter 5

CASBox : A Programmable

Structure to Generate S-Boxes

5.1 Introduction

The security of block ciphers largely depends on the cryptographic robustness of the
S-Boxes. Thus the construction of good S-Boxes are an extremely important com-
ponent of cipher design. In [149] Gordon and Retkin first focused on the statistical
properties of random, reversible S-Boxes. In literature subsequently several works
(68, 69, 70, 71] have been published in defining the desirable properties of S-Boxes.
However the drawbacks of all these proposals were pointed out in [72]. The main
weaknesses were that the component functions of these S-Boxes were quadratic and
thus could be vulnerable to many classic as well as the recent algebraic attacks. Fur-
ther these techniques are based on permutations and thus have an equal number of
input and output bits. The suggestion to drop an appropriate number of component
functions from a permutation yields an S-Box with lesser output bits but without
any guarantee on its robustness against Differential Cryptanalysis. None of these
constructions satisfy the Strict Avalanche Criterion (SAC), which is an important
property of modern day ciphers. One of the constructions proposed in [73] is based
on Maiorana-McFarland method and is built out of Linear Feedback Shift Registers
(LFSRs). Apart from the above drawbacks the class of circuits built around LFSRs
can be found to have the following inherent disadvantages (i) irregularity of the inter-
connection structure (ii) larger delay and (iii) lack of modularity and cascadability.
Also the resultant S-Box was not balanced and had the restriction that the first half
of the input that goes to the LFSRs was not zero. This restricts the usage of the
generated S-Boxes. In [72] the authors describe various properties of cryptographi-

87
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cally robust S-Boxes and also discusses their construction. However, the work does
not describe how to implement the S-Boxes in real life. It has been shown in [76]
that all the proposed constructions for good candidates for S-Boxes are based on,
what is known as the Maiorana-McFarland Construction, refer section 2.2.3. All
the prior works[77, 78, 79, 80, 84, 85| are based on this principle. Although several
theoretical works have been done in the construction of S-Boxes, there are relatively
few works on efficient hardware or software for the generation of cryptographically
robust S-Boxes. While the construction of strong S-Boxes is an important aspect of
cryptographic design, the other important aspect is the design, analysis and imple-
mentation of large strong S-Boxes. Although many desirable properties of S-Boxes
have been studied, it is also a challenge to develop efficient scalable architectures for
S-Boxes.

In [69] a method was presented for n x n S-Box design. However, for the S-Box
created by this method, its inverse S-Box is almost completely linear (it has only
one non-linear function) and its diffusion property cannot be ensured. In [81] Adams
and Tavares proposed a design methodology for n x n S-Boxes. Since, the method
is an exhaustive search method the complexity of the method grows as the value of
n increases. The method of [150] makes use of near bent Boolean functions of five
variables to create 5 x 5 S-Boxes in order to resist differential attacks [29]. However
the method is restricted for S-Boxes whose input bits are odd. In [82] a practical
S-Box design has been described where it has been stated that the construction of
large cryptographically strong S-Boxes are difficult and requires huge computational
resources. In [83] a method has been described for obtaining cryptographically strong
8 x 8 S-Boxes. However the performance of the generated S-Boxes are much inferior
compared to possible S-Boxes that can be constructed for such dimensions. Recently
an interesting construction of S-Boxes based on the Maiorana-McFarland methodol-
ogy has been proposed in [84]. The software implementation of the proposed method
has been presented in [85] where the authors claim that the work was the first prac-
tical software implementation of a general framework to generate cryptographically
robust n X m S-Boxes. However, the construction requires table lookup of the order
2™ which makes it infeasible for a hardware implementation where m is large. Indeed
we require bijective S-Boxes where m = n in block ciphers and the current algebraic
attacks obviate the requirement that the size of the S-Boxes are equal to or more
than eight.

In this work the Theory of Cellular Automata has been applied, to the best of our
knowledge for the first time to generate S-Boxes as good as those of [72] on hardware.
The work discusses how a special class of linear group CA, called the maximum length
CA can generate S-Boxes which satisfy the requirements and properties described in
[72]. In short the generated S-Boxes are balanced, satisfy Strict Avalanche Criterion,
have high non-linearity of the component functions as well as their non-zero linear
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combinations, have high algebraic degree and are robust against linear and differ-
ential cryptanalysis. The work shows that the CA based S-Box, called CASBox, is
programmable, modular, and generates a large number of S-Boxes all of which are
equally cryptographically strong. The architecture proposed in the chapter has been
implemented on a Xilinx XCV-1000 platform and the results show that the structure
is efficient and scalable. Compared to the work done by S. Mister and C. Adams
[82] the proposed CA based S-Box construction is extremely efficient with respect
to time, due to the inherent parallelism in Cellular Automata transformations. Also
as the chosen maximum length CA has a three neighbourhood cell [135, 129] the
length of the interconnects would be less compared to a LFSR based S-Box [73], a
feature helpful for VLSI implementations|[151]. Further it may be pointed out that
since the S-Boxes generated can be simply reconfigured by programming the number
of cycles of the internal CA, the CASBox may be used as a real life implementation
of a randomly selected S-Box leading to the realization of a true random cipher [152].

The chapter is organized as follows: The overall design of the CASBox has been
described in section 5.2. In section 5.3 a closed set of invertible linear transfor-
mations have been constructed using Cellular Automata rules. The CASBox have
been mathematically formulated in section .4 and its various characteristics have
been described in section 5.5. The cryptographic strengths of the CASBox have been
analyzed in section 5.6. A specimen example of 8 x 8 S-Box has been presented
in section 5.7 while FPGA implementations of CASBox have been presented in sec-
tion 5.8. Section 5.9 outlines how CASBox helps to prevent attacks on SPN ciphers.
The work is concluded in section 5.10.

5.2 Construction of CA Based S-Box (CASBox)

The present section constructs an n x n mapping using 2"~ % (k > ) k cell maximum
length Cellular Automata. The characteristic matrix of each group CA is represented
by a k x k matrix with elements in GF'(2) (i,e 0 or 1). Fig. 5.1 depicts the overall
construction of the n x n mapping which is used for the CA based S-Box (CASBox).
The linear Cellular Automata are represented by the linear operators Ly, ..., Lon—#_;.
The input z to the S-Box is a vector of n bits and has two parts y and z. Thus, z
= (y,x) where z is a vector of size k bits and y is that of (n — k) bits. The input
seed to each Cellular Automaton (CA) is a k bit vector x = {x1,..., 2} where each
element belongs to GF(2). Each linear operator L; (0 < i < 2"~¥) transforms a k bit
input to a k bit output. The output of the 2% linear Cellular Automata are passed
through a multiplexer, controlled by a (n — k) bit vector y = {y1,...,Yn—x} Which
serves as the select line. The select line is used to multiplex out one of the outputs
of 2=% Cellular Automata. The (n — k) bit vector y is processed by a non-linear
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balanced permutation nl, to output nl(y). The k bit output is then transformed by
an operator B (which includes a linear transformation A and xoring with nl(y)) to
map the k bits into an n bit output. The input to the CASBox is z = (y,z) and
the output is denoted by Q(z) = {q1(2),...,q.(2)}, where ¢;(z) are the component
functions of the CASBox. The properties satisfied by the overall construction are:

1. The S-Box is robust against Differential and Linear Cryptanalysis.

2. Any non-zero linear combination of the component boolean functions have high
degree of non-linearity.

3. The sum of any subset of the component functions are non-linearly balanced
functions and hence the component functions are all uncorrelated[153].

4. The structure of the CASBox is extremely programmable. For a fixed value
n and k the technique described in the chapter gives 2k_1P2n—k S-Boxes which
are regular many-to-one mappings from vector space of n bits to that in &
bits (theorem 5.5). By regular mapping it is meant that for each k bit
vector output there are exactly 2" * input vectors possible. Simply changing
the number of clock cycles of the same CA transformation various S-Boxes are
obtained, all of which are cryptographically robust.

5. The n x n S-Box is invertible and satisfies SAC (Strict Avalanche Criterion).

5.3 The Chosen Set of Cellular Automata Trans-

formations

In this section we present the construction of a set of group CA generated by a
maximum length CA [129]. The linear transformations of the S-Boxes are the elements
of the constructed set (S). The set is analyzed first and used in the subsequent
development of the CASBox.

5.3.1 Set of CA Transformations

The characteristic matrix of a k£ cell CA is represented by a k£ x k matrix T with
elements in GF(2). When |T| = 1 then the CA is a group CA. We choose a k cell
maximum length CA. The characteristic matrix of the maximum length group CA
is denoted by a k x k matrix Ty, with the elements also in GF(2). In the maximum
length CA all the non-zero elements lie in one cycle [129]. Hence, except the all zero
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Figure 5.1: Structure of the CA Based S-Box (CASBox)

vector (which maps to itself) the other 2¥ — 1 non-zero elements form a cycle in the
k_
state transition diagram of the CA. Thus, Tk(2 V= , where I is a k X k identity

matrix. Thus, the set S = {I,T},... ,T,fk_z} contains (2F — 1) invertible matrices
of dimension k£ x k and with elements in GF(2). The properties of the set S are
described next.

5.3.2 Properties of the set S

Lemma 5.1 The transformation Ty * € S is invertible (1 < i < 2¥)

Proof:  We denote the determinant of the matrix 7;~' by det(T}"). Since, T}
represents the characteristic matrix of a group CA det(7y) = 1 (by theorem 3.1).

Thus, det(T;™') = (det(T},))'™! = 1 # 0, since det(AB) = det(A).det(B), where A
and B are square matrices.
Hence T,:’l is invertible. Il

Thus S is a set of invertible matrices (linear transformations) which form charac-
teristic matrices of various linear group Cellular Automata.
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Lemma 5.2 Set S is closed under addition modulo 2

Proof: Let, T,:_l,T,g_l € S, where i # j and 1 < (4, ) < 2% = for an input vector
X,
Y=(T'eTI HX =T '(X)o T} '(X).
~ From the definition of maximum length group CA, it is evident that when i # 7,
Ti7H(X) # T (X))
Thus, Y # 0 and so must lie in the maximum length cycle. Thus, it can be
expressed as some T~ (X) (0 < w < 2F).

Clearly, det(T;*~') = 1 and hence is invertible and thus 7}*~' € S. This completes
the proof. 0

Lemma 5.3 If T,f;_l,T,g_l € S, rows of the matrices T,i_l and T,g_l are pairwise

distinct when 1 # j.

Proof: Since, (T} '@ T/ ) =T e S = (T '@ T!™") is invertible.
Thus, rank (T,j_.1 T = k and so no row of (T; 7' & T771) is the zero vector of
size k = rows of T,z_l and T,g_l are not, equal. ]

5.4 Mathematical Formulation of CASBox

The input to the CASBox is denoted by z = (y, ) where y € V,,_ and x € V}, (vector
space of n tuples of elements from G'F'(2) is denoted by V;,). Here, k > 7. The output
of CASBox is denoted by Q(2) = (Q2(2), Q1(2)), where Q2(2) € V,,_ and Q1(2) € V4.

5.4.1 Determination of Q;(z)

The 2" * linear transformations chosen from the set S are indicated by the linear
transformations L, ..., Lon-&_;.

The linear transformations are the following £ X k£ matrices:
lo1 lin lon—r_11
Lo=1| * |,...,Li=1 " | ,...,Lognk_; = :
lok lik lon—k_1
The elements of the matrices L; (0 < 7 < 2"7%) are k length vectors, 1;;, (1 <

j < k). The elements of the vectors are GF'(2) elements, hence the final matrices are
all £ X k matrices with elements (0,1). Also, the vectors of a particular matrix are
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linearly independent, as the matrices are invertible. For example, if the value of £ is
5, then the matrix Ly could be represented as the following 5 x 5 matrix:

lor 110 00
loo 1110 0
L(): lo3 = 01 0 10
loa 0 01 01
los 0 00 11

It may be noted that the elements of the matrix Ly are {0, 1} vectors of length 5 and
they are linearly independent. For instance, the values of the elements ly; = {11000},
l()g = {11100}, l03 = {01010}, l04 = {00101} and l()5 = {00011}

The Q(z) component of the matrix is the concatenation of the output of 27—*
Cellular Automata selected according to the control line of the multiplexer.

Thus mathematically the vector Q1(z) € Vj is:

Qi(z) = @ Dy (y) Lo () (5.1)

o€V, _k

In the above notation [72] the vector space of k tuples of elements from GF(2) is
denoted by V. D,(.) is a function on V,,_, defined by D, (y) = (i1®v1) - - - (tn—tDYn—r)
where 0 = (i1,...,0p—k) and y = (Y1, -+, Yn—k)-

5.4.2 Determination of Q2(2)

The other part of the output indicated by the vector Q2(z), which is of (n — k) bits
is obtained as follows (i.e Q2(2) € V;,—):

Q2(2) = AQ1(z) ® nl(y), where the matrix A is non-degenerate
ay Y1
= : Q1(z)@®nl : , where nl is a non-linear permutation on

Ap—k Yn—k
Vi—k. Thus the function nl(y) has (n — k) components, (nl;(y),...,nl, £(y))

each of which is a non-linear boolean transformation on y = (y1, ..., Yn &)

The vectors a; (1 < i < (n — k)), which constitutes the matrix A are linearly
independent.

Thus, the output Q(z) € V,, may be represented as:

Qz) = (gg Ez; ) = BQ1(z) (B denotes the transformation depicted in Fig. 5.1)
1
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_ [ Amn—r)x
B ( kak k) Qi(2) @ ka (k) (
}.

Thus the output (Q(z) may be enumerated as Q(z
Q1(2) ={q1(2), ..., ax(2)} and Q2(2) = {ak+1(2), ---,qn( )

Hence,

Q 2),Q1(2)}, where

@1(2) = Do(y)loi(z) @ ... 8 Dj(y)lji(z) ... & Dign-k_1)(y)l@n—+_1,1)(2)
G(2) = Do)loi(@) ® ... ® D()ls(®) ... ® Dgnos_yy()lnri_1(x)  (5.2)
;Ik(z) = bo(y)l%(ﬂﬂ) ®...0 Di(y)ljk(z) - .. & Digns_1)(y)l(gn—r_1,)(7)

a; a1 e a1k
The matrix A = : =
Ak n—k,1  --- On—fkk
The remaining part of the output is enumerated after the following discussion on
the non-linear permutation on V,,_.

5.4.3 Non-linear permutation on V,,_;

As discussed, CASBox uses a non-linear permutation, n/ operating in V,, .

nl : Vn—k: — Vn—k

Thus it is evident that nl comprises of (n — k) non-linear boolean functions,
(nly,...,nl, ), which satisfy the following conditions:
1. Each function (nly,...,nl,_x) is non-linear and balanced

2. Any non-zero linear combination of nly, ..., nl,_ is non-linear and balanced.

3. nl is a permutation and hence is invertible

Possible constructions of the non-linear function nl

In the construction of the non-linear function nl we shall use two basic methods. The
first technique is based on the inverse operation in Galois field in GF(2"*).
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e The mapping nl(y) = y~', where y € GF(2"*): The function has been
treated in details in [154]. The mapping is:

!, ifx#0
"l(y):{o ifxio

The properties of the mapping may be enlisted as follows:

1. The non-linearity of nl is greater than or equal to 2" ~*~1 — 95"

2. A mapping is called differentially uniform if for every non-zero input dif-
ference and any output difference the number of possible inputs has a
uniform upper bound. If (n — k) is odd then the function nl is differen-
tially 2-uniform and if (n — k) is even then the function is differentially
4-uniform.

Example 5.1 For a 10 X 10 CASBoz if one chooses the value of k to be 6,
then n — k = 4. Thus, we require a non-linear permutation in the space Vj.
The non-linear permutation thus comprises of 4 boolean component functions,

nl(y) = {nly,nls, nls, nly} and thus also outputs 4 bits.

If we consider the inverse mapping in the field GF(2*) with primitive polynomial
x* 4+ 2 + 1 the boolean equations are:

nli = Y1 O Y2 D Ys D Ys © Y1Y3 D Yoy D Y1Y2y3 D Y1Y3ya
nly = Y192 ® Y1y3 D Yoy3 © Ys D Yoys D Y1Y2Y3

nly = Y12 D y3 D Y1y © ya © Y1y1 ® y1Y3ya

nls = Y2 D Y3 B Ys @ y1Y1 © Y2ya D Y3ys D Y2Ysya

1. It may be verified that the algebraic degree is 3 and the non-linearity of
any non-zero linear combination, cinli(y) ® conls(y) ® csnls(y) & canly(y)
where ¢, ¢z, 3,4 € GF(2), is 4.

2. Also, if « is any non-zero vector in GF(2*) then nl(y) ® nl(y @ «) also
belongs to GF(2*) and hence can take 16 values. However since o is non-
zero, the resultant value cannot be zero. Of the remaining 15 values, nl(y)®
nl(y @ «) does not take 8 values and it assumes T values in GF(2*) twice
each.
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3. The inverse mapping in GF(2*) is differentially 4 uniform.

e From the m-sequences generated by a maximal length LFSR: In this

construction we consider a LFSR of size (n — k) with feedback polynomial p(z).
The LFSR is loaded with the pattern (1,...,0) and we obtain the (2"~% —
1) patterns for each of the (n — k) bits. When the feedback polynomial is
primitive, each of these sequences are called m-sequences or maximal length
sequences. The truth table of each of the (n — k) bits with an extra zero
added at the beginning is converted to an equivalent and-xor form using Reed-
Muller expansion[155, 72]. This gives the non-linear permutation, nl where each
component function is balanced and non-linear with respect to the input y.

Example 5.2 For an 8 x 8 CASBozx, when the parameter k is set to the value

5, we require the non-linear permutation in the field Vs.

Thus we consider an LFSR of 3 bits with feedback polynomial z® + x + 1. We
load the LFSR with the initial pattern of (1,0,0). The evolution of the pattern
may be observed in Fig. 5.2. The and-zor forms may be obtained from the

evolution of the patterns after adding an extra row of all zeroes at the beginning.

+ - .
CELL 1 CELL 2—| CELL 3——

ni(1) nl(2) nl(3)
0 0 0 -—— ExtraRow
T o 1T o of zeroes

0 1 0 added

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1

Figure 5.2: The LFSR based construction of non-linear permutation in V;

Minimizing the truth-table shown in Fig. 5.2 the final boolean equations are:

nli = Y1 ®Ys O yays
nly = Y1 D Y2 D y1Y2 D Y2ys3
nly = y1y2 D Y2y3 D Y13
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Thus, the non-linear permutation in Vi is nl(y) = {nly,nly,nl3}. It may be
verified that the final function nl(y) is a non-linear permutation with algebraic
degree 2. The non-linearity of any non-zero linear combination is 2, which is the
mazimum non-linearity for a boolean function in V3. Also the resultant boolean
function is balanced. When y takes all the values in GF(2%), nl(y) ® nl(y & )

assumes 4 values in Vi twice each. It does not take values of the other 4 vectors.

Having discussed about the construction of the function nl(y) we continue with
the description of the remaining n — k bits of the CASBox.

G1(2) = [a1161(2) @ ... D a14¢:(2) . . . D a1rqr(2)] © nl1(y)
: . (5.3)

W(2) = [0nk101(2) D ... B ankiGi(2) - . B Wk qk(2)] B Nl (y)

In the following section the various cryptographic properties of the CASBox have
been analyzed.

5.5 Characteristics of the CASBox

The following theorems characterize the CASBox and estimates various cryptographic
properties which are required for a robust S-Box.

Theorem 5.1 The non-linearity of each component function ¢;(z) (1 < i < n) is
atleast 2"~ — 281 where k > n/2

Proof:
Non-linearity of the component functions of Q;(z):
For1 <<k,
qz(z) = @ Da(y)lai(x)
0E€EVh_k
As all the rows of the matrices Ly, . .., Lya—x_; are pairwise distinct (by lemma 5.3),

hence lg; # lg;, if 6 # 6'. Also, none of the vectors is a zero vector.



98 5. CASBOX

Thus, ¢;(z) is a boolean function whose truth-table is obtained by the concate-
nation of the truth-tables of 2% non-zero and pairwise distinct & variable linear
boolean equations.

Let g be a linear approximation of n variables for f = ¢;(z). The linear approxi-
mations are represented by the rows of the Sylvester-Hadamard matrix H, [156, 153].
From the fact that H, = H; ® H,,_j, the linear approximations can be represented by
the concatenation of 2"* linear functions, all of which are the same or complement.

Thus, the sequences of f and g are respectively denoted by

N = {710, - - - len—k_l}

Ng = {Colt, . ,anfkfllt}

where [; is the sequence of a linear function of £ variables (obtained from the rows of
Hy) and ¢; € {—1,+1},0<j<2nF—1,

The distance between the two function on V,,, f and ¢ is denoted by
d(f,9) = 2""" = 5 <ny,my >, where < ng,ny >=#(f = g) — #(f # g) [153].

Here, #(f = g) denote the number of cases when f and g match and #(f # g)
denote the number of cases when f and g does not match.

Since the linear equations l5;, 6 € V,,_j are all pairwise distinct, the truth-table of
J can match with that of ¢ in atmost one component linear function, say 7, = cgl;.
In the other cases, the component function in the truth-table of f and in that of g
are different. Thus, they match in half of the cases and does not match in half of the
cases.

Therefore,

<npng> = #(f=9) —#(#9)
= #(f=9-# £+ D,  (Fulf=9) —#f#9)

0<u<2n=F,uzq
=2+ >, (0
0<u<2n—k u#q
(as it matches 2°7! times and does not match 27! times)
= 2k

Thus, the non-linearity of f = ¢;(2) (1 <7 < k)is

_ 1
Nf = d(fag):2nl_§<77fa779>
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— 27171 _ 2k71

Non-linearity of the component functions of Qs(z):

qk+,~(z) = ;191 (Z) D... aijqj(z) b...H aquk(z) o) Tll,(y)
2n—k—1 2nk—1

= aa[ D DiW)@)]®. .. @ axl 69 D;(y)li(x)] @ nli(y),

(using equatlon 5.2)

- Do(y)[@ai,-zoj(x)]@...@Dw . @alen k_1,;(2)] ® nli(y)

on—k_1
= @ Dnlv @%W @ nli(y)
m=0

= term; P teer

It is easy to check that term; = @f:;gil Dm(y)[EB;?:l ijlm;()] is not equal
to zero. Since in that case, each of the functions ¢;(2),...,qx(2) become linearly
dependent which in turn implies that the rows of the matrices Ly, ..., Lon-x_; are
linearly dependent. This contradicts the initial construction.

Non-linearity due to term;:

lo1 lon—k_11

IfL(): ,...,Lank_lz :

Lok l2n—k—1,k

and since the matrices are elements of the set S (Lo @ Lon—+ 1) is also invertible
(by lemma 5.2).

lor @ lgn-r 1
So, rank(Lg @ Lgn-x_1) = k, i.e rank : =k
lok @ lon—rk_q
Therefore all the rows are non-zero vectors and are linearly independent.

Thus there does not exist any non-zero vector (a1, .. ., a;) such that

;1 (l()l (&) l2n—k,171) D...D aik(l()k D lgn—k,l,k) =0

or, aﬂlm D...D aikl()k = aillzn—k_l,l D...D aiklzn—k_l’k,
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So it is not possible that for any non-zero linear combination two linear functions
are pairwise equal. Hence, the non-linearity of the term term; is 2"~! — 2*—1.

Non-linearity due to terms:

The non-linearity of terms = nl;(y) (1 < i < n — k) with respect to the input
z = (y, x) is obtained from the non-linearity of the boolean functions of the non-linear
permutation with respect to the input y.

Thus, if the maximum non-linearity of the function nl;(y) is my; with respect to
the input y, then the non-linearity of the function with respect to the input z is
My = 25my,.
on—k 'tnl nl

For example, if £ = n — 3 and if one uses the LFSR based non-linear permutation
shown in the previous section for V3 the non-linearity of the resultant function is
27732 = 22, Thus the non-linearity of term; is more than that of term, as n/2 <
k < n. More generally, for the inverse based non-linear permutation the non-linearity
of the term nl(y) is 2" %1 — 2(n=k)/2,

More specifically as n > k we have,

n+2 > k
or, n+k > 2k — 2
or, 2(n+k)/2 > 2k—1
or, on—1 _ 9k-1 > 2k(2n—k—1 _ 2(n—k:)/2)
or, mnon-linearity (term;) > non-linearity (terms)

Thus, the non-linearity of the first term is more than that of the second term as
n/2 < k < n. Hence the resultant non-linearity of the component functions, gx;(z)
(1 <i<n-—k)is atleast 27~ — 2k—1, O

Theorem 5.2 Any component function ¢;(z) (1 <i<n) is balanced.

Proof: From the previous proof, the i component function ¢;(z) (1 < i < k) is
the concatenation of 2" * non-zero linear functions. Since each of the non-zero linear
functions are balanced, so ¢;(z) is also balanced.

The remaining component functions are obtained by the xoring of the boolean
functions obtained by the concatenation of 2"~ non-zero linear functions (which is
balanced by the previous logic for the first £ bits) and a non-linear boolean func-
tion. Hence the remaining component functions are also balanced as the xoring of a
balanced boolean function with another boolean function (balanced or un-balanced)
results in a balanced boolean function. [l
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Theorem 5.3 The non-linearity of any non-zero linear combination of the compo-
nent functions g;(z) (1 <i<mn)is2" =281 (k > n/2) except in 2" % —1 cases when
the non-linearity is 28my; where my; is the non-linearity of the component functions

of the non-linear permutation in V,_,. The resulting functions are always balanced.

Proof: Let us consider a non-zero linear combination of the component functions.
For a non-zero vector (ci,...,Ck,Cryi1,---,Cpn) there can be 2" such linear combina-
tions.

For 1< j < 2m,

n on—k_1 on—k_1
d=Pew = al 69 @ 69
i=1
on—k_1
@Ck—f—l[ @ D @alm Jm @ nll( )] .. (54)
j:
2n—k—1

(using equatlon 5.2 and 5.3)

k k n—k
= Dy(y) [@ 7iloj ()] @ ... & Don-x_1(y) [@ rilon—k_1 ()] @ cr+indi(y)
7j=1 7j=1 7j=1
where, 7, = ¢; @ cp101; D ... D Crlp_p

Case 1: dj 75 @?:_lk ck+mli (y)

Thus as discussed in theorem 5.1, non-linearity of the non-zero linear combina-
tions of the component boolean functions in such a case is due to the concatenation of
the 2"~ linear functions. Each of the linear functions @?:1 Tily () (0 < u < 2n7k—1)
operate on x which belongs to V. Similar to the proof in theorem 5.1 the linear
functions are non-zero and also pairwise distinct. That is, there does not exist a
non-zero vector (rq,...,r) such that @?21 riluj(x) = @?:1 7ilyj(x), where u # v.

Hence, using the same logic as in theorem 5.1 the non-linearity of the non-zero
linear combination of the component functions is also 2! — 2k~

Also the functions representing the non-zero linear combinations of the component
functions are balanced. This is because they are formed by the xoring of the boolean
functions which are obtained by the concatenations of non-zero linear functions in
Vi, which are themselves balanced and a non-linear term. Since the boolean function
obtained by the xoring of a balanced function and another function (balanced or
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unbalanced) leads to a balanced function, so the resultant function is balanced.
—k

Case 2: d; = @, cxrinli(y)

From the properties of the non-linear permutations, discussed previously, the non-
linearity is 2¥m,,;.

For example, if £ = n — 3 and if one uses the LFSR based non-linear permutation,
shown in the previous section for V3, the non-linearity of the resultant function is
232 = 272 For the inverse based non-linear permutation the non-linearity of the
term nl(y) is similarly 25(27 %1 — 20-#)/2) = on-1 _ 9™ where n — k is even.
Number of such cases is clearly 2" % — 1.

Also, since the function nl represents a permutation so the component functions
are balanced. Hence the non-zero linear combination of the balanced functions gives
a balanced function. Thus the resultant function is balanced also in this case. O

An important requirement in S-Box design is to have a regular S-Box. Informally
it means that each output symbol should appear an equal number of times when the
input is varied over all possible values. Formally, a mapping from the vector space
V., to V} is said to be a regular mapping if for each element y € V}, there are exactly
2"~ elements in V,, which are mapped to y. The following theorem characterizes a
regular mapping.

Theorem 5.4 [72] A mapping (fi,..., fx), where each f; is a function on V, and
n > k, 1s reqular if and only if all nonzero linear combinations of fi,..., fr are

balanced.

It is extremely important that an n x k£ S-Box be a regular mapping. Otherwise
the absence of regularity may be exploited to develop attacks against the S-Box.
The following theorem proves that the component functions of ), realize a regular

mapping.

Theorem 5.5 The mapping Q1(z) = {q1(2),...,q(2)} is a reqgular mapping from
Vi, to V.

Proof: From theorem 5.3, all non-zero linear combinations of the £ component
boolean functions are balanced. Hence, the mapping is regular by theorem 5.4. [J
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Theorem 5.6 The mapping Q(z) = {Q2(2), Q1(2)} is invertible.

Proof:
The output Q(z) € V,, is represented as:

Q(z) = (gjgzg) — BQ.(2)

z
n
_ (A(;—lc)xk) 01(2) @ (0 nl > 3
kxk kx(n—k) y

n—~k
Hence, Q2(2) = Aqi)xx@1(2) ® nl(y). Since nl(y) is a permutation, it has an
inverse nl™'(y).
Thus, Yy = nl’l(Qg(z) ©® A(n—k)kul(Z))-
Having retrieved the vector y one can obtain the remaining part of the input, i,e
x as follows.

We have,
Qi(z) = D Doly)Lo(x) (5.5)

o€V,

Let the obtained value of y be §. Since, Ds(y) = 1 if and only if y = ¢ and so
Q1(2) = Ls(x).

Hence, z = L;'(Q1(z)), which can be obtained as the matrix Ly is invertible being
an element of the set S.

Further the properties of the group CA can be used to develop a very efficient
inverting structure.

That is if Ly = T} ' € S, it can be realized by applying (i — 1) clock cycles to
the Cellular Automaton, characterized by the matrix 7j. Let this be the forward
transformation depicted in Fig. 5.3. Since, T} represents a maximum group CA, we
have T,fk_l = I. Thus the corresponding inverting transformation is represented by

Lyt = (1 h)~t = 7{@*"D=6D) Thyg the same structure can be used to invert the
output.

g

Theorem 5.7 The algebraic degree of each component functions of the CASBozx is
(n — k + 1) except in 2"% — 1 cases when it will be deg(nl) where deg(nl) is the

algebraic degree of the permutation nl(y).

Proof:
Case 1: d; # GB:-;’C Crtinli(y)
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Forward

Transformatior
Inverse

Transformation .
. T i-1
i-1,-1 K

T h

@)

Figure 5.3: Inversion using Cyclic structure of Group CA

In this case the algebraic degree of each component function of the CASBox is
computed by calculating that of the equation:

4(y,2) = Do(y)fgs(x)@...® D(2”*k—1)f(lank—1),i($)>

where 7 ranges from 0 to (n — 1).

Here, the functions f!;(x) are linear functions which are obtained from the rows
of the characteristic matrices of the Cellular Automaton or from the non-zero linear
combinations of the rows. Thus, none of them are zero and also the degree is 1.

The resultant degree of the component functions are obtained by the degree of the
terms D, (z), whose degree is (n — k). Hence the degree of the component functions
is (n —k+1).

Case 2: d; = @) cprinli(y)

In these 2" % —1 cases, the algebraic degree is due to that of the degree, deg(nl) of
the component functions of the non-linear permutation nl(y). In order to express more

quantitatively the value of deg(nl) in the sample constructions provided is deg(nl) =
(n—k—1). O

5.6 Cryptographic Strength of CASBox

In this section the strength of the S-Boxes generated by the Cellular Automata trans-
forms is evaluated.
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5.6.1 Strength against Linear Cryptanalysis

Linear Cryptanalysis (LC) tries to take advantage of high probability occurrences
of linear expressions involving plaintext bits, ciphertext bits and subkey bits. The
basic idea is to approximate a portion of the cipher with an expression that is linear,
where linearity refers to a mod-2 bitwise exclusive or operation [147]. The approach
in LC is to determine expressions of the form which have a high or low probability of
occurrence.

With respect to the CASBox consider an expression of the form:
where X; represents the i-th bit of the input X = [Xy, X5, ...] and Y represents

the j-th bit of the output Y = [¥7, Y5, ...]. This equation is representing the exclusive
OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expression
will hold with probability 1/2. If p; is the probability with which the expression holds
then the bias is defined as [p, — 1/2|. A S-Box is supposed to be defiant against LC
if the bias is small.

From the above theorems in all but (2" * — 1) cases the non-linearity of any
non-zero linear combination of the outputs of the CASBox is 27! — 2k—1,

Thus in such cases the probability of match for the best linear approximation is

1— 2"_12# = 142F="=1. Hence the bias of any linear approximation of the CASBox

is atmost 2F—"~1,

If we set the parameter k such that § < k < un, where % < i < 1, then the

bias of any linear approximation of the CASBox is atmost %m Thus the bias
against linear cryptanalysis reduces exponentially with n if one sets the parameter y

appropriately. That is the value of £ should be close to 5 to reduce this bias.

However in the remaining cases the non-linearity is 2m,,; where m,,; is the maxi-
mum non-linearity of the component functions of the non-linear permutation, nl(y).

.. . k _
Thus the bias in such cases is atmost 1 — 2 h — % = % — 2=

For the LFSR based construction when & = n — 3, m,; = 2, thus bias = i. Hence
the parameter k£ or n has no effect on the bias in such cases.

For the inverse based construction when (n — k) is even the bias is:

_ 2k—n(2n—k—1 _ 27(71;’“)

)

1

b' = —
1a8 9
— 2(k—n)/2

In this case also if one sets the parameter k such that § < k < wun, where
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% < p < 1, then the bias is atmost m Thus the bias against linear cryptanalysis
reduces exponentially with n if the value p and hence k is properly set. Thus the
value of k is ideally set close to n/2.

5.6.2 Strength against Differential Cryptanalysis

For the input z = (y,z) to the CASBox (z € Vi, y € V,, &) , the output is Q(z) =
{Q2(2), Q1(2)} where Q1(z) € Vi and Q2(z) € Vi

Now, @Q1(z) is formed by the concatenation of 2" * linear functions on Vj. Like-
wise, (Q2(z) is also expressible in the form of concatenation of 2" * linear functions
on Vi xored with the vector y € V,,_.

Thus, mathematically,

Qi(z) = P Do(y)Lo(x)

o€V, _k

Q2(2) = AQ:1(2) ® nl(y)

Let v = (8,a), B € Vg, o € V.

From the definition of the function D, (y), it is clear that D,(y) = 1 iff y = o.
Also, it is evident that D,(y @ ) = Dygp(y). The results have also been proved in
[153].

Thus using these facts we obtain the following:

Q(zdy) = @ Dy(y® B)Lo(z ® )

o€V, _k

= @ Dogs(y)Lo(T @ )

o€V, _k

= @ Do (y)Loap(z @ )

o'e€Vy_

= @ Da(y)LU@B (z® )

o€V g
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As,
ARQi(2) = Qi) ©@ (2 ©7)
= D De)Lo(®) ® Logs(z & a)]
Likewise,

AQa(z) = Q2(2) ® Q2(2 @)

[AQ1(2) @ nl(y)] © [AQ1 (2 @ 7) © nl(y & B)]

= AlQi(z) ® Qi(z@7)] @ (nl(y) ® nl(y & B))
AAQ1(2) @ (ni(y) ® nl(y ® B))

The profile of the distribution table may be obtained through the following anal-
ysis.

Case 1: Let, 8 = 0. Thus the differential of the output Q(z) is denoted by
AQ(z) = {AQ2(2), AQ1(2)}g=o- Thus, we have AQ1(2) = D, ey, _, Do(y)Lo().

Since, Dy(y) =1 iff y = 0 = AQ1(2)|y=s = Ls().

For y = § and y = ¢’ (where 6 # §'), we have Ls(a) # Ly ().

This can be easily observed from the characteristics of a maximum length CA as
T} (a) # TY ~'(a), where (6,6") € V,_; and the cycle length of a k cell maximum
length group CA is 2F — 1. Thus, the values of §,8’ < 2" % —1 < 2k —1 (as k > n/2).

Also, AQx(z) = A[AQ1(2)]ly=s = ALs(e). Thus, AQ(z) = {ALs(c), Ls(c)},
which does not depend upon z. Thus, keeping y held at § if z is varied (for all the
possible 2F cases) the output is constant. Therefore the frequency of AQ(z) in the
difference distribution table is 2F.

Case 2:

When 8 # 0, AQ1(2)ly=s = [Ls @ Lsopl(z) ® Lsas(c).

By the closure property of the set S, Ls @ Lsgp = Ls, for some 0 < §" < 2F — 1.
Thus, AQ1(2)|y=s = Ls () ® Lses(a).

Similarly, AQ2(2)[y=s = AAQ1(2)|y=s ® (nl(8) ® nl(s & B))
= A(Lyl (.T) S Lg@g(Od)) ® (nl(d) S nl((s ® ﬁ))
= ALy (2) ® (ALses(c) ® (nl(6) ® nl(6 ® B)))

From the properties of CA and the fact that A is a non-degenerate matrix (as
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rows of A are linearly independent) when z takes the values z; and x5 (21 # x2) and
the value of y is held at §, AQ1 (5, 1) # AQ1(d, z2) and AQ2(d, 1) # AQ2(J, x2).

Thus varying z through the 2* values, AQ(z) also takes the values of 2* vectors in
V.. Now, for the other values of y (there can be 2"~ values of y), AQ(z) also takes
2% distinct values. In worst case all the 2% vectors are repeated for each value of 3. In
that case the frequency of the value of AQ(z) is 2" %, which is the largest frequency
in the difference distribution table in Case 2.

Since k > n/2, = the frequency of an entry in the difference distribution table in
Case 1 (2%) > the frequency of an entry in the difference distribution table in Case 2
(2" k). Thus, L. = 2*.

Since, the n x n mapping obtained through the CASBox is one-one and hence
invertible, R = 0. Thus, the robustness of any S-Box generated through the CASBox
is atleast:

€min = 1-

5.6.3 Satisfaction of Strict Avalanche Criterion

A boolean function f on V,, is said to satisfy SAC (Strict Avalanche Criterion) iff
f(z) ® f(z & «) is balanced for all @ € V,,. In order to verify whether the S-Boxes
generated by CASBox satisfy SAC we observe AQ;(z) and AQ2(z). We have:

AQi(z) = D Do(Lo(2) ® Lows () ® Loas(a)],

o€V, &

AQ2(z) = AAQi(2) @ (ni(y) @ ni(y ® B))

Thus when 8 # 0, AQ1(2) = @, ey, Do(y)[Lon(2) & Loas(a)].

Because of the closure property of set S, L, (2)® Lye(z) = L,#(x) where Ly» € S.
Now, Ly# (2) ® Lyes() is an output of an invertible linear CA xored with a constant
term. Hence, the component functions of L, (z) @ Lyep(«) are balanced. Thus the
component functions of AQ;(z), which are concatenations of balanced functions are
also balanced. Similarly, the component functions of AQs(z) are balanced.
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However when 8 = 0, AQ1(2) = D, cv,_, Do(¥)[Lows(a)]. It is evident that the
component functions of AQ;(z) and hence also of AQs(2) are unbalanced. Thus, the
component functions of the CASBox does not satisfy SAC when 5 = 0.

However a simple linear transformation on the input variables can make @Q(z)’s
component functions satisfy SAC [72]. We have Q(z) = {¢:1(2), ..., qa.(2)}. Let, W be
a non-degenerate n X n matrix with entries from GF(2). Let, ; denote the i row of
W. If ¢;(2) ® ¢i(2 ® ;) is balanced for i € {1,...,n}, then ¢;(2W) satisfies SAC[153].
From, the previous discussions on balancedness of the boolean functions, ¢;(z), it is
evident that such a matrix W must have non-zero entries in the first (n — k) columns
of each of the n rows. Such a W may be[72]:

W = (I(nk)X(nk) O(nk)xk)

Dixn—r) Iy
and
1 0 0
1
p=|1 " 0
10 o 0/ pn

The same CASBox (Q(z) when operated on the transformed input, 2/ = 2W,
satisfies SAC. The non-degenerate linear mapping also does not alter the other cryp-
tographic properties developed in the chapter.

Theorem 5.8 The number of S-Boxes generated by a CASBoxr with parameters n
and k is Neaspos(n, k) =21 Pon—iy ?;Okfl(Zk — 29,

Proof: The mappings from V,, to Vj, are generated by varying the number of cycles
(n1,ng,...,N9n-r) such that no two are pairwise distinct. The problem reduces to
computing the number of ways of choosing 2" * elements from the set S. It is clear

that the number of ways are (Qk_l)P(Qn—k), where k > n/2 and °Py is equal to (af—'b),

In order to generate the other (n—k) output bits one can vary the matrix Aln—k)xk
such that A is a non-degenerate matrix. Essentially the rows of the matrix A are
vectors of length & and elements € GF(2). The first row can be chosen in (2F — 1)
ways, excluding the zero vector. The second row is chosen in (2% —2) ways, excluding
the first row also. The third row cannot be the linear combination of the first two
rows and hence number of possible third row is (2¥ —22). Thus the possible number of
ways of choosing A is [[\"5* ™" (2¥—27). Hence, the total number of S-Boxes generated
by the CASBox is "~ Prgniy [T12 " (2% — 27). 0

i=0
In the following section we provide an example construction of S-Box through the
CASBox architecture.
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5.7 Specimen Design of CASBox to Generate S-

Boxes

In this section we present a sample construction of S-Box through an 8 x 8 CASBox.
It becomes clear from the example that the CASBox is a highly programmable and
modular technique to generate cryptographically robust S-Boxes.

It may be noted that the technique may be used to generate any nxk S-Box, where
n and k are not equal. However if n xn S-Box is required then, as per the construction
we require a non-linear permutation in V,,_,. Since, a non-linear permutation is only
possible when (n — k) > 3 and we also have £ > n/2. By these two inequalities we
have n > 6.

Example 5.3 Design of CASBoz structure to generate 8 X 8 S-Bozes
Design Parameters: From the theory of the CASBox developed, we have n = 8

=k > g = 4. We choose k = 5. Hence, we require a 5 cell marimum length CA
to generate the set S. The rule of such a CA is {150,150,90,90,150} (table 3.3).

Hence the matriz,

11000
1 1100
Ts5=]0 1 0 1 0
0010 1
000 1 1

The length of the mazimum cycle of the CA is 31 and thus the set S = {I,Ts, ..., T}
In order to construct the CASBox we thus use 2875 = 8 Cellular Automata denoted
by {Ui,...,Us} all of which have the same characteristic matriz Ts only operated for
different clock cycles.

The other matrices involved are:

(10000000

01 000 O0OUO0ODTDO

0 01 00 O0OO0OTUO
1 0 01 O

1 001 00 0O
W = and A=10 0 1 0 O

1 0001 000
01 0 0 1

1 000 01 00

1 0000 010

KlOOOOOOO/
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As depicted in Fig. 5.4 the input is z = (y, x) where y is of 3 bits while x comprises
of 5 bits. The input is transformed into a vector z' = zW where z' = {y',2'}. The 5
bits ©' are input to the eight Cellular Automata Uy to Ug. During the generation of the
S-Bozes each automaton is evolved for different clock cycles. For instance automaton
Ui is clocked ny times, Us for noy times and so on. All the quantities nqy,na,...,ng are
pairwise distinct. In this example, hence number of such choices is 3' Ps. Thus varying
the number of cycles of the CA we can get various S-Bozes, all of which satisfy the
desired cryptographic properties. The outputs from the eight automata are multiplexed
out using the three bit select lines, y'. The five bit output is passed as it is as the five
LSBs of the CASBox output. The first three bits of the CASBox are generated from
the five bits by the linear transformation A and the non-linear permutation nl(y). In

this construction nl(y) is the LFSR based function/ non-linear permutation in V.

Input to CASBox

- 8hits

y X

W,
y N
x | 5ois
1T —1» ””””””” —ﬂ ”””””””””” R S - RERRRh : T T
: | v 1 4’1 4'} :
: Apply Apply ‘ Apply Apply Apply Apply | |
T T T T T T
5 5 5 5 5 5 ‘
niclock cycles| | nglock cycles nlock cycles | |ngdlock cycles | n.clock cycles ngclock cycl !
Ys Vs Yy
i i {

5 bits

Output from CASBox

Figure 5.4: An 8 x 8 CASBox

As an example, let us operate the first automaton once, the second automaton

twice, the third thrice and likewise continuing the eighth automaton for eight clock



112

5. CASBOX

cycles.

The S-Bozx generated with these parameters is represented by the following table

(table 5.1):

Table 5.1: A generated 8 x 8 S-Box

0 [120] 60 | 198|150 | 9 |207|210| 75 | 95 | 153 | 15 | 86 | 165 | 225 | 144
39 | 27 | 221 99 | 18 | 201 | 141|212 | 68 | 20 | 80 | 130|250 | 77 | 139 | 190
128 | 36 | 142 | 79 | 23 | 223 | 16 | 189 | 90 | 168 | 103 | 240 | 247 | 105 | 195 | 56
12 | 2 | 205|166 | 93 | 63 | 149 | 146 | 42 | 114 | 216 | 229 | 65 | 117 | 186 | 235
64 | 74 | 211 | 208 | 52 | 104 | 248 | 173 | 193 | 188 | 44 | 88 | 148 | 191 | 38 | 4

182 | 37 | 181 | 47 | 13 | 200 | 81 | 157|217 | 61 | 164 | 73 | 67 | 241 | 97 | 218
32 | 57 | 222|152 | 178|220 | 100 | 8 | 3 | 206 | 118|228 | 50 | 136 | 111 | 138
215 | 41 | 145 | 48 | 213 | 92 | 187|109 | 199 | 237 | 10 | 127|102 | 39 | 131 | 129
192 | 163 | 101 | 132 | 170 | 46 | 106 | 108 | 252 | 243 | 183 | 58 | 29 | 245 | 51 | &9
184 | 159 | 219 | 126 | 113 | 177 | 119 | 53 | 172|231 | 33 | 232|238 | 66 | 6 | 40
96 | 70 | 1371202 | 25 | 83 | 249|214 | 110 | 30 | 180 | 161 | 45 | 49 | 254 | 135
196 | 72 | 226 | 11 | 123 | 155 | 84 | 209 | 54 | 236 | 35 [ 156 | 179 | & | 175|124
224 | 143 | 31 | 121 | 167 | 158 | 7 | 55 | 115|107 | 242 | 227 | 21 | 91 | 203 | 140
234 | 28 | 133|122 | 98 | 194 | 82 | 251 | 151 | 22 | 134 | 14 | 62 | 233 | 112 | 174
160 | 176 | 8 71| 76 | 43 | 204 | 244 | 94 | 154 | 125|230 | 17 | 162 | 26 | 246
185 | 78 [169 | 1 | 197 | 69 | 253 | 34 | 116 | 87 | 239 | 147 | 171 | 255 | 24 | 19

The properties of the S-Box are:

The S-Boz is one-to-one and hence invertible. The inverse CASBoz can also be
implemented using a programmable mazimum length CA based structure and is
straightforward from theorem 5.6. The architecture is depicted in Fig. 5.5.

The non-linearity of any non-zero linear combination of the 8 boolean equations
i5 112 except in 2875 —1 = 7 cases where it is 2872 = 64, due to the LFSR based
non-linear permutation in Vz. The mazimum non-linearity for an 8 wvariable

boolean function is 120, thus the achieved non-linearity is very high.

Any non-zero linear combination of the 8 boolean functions is a balanced boolean

function.

The mazimum bias value of an entry in the linear approximation table is either

16 or 64 as expected in the theoretical results.

5. Robustness against Differential Cryptanalysis is 0.875 as expected.
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6. The S-Box satisfies SAC.

Input to Inverse CASBox

i

o te
3 bits /i/ /i/_E_tLIK—
ni-1 A
5 bits
3 bits 3 bits
(+)=
\ g e B P e R TR — — e H
Py P Y N { Y P Y% 1 % P 1%
ApplyTs | || ApplyTs | i || ApplyTs |!|| ApplyTs Apply Tg Apply Tg Apply Ts Apply Tg
! ! !
(15-ny) I @5-ny) ! (15-ny) | ! (15-ng) (15-ng) (15-ng) (15-n) (15-ng)
clock cycles 1 clock cycles | || | clock cycles i| | clock cycles clock cycles clock cycles clock cycles clock cycles | |
i ' ‘ "

————————————————— ﬁ

Multiplexer

v X" 5 bits

8bitsT z

Output of Inverse CASBox

Figure 5.5: An 8 x 8 Inverse CASBox

The elegance of CASBoz is its programmability i.e, varying the number of clock
cycles one can derive large number of S-Boxes, all of which are cryptographically

robust.

5.8 VLSI Design of the CASBox

In the present section we outline the VLSI design of the CASBox. The architecture
of the design as depicted in Fig. 5.6 is a scalable and modular design of the CASBox.
The n bit input is first converted by the W transformation. The n bit output of the
transformation W is split into two parts, of k£ and (n — k) bits respectively. The & bit
output is processed by the k cell CA Based Transform, which is programmed by the
rule of a maximum length group CA through the £ bit bus rule. Contrary to the basic
architecture described previously, instead of the 2" ~* linear machines, the design uses
only one single k-bit maximum length group CA. In the theory developed for the
CASBox (section 5.7) each of the 2°=% CA runs for pairwise distinct clock cycles
Ni, Ns, ..., Non—x which serves as a key to the S-Box. The information is passed to
the device as k bit inputs, iter[1],...,iter[2"~%]. The k-bit upcounter checks whether
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the present count value count equals any of the values iter[1], ..., iter[2"*]. If count
is equal to iter[i], then the line cntl[i] goes high and the output of the CA based
transform is transferred to Buffer[i. Likewise all the 2"7* k bit outputs of the CA
based transform are stored in the buffers. The other (n — k) bits of the input is
used to select one of the 2% outputs of the group CA. Finally the k bit output is
transformed by B and the non-linear permutation nl(y) to yield the n bit output. It
may be pointed out that an alternative architecture would have been to check the
(n — k) bits first and immediately decide the number of clock cycles for which the
group CA has to be run to yield the k& bit output. Finally the £ bit output is converted
by the transformation B and nli(y) to yield the n bit output. However in such a case
the time required to compute the output of the CASBox depends on the input, which
can lead to a timing based side-channel cryptanalysis of the block cipher built out of
the CASBox. In our proposed architecture however the time required is constant and
independent on either the input or number of iterations.

rule
(Kbits) o Buffer] K
q
K| CA Based Buffer | k
Input bits -
7T W Transform — | 1 K B Output
(n bits) T MUX = it
n-k bits Buffer| K r n—k bits
L2 n—k bits
= nl
cn@ cnt[2n ]
iter[1] k (¥) o ?;D O
iter[21K] K K 1
Counter

Figure 5.6: Top-level architecture of the CASBox

In table 5.2 the results of the implementation have been furnished.

From the point of view of hardware complexity the Cellular Automaton used is
a k bit maximal group CA which uses three neighbourhood rule. The number of
clock cycles required is of the order of 2¥. In order to have maximum non-linearity
and robustness against Linear Cryptanalysis the value of the parameter £ has been
kept just greater than n/2. As the value of k approaches n, the hardware complexity
reduces with a corresponding reduction in the security margin (refer table 5.3).
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Table 5.2: Performance of the CASBox implemented on Xilinx XCV-1000

platform
Dimension | XOR° NAND NOT FF MUX | Slices Slice FF LUT Freq
8 x 8 11 0 0 51 7 65 51 115 | 102.828 MHz
10 x 10 14 0 0 109 8 122 109 204 93.79 MHz
16 x 16 23 0 0 1189 11 1401 1189 1606 | 94.233 MHz

Table 5.3: Dependence of efficiency in implementation and the parameter
k for an 8 bit CASBox

k | XOR NAND NOT FF MUX | Slices Slice FF LUT Freq

51 11 0 0 51 7 | 65 51 115 | 102.828 MHz

6| 10 0 0 37 8 | 55 37 94 | 106.417 MHz

7| 9 0 0 20 8 | 48 29 85 | 108.944 MHz
5.9 CASBox helps in preventing attacks on SPN

ciphers

The design of CASBox has some inherent features which help in preventing attacks
on the SPN ciphers built out of it. The reasons may be listed as follows:

1.

CASBox helps to randomize SPN ciphers:

An n x n S-Box generated by the CASBox has two parameters (n, k) where
k > n/2. Here we require 2"* linear CA chosen from the set S. Inherently
each of the automata runs for different clock cycles, say Ny, Ns,... such that
they are pairwise distinct. Changing the number of clock cycles results in a
different S-Box, which in turn gives rise to a different SPN cipher. So, CASBox
has an inherent scope of keying and hence implements randomly selected S-
Boxes. The selection of S-Boxes can be synchronized between the sender and
receiver according to some algorithm (output of a pseudo-random algorithm
having the same input seed and running at both ends). As reported in [152], if
the substitution boxes of an SPN are randomly selected, then the expected value
of any expected linear probability (ELP) converges to that of a true random
cipher, as the number of rounds is increased. The CASBox gives a practical
implementation to realise such a cipher. Such a randomly selected S-Box helps
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to prevent even unknown attacks, as when there is no systematic design there
can be no systematic weakness.

2. CASBox has no Algebraic description: The S-Boxes generated by the
CASBox lacks any straight-forward algebraic description. Even the Rijndael
S-Box, though very complex when regarded as a function, can be characterized
in several ways by algebraic relations, being true with high probability, usually
1[27]. On page 6 of [93], the designers of AES say:”.. The disadvantage of these
bozes is that they have a simple description in GF(2™), which is also the field
in which the diffusion layer is linear. This may create uneasy feelings, but we
are not aware of any vulnerability caused by this property. For the time being we
challenge cryptanalysts to demonstrate any vulnerability caused by this property.
Should such a vulnerability exist, one can always replace the S-Boxes by S-Boxes
with similar properties, that are not algebraic over GF(2™).” The idea of alge-
braic attacks have been employed over stream ciphers and also block ciphers.
The seminal idea of Patarin [157] and later improved by [158, 159] has lead to
the breaking of several stream ciphers [160, 86, 87, 161] and also is probing the
security of AES [24, 26]. Jakobsen clearly makes his point showing to obtain
that to obtain secure ciphers ”...it is not enough that round functions have high
Boolean complexity. Likewise, good properties against differential and linear
properties are no guarantee either. In fact, many almost perfect non-linear func-
tions should be avoided exactly because they are too simple algebraically....”. In
[27] the author makes extensive investigations on the inverse function in GF'(2")
and some of its linear equivalents and uses to build them both as components
of highly insecure ciphers and as the algebraic structure that can be exploited
in attacks. The disadvantage of S-Boxes which does not have an algebraic de-
scription is implementation. The fact that the Rijndael S-Box may be efficiently
implemented both in hardware [162, 163, 164, 165, 166, 167] and software [168]
makes it ideal for high throughput applications like wireless. Our CASBox is
an ideal alternative in the fact that it may be efficiently implemented using the
programmable Cellular Automata based structure and the S-Boxes generated
lack easily obtainable algebraic relations and hence may be resistant against al-
gebraic attacks. However deeper investigation is required to draw a conclusion
on the topic.

5.10 Conclusion

In the present chapter we have developed a programmable Cellular Automata based
S-Box, called CASBox. We have shown analytically that the group properties of a
maximum length CA can be appropriately multiplexed to generate cryptographically
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robust S-Boxes. The VLSI design of the CASBox show that the design is efficient,
scalable and conducive for high speed designs. The next chapter inspects whether
the key mixing step in SPN block ciphers, traditionally performed by xoring, can be
replaced favorably with modular integer addition.






Chapter 6

Key Mixing in Block Ciphers
through Addition modulo 2"

6.1 Introduction

Linear Cryptanalysis [30] is one of the most powerful and significant attacks applicable
to symmetric key block ciphers. The block ciphers have to be designed so that they
provide resistance to Linear cryptanalysis (LC). Although some design methodologies
have been proposed in [169, 170, 171, 172], the systematic development of block
ciphers with resistance against linear cryptanalysis is still a challenging task.

Linear Cryptanalysis essentially deals with the probability of approximating the
input and output of non-linear functions, used in the block cipher with linear expres-
sions [148]. The objective of LC is to obtain the last round key of a R round block
cipher from the linear approximations of (R —1) rounds. The linear approximation is
achieved by combining the smaller linear expressions with large bias [148]. The bias
of the linear expression is obtained using the Piling-Up lemma and has to be suitably
high for the attack to successfully reveal the last round keys. From this lemma it is
evident that for a linear expression with a large bias, the biases of each individual
sub-expressions have to be significant. If one of them is negligible (almost zero), then
the bias of the resultant expression is also negligible (almost zero) and does not lead
to a successful linear cryptanalysis.

In Substitution-Permutation Network (SPN) like AES, DES the key mixing step
is performed by key xoring where the key bits are simply xored (that is added without
carry) with the data bits before each round and after the last round. In [173] the linear
approximations of addition modulo 2" (with carry) was studied. The author derived

119
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an 0(logn)-time algorithm to compute the correlation of linear approximations of
addition modulo 2". The algorithm is optimal and generates all linear approximations
with a given non-zero correlation coefficient, and also determines the distribution of
the correlation coefficients. The present work computes the reduced bias of linear
expressions in the cipher when key mixing is performed in an n bit block cipher
by addition modulo 2". Indeed some block ciphers like MARS[174], IDEA[175] and
FEAL[176] use addition modulo 2" inside their rounds. Also in the design of "SEA: A
Scalable Encryption Algorithm for Small Embedded Applications” the designers have
used addition modulo 2" [177]. One of the reasons behind the use of such a step
is the improvement in non-linearity. However the security margin provided by the
addition step was not computed analytically and was hence under-estimated. In the
cryptanalysis of FEAL[178] the best linear approximations of the arithmetic addition
step was computed. In [179] the cryptographic significance of the carry term involved
in integer addition was studied. The aim of the work was to investigate the probability
distribution of the carry for integer addition with arbitrary number of integers.

The present work revisits the analysis of the integer addition step but with a
different objective, to observe the effect of a key mixing by addition modulo 2" on
Linear Cryptanalysis. The work presents a new approach to analytically determine
the bias of linear approximations of the addition step and to estimate the best possible
bias. Finally, it shows experimentally that such a key mixing operation can help
to foil the powerful linear cryptanalysis. It has been experimentally demonstrated
that an SPN block cipher, named GPigl which performs key mixing through xoring
breaks when Linear Cryptanalysis is applied. However, when the key mixing step is
performed through addition modulo 2", the modified SPN cipher named GPig2 does
not reveal the key when attacked using Linear Cryptanalysis (LC).

In the next section (section 6.2) the maximum bias of linear approximations for
addition modulo 2™ has been evaluated. Section 6.3 presents the construction of the
block ciphers GPigl and GPig2. Section 6.4 shows theoretically that the bias of
sample linear approximations for GPig2 is much less compared to those in GPigl.
Section 6.5 compares the linear attack on GPigl with that over GPig2 and demon-
strates that GPig2 is a stronger cipher. Finally section 6.6 summarises the advantages
of performing key mixing in block ciphers through addition modulo 2" compared to
bitwise xor. The work is concluded in section 6.7.

6.2 Linear Approximation of Addition modulo 2"

Block Ciphers use simple bit-wise exclusive OR between the key bits associated with
a round and the data block input to a round. Also at the end there is a key xoring
step with a round key, so that a cryptanalyst cannot easily work his way backwards.
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Linear Cryptanalysis (LC) tries to take advantage of high probability occurrences
of linear expressions involving plaintext bits, ciphertext bits and subkey bits. The
basic idea is to approximate a portion of the cipher with an expression that is linear,
where linearity refers to a mod-2 bitwise exclusive or operation. The approach in
LC is to determine expressions of the form which have a high or low probability of
occurrence. Let us consider an expression of the form:

<Xig®Xp®... X >0<Y;,80Y,...0Y;, >=0
where X; represents the i-th bit of the input X = [X;, X5,...] and Y represents

the j-th bit of the output Y = [¥7, Y5, ...]. This equation is representing the exclusive
OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expression
will hold with probability 1/2. If p; is the probability with which the expression holds
then the bias is defined as [p; — 1/2|.

In order to extract the key bits the cryptanalyst forms linear approximations for
R — 1 rounds (if R is the total number of rounds) with large probability bias. Then
the cryptanalyst attacks the last round subkeys or round keys. The probability of
various linear expressions are formed and are collected using the Piling-Up Lemma
to form bigger equations. The lemma is stated underneath without proof.

Lemma 6.1 [30] For n independent, random binary variables X, X, ..., X, with

bias €1,€2,...,€p,
n
PriX;®..0X,=0)=1/2+2""[]«
i=1
Thus if X, Xs,...,X,, are n linear approximations then the bias of the linear

approximation made out of these n equations is denoted by [148, 147]:

n
_ on—1
€1,2,..n = 2 | | €
i—1

Thus it is evident that if the bias of any of the linear approximations fall then the
bias of the resultant equation also reduces. In the following theorems we compute the
maximum bias of all possible linear approximations of addition modulo 2”. Hence
we obtain the best linear approximation of addition modulo 2" in order to perform
LC. Subsequently the biases are used to perform Linear Cryptanalysis (LC) against
an SPN cipher, where the key is mixed using addition modulo 2". Results show that
such a cipher becomes stronger against Linear Cryptanalysis.
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Theorem 6.1 If two n bit numbers, © and k generate an n bit number y = (x + k)
mod 2", then the probability p; of denoting yli], each output bit of y by the linear
function x[i] @ k[i] is p; = 1/2 4+ (1/2)**! and p; lies in the range 1/2 < p; <1 as i

lies in 0 <1 < n.

Proof: Let c[i] denote the carry out from the addition of z and k after 7 bits, (refer
Fig. 6.1). Clearly, y[0] = z[0] @ k[0], with probability 1. Thus py = 1.

c[i-1]

=

(i+1) i (i-1 10

1. The Output Register y which stores the sum of two registers x and k
2.0,1,...,3i-1), i, (i+1), ... indicates the bit positions of y
3. c[i-1] indicates the carry out after the addition of (i-1) bits are complete

Figure 6.1: The Output State of the sum

Now, y[1] = z[1] @ k[1] when there is no carry c[0], fed from the 0% bit.
Now, ¢[0] = 0, with probability 3/4 and hence p; = 3/4.
Let, the event that the #;, bit of y can be expressed as the linear expression in

z[i] and k[i] has a probability p;. Similarly the (i 4 1) bit can be linearly expressed
with a probability p;,1-

Now, we note the following fact. The (i + 1) bit cannot be linearly expressed if
there is a carry from the ™ bit, that is if c[i]=1.

This can be divided into two mutually exclusive cases.

e First, the event say A is the case when c[i — 1]=0 and the addition of z[i] and
y[i] generates a carry. Now, when c[i — 1] = 0, then y[i] must have been linearly
expressed (using the above fact) and the probability by definition is p;. Thus
the probability that A is true is 1/4.p;.

e The other event B is the case where c[i — 1]=1 and the addition of z[i] and y][i]
propagates the carry. The probability that B is true is 3/4.(1 — p;).

Clearly if the event (AUB) occurs then the (i41)% bit cannot be linearly expressed.
The probability that the (i + 1) bit cannot be linearly expressed is (1 — p;41)-

Thus, (1 —pi+1) = P(AUB)
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= P(A)+ P(B) (because A and B are mutually exclusive)
1/4.p; +3/4.(1 — p;)
or, piy1 = 1/4+p;/2

Using the recurrence relation we have,

piy1 = 1/4+4p;/2
= 1/4+1/2(1/4+ pi_1/2)
1/4[1+1/2] 4 (1/2)*pi—s

Thus continuing we have,

piy1 = 1/4[1+(1/2)+ (1/2)* + ...+ (1/2)] + (1/2)"'po
1/2[1 + (1/2)™1], since py = 1

Thus, p; = 1/2[1 + (1/2)"] = 1/2 + (1/2)"L.
Using the equation we have po = 1,p; = 3/4,p, = 5/8,p3 = 9/16 and so on.
Clearly, 1/2 < p; < 1.
O
Therefore, the bias of the linear approximation relating to the i** bit position is
(i —1/2) = 1/2"%.

In the following theorems we compute the maximum value of the biases of all
possible linear approximations of the sum bits.

Theorem 6.2 If two n bit numbers, © and k generate an n bit number y = (x + k)

mod 2", then the largest bias of a linear approximation of each output bit of y is 1/4.

Proof: It is evident that, y[i] = z[i] @ k[{] ® c[i — 1], where c[¢i — 1] is the carry
in of the 5** bit of the addition. The carry in is the non-linear part of the equation.
Thus in order to obtain various linear approximations for the non-linear part linear
approximations have to be found out for the carry in term. Each possible approxi-
mation of c[¢], denoted by L[i] will give rise to different biases which are equal to the
bias of a linear approximation of y|i].

The equation for ¢[0] = x[0]k[0], which is a boolean function for two variables.
Likewise, ¢[1] = majority(z[1], k[1], ¢[0])



124 6. Key Mixing in Block Ciphers through Addition modulo 2"

= majority(z[1], k[1], z[0]&[0])

= z[1]k[1] ® z[1]x[0]k[0] & K[1]z[0]%][0].
Thus c[1] is a boolean function of four variables.
Likewise, c[i] is a boolean function for 2(i + 1) variables.

The maximum non-linearity for an m variable boolean function, where m is even,
is 2m~1 —2m/2-1 Qych a function is known as a bent function. Hence, the probability
of match for the best linear approximation of a boolean function with maximum non-

. . . . . —1_om/2—-1 _
linearity operating on an even number of variables is: 1 — 222" = 14 2=(m/2+1),

Thus, the probability of matching for the best linear approximation for a bent
function is 1/2 + 270+2) substituting m = 2(i + 1).

The output y[i] = z[i] ® k[i] ® c[i — 1] can thus be approximated by a linear
equation, y'[i] = z[i| ® k[i] ® L[i — 1], where L[i — 1] is the best linear approximation
for c[i — 1].

Hence, if the term c[i — 1] was a bent function, the largest probability of L(i — 1)
matching c[i — 1] is 1/2 4+ 2707142 = 1/2 4 2-(+1),

However, the non-linearity of c[i — 1] is not maximum. We note that c[i — 1] =
ofi—1k[i—1] ...

The non-linearity of a two variable and function is 1. But since ¢[i —1] is a boolean
function for 2(¢ — 1 + 1) = 2¢ variables, the number of times the truth table of the
term z[i — 1]k[i — 1] appears in the truth table of c[i — 1] is 2272. Thus the resultant
non-linearity of z[i — 1]k[i — 1] is 2%2.1 = 2%°2,

It may be noted that since the other terms of ¢[i — 1] are also and terms of more

than two variables (and thus have less non-linearity than z[i — 1]k[i — 1]), the non-
linearity of c[i — 1] is the same as that of z[i — 1]k[i — 1], that is 222,
22i—2

Therefore the largest probability of L(i — 1) matching c¢(i — 1) is 1 — %5 = 3/4.

Thus, the largest bias of a linear approximation for c[i — 1] and hence y[i] is 1/4.
U

Corollary 6.1 The best linear approximation for s[i] is a[i] ® k[i] ® k[i — 1], where

the bias is 1/4. 1If y[i] is approzimated by the equation ali] ® k[i], then the bias is
2~ (),

We see that the bias of the linear approximations involving the key bits reduces
considerably and makes the finding of linear approximations in the cipher with a
large bias more difficult. Discovering the key through Linear Cryptanalysis becomes
improbable.

In order to observe the effects of key mixing through addition on linear cryptanal-
ysis we choose two SPN ciphers, GPigl and GPig2. The cipher, named GPigl, has
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been chosen from [147, 148]. GPig2 is constructed in such a way that it differs from
GPigl so that the key mixing is performed through addition modulo 2". First, the
construction of the two block ciphers are highlighted in the following section.

6.3 Construction of the SPN Ciphers : GPigl and
GPig2

In this section we present the construction of Substitution-Permutation networks,
GPigl and GPig2, which is subsequently cryptanalyzed using linear cryptanalysis.
The cipher GPigl is essentially a traditional SPN block cipher, where the key mixing
is performed by xoring between the data and the round keys. GPigl is modified into
another cipher and named GPig2, the only modification in the latter cipher being
that the key mixing step is performed through addition modulo 2". In subsequent
sections linear cryptanalysis against the modified cipher has been compared with that
of the original cipher to demonstrate the benefit of the change.

6.3.1 The Substitution-Permutation Network-GPigl

In Fig. 6.2 the unmodified block cipher GPig1 is illustrated. The cipher takes a 16-
bit input block and processes the block by repeating the basic operations of a round
four times. Each round consists of

e Substitution
e a Transposition of bits (Permutation)
e a Key Mixing Step

This basic structure is the Fiestel Network and the basic operations are similar
to those found in DES and in many modern ciphers, including Rijndael. Thus, the
experimentation performed on the SPN cipher with respect to linear cryptanalysis is
also applicable in case of standard and more practical block ciphers, without loss of
generality.

The various blocks used in the block cipher are detailed next.

Substitution

In the cipher, the 16 bit data block data is subdivided into four groups (sub-blocks).
Each sub-block forms an input to a 4x4 S-Box (a substitution with 4 input and 4
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subkey K1 Mixingthrough exoring
(I T TITT ITTTT TT1]
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Sio 13
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subkey Ko Mixingthrough exoring
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subkey K3 Mixingthrough exoring

LTI Tirl TRl Tl
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subkey K4 Mixingthrough exoring
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Figure 6.2: The Structure of GPigl
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output bits), which can be implemented easily with a table lookup of sixteen 4-bit
values, indexed by the integer represented by the 4 input bits. For the cipher, the
same S-Box is chosen for all the rounds and is chosen from the S-Boxes of DES. It
is the first row of the first DES S-Box. In table 6.1, the most significant bit of the
hexadecimal notation represents the leftmost bit of the S-Box in Fig. 6.2.

Table 6.1: S-Box Representation (in hexadecimal)

input (0|12 |3[4|5]6|7|89|A|B|C|D|E|F
output | E|{4|/D|1|2|F|B|8|3|A|6|C|5|9|0]|7

Permutation

The permutation portion of a round is simply the transposition of the bits or the
permutation of the bit positions. The permutation of Fig. 6.2 is given in table 6.2
(where the numbers represent bit positions in the block, with 1 being the leftmost bit
and 16 being the rightmost bit) and can be simply described as: the i input bit is
connected to the 5% output bit (see Fig. 6.2).

Table 6.2: Permutation

input (12|34 5|67 |8 |9|10(11|12 13|14 15|16
output |1 [5|19(13(2 61014 3| 7 |11 |15 4 | 8 [12 |16

Key Mixing

The key mixing is achieved in the block cipher through bit-wise exclusive-OR between
the key bits associated with a round (referred to as a subkey) and the data block input
to around. The subkey for a round is derived from the master’s key through a process
known as the key schedule. In the cipher, we shall assume that all the subkeys are
independently generated and are unrelated.

Decryption

In order to decrypt, data is essentially passed backwards through the network. How-
ever the S-Boxes have to be bijective. Also, the subkeys have to be applied in the
reverse order for proper decryption.



128 6. Key Mixing in Block Ciphers through Addition modulo 2"

6.3.2 The modified SPN Cipher-GPig2

GPig2 is a similar block cipher as GPigl with the only difference being in the key
mixing step. Instead of xor operations between the data of the 7™ round (X;) and the
i'" round key (K;), the key mixing in GPig2 is performed through addition modulo
216, Thus, we replace the key mixing step of the i"* round:

Vi=X,® K,
with, Y; = (X; + K;)%2'®, where '+’ represents the arithmetic addition
operation. The symbol ‘%’ is the modulo operation, st 0 < Y; < 216,

It is clear that the step is a reversible step, since X; = (V; — K;)%2'¢, where '~/
refers to signed arithmetic subtraction.

In the present section both GPigl and GPig2 are analyzed under the light of
linear attack. In order to start with the analysis we first need to analyze the S-Box
components and obtain linear approximations for the S-Box, which is the same in
both the ciphers.

6.4 Linear Cryptanalysis of GPigl and GPig2

The linear approximations of the S-Box is presented in [148, 147]. We summarise the
result with a brief description. As Fig. 6.3 shows, the input bits of the S-Box are
represented by X7, X5, X3, X4 and the output by Y7, Y5, Y3, Y,. A linear approximation
involving the input bits is denoted by a; X7 ® asXo ® a3 X3 & a4 X4, where a; € {0,1}.
The approximation can be represented by a hexadecimal value ajasazay, where ay
is the most significant bit. Similarly the linear approximation involving the output
bits, b1 X1 @ be Xy @ b3 X3 & by Xy, where b; € {0,1}, is denoted by the hexadecimal
value b1byb3bs. In order to obtain the probability of a linear approximation, all the
16 possible input values for X are applied, and the corresponding output values
of Y are examined. The number of matches between the output Y and the linear

1

approximation of the output is obtained (V). Thus the bias is % —5-

For example, for the expression,
Xod X3 =Y ®Y30Y,,

it is observed that out of the 16 cases, 12 is the number of matches. Thus the
ey . . . . 12 _ 3 . . 3 1 _ 1
probability of the linear approximation is {5 = % and the bias is § — 5 = 7.
A complete enumeration of all the linear approximations of the S-Box in the cipher
is given in table 6.3 [148]. The entries of the table are filled up with the values
N — 8. Thus, the bias for a linear approximation is obtained by dividing an entry in

the table by 16. Hence, for the above example the input sum in hexadecimal is 6 and
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sl

S-Box

AN
Figure 6.3: S-Box Mapping

the corresponding output sum is B. Thus the corresponding entry in the table is +4

and therefore the bias is % = i.

Table 6.3: Linear Approximation Table (LAT) of S-Box

Output Sum

0o 1 2 3 4 5 6 7 8 9 A B C D E F

0] +8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 -2 | -2 0 O -2|+6 | +2| 42 0 0| +2]|+2 0 0

2 0 0 -2| -2 0 0 -2 -2 0 0] +2 | +2 0 0] -6|+2

I 3 0 0 0 0 0 0 0 0| 4+2| 6| 2| -2|4+2|+2| -2 | -2
n 4 01]+2 0| -2 -2 4| -2 0 0| -2 O(+2|+2| 4| +2 0
p 5 0 -2| -2 0] -2 O|+4|+2| -2 0| 4| +2 0| -2| -2 0
u 6 0|+2| -2 |+4 | +2 0 0| +2 0| -2|+2|+4| -2 0 0| -2
t 7 0| -2 0| +2|+2| 4| +2 0| -2 0] +2 0| +4|+2 0] +2
8 0 0 0 0 0 0 0 0| 2|(+2|+2| -2|4+2| 2| -2| -6

S 9 0 0 -2| -2 0 0| -2 2| 4 0 -2|+2 0| +4|+2| -2
u A 0|+4| 2| +2| 4 0| +2| -2 |42 | +2 0 0| +2]|+2 0 0
m B 0| +4 0| -4|+4 0|+4 0 0 0 0 0 0 0 0 0
C 0| -2|+4| 2| -2 0| +2 0] +2 0|+2 ]| +4 0] +2 0| -2

D 0| +2|+2 0| -2|+4 0|+2| 4| -2 |42 0] +2 0 0] +2

E 0| +2|+2 0| -2| 4 0| +2| -2 0 0 -2 4|+2| -2 0

F 0| -2 4| 2| -2 0|+2 0 0| -2|+4| 2| -2 0] +2 0

6.4.1 Linear Approximations for the complete Ciphers

The biases of the linear approximations have been obtained for the S-Boxes of the
SPN networks. By concatenating appropriate linear approximations of the S-Boxes,
the linear approximations of the complete cipher involving plaintext bits and data
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bits from the output of the second last round of S-Boxes are obtained, using the
Piling-Up lemma. Following is an example of the calculation of the bias of a linear
approximation of both the ciphers. It is evident from the results that the bias of a
linear approximation for GPig2 is much lesser than that for GPigl.

In the following example, U;(V;) represents the 16-bit block of bits at the input
(output) of the round i S-Boxes and U;; (V;;) represent the j™ bit of block U;(V;)
(where the bits are numbered from 1 to 16 from left to right in Fig. 6.2). In case
of GPigl the 16-bit block key for the i"* round , Kj, is exclusive-ORed at the input
to round i. However, Kj is the key exclusive-ORed at the output of round 4. In the
case of GPig2, instead of exclusive-OR, as already pointed out, the key bits are added
modulo 2" to the data blocks.

Example 6.1 Comparison of the probability biases of linear approximations for the
first 3 rounds of GPigl and GPig2

Sample Linear Approzimation: Usyg @ Uss B Us1a @ Us16 @ Ps @ P, ® P3 =0
GPigl:
In order to obtain the linear approximation for the first two rounds we consider

the following linear expressions:

1. Vig=Us ® Uy @ Ui, with bias

2. Uiy = Ps & Ky 5, with bias 3
3. U7 = P; ® Ky 7, with bias %
4- Ul,s = Ps ® Klyg, with bias %

5. Uy = Vo @ Vo, with bias —i

6. Uys = Vig ® Ko, with bias %

The concatenation of the above expressions lead to the following approrimation:

Vog@Vosg @O PO RO Kis K17 DK g Kopg=0 (6.1)

The Piling-Up Lemma predicts that the bias of equation 6.1 is equal to
1
2

b= PGHK-DD —4
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Similarly, in order to obtain the linear approximation for the third round we con-

sider the following expressions:

1. U3,6 = ‘/2,6 ) K376, with bias %
2. Uz 14 = Vog @ K314, with bias %
8. Usg = Va6 ® Vs, with bias —=

4

4. Us 14 = V314 @ V316, with bias —%

Combining the equations we arrive at the erpression:

Vae @ Vag® V314D V316 D Vo ® K36® Vog® K314 =0 (6.2)
with a bias of Py = 2)(55(—7)(—1)) = +5-
Combining equation 6.1 and equation 6.2 we get the expression:
Vss@Vas®V314@ V316D s PP Ps@ K1 ;8K 1K1 sP Ko s®K36P K514 =0 (6.3)
The following expressions:
1. Usye = V36 @ Kyg
2. Uyg = V314 @ Kyg
3. Usga = V33 ® Kya

4. Usi6 = V316 © K416

each having a bias of %, are combined with equation 6.3 to finally obtain:

U @Usg DUs1s ®Us16 P D P ® P @ Z =0 (6.4)
K

Here, ) 1 =Ki; O K11 ®Kis® Kop® K36® Ks14® Kig® Kug® Ku1a® K6

Hence, using Piling-Up Lemma the bias of the equation is:

Bs = 25(B1Ba(3r)) = 2°((—3)(3)(50)) = —35-
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Now, since ), is fized (that is either 0 or 1 depending on the key bits), the linear
approximation

U ®Usg ®Us1a @ Us1s ® 5O P ® B =0 (6.5)

holds with probability % — %:é—g orl— :1,)—3, depending on whether Y ;- is 0 or 1.

Thus, the bias of the linear expression (equation 6.5) has a magnitude of 3%
Next, we compute the bias of the linear expression in the case of the cipher GPig?2.
GPig2:

In order to obtain the bias of the linear approrimation a similar calculation is

performed.

The biases of the linear approrimations of the S-Boxes are identical for both the
ciphers. Only the biases of the linear expressions involving the key bits are different
for GPig2 and are computed using theorems 6.1 and 6.2. We first enumerate the

linear expressions involving the key bits and the corresponding biases:

1. U1,5 = P5 D K1,5 & K1’4, with bias i
2. U7 =P, ® K7 ® Ky, with bias i
3. Ug=FP® K, 3® K7, with bias i

4- U2,6 = Vl,ﬁ S KQ,G D K2,5, with bias i

Thus, the bias of equation 6.1 in case of GPig2 is :

B = POHICDY =ik

In order to obtain the linear approrimation for round 3, the linear expression
tnvolving the key bits are:

1. Usg = Vo @ K36 ® K35, with bias i

2. Usia = Vo @ K314 @ K313, with bias i

Thus the bias of equation 6.2 becomes:
B = P(H-D-D) =
In order to arrive at the final expression (equation 6.5), the expressions involving

the key bits of round 4 are
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1. Uye = V36 @ Kug D Ky, with bias i
2. Uyg = V314 ® Ky ® Kyy7, with bias i
3. U4,14 = V:’),’g (&) K4,14 D K4,13, with bias i

4. Usie = Va16 ® K16 ® Ku 15, with bias

Thus, the bias of equation 6.5 is:
4
Bs' = 25(/51%2%%%) = 25((‘%)(3%)(% ) = QLO ~ 0.

The above example demonstrates that when the key mixing step in the SPN block
cipher is performed with the help of addition modulo 2", the biases of linear expres-
sions are almost zero, whereas for GPigl they are as high as 31—2 = 0.03125. Thus while
GPigl breaks in the face of Linear Cryptanalysis, GPig2 is much resistant against
the attack.

In the following section we perform a linear attack on both the ciphers, GPigl
and GPig2 and evaluate the strength of the second cipher against the cryptanalysis.

6.5 Experimental Extraction of Key Bits

In this section it is experimentally shown that GPigl is successfully cryptanalyzed
using the linear expression, mentioned in the example. It is also demonstrated that
for GPig2 such an attack does not work. The reason being, in order for linear crypt-
analysis to be successful the bias of (R—1) round linear expressions (approximations)
for an R round block cipher has to be large. However, in the case of GPig2 the biases
of linear expressions are very less and hence such equations cannot be exploited in a
conventional linear attack.

6.5.1 Experimental Setup

The procedure adopted to evaluate the last round keys are as follows:

1. A large number (10,000) of cipher-texts are obtained by encrypting plaintexts
i,e we generate 10,000 known plaintext/ ciphertext pairs.

2. The attacker considers the linear approximation (mentioned in the example) of
the first 3 rounds of the ciphers. To restate the expression is:
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Ut ®Usg DUs14a®Us16® Ps & Pr® Py =0 (6.6)

The terms Uy, Usg and Uy 14 affects the S-Boxes Sy and Sy (refer Fig. 6.2).
Hence, the attacker guesses (Ks5,...,Ksg) and (Ks13,...,K516). In case of
GPigl, he xors them with the ciphertext bits to obtain (Vss,...,Vs16). Then
he performs the inverse of the S-Box operations to obtain the values of U,g,
Uss and Uy 4. If their values satisfy equation 6.6 then a count is incremented
for the guessed key bits (Ksp,. .., Kss, Ks513,...,K516)- The partial subkey
which has the count which differs greatest from half the number of plaintext/
ciphertext samples (50,000) is assumed to represent the correct values of the
guessed key bits. An incorrect subkey is assumed to be equivalent to a random
guess of the bits of the linear expression and this holds with probability close
to 1/2. The same attack is also performed on GPig2. Only we assume that
the attacker knows the values of the key bits (K5, ..., K512). Thus here he
guesses the partial keys (K55, ..., K53, K513,..., K516) and subtracts the key
bits from the ciphertext to arrive at the required values of (Vs5,...,Vs16) and
finally the values of Usg, Usg and Uy 4. The rest of the attack is similar. This
gives a best case scenario to the attacker.

From table 6.4, we see that the attack works fine for GPigl, where the correct
subkey bits (last round) keys (Ksgs, ..., Kss, K513, ..., K516) = [2,4] leads to
the largest bias of 0.0308 and is thus detected. The bias is also close to the
calculated bias of 1/32=0.03125.

However the same attack on GPig2 shows that the bias of the expression for the
correct key bits [2,4] is only 0.0010 which is less than the biases of the incorrect
key bits. The result implies that the probability of linear expressions to hold
in case of GPig2 is much close to 1/2 and is thus very hard to differentiate
from a random guess. Thus GPig2 offers a much better resistance to linear
cryptanalysis than GPigl. Also note that in the experimentation it was observed
that the highest bias (0.0139) occurred for a key bit = E9, which is an incorrect
key.

In the following section we outline the advantages of performing key mixing using
addition modulo 2" over bitwise xor.
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Table 6.4: Experimental Results for Linear Attack

Partial SubKey Bias Partial SubKey Bias
[K5’5, oy K5’8, ey K5,13] XOR ADD [K5,5, ey K5,8, ey K5’13] XOR ADD
1C 0.0023 | 0.0027 2A 0.0099 | 0.0030
1D 0.0042 | 0.0084 2B 0.0053 | 0.0044
1E 0.0013 | 0.0006 2C 0.0060 | 0.0120
1F 0.0055 | 0.0034 2D 0.0107 | 0.0034
20 0.0011 | 0.0023 2E 0.0074 | 0.0061
21 0.0061 | 0.0053 2F 0.0024 | 0.0012
22 0.0028 | 0.0049 30 0.0137 | 0.0002
23 0.0075 | 0.0067 31 0.0151 | 0.0043
24 0.0308 | 0.0010 32 0.0104 | 0.0048
25 0.0156 | 0.0079 33 0.0151 | 0.0010
26 0.0148 | 0.0022 34 0.0090 | 0.0025
27 0.0011 | 0.0003 35 0.0130 | 0.0048
28 0.0266 | 0.0009 36 0.0078 | 0.0034
29 0.0107 | 0.0046 37 0.0025 | 0.0020

Max Bias for XOR: 0.0308 for the correct Key 24H
Max Bias for Add: 0.0139 for an incorrect Key E9H

6.6 Effects of Key mixing using addition modulo
on
1. The diffusion process is improved inside the bytes
2. Non-linearity is improved
3. The bias of linear approximations falls and helps in preventing linear cryptanal-
ysis

4. The step provides an additional security margin to the cipher and thus helps to
reduce the number of rounds of the block cipher. Mathematically, let p be the
security margin against Linear Cryptanalysis (LC) provided by a single round
of a cipher, performing key mixing using xor. If r is the total number of rounds
of the cipher, the total security margin against LC is p".

Similarly, let r; be the total number of rounds of the block cipher when key
mixing is performed by addition modulo 2”. In such a case the total security
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margin provided against LC is atleast (§)™. Assuming both the ciphers provide
equal security against L.C,

roo_ I_) 1
or,r; = r7l0g(p)
’ log(p) — 2

Thus, as expected r; < r.

5. Key addition also helps in preventing differential cryptanalysis (discussed in the
next chapter)

6. However the increase in security comes at the cost of additional computational
overhead. When n bits of key are mixed by xoring, an n bit XOR gate is
necessary which may be operated in parallel. Thus the input output delay is
that of 1 XOR gate (which is roughly equal to 1.5 AND gate delay). However
for a modulo addition operation there are (2n — 1) XOR gates, (2n — 3) AND
gates and (n — 2) OR gates necessary. The input output delay, in such a case
is equal to that of (2.5n + 0.5) AND gates. However if we keep the value of
n within 16 all modern day processors would incur almost same cost/ speed
for both the methods of key mixing. Further as shown above if we are able to
reduce the number of rounds in the block cipher using the modular addition
operation then we may compensate the increased overhead involved in the key
addition step.

6.7 Conclusion

In the present chapter, the effect of performing key mixing by addition modulo 2"
instead of the more popular xor has been revisited. The largest bias of linear ap-
proximations for the output bit of such a key mixing have been computed. Both
theoretically and experimentally it has been demonstrated that such a modification
makes the cipher strong against Linear Cryptanalysis. Employing the concepts devel-
oped in chapters 5 and 6, namely the CASBox architecture and key mixing through
modular integer addition, the ensuing chapter introduces a new block cipher.



Chapter 7

SPAMRC: A Cellular Automata
Based SPN Cipher

The fact that the simple underlying rules of the Cellular Automata (CA) can be very
efficiently implemented and repeated applications of these simple rules can demon-
strate complex behaviors, have lured researchers to develop CA based ciphers. In
[140], non-homogeneous Cellular Automata, which have different rules for different
cells, were proposed for public-key cryptography. But the paper lacks specifications
like key-size, key generation procedures and also real life examples. This makes it
difficult to perform cryptanalysis of the cipher, thus leaving its security untested.
The block ciphers and stream ciphers proposed in [141] were broken in [180] due to
the affine property of the used Cellular Automata. In [181] another block cipher was
proposed but it was unable to get rid of the affine property and thus could not achieve
the claimed security. In [142] an extended Cellular Automaton (GF(2%)) was used
to develop a cryptosystem which used the Galois Field multiplication as the non-
linear step. However the paper also lacked detailed cryptanalysis. The recent CA
based block cipher, proposed in [143] mixes an affine CA with non-affine mappings.
However the block cipher has been successfully cryptanalyzed in [182]. In [183], the
authors show that though some one-dimensional CA exhibit high randomness, still
does not provide desirable security due to their reversibility.

The reasons behind the failure should not be attributed to the Cellular Automa-
ton, which is on the contrary a wonderful machine conducive for cipher design. In
[137] the CA has been revisited and a generalized block cipher round has been com-
posed using a special technique. The elegance of the composition was the fact that the
combination of the linear and non-linear parts did not disturb the cyclic structure of
the linear part. However in order to develop a complete block cipher many details like
block sizes (of both the data and the key), number of rounds required and a detailed

137
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security analysis have to be performed, which were missing in the previous attempts
of designing CA based cryptosystems [182]. In the present work we thus adopt a
"tame” approach [120] of cipher design, by combining the cryptographic primitives
developed so far and some other new methods.

In this work it is shown for the first time in the literature of Cellular Automata
based cipher design how the features of a cipher based on Substitution and Permu-
tation can be derived using CA rules. SPAMRC (Substitution Permutation Addition
Message Round Cipher) is a block cipher built out of Cellular Automata (CA) based
operations. As the name suggests, SPAMRC is a block cipher based on substitution
and permutation network (SPN) ciphers. The components performing substitution
and permutation are developed from Cellular Automata based transformations. The
S-Box (Substitution Box) used in SPAMRC is based on the CASBox architecture
developed in chapter 5. The diffusion layer is based on the combination of ShiftRow
used in AES [184] and a permutation layer designed using Cellular Automata. The
permutation layer is based on Maximum Distance Separable (MDS) codes and is a
self-invertible transformation and thus may be used for both encrypting and decrypt-
ing data. The key mixing in the block cipher is performed through addition modulo
2% where b is the word size and is typically equivalent to a byte of data. Finally using
the technique proposed in [185] the chapter computes the number of rounds required
to provide sufficient security margin against Linear and Differential cryptanalysis. In
order to perform the analysis the results proposed in [185] are extended to take into
account the effect of key mixing through addition modulo 2° in place of xoring.

The chapter is organised as follows: Section 7.1 describes the complete algorithm
for SPAMRC while the round transformations are explained in section 7.2. The
parameters required to estimate the number of rounds are computed in section 7.3.
Section 7.4 shows that the provable security margin of four rounds of SPAMRC is
comparable to that of AES-Rijndael. The work is concluded in section 7.5.

7.1 Algorithms for SPAMRC

SPAMRC is a block cipher with both variable block and key lengths. The block and
key length is a multiple of 32 bits, with a minimum of 128 bits. In the present work
the algorithm focuses upon the 128 bit design, both for the key and block length,
however the design is easily scalable to other block and keysizes. The data processed
by each round is stored in the form of state matrix, where each element is a word.
Before stating the algorithm we first define the following parameters of the block
cipher.



7.1. Algorithms for SPAMRC 139

Parameters of SPAMRC:

e N: plaintext size, key size
e b: size of each word
e n,: number of rounds

e m = N/b: number of words in each state matrix

Key Mixing in SPAMRC is performed by adding the round keys modulo 2° to
the state of the block cipher. The following pseudo-code describes the i** round of
SPAMRC. The input to the round is state(i) and the roundkey(i — 1). The output
of the round is state(i + 1). The data transformed by the rounds of SPAMRC are
stored in the form of the state matrix. The state matrix has an order 4 x [, where
[ represents the columns and 4 indicates the number of rows. Each element is a
word of b bits. Thus, we have N = 4lb. Typically, when N = 128, the values
of [ and b are respectively 4 and 8. Number of words in the state matrix is thus
m = 128/8 = 16. Each word in SPAMRC is a byte which makes implementation
suitable on any processor platform.

Algorithm 7.1 Input : state(i), roundkey(i-1)
Roundi(state(i), roundkey(i-1))
{

templ = CASBoz(state(i));

temp2 = Shift Row(templ);

state(i+1) = CAMizColumn(temp2);

The above steps are briefed as follows:

e CASBox An 8 x 8 CASBox structure is used to generate cryptographically
robust S-Boxes. The construction is discussed in chapter 5 and is found to
give efficiency and security to the block cipher against linear, differential and
algebraic attacks.

e Shift Row and CAMixColumn The diffusion layer named as CAMixColumn
is a self-invertible linear mapping GF((2%)*) — GF((2®)*) based on the [8,4, 5]
MDS (Maximum Distance Separable) code with generator matrix Gy = [ H],
where H = T'"™(had(I,T? T* T?)). Here T is the characteristic matrix of
an 8 cell maximum length CA, I is the identity matrix and had represents
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a circulant Hadamard matrix. The ShiftRow is a diffusion optimal step and
the CAMixColumn is an MDS transformation, leading to very fast inter byte
diffusion [184].

In the following section the individual steps are elaborately described.

7.2 The round transformations of SPAMRC

7.2.1 Key mixing using addition modulo 2°

As discussed before the state matrix of block cipher, SPAMRC comprises of words
of size b. The key scheduling algorithm generates N bit round keys which are mixed
with the N bit state matrix at the input of the particular round. Finally, there is one
extra key mixing layer at the end of the last round of the block cipher.

The (i,7)™ value of the state matrix of the r** round is denoted by s ;. The
corresponding value of the round key is k7;, which is mixed to the state matrix
through the function (sj; + kJ;)mod2®, as typically the value of b is 8. Here the
symbol '+ represents integer addition of two 8 bit numbers.

The motivation for using the key addition layer compared to the more popular
bitwise key xoring is: (i) high diffusion, (ii) high non-linearity, (iii) improving the
security margin against Linear Cryptanalysis (LC) and Differential Cryptanalysis
(DC), (iv) same cost in terms of speed/ area in case of hardware and code size/
speed in case of a software implementation and thus incurring no penalty from the
implementation point of view. In this chapter we later quantify the security margin
provided by the key addition layer against LC and DC.

7.2.2 CASBox: Implementation of S-Box in SPAMRC

The S-Box in SPAMRC is based on the CASBox architecture described in chapter 5.
The CASBox operates on 8 bits of input and results in an 8 bit output. The CAS-
Box is bijective and re-orientation of the basic block results in the inverse CASBox
(theorem 5.6). The CASBox operates on 8 bits of input and results in another 8
bits of output.

The features of the 8 x 8 CASBox are as follows:

1. The values of the parameters n and k, which characterize the CASBox are set
respectively to the values 8 and 5. Here, it may be noted that n and b are same.
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2. The non-linearity of each component function and also their non-zero linear
combinations is very high.

3. CASBox provides high security against LC and DC.

The margins against DC and LC are respectively defined as follows[185]:

For any given Az (# 0), Ay representing the input and output differentials of an
n bits S-Box,

DPS(AX — Ay) = (1/2")(#{z € Z} : S(z) ® S(z ® Az) = A,})
For any given I'y(# 0), 'z representing the output and input masks of the S-Box,
LP3(Ty — Ty) = [(1/2" ) (#{z € Z8 : Tz.x =Ty.S(x)}) — 1)?

Thus the following parameters define the resistance of the S-Box against Linear
and Differential Cryptanalysis.

DPs = ma.TAw;éO,Ay;ﬁ()DPS(A.’L' — Ay)

max

LPS.. = mazresory20LP°(Ty — I'z)

max

For CASBox, from section 5.6.2 thus DP;, = 5-2F = 25" As discussed in

maxr
theorem 5.3 in the description of CASBox, there are two kinds of non-linearity in
the non-zero linear combinations of the component functions. Using the LFSR based

non-linear permutation over V3 we obtain the value of LP5  as follows:

LPS == [2n1_1 (2" — minimum mismatch) — 1]?
= [2n1_1 (2" — non-linearity) — 1]?
_ [2n1_1 (20 — 27 2) — 1]?
= [2:1 (4.2% — 2" %) — 1)
= [2n1_1 (3.2"7%) —1J?
3 1
- LU=y

With the chosen parameters n = 8 and k = 5, thus DPS =273 and LPS =

maxr maxr



142 7. Design of SPAMRC

272,
The algebraic degree of the non-zero linear combinations of CASBox from theo-
rem 5.7 is (n — k + 1) = 4 except in 7 cases where it is 2.

7.3 Construction of the involutional diffusion layer:
CAMixColumn

Generally SPN cipher (e.g Rijndael) require two different permutation modules for
encryption and decryption. SPAMRC uses a diffusion layer which is self-invertible
and is based on MDS (Maximum Distance Separable) codes.

A block code of length n and 2% codewords is called a linear (n, k) code if and
only if its 2% codewords form a k-dimensional subspace of the vector space of all the
n-tuples over the field GF'(2). A binary block code is linear iff the modulo-2 sum of
two codewords is also a codeword. The hamming distance d of a system of codewords
determines the number of errors that can be detected and corrected. If (n — k) check
bits are appended to k information bits to get a distance-d code, it is called (n, k, d)
code[91, 186].

For a linear (n, k, d) code over any field, d <n—k+1. Codes withd=n—k+1
are called MDS codes.

Lemma 7.1 An (n,k,d) code with generator matrizx G = [I|A], where A is a k X
(n — k) matriz is MDS iff every square submatriz (formed from any i rows and any i

columns) from i =1,2,...,min(k,n — k) of A is non-singular.

In the construction of the CA based MDS code we have used the concept of
circulant Hadamard matrices.

Given k elements ag, o, . . ., a1, a Hadamard matrix A is constructed with each
entry A; ; = jg;. Each submatrix over finite field has the following property, A% =
~vI, where 7 is a constant. When v =1, A is an involution matrix.

7.3.1 Realization of Hadamard Matrix using Cellular Au-

tomata

The CAMixColumn step, like the MixColumn step of AES, operates on a column, i,e
4 words at a time. When b = 8, it operates on 4 bytes (i,e 32 bits). Thus the diffusion
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layer may be represented by a mapping,
D:GF((2)Y — GF((2%)%)

The mapping is based on an [8,4, 5] MDS code with generator matrix G4 = [I|A].
Let, T be the characteristic matrix of a maximum length CA of b = 8 cells. In such
a CA all the non-zero states lie in one cycle. Thus 72° = I. A possible rule for such
a CA is (150,150, 90, 150,90, 150, 90, 150) where 90 and 150 are the rule numbers of
the corresponding CA cell, refer table 3.3. We denote the Hadamard matrix A as:

I 17 17 718
™ 1 1% T*
™ T8 I T?
T T T? 1T

A=

Thus, squaring the matrix A we have,

I 00 0
2 _ 48 mpiey [0 L 00
A= (eT'eT®T") [, o | |

000 I

(I®T*®T®® T, where I, is the identity state matrix

= T'"%(I,) from simulation results on the matrix T

It may be noted that any square submatrix of A is nonsingular, thus implying
that G = [I|A] is MDS.

In order to obtain a self-invertible mapping, D we require:

D? = I,
or, A2 = T%2p?
1
or, D = WA

Since, T2% = I, T=8' = T'™, Thus, we define the mapping CAMixColumn as:

D = T'™A

Let a column of the state matrix, which is in GF(2%)* be represented as X =
(X3, Xo, X1, Xo) where each element X; € GF(2°). The corresponding output is the
column Y = (Y3, Y5, Y1, Y)), where each element Y; € GF(2°).
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Thus, the output may be represented as Y = AX. Hence, we have the following
equations:

Vs = I(X3) @ T*X,) @ THX,) ©T?(X,)
Y, = I(Xy)®T?(X3) @ T*(Xo) ® T8(X1)
Y: = I(X))®T*(X,) @ TH(X3) ® T8(Xy)
Yo = I(Xo)®T*(X)) @ THX,) & T8(X,)

Generalizing the above equations,
Y; = I(Xigo) ® T*(Xig1) ® T (Xige) © T°(Xig3)

The architecture of the CAMixColumn is easily derived from the above generalized
equation and is depicted in Fig. 7.1.

2 clock cycles

Xip3

Xip2

Xigp1

Xigo

Figure 7.1: Architecture of CAMixColumn

7.3.2 Features of the architecture

The proposed architecture of CAMixColumn has the following salient features:

1. There is only one Cellular Automata block, T2 which is being reused.

2. The critical delay to obtain Y; is independent of input and is equal to four clock
cycles of the Cellular Automata, whose characteristic matrix is denoted by T72.
Such an implementation helps to prevent timing based attacks.
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3. Finally each Y; which belongs to GF(2%) is transformed by a combinational
network denoted by:

(0000100 0 0)
00101000
01111100
pia_ |1 01 11010
01111111
00101110
00011110
\0 000100 1)

7.4 Estimation of number of rounds of SPAMRC

In order to complete the number of rounds we consider the minimum number of
differentially and linearly active S-Boxes.

Definition 7.1 Differentially and Linearly Active S-Boxes: A differentially
active S-Bozx is defined as an S-Boz with a non-zero input difference and a linearly

active S-Box is an S-Box with a non-zero output mask value.

We may consider the structure of 2 rounds of SPAMRC and compare with the
two rounds SDS (Substitution Diffusion Substitution) layer presented in [187]. The
major difference is due to the key mixing layer in SPAMRC, which is done through key
addition. In the previous analysis [185, 187], the key mixing layer was performed by
xoring and had no influence on the number of active S-Boxes and thus was ignored
in the computation of rounds. In this work we also evaluate the security margin
provided by the key addition layer against Linear and Differential Cryptanalysis and
use it to compute the number of rounds of SPAMRC.

For the sake of analogy to the representation of [185, 187] we denote the two rounds
of SPAMRC as ASDAS (Addition Substitution Diffusion Substitution Addition). If
we combine the addition layer (A) and the substitution layer (S) and represent by a
combined keyed substitution layer (S’), then the two rounds are denoted by the term
S'DS' (Fig. 7.2).

If the input of the Diffusion layer (D) be z and the corresponding output is y,
then y = Dz.
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Figure 7.2: S’DS’ function

Therefore, input difference of D is Ax and output difference is Ay = DAux.
Similarly, the input and output masks are I'z and I'y respectively.

Lemma 7.2 The minimum number of differentially and linearly active S-Bozxes of
the S'DS' is:

,Bd(D) = minM#OH(Aaﬁ) + H(Ay)
Bi(D) = minpyzH(Tz) + H(T'y),

respectively. In the above equations, for © = (x1,Za,...,%y), the symbol H(x)
stands for the cardinality of the set {1 <i <m:x; # 0}.

As previously discussed the diffusion layer is implemented using the CAMixCol-
umn, which is based on MDS codes. Equivalently, it was pointed out that the matrix
D of the CAMixColumn step has all submatrices non-singular. The following result
thus gives an estimate of the number of active S-Boxes.

Lemma 7.3 [187] Let D be an n x n matriz representing the Diffusion layer. Then
Ba(D) = Bi(D) = n + 1 iff rank of each k x k submatriz of D is k for all1 < k < n.
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In order to estimate the number of rounds of the block cipher we require to
compute the LP and the DP parameters of the modified S-Box represented by S'.
The modified S-Box, as previously stated has a key addition layer instead of key xor,
which provides an extra security margin over the CASBox layer. It may be noted that
the previous block ciphers, like MARS, SEA [174, 177] which also uses key addition
modulo 2", does not incorporate the key addition layer in the analysis of security
margin. However, in this work we have computed the security margin provided by 4
rounds of SPAMRC against Linear and Differential Cryptanalysis taking into account
the key addition layer.

e S =< —_ S =T —
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Figure 7.3: Branching of 4 Rounds of SPAMRC

The security margin provided by 4 rounds of SPAMRC against Linear and Differ-
ential cryptanalysis is computed by finding the number of linearly and differentially
active S-Boxes (or S’ boxes) (Fig. 7.3). If one bit of the input to the S'DS’ is dis-
turbed, then due to good avalanche effect of the CASBox (S layer) almost 4 bits of
the differential in the output of S Box is affected. The DP of the combined S-Box
may be estimated from the product of the DP of the CASBox and the maximum
probability that the key addition layer passes a differential, assuming that the key is
non-trivial as may be expected from a properly designed key scheduling algorithm.

Let, the inputs to the key addition layer be x and z’' such that Ax = 2 & 2. The
corresponding outputs are:

y = (v+k)mod?2°
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y = (2’ +k) mod 2°
Representing the equations at bit level:

y[0] = z[0] @ K[0]
y[1] = z[l]@ k1] & c[0]

y[7) = z[7] @ k[7] @ c[6]

where, c[i] represents the carry out from the i bit level.
Thus, Ay =y @ y' = Az & Ac, where Ac = (Ac[6], Ac[5], ..., Ac[0]).

Now, we have:
Pr(Az — Ay) = Pr(Ay|Az) =Pr(AC) (7.1)
At any i (0 < i < 6) bit position the carry outs may be represented as:

cli] = majority(z[i], k[7], c[i — 1])
d[i] = majority(z'[d], k[7], [ — 1])

By theorem 6.1 we have the following recursive relation:

pi = Pr(cli] =0) =

Therefore, g; = Pr(cli] =1) =1 —p; = 3 — =L,

Thus, the probability that Ac[i] = 0 is:

Pr(Acfi] =0) = Pr(c[i] = 0&'[i] = 0) + Pr(c[s] = 1&('[i] = 1)

= (L Py 3Py
= G+ G-
2

_ Pix Di1
2 2 +

—_

g

oo | Ot
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2

2
Hence the probability that Ac[i] =11is 1 — (%52 — 2ot 4 5) = Bt 4 Pist g 3,

From the above equations the following is easily deduced:

Pr(Acli] = 0) =

max

Pr(Acli]=1) =

max

ol ot =

Since from equation 7.1, the probability distribution of Ay given Az is identical
to that of Ac and due to the Avalanche effect of the S-Boxes, there are an equal
numbers of zeros and ones in Ay, the additional security margin provided by the key
addition layer against Differential Cryptanalysis is roughly (2)*(1)* ~ 22.

Thus, the modified value of DP of CASBox is:

DP 273 x (DP of CASBox)

2—6

From theorem 6.2, proved in section 6.2 of chapter 6 the bias of any linear
approximation involving any bit position of the key addition layer, except the 0™ bit

is maximum i.
If a linear approximation of the CASBox involves atleast 1 bit position of the

input, then using Piling up lemma the bias of the resultant approximation is i X

largest bias of CASBox = ; x 1 = =. Thus the probability of matching is § & .

Thus the modified value of LP of CASBox is:

1 .
LP = [FQS(prob of matching ) — 1]?
11 \
= [25+) -1
1
T2

7.5 Security Margin of 4 rounds of SPAMRC against

Linear and Differential Cryptanalysis

Having estimated the values of maximum linear and differential probabilities (LP and
DP), we can compute the security margin against Linear and Differential (LC and
DC) cryptanalysis provided by four rounds of SPAMRC (Fig. 7.3).
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For this purpose we also require to compute the number of active S-Boxes in 4
rounds of SPAMRC. Due to the MDS property of the step CAMizColumn the number
of active S-Boxes due to one CAMixColumn is atleast 5 by lemma 7.3. For every
input active S-Box, the 1** CAMixColumn step, due to its MDS property results
in 4 active S-Boxes(Fig. 7.3). Each active S-Box in turn affects all the S-Boxes
in the next round. Hence in this round, each CAMixColumn receives all 4 active
input S-Boxes and therefore results in atleast one active output S-Box. Thus, if we
follow the propagation of active S-Boxes, shaded in Fig. 7.3, we find that there are 5
CAMixColumns each of which has 5 active input output S-Boxes. Using this fact the
minimum number of active S-Boxes in the four rounds of SPAMRC is 25. Thus both
the branch numbers (linear and differential) are equal to 25. The branch numbers
B, = B4 = 5 and they are equal because the diffusion layer CAMizColumn is MDS.

' 1 cAMixcolumn !

caMixcoumn ) ( cAMixColumn ) ( cAMixcolumn ) (_cAMixcolumn ) !

L . ]
- - - _ - - - - - - - - - - - -
] [ CAMixColumn ) [ CAMixColumn ) [ CAMixColumn ] [ CAMixColumn ]

Figure 7.4: Computing minimum number of active S-Boxes in 4 rounds of
SPAMRC

From the above results we may compute the value of MDCP (maximum differential
characteristic probability) and MLCP (maximum linear characteristic probability)
which are defined as follows [185].

Definition 7.2 The mazimum differential characteristic probability (MDCP) and the

mazximum linear characteristic probability (MLCP) are:
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MDCP = Z[ﬁDPSi(A$i_)Ayi)]

Aw =1

MLCP = Z[ﬁLPsi(Fyi%Fwi)]

T'w =1

In the above definition Az; and I'z; are respectively the input differentials and
masks of the i"® S-Box. Similarly, Ay; and I'y; are the output differentials and masks
of the i S-Box. As mentioned before m denotes the number of words in the state
matrix. Aw and I'w denotes the input differentials and masks of the trail under

observations. The following result is used to compute the values of M DCP and
MLCP.

Lemma 7.4 In Fig. 7.4 the number of differential/ linear active S-Bozes is no less
than 25

Lemma 7.5 If the mazimum differential/linear probability for the S-Bozes S' is p/q,
the MDCP and MLCP satisfy the following inequalities:

MDCP < p® MLCP < ¢®

Here, p= DP = 2% and ¢ = LP = 275. Thus using the above facts the margins
of four rounds of SPAMRC against Linear and Differential cryptanalysis are:

MDCPspayre < (279)% =271
MLCPspayre < (2% =210
The values of the parameters M DC'P and M LCP are comparable to those of four

rounds of AES-Rijndael where both the values are equal to 271%0.

7.6 Conclusion

In this chapter the design of a Cellular Automata based block cipher, named SPAMRC
has been outlined. The block cipher is based on a Rijndael like structure but the
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underlying operations are based on Cellular Automata based transformations. The
chapter uses the CASBox structure described previously, thus leading to provable
security and also high programmability. The chapter also presents a novel technique
to construct MDS mappings using CA based transformations. The key mixing is
performed through the use of addition modulo 2% operation. The security margin
provided by the operation against LC and DC has been computed. Finally it has
been proved that four rounds of SPAMRC provide similar security against LC and
DC as that provided by AES. Key establishment is a fundamental problem in usage
of block ciphers. The next chapter explores a possible key agreement technique.



Chapter 8

Cellular Automata based Expander
Graphs and their Cryptographic
Applications

8.1 Introduction

Expander Graphs have been a significant tool both in theory and practice. It has been
used in solving problems in communication and construction of error correcting codes
as well as a tool for proving results in number theory and computational complexity.
The combinatorial properties of the expander graphs can also lead to the construction
of one-way functions [115]. Informally, the one-way functions are a class of functions
in which the forward computation is easy, but the inverse is hard to find. The one-
way functions form an important core of all key agreement algorithms which are an
important step in secure electronic communication. The well known Diffie-Hellman
key exchange algorithm [11] provides a ground-breaking solution to the problem of
secured key distribution. However the security of the algorithm depends on the
one-wayness of the modular exponentiation, which is a costly process in terms of
computational resources. Since the seminal paper of Diffie-Helmann, there has been
efforts in developing key exchange protocols whose security lies on one-way functions
which are computationally efficient. However designing a strong one-way function
which is computationally strong and yet hardware efficient is a challenging task.

The present work characterizes a special class of Cellular Automata (CA) [129],
known as the Two Predecessor Single Attractor Cellular Automata (TPSA-CA) to
generate expander graphs on the fly. The elegance of the scheme is that it uses regular,

153
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cascadable and modular structures of CA to generate random d regular graphs of
good expansion property with very less storage. The state transitions of each TPSA
is captured in a single state, which is known as the graveyard of the CA. Finally, the
expander graphs have been used to construct the one-way function according to the
proposal of [115]. The entire algorithm has been prototyped on a Vertex Xilinx XCV-
1000 platform. Results show that the scheme is very elegant in the fact that very
high throughputs are achievable with a minimal cost of hardware and power. The
performance has been compared with that of efficient implementations of modular
exponentiation in GF(2™) and results show that the proposed one-way function is
much superior.

The one-way function based on the expander graphs may also find applications in
the design of authentication and key establishment protocols, which are fundamental
building blocks for securing electronic communication. Cryptographic algorithms for
encryption and decryption cannot perform their specified functions unless secure keys
have been established. Key establishment [106] is a process or protocol whereby a
shared secret becomes available to two or more parties, for subsequent cryptographic
use. Key agreement mechanism is a key establishment technique in which a shared
secret is derived by two or more parties as a function of information contributed
by or associated with each of these (ideally) such that no party can predetermine
the resulting value. Since the seminal paper of Diffie and Hellman in 1976, several
solutions have been proposed for key agreement whose security lies on the Diffie-
Hellman (D-H) problem (either computational or decisional) in finite groups. The
security of D-H protocol lies on the intractability of the well known discrete log
problem, but the use of the modular exponentiation is a concern for applications with
limited computational power. Typical examples of such devices are mobile terminals
and embedded hardware. A popular solution proposed is to develop a protocol with
unbalanced computational loads[98]: the server bears an increased load in order to
ease the load at the client side. Another technique that is effective is to allow the
client side to pre-compute values which can be used during the protocol execution
phase. Some of the protocols proposed for such constrained networks may be found in
[188, 189, 190, 191]. Horn et al. [192] provide a survey and comparisons on protocols
for mobile devices.

However modular exponentiation is an expensive operation. Despite the increase
in availability of computational resources considerable demand exists in the develop-
ment of protocols that can be implemented on devices with limited computational
power. Achieving a secured key agreement with lesser computational overhead com-
pared to exponentiation is a challenging task. The present work develops a key agree-
ment protocol with authentication and key confirmation using the one-way function
based on expander graphs generated by Cellular Automata. In an authenticated key
agreement with key confirmation (AKC) a party ¢ wants to make sure that the other
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party j has really computed the agreed key. The security of a protocol depends on two
aspects: first it depends upon the cryptographic strength of the underlying functions
or commonly known as primitives. Secondly it depends on the messages exchanged
between the parties in the key agreement protocol.

In these lines the present work first develops a Cellular Automata based one way
function based on the combinatorial properties of expander graphs. The one-way
function is used to derive the session key K g with the desired property of keyfresh-
ness [98]. The one-way function is also used for authentication and key confirmation.
The protocol has been shown to be secured in the Bellare Rogaway model [112].

The outline of the chapter is as follows: Section 8.2 describes some of the prelim-
inaries of expander graphs. The TPSA-CA is characterized in section 8.3 and is used
to generate expander graphs. Subsequently, section 8.4 presents the construction of
the CA based one-way function which is implemented on Xilinx XCV-1000 platform
in section 8.5. Using the proposed one-way function a CA based key algorithm is
presented in section 8.6. The security of the protocol is proved in Bellare Rogaway
model in section 8.7. The chapter is concluded in section 8.8.

8.2 Preliminaries on Expander Graphs

Informally ezpander graphs are a class of graphs G = (V, E) in which every subset S
of vertices expands quickly, in the sense that it is connected to many vertices in the
set S of complementary vertices. It may be noted that the graph may have self loops
and multiple edges. The following definition states formally the expansion property
of these class of graphs [193].

Definition 8.1 The edge boundary of a set S € G, denoted §(S) is 6(S) = E(S,S)

is the set of outgoing edges from S. The expansion parameter of G is defined as:

5(S)|

h(G) = mmS:\S|§n/2W

where | S| denotes the size of a set S.

There are other notions of expansion, the most popular being counting the number
of neighbouring vertices of any small set, rather than the number of outgoing edges.

Following are some examples of expander graphs [194].

Example 8.1 Let G be a complete graph on n vertices i.e, the graph in which every

vertex is connected to every other verter. Then for any vertex in S, each verter is
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connected to all the vertices in S, and thus [§S| = |S| x |S| = |S|(n — |S|). Thus the

expansion factor is given by:

. n

h(G) = ming;si<n/a(n —|5]) = [5]

Example 8.2 Let G be a random d-regular graph, in which each of n wvertices is
connected to d other vertices chosen at random. Let S be a subset of atmost n/2

vertices. Then a typical verter in S will be connected to roughly d x |S|/n vertices in
S, and thus [0S| ~ d x |S||S|/n, and so

568) 5l
R

Since, |S| has its minimum at approzimately n/2 it follows that h(G) ~ d/2, inde-
pendently of the size n.

Definition 8.2 A family of expander graphs (G; where i € n) is a collection of
graphs with the following properties:

e The graph G; is a d-regular graph of size n; (d is the same constant for the

whole family). {n;} is a monotone growing series that does not grow too fast
(e.g niy1 < nj)).

e Foralli, h(G;) > €>0.

Although d-regular graph random graphs on n vertices define an expander, for real
life applications it is necessary to have more explicit constructions on O(2") vertices,
where n is the parameter defining the problem size. This is because to store a de-
scription of a random graph on so many vertices requires exponentially much time
and space. Two well known constructions are given below:

Example 8.3 In this example the family of graphs is indexed by a prime number
p. The set of vertices for the graph G, is just the set of points in Z,, the field of
integers modulo p. A 3-regqular graph is constructed by connecting each verter x # 0
tox —1,x+1 and 27'. The vertexr x = 0 is connected to p — 1,0 and 1. This was
proven to be an expander by Lubotsky, Phillips and Sarnak in 1988[195].
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Example 8.4 A similar but slightly complex construction was due to Margulis/196,
197]. The vertex set is Zy, X Zy,, where m is some positive integer, and Z,, is the
additive group of integers modulo m. The degree is 4 and the vertex (x,y) has edges

to (z £ y,y) and (z,x £ y), where all operations are done modulo m.

The properties of the eigenvalue spectrum of the adjacency matrix A(G) can also
be used to understand properties of the graph G.

The adjacency matrix of a graph G, denoted by A(G) is an n X n matrix such
that each element (u,v) denotes the number of edges in G between vertex u and
vertex v[193]. For a d-regular graph, the sum of each row and column in A(G) is
d. By definition the matrix A(G) is symmetric and therefore has an orthonormal
base vy, v1,...,v, 1, with eigenvalues ug, i1, ..., ti,_1 such that for all 7 we have
Av; = pv;. Without loss of generality we assume the eigenvalues sorted in descending
order po > py1 > ... > py—1. The eigenvalues of A(G) are called the spectrum of G.
The following two results are important in estimating the expansion properties of the
graph.

1. ,U,():d

2. M < B(G) < V/2d(d — )

Thus, the parameter d — p1, also known as the Spectral Gap gives a good estimate
on the expansion of the graph G. The graph is an expander if the spectral gap has a
lower bound ¢ such that d — p; > €.

A graph (G has better expansion properties than graph G,, implies that for any
subset S, |S| < n/2 of the graph G has a larger number of neighbouring elements out-
side the set S, compared to that in Go. Mathematically, the value of h(G1) > h(G2).
Informally, it implies that the graph (G; expands faster compared to graph G5. The
hardness of inverting the one-way function based on expander graphs increases with
the expansion of the expander graph [115]. A random regular graph has good expan-
sion properties. However the problem of realizing such a graph is in its description
which grows exponentially with the number of vertices.

In the next section we present the construction of a family of random d regular
graph using the properties of a special class of CA, known as the Two Predecessor
Singe Attractor Cellular Automaton (TPSA CA). It has been shown that the graph
has good expansion properties. The merit of the construction lies in the fact that
the generation is extremely simple and leads to an efficient design as developed in
subsequent sections.
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8.3 Expander Graphs using TPSA CA

TPSA CA are a special class of non-group CA in which the state transition graph
forms a single inverted binary routed tree at all zero state (Fig. 8.1). Every reachable
state in the state transition graph has exactly two predecessors. The only cyclic state
is the all zero state (for a non-complemented TPSA CA), which is an attractor (or
graveyard). If T,, is the characteristic matrix of an n cell automaton then the necessary
and sufficient conditions to be satisfied by the Transition matrix for the CA to be
TPSA CA is[129]:

1. Rank(7,)=n—1
2. Rank(7,, + I,)=n, I, being an n x n identity matrix
3. Characteristic Polynomial = z"

4. Minimal Polynomial = 2"

The following results [129] characterize the state transition of the non-complemented
TPSA CA.

Lemma 8.1 [129] For an n cell TPSA CA with characteristic polynomial ™ and
minimal polynomial ", (i) the number of attractors is 1, the all zero state, (ii) the

number of states in the tree is 2™.

Lemma 8.2 For an n cell TPSA CA having m(z) = z™ the depth of the tree is n.
Following is an example of a 4 cell non-complemented TPSA CA.

Example 8.5 The state transition matriz for a 4 cell CA is denoted by:
0 0

T4:

[ R S G—

1
1 0
1 1
0 1

N

0

The state transition diagram of the TPSA CA is shown in Fig. 8.2(a). As an exam-
ple let us compute the next state of 14, which in binary form is X = (1110)". Thus

1 0
) ) 1 0
the next state is obtained as Y = Ty ) = 0 = 1 Thus the next state of 14

0 1
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World of non-reachable states

World of reachable
< states W,

O

A@D Attractor (Graveyard)

Figure 8.1: The state transition graph of a non-complemented TPSA CA

is 1, which may be observed in Fig. 8.2(a). Here {0} is the attractor or graveyard
state. The states {5, 6, 4, 7, 8, 11, 9, 10} make the non-reachable world, while the
states {13, 14, 12, 15, 1, 2, 3, 0} make the reachable world. The corresponding inter-
connection is given in Fig. 8.2(b). As may be observed that the structure comprises

of local interconnections leading to efficient designs.

Next, we present an method to recursively synthesize an n cell TPSA. The state
transition matrix of the n cell TPSA is denoted by 7;, and is generated from an n — 1
cell TPSA CA characterized by the matrix 7T;,_;. The following theorem describes
the property exploited in the construction.

Theorem 8.1 Given that T,,_y is the characteristic matriz of an (n — 1) cell TPSA,
the matriz T, denoted by:
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(a) The state transition graph of a 4 cell (b) The interconnection of a 4 cell
non-complemented TPSA CA non-complemented TPSA CA

Figure 8.2: A 4 cell non-complemented TPSA CA
represents the characteristic matriz of an n cell TPSA.

Proof: It is evident that since the element at the n* row and (n — 1) column is
1 and by the construction methodology all the rows have 0 in the (n — 1) columns
the row added is linearly independent from the other rows of 7,,. Hence it adds by 1
to the rank of 7;,_y. Thus, rank(T},) = rank(T-1)+1=n—-1+1=n

Similarly, using the fact that rank(T,_1 & I,_1) = n — 1 (where I,,_; is the identity
matrix of order n — 1), we have rank(T, & I,,) = n. The characteristic polynomial of
the matrix T,,, denoted by ¢, (z) is evaluated as det(T,, ® z1I,,), where det denotes the
determinant. Thus we have,

(

|

|
|
Tnfl S .’EIn,1 | 0
on(z) = det o
| 0
| 0

\E...o 1 |;/

T¢n_1(), (¢pn_1(x) denotes the characteristic polynomial of T}, )

= g™t

= Q‘/‘n
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In order to evaluate the minimal polynomial we make use of the following proposition.

Lemma 8.3 Let ¢,(x) and 1, (x) be the characteristic polynomial and the minimal
polynomial of the matriz T,, respectively. Let the greatest common divisor (ged) of
the matriz (T, ® I,x)" that is the matriz of algebraic complements of the elements of

the matriz (T, ® I,x) be d(x). Then, ¢,(r) = d(z)p,(z).

From the matrix (7;,@®I,z)" it may be observed that the element at the position (0, n)
is 1 and thus the ged d(z) is also 1. Thus the minimal polynomial is equal to the
characteristic polynomial which is ™. Thus, we observe that the construction follows
all the four necessary and sufficient requirements of a TPSA CA. This completes the
proof. Il

Example 8.6 Given the fact that
T 1 1
27 \1 1

is the characteristic matriz of a 2 cell TPSA CA. Thus, using the above theorem it is
evident that:

1 10
=11 0
01 0

is the characteristic matriz of a 3 cell TPSA CA.

An alternative construction when number of cells is even: It may be ob-
served that when number of cells is even the characteristic matrix can be constructed
as follows:

|

| 0
|
Ty = 0 0 1|
0 0 0 |

: | T,
0 0 0 |

\o 0 0 | J
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In the above construction 7,, denotes the characteristic matrix of an n-cell TPSA-
CA. Hence, the rank of T, is (n — 1) and hence there are two rows in 7,, which
are linearly dependent. It is assumed in the above methodology to construct the
characteristic matrix of a TPSA-CA of 2n cells, that the first two rows are linearly
dependent. This is without loss of generality as otherwise the non-zero row in the
lower-left submatrix would shift to one of the dependent row positions.

The proof of the above construction is as follows: Rank of the matrix Ty, is
rank(7,) + n = 2n — 1. This is because the non-zero row of lower-left submatrix
shall make all the lower n rows of the matrix Ty, independent. Rank of (T3, & Is,)
is rank(7}, ® I,,) + n = 2n. Similarly, characteristic polynomial of Ty, is det(T5, &
zly,) = (T, ® x1,)* = (z")? = **. That the minimal polynomial and characteristic
polynomials are the same is for the same reason as shown in theorem 8.1. Thus
the characteristic matrix 75, satisfies all the necessary and sufficient conditions for a
TPSA-CA of size 2n.

The above method gives a much faster construction methodology.

As an example using the characteristic matrix of a 2 cell TPSA CA,

11
n= (i)

the characteristic matrix of a 4 cell TPSA CA is constructed as:

OO = =
O = = =
= =0 O
— -0 O

It may be noted that this is precisely the characteristic matrix of the 4 cell TPSA
CA of example 8.5.

We have seen above that the state transition in the above class of TPSA CA is
governed solely by the characteristic matrix. This class of CA is known as the non-
complemented TPSA CA. On the contrary when the next state is obtained by the
application of the characteristic matrix and then xoring with a vector F', the CA is
known as the complemented TPSA-CA.

The following results show how complementing the state transition function of the
non-complemented CA generates a class of automaton with the same properties as
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the original TPSA CA.

Lemma 8.4 Corresponding to a non-complemented TPSA CA M; and o state Z,
there exists a complemented CA My with state Z as an attractor. If the characteristic
matriz My be indicated by T, and it is required to build a complemented TPSA CA such
that Z is the graveyard (attractor) then the characteristic matriz of the complemented
CA, T, is related to T, by

Tn(X) = Tn(X) D (In S Tn)Z

where X s the seed to the CA and I,, is the identity matrix of order n.

Lemma 8.5 A complemented TPSA CA has the same structure as a non-complemented
TPSA CA. To emphasize

o Number of attractors in the complemented CA is the same as that in the original

non-complemented CA.

e Number of reachable states and non-reachable states are same as that in the

original non-complemented CA.

Lemma 8.6 If any state Z in the non-reachable world of a non-complemented CA
is made the graveyard in a complemented TPSA, then the non-reachable elements
become elements of the reachable world in the complemented CA and viceversa. Thus
the reachable world (Wy) and the non-reachable world (W5) exchange themselves

(Fig. 8.3).

Proof: Let X and Z be two non-reachable elements in the n cell non-complemented
CA with characteristic matrix 7,,. Let X be the {*" level sister of Z. In all cases [ < n.
Thus, we have:

T(X) = T,(2)

Let us consider the state transition diagram of the complemented CA with Z as
the graveyard. The state transition of the complemented CA is indicated by 7°,,. We
shall prove that in this state transition graph X is a reachable state. Let, the depth
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of X in the graph of the complemented CA be t. If ¢ is less than n then X is a
reachable state. Since, 7 is the graveyard of this graph we have:

t

T, (X) = Z
T'X)e (I, oT)Z A
T,(X) = T,(2)

Thus, X and Z are t' level sisters in the state transition graph of the non-
complemented CA. But we know that they are ["* level sisters. Thus t = | < n.
Thus, the depth of X is lesser than n and hence X is a reachable state in the state

transition graph of the complemented CA. O
Non-reachable world Non-reachable world
(Wyp) (Wy)

Reachable
\F}\;aacIZable : World
or ‘ w,)
(W)
é@ Attractor (Graveyard) ; o é} Attractor (Graveyard)
Non-Complemented TPSA CA Complemented TPSA CA

Figure 8.3: The exchange of the worlds in a complemented TPSA CA

8.3.1 Construction of expander graph using the TPSA CA

The TPSA CA can be effectively used to generate a random d regular graph on the
fly. It may be noted that the entire nature of the graph is stored in the graveyard
state, thus leading to a very compact storage of the graph. This is because given the
graveyard state, the entire transition graph can be obtained.

In order to construct the d regular graph we proceed as follows: Let Z; € W)
(non-reachable world in the non-complemented TPSA CA) and Z, € W, (reachable
world in the non-complemented TPSA CA). Let, G; and G, be the state transition
graphs with Z; and Z, as the graveyards respectively.
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Table 8.1: Spectrum of a 4 cell TPSA based regular graph

No. of Graveyards Degree | First | Second | Spectral | g/t
Union (t) Eigen | Eigen | Gap (g)
Value | Value
1 {0},{4} 1 4 [32361] 0.76 |0.76
3 {0,15},{4,8} 8 8 4.899 3.10 1.03
5 {0,15,3},{4,8,10} 12 12 | 6.3440 | 5.66 |1.14
7 {0,15,3,2},{4,8,10,9} 16 16 5.2263 | 10.77 | 1.54

Clearly, in G; if X € Wi, degree(X) = 3 and if X € W, degree(X) = 1.
Similarly, in Gy if X € W1, degree(X) = 1 and if X € W, degree(X) = 3. Here
degree is defined as the sum of the indegree and the outdegree in the corresponding
graph.

Thus, in the graph G obtained by a union operation in the graphs G; and G,
allowing multiple edges and self loops, we have for X € G, degree(X) = 4. If
we continue the union operation in the above method we have degree(X) = 2(t +
1), where ¢ is the number of union operations. Table 8.1 shows the result of an
experimentation performed with the TPSA based regular graph. It measures the
value of the two largest eigen values for random TPSA based graphs for degree 4, 8,12
and 16. The difference between the largest two eigen values is known as the spectral
gap and should be large for good expansion of the graph. Results show that the
spectral gap and hence the expansion increases proportionately with the number of
union operations (t).

8.3.2 Setting parameters of the d regular TPSA based graph

for good Expansion Properties

In the present section we compute the expansion obtained in the d regular TPSA
based graph in terms of the parameters of the graph G. Let the number of nodes in
the graph be n and the degree of each node is d. Let us consider a random d regular
graph (Fig. 8.4) the subset A with an vertices (0 < o < 1).

For the graph GG to have good expansion properties the set A should have more
than fn (0 < 8 < 1) neighbours outside A. The probability of such an event should
be high.

Equivalently, we may state that the probability that the number of neighbours of
the vertices of A outside A is less than n is negligible. Let us fix A and B such that
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G: N(A)

B

Figure 8.4: Computing the expansion of the random d regular graph

|A| = an and |B|=0n.

It is required that the vertices of A be matched to N(A) (neighbours of A outside
A) st N(A) C B. If we first consider a single matching, an vertices can have
maximum an neighbours in N(A). The probability that the neighbours of A are in

Bis:
no. of ways in which N(A) can lie inside B
P = 1. of ways in which N(A) may be chosen outside A

Bn
an
n—an
an
Hence, if we consider a d-matching, assuming all the edges to be independent we have

o) )

PrN(4) c B] = | 22
(G

Q

ﬁ omd
1

Thus, we have the following probability:

Pr3AeGst|Al=an, N4 <pn] < Y Y (&)™

Al=an |B|=gn

(2 ()

Next, we use the following approximations: ( " > = onH(a) ( " ) = onH(B),
an Bn
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Here, H(a) = —alogya — (1 — a)log, (1 — ). Thus, setting o = — and 8 =
and some simplifications we have:

Pr[3A € G st |A| = an, [N(A)| < fn] < 2"logem—(=)loga(m—1+1+4 [ log 5t 5] o, 9—en

Hence in order to make the probability negligible we may choose parameters m and
d such that ¢ becomes positive. The value of d gives us an estimate of the number of
union operations t to be performed.

8.3.3 Mathematical Formulation of adjacency in the TPSA
based Graph

The graph G(V, E) can thus be described as a union operation between the graphs
G1 and G5 where Z; € Wy and Z, € W, are the respective graveyard states.

The following algorithm computes the four neighbours of a given state in the graph
G.
Algorithm 8.1 Computing neighbourhood of a vertex X in ¢
Input: 7, 75, a state X € G. Any state X is an n-tuple, (x1,Za,...,Ty)
Output: The four neighbours of X (U, V,W,Y)
Step 1: Computation of neighbours U and V,

U =
vV =

Computation of neighbours W and Y
Step 2:
Compute, X ® (I, ® T,) Zy = (1, T2, - - -, 20 )"
If(z1 = x9){/ * X € Gy /from the matriz defined in theorem 8.1
set w, =0, Compute wy,_1 = Tp, Wp_o = Tp_1,...,Ws = T3, W, = Wa P Ty
set Yo =1, Compute Yn—1 = Tn, Yn—2 = Tn—1,.--, Y2 = T3,Y1 = Y2 D 1}
Step 3:
else{/ x X € Gy * /
repeat Step 2 with Zy replacing 7,

}
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It is evident that the distribution of the neighbourhood is identical to that of Z;
or Zs which are randomly chosen. Thus, we have a four regular pseudo-random graph
when we have only one union operation. The degree may be increased with the num-
ber of union operations. The advantage lies in the fact that in general the description
of a random graph grows exponentially with the number of vertices. However, using
the TPSA based construction one may generate graphs which exhibit randomness
and also may be described using polynomial space, as we require to store only the
graveyard state. For an N cell TPSA, in order to compute the neighbourhood of any
state, Algorithm 1 is applied in constant time, as each of the steps 1,2 and 3 may be
applied in constant time parallely on the N bit input vector. Herein lies the efficacy
of the TPSA based expander graphs.

8.4 Application of TPSA based Expander Graphs

in Constructing One-way functions

The one-way function using the d-regular graph generated by the TPSA is based on
the construction proposed in [115]. The one-way function maps a string in {0,1}"
to another in {0,1}". The algorithm is based on a d regular graph generated by
the TPSA. As already mentioned the graveyard states are from W; and Wy. Let Z;
denotes the graveyard states from W; and Z, denotes the graveyard states from 5.
If there are i elements in Z; and Zs then the number of union operations required to
generate the d regular graph is 2i — 1 and so we have d = 2(2i — 1 + 1). Thus we
arrive at the number of graveyard states required as ¢ =

e

The evaluation of the one-way function is as follows:

Algorithm 8.2 One-way function (f) using the state transitions of a TPSA

Input: Z; € Wi, Zy € Wy, a state X € {0,1}". Thus the TPSA based regular
graph has degree 4.

Output: The one-way output Y € {0,1}" such that Y = f(X)

Step 1 Consider an N cell TPSA, where N = logy(n). Generate a collection
C, which constitutes of the neighbours of each node in the reqular graph generated
by the state transitions of the TPSA using Algorithm 8.1. Mathematically, C =
{SZ', ifv €S, E(’U, Z) =1, € {1, ceey 77,}}

Step 2 Fori =1 to n, project X onto each of the subsets S;. If S; = {i1, 142, ...,14},
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then the projection of X on S; denoted by Xg,, is a string of length d indicated by
{Xi, Xips -+, Xiy }-
Step 3 FEvaluates a non-linear boolean function 11 on each of the n projections
thus giving an n bit output, {I1(Xs,),1(Xs,),...,11(Xs,)}. The non-linear function
/2
T is (21, 22, - - -, 24) = (Z ZiZivdj2) mod 2.

=1

The forward transformation is very efficient as the total time required is O(n).
This may be observed as the time required to perform Step 1 is due to that required
to apply Algorithm 1 at all the 2V vertices. Hence the total time is also proportional
to 2% = n. The time required to apply Step 2 and Step 3 is also proportional with
n and hence the total time required. However computing the inverse seems to be
intractable even when the collection C' is known. As proved in [115] the complexity of
a proposed inverting algorithm is atleast exponential in min.{max;{|Uj_, Sx(;)| —i}}.

We have shown in section 8.3.2 that the probability that the size of the neigh-
bourhood of any subset S is proportional to n is very high. Thus for all cases the
value of min, {maz;{|Ui_; Sz(j)| —i}} is O(n) and hence the complexity of a possible
inverting algorithm proposed in is atleast exponential in O(n)[115]. Thus the problem
of inverting the one-way function seems to be intractable.

In the following section we present the implementation of the proposed architec-
ture on a Xilinx XCV-1000 platform.

8.5 Implementation of the TPSA based One-way

Function

In this section, we propose the architecture for n = 128 bit one-way function. The
size of the TPSA CA is thus N = logan = logy128 = 7. Using the 7-bit TPSA CA,
we construct a 16-regular random expander graph. It has been computed that with
these parameters, the expander graph has good expansion properties which in turn
make the one-way function strong [115].

Fig. 8.5 shows the top-level view of the architecture. The N = 7 bit up-counter
counts from 0 to 127 (n = 128) and for each of these values the block Gen-Neighbours
calculates the d = 16 neighbours in the TPSA based d-regular graph. Each neighbour
selects a particular bit from the input X. The 16 bit output of the block Gen-
Neighbours is thus the 16 bits selected from the input X. These 16 bits are taken by
the block Projection which calculates the Boolean function IT on those bits. Finally
the output bit of the Projection block (@) is clocked into the proper flip-flop of the
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Figure 8.5: Top-level view of the architecture

Table 8.2: Performance of the Design on Xilinx XCV-1000 platform

No of Slice Flip Flops 223, 1% of total
No of 4 Input LUTSs 1343, 5% of total
No of Slices 6% of total

Maximum delay 0.842 ns
Power Consumption | 32mW at V.. = 3.3V
Throughput 3.5 Gbps @28.6 MHz

output register (OUT; to OUT,). The output of the counter (c) determines which
of the flip-flops (OUT; to OUT,) in the output register is to be enabled (enb; to
enb,,) and consequently the output of the Projection block (Q) gets clocked into that
enabled flip-flop. The Z input to Gen-Neighbours is the set of the N-bit graveyards
of all those TPSA CA whose union is to be carried out.

The proposed architecture has been implemented in Verilog HDL and has been
verified using RTL simulations using Mentor Graphics ModelSim SE. The Verilog
RTL has been prototyped on a Xilinx Virtex XCV1000 FPGA (pkg bg560). The
characteristics of the design have been summarized in table 8.2.

Analysis show that the resource utilization increases linearly with the input size.
Table 8.3 gives a comparison of the resources used, the delay and the area-delay
product of the proposed one-way function with those of an efficient implementation
of the exponentiation operation in GF'(2") [198]. In the table, n denotes the number
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Table 8.3: Comparison of the proposed One-way function with respect to
Implementation

Proposed One-Way | Efficient Implementation of
Function exponentiation in GF(2")[198]
Order of resource usage 8n LUT+ n FF 15.7n LUT + 3n FF
Order of delay n n?
Order of area-delay product n? n?

of bits in the input and output.

8.5.1 Message Authentication Code using Cellular Automata

based one-way function

A message authentication code (MAC) is generated by a function of the form M AC =
Ck (M) The technique assumes that the two communication partners say A and B,
share a common secret key K. When A has a message M to send to B, it calculates
the MAC as a function of the message and the key using an algorithm denoted by
CK.

The message plus MAC are transmitted to the intended recipient. The recipient
performs the same calculation on the received message, using the same secret key, to
generate the new MAC. If the MAC received matches with the computed result the
receiver is assured of the following:

e The receiver is assured that the message is not altered.

e The receiver is assured that the message is from the alleged sender, under the
assumption that no one else has the shared key K.

e If the message has an nonce or a sequence number, then the receiver can be
assured of the proper sequencing of the messages.

In order to realize the function C'x we reuse the CA based one-way function f. In
order to make it work as a keyed function we use the graveyard states Z; and Z; as a
secret. Since, the state transitions in the graph gets randomly configured depending
on Z; and Z,, in order to compute the MAC, one needs to know the graveyard states.
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8.6 The Key Agreement Protocol

The key agreement protocol has been described in this section. The protocol uses the
TPSA CA based one-way function which serves the protocol in two ways. First it
helps to derive a common key from the contributions of both the parties, also called
the half keys. The advantage of the one-wayness is that it provides key-freshness to
the keying material, in the fact that no party can force an old key to be generated
after knowing the half key of the other party. The other purpose is when the function
is used to develop a message authentication code (MAC). While using the one-way
function for developing the MAC, the function needs to be key-dependent. For this
purpose we use the graveyard states which are kept secret, being known to only the
parties exchanging the keys.

The outline of the protocol is presented next.
Parameter: n : The size of the TPSA CA and the derived session key

Both A and B share the secret graveyard states Z; € Wiy, Z; € W, and hence
can compute the one-way function f, which depends on the graveyard states. The
graveyards define the adjacency of the expander graph, which in turn defines the
one-way function.

A generates nonce Ny €g [0,2" — 1], half key K4 €g [0,2" — 1]
Message 1: A - B: A, K4, Ny

B generates Np €g [0,2" — 1], half key Kp €g [0,2" — 1] and computes K, p =
f(KA @KB) and the MAC f(A,B,NA,KA,KB).

Message 2: B — A: f(A,B,Ny, K4, Kp),(Kp, Ng, B)

Now, A also computes Kap = f(K4 @ Kp) and the MAC f(A, B, Ng, K4, Kp).
Message 3: A — B, f(A,B,Ng, K, Kg)

Final agreed key is K p.

The protocol is explained in the following description. Both A and B share the
graveyard states Z; and Z,, which serve as the key to the one-way function. Since,
only A and B share this knowledge they only can compute the MAC using the one-way
function f.

e Principal A sends his identifier A, the nonce N4 and his share to the key (half
key) K A-

e Principal B then sends his contribution Kz and nonce Ng to A along with his
identifier. Meanwhile B computes the value of Ky = f(Ka ® Kp) and the
MAC f(A, B, N4, K4, Kp) and sends it to A.

e A on receiving the message from B checks whether the message is transferred



8.7. Security Analysis of the Protocol 173

properly by verifying the MAC. Since only A and B agrees the common grave-
yard states, A is satisfied about the authenticity of B. It also satisfies A that
B has actually received A’s half key K4 properly and thus have generated the
same session key. This serves key confirmation. Then A accepts and computes
Kap = f(Ka® Kg). He also sends the MAC f(A, B, Ng, K4, Kg) to B.

Thus both A and B computed the session key K 45 and thus both the principals agree
upon a session key.

8.7 Security Analysis of the Protocol

Informally, a secure key agreement protocol should not allow an active resource
bounded adversary to manipulate the message flows in any polynomial number of
protocol executions between honest parties, in such a way that information is leaked
on the session key (or any specific goal of the protocol is compromised). We present
a proof based on the formal model shown in [112] and the goals of a successful key
agreement with authentication and key confirmation defined in [108].

In this model a protocol is a pair P = (II, G) of probabilistic polytime computable
functions, where II specifies protocol actions, message formats while G specifies how
long term keys are generated (the secret graveyard states in our case). The number
of principals involved are indicated by I = {1,..., N;}. Here N; is a polynomial in
the security parameter n so that N; = T;(n) for some polynomial function 73.

The adversary FE is defined to be a probabilistic machine that is in control over
all communications between the parties by interacting with a set of oracles T, 5 (i.e
i session of a principal A in a specific protocol run with B being the other principal
involved in the key agreement). The oracle queries are summarised underneath:

e Send(A, B,i, M): This query allows the adversary to send a message M from
B to A in session ¢. If the client oracle Hf4, p has either accepted with some
session key or terminated, this will be made known to the adversary.

e Reveal(A, B,i): The client oracle upon receiving this query and if it has ac-
cepted and holds some session key, it will send back the session key to E.

e Corrupt(A, K): This query allows E to corrupt the principal A at will, and
thereby learn the complete internal state of the corrupted principal. The query
also gives F to over-write the long-term key of the corrupted principal with any
specific value, K.

e Test(A, B,i): This query does not correspond to any of A’s ability. If Hf4, g has
accepted with some session key and is being asked this query, then depending
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on a randomly chosen bit b, F is given either the actual session key or a session
key drawn randomly from the session key distribution. The adversary’s job
is now to guess b. Let the output of the adversary be a bit Guess. Let,
GoodGuess® (k) be the event that Guess=b. Then we define advantage” (k) =
| Pr{GoodGuess® (k)] — 3.

Security depends on the notions of partnerships of oracles and indistinguishability of
of session keys. The definition of partnership is used in the definition of security to
restrict the adversary’s Reveal and Corrupt queries to oracles that are not partners
of the oracles whose key the adversary is trying to guess. The notion of security is
through the following definition of matching conversations. Conversation is defined
to be a sequence of messages sent and received by an oracle which is recorded in a
transcript 7. At the end of a protocol run, 7" contains the record of Send queries and
its responses.

Definition 8.3 MatchingConversations|112]: Let us consider an initiator oracle

Q,B and a responder oracle H%,A who engage in conversations C'y and Cp respec-
tively. HQ’B and H%, 4 are said to be have matching conversations if: there exists
To<T <Tp<T3<...anday,[ 1, Bs,...suchthat Cy = (1o, A, 1), (T2, B1, ), . ..
and Cg = (11, a1, f1), (13,09, B2), . . .. Here, X is the empty string used to initiate the
protocol. The term (1, A, o) in C4 means that at time 1y, the oracle Hfﬁl,B receives the
message A and responds with the message . Similarly, the term (1, a1, 31) in Cg,
means that at time 11 the oracle H%’ 4 recetves the message oy and responds with the
message 1. Likewise, the message exchange between the initiator and the responder
oracle continues.

Finally we state the goals of a secure AKC protocol.

Definition 8.4 [108] A protocol P = (11, G) is a secure authenticated key agreement
with confirmation (AKC) protocol if:

1. In the presence of a benign adversary on HQ,B and H%,A, both oracles always
accept holding the same session key KEB, and this key 1s uniformly distributed

at random in {0,1}"

and if for every adversary E:

2. If uncorrupted oracles 115 g and 11 4 have matching conversations then both

oracles accept and hold the same session key K¥.
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3. The probability of the event NoMatching®(n) (denotes the event that there
ezists an oracle 11% p which accepted but there is no oracle HtB,A with which it

has had a matching conversation) is negligible.
4. advantage®(n) is negligible.

In the following proof we show that the proposed protocol satisfies the above goals in
this model.

8.7.1 Formal Proof of Security of the Protocol

In the present analysis we show that the CA based Key agreement is a secured AKC
protocol with the help of the following theorem.

Theorem 8.2 The proposed CA based Key Agreement Protocol is a secured AKC' if
the MAC generated by the one-way function is secured.

Proof: It is trivial to show that the conditions 1 and 2 of definition 8.4 are
satisfied.

We first prove that Pr (NoMatching®(n)) is negligible.

The adversary E succeeds if at the end of E's experiment there exists an ora-
cle I p (where A and B are not corrupted) which has accepted but there is no
IIp 4 which has had a matching conversation. Let, Pr(E succeeds) = p(n) and by
contradiction let p(n) be non-negligible. We may divide the case into two smaller
subparts.

Case 1: Suppose that p;(n) is the probability that E succeeds against IT}) p and
p1(n) is say non-negligible. We shall construct an adversary F from E such that
it violates the semantic security of the MAC generated by the CA based one-way
function f.

Define F: F picks (A,B) €g I and s € {1,...,Ty(n)} , for some polynomial
function Tj, guessing that E will succeed against I  oracle.

F answers all E's queries itself. When the long-term keygenerator G is queried by
E or any oracle that is not II4 g or Il 4, F' gives up. F's actions when G is queried
by on the shared graveyards Z;, Z, by Il4 g or Il 4 are as follows:

1. F answers E’s reveal queries as usual.

2. If E asks corrupt A or B, I gives up.
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3. I also answers send queries of II4 p or IIg 4 as per II, except that instead
of calculating the long term shared key K = G(Z;, Z,) and using this key to
generate the MAC by computing f(.), F calls its own MACing oracle to compute
the response. Thus F' generates the key randomly and computes the one-way
function (using a random set of graveyards) on behalf of IT4 g and Il 4 oracles
and also decides whether such oracles should accept.

4. If E does not invoke II% 5 oracle as an initiator F' gives up.

5. On the other hand if £ does invoke I, ; as an initiator oracle, then at some time
7o, II%) p receives A and responds with A, K4, N, as its output message. If II) g
does not at some later time receives the message f(A, B, N4, K4, Kg), Kp, Ng, B
for some N4, F gives up.

6. However if II5 5 is to accept, it must later receive a flow of this form. In this
event provided F' has not called its random oracle to generate the MAC for
(A, B, N4, K4, Kpg) then F stops and outputs a guess. If F' has previously
called its oracle to compute the MAC value, then F' gives up. This is because of
the fundamental definition of random oracles which states that such a function
outputs a random output H(x) for an input z, if  has not been queried before.
However if  has been queried before it repeats the same previous output. Thus
if the function f has been computed before using the random oracle used to
generate the MAC and F has not been successful, then it will not be successful
even now.

Suppose, E does succeed against II% 5. In this event F' outputs a valid forgery for
the MAC f and wins the experiment, provided F or some other oracle apart from
%.p or I 4 has not:

a Computed G on Z; and Z5 and

b F has not previously calculated the flow that makes II% 5 accept on behalf of
some II4 p or some Ilg 4 oracle.

Since, it is assumed that the long term key has been generated by a secured
exchange G by inputting the graveyards Z; and Z, uniformly selected from the worlds
W, and W, the probability of (a) is negligible.

The probability of (b) is also negligible, because F' could only have called in this
message on behalf of a responder H%’ 4 which received (A, K4, N4) as its first flow or
on behalf of an initiator IT} 5 (u # s) which also chose K4, N4 and needs to decide
whether or not to accept. The probability that the call was made by the responder
IT% 4 before 79 is negligible since K4, N4 was chosen at random and if the call was
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made after 7y, then IT; 4 has had a matching conversation to IT% 5 (and thus E fails).
The probability that the call was made by II% 5 is negligible since in this event II% 5
and II% 5 have independently chosen the same K4, Na.

Thus, the success probability of F is:

Pr [F succeeds in forging the MAC] = Pr[E succeeds] Pr [of choosing A, B, s] — A(n)
where A\(n) is negligible

pi(n) _\n
T Tolm)

which is also non-negligible. Thus we arrive at a contradiction.

Case 2: Similarly, we can show that the probability that E succeeds against
IT%; , is negligible. Combining these two cases we obtain that Pr (NoMatching®(n))
is negligible.

Next we show that advantageE(n) is negligible. As a contradiction let us assume
that Pr (E succeeds) is 5 + g(n), where g(n) is not negligible.

Let M denote the event that E picks up some II) 5 oracle to ask its Test query
s.t some II% , has had a matching conversation to IT% 5.

Pr(E succeeds) = Pr(E succeeds | M) Pr(M) + Pr(E succeeds | M) Pr(M)

Since, Pr (M) = A(n) is negligible by the previous proof. Thus,

IA

Pr (E succeeds | M ) Pr (M) + A(n)
< Pr(E succeeds | M)(1 — A(n)) + A(n)

% +q(n)

Thus, Pr (E succeeds | M) = £+ ¢;(n), where ¢;(n) is non-negligible. Given the event
M, session key will be of the form f(K 4@ Kg). Let N denote the event the adversary
or some other oracle has computed f(K4 @ Kg). Thus,

Pr(E succeeds |M) = Pr(E succeeds| M A N) Pr(N|M) + Pr(E succeeds| M A N) Pr(N|M)

1
< Pr(N|M) + 3

~—

q1(n) +

N =

This is because Pr(E succeeds| MAN) = 3, as II ; and II%; , are not open by definition

Thus, Pr(N|M) > qi(n)
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Thus, the probability that the adversary or some other oracle apart from A or B has
computed f(K4 @ Kp) is non-negligible. This is contradictory to the assumption
that without the knowledge of the graveyards Z; or Zs it is infeasible to compute the
function f. U

Apart from authentication and key confirmation, the CA based AKC protocol also
provides key freshness due to the following reason:

If one parties say B, comes to know the other parties half key K4, and wants to
contribute Kp such that an old key is forced he needs to solve z € [0,2" — 1] the
equation K,y = f(K4 @ x) which is not possible due to the one-wayness of f inspite
of knowing the graveyards Z;, Zs.

8.8 Conclusion

The chapter proposes a method to generate expander graphs with good expansion
properties based on the state transitions of a special class of Cellular Automata,
known as the Two Predecessor Single Attractor CA (TPSA-CA). The expander graph
has been finally used to compose a one-way function whose security lies on the com-
binatorial properties of the expander graphs. The design has been implemented on
a Xilinx XCV-1000 platform and the performance of the design has been compared
with that of efficient designs of the popular modular exponentiation based one-way
function. Results have been furnished to prove that the design is superior in terms
of area delay product and power consumption. The one-way function is then used
to design a key agreement protocol which provides authentication, key confirmation
and key freshness. Finally, the security of the protocol has been proved in the Bellare
Rogaway model.

In the following two chapters, we perform cryptanalysis of two standard ciphers:
AES Rijndael, which is the world-wide standard for block ciphers and CMEA, which
is the standard block cipher for the digital Cellular phones.



Chapter 9

Fault Based Attack of the Rijndael
Cryptosystem

9.1 Introduction

In order to satisfy the security requirements of various information disciplines e,g
networking, telecommunications, data base systems and mobile applications, ap-
plied cryptography has gained immense importance now-a-days. To satisfy the high
throughput requirements of such applications, the complex cryptographic systems
are implemented by means of either VLSI devices (crypto-accelerators) or highly
optimized software routines (crypto-libraries). The high complexity of such imple-
mentations raises concerns regarding their reliability. Hence in this scenario it is
imperative that the crypto-algorithms should not only prevent conventional crypt-
analysis but also should prevent the deduction of the keys from accidental faults or
intentional intrusions. Such attacks are known as fault attacks and was first con-
ceived in September 1996 by Doneh, Demillo and Lipton [58, 199] from Bellcore. The
fault attack was applicable to public key cryptosystems and was extended to various
secret key ciphers like DES, the technique being known as Differential Fault Analysis
(DFA)[59]. On 2™ October 2000, the US National Institute of Standards and Tech-
nology (NIST) selected Rijndael [184] as the Advanced Encryption Standard (AES)
and thus replaced DES as a world-wide standard for symmetric key encryption. Thus
smart cards and secure micro-controllers are designed using AES to protect both the
confidentiality and the integrity of sensitive information. With the work on optical
fault induction reported in [61], research in the field of fault-based side channel crypt-
analysis of AES has gained considerable attention. DFA on AES was reported in [63]
by inducing faults at byte level to the input of 9% round of Rijndael using 250 faulty
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ciphertexts. In the fault based attack on AES reported in [64] around 128 to 256
faulty ciphertexts are required to discover the key. P. Dusart etal [65] performs a
Differential Fault Analysis on AES and shows that using a byte level fault induction
anywhere between the eighth round and ninth round the attacker is able to break
the key with 40 faulty ciphertexts. Finally, [66] shows that when a byte level fault
occurs at the input of the eighth round or the input of the ninth round of a ten round
AES-128 algorithm, an attacker can retrieve the whole AES-128 key with two faulty
ciphertexts.

In the present work we present a fault based side-channel attack on AES using a
byte level fault. In the proposed attack the attacker intends to induce a byte level
fault at the input of the 9% round by affecting a byte of the round key. It may
happen, accidentally due to imprecise control over the induction of fault, he ends
up in inducing the fault at the input of eighth round or last round. Based on the
fault signature in the ciphertext the attacker identifies the round in which the fault
has been induced. Accordingly he chooses a strategy from three options. The first
strategy, Strategy 1 is applied if the fault is induced at the input of last round. It
uses a filter based on the differential property of the S-Box of Rijndael and uses
computation in GF(2%). Strategy 2 and 3, are adopted when the fault is induced at
the input of the ninth and eighth rounds respectively. Extensive experimentations
have been performed on a PC and it has been found that the key can be obtained
using only two faulty ciphertexts. The time required is a few seconds and the worst
case complexity for the attacks is 28 for strategy 1 and 2'® for strategy 2 and 3. The
idea of using algebraic equations (as in strategy 2 and 3) have also been adopted in
[65]. But the equations proposed in the present work leads to much simpler analysis
and reduces the number of faulty ciphertexts required from 40 to 2. The experimental
results have been presented to demonstrate that the attack is a better fault attack
than the previous fault attacks against AES.

The chapter is organised as follows: section 9.2 describes the AES Rijndael al-
gorithm. The fault model and the attack environment is stated in section 9.3. The
three strategies of the fault attack on AES is elaborated in sections 9.4, 9.5 and
9.6. Finally the results of the work is compared to existing research and the work is
concluded in section 9.7.

9.2 The Description of AES Rijndael Algorithm

The description of the Rijndael algorithm may be found in [184]. The typical round
is described in the current subsection. The 128 bit message and key sizes have been
considered, but the discussion is valid for all the sizes.
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The 128 bit input block to Rijndael is arranged as a 4 x 4 array of bytes, known
as the state matrix, refer to Fig. 9.1. The elements of the matrix are represented by
the variable,b;;, where 0 < 7,5 < 3 and 1, j refers to the row and column positions.

b b_|b_|b
00| 01| 02| 03
b b_ |b_|b
10 11| 12| 13
b20 b21 b22 b23
b30 b3l b32 b33

Figure 9.1: The State Matrix of Rijndael

The algorithm has ten rounds and the keys of each round are generated by a
keyscheduling algorithm. The design of the key scheduling algorithm of Rijndael
is such that the knowledge regarding any round key reveals the original input key
(named as the master key) from which the round keys are derived. The input state
matrix (plaintext) is transformed by the various round transforms. The state matrix
evolves as it passes through the various steps of the cipher and finally emerges in the
form of ciphertext.

The rounds of Rijndael use the following steps(Fig. 9.2):

1. The SubByte Step: The SubByte is the only non-linear step of the cipher. It
is a bricklayer permutation consisting of an S-box applied to the bytes of the
state. Each byte of the state matrix is replaced by its multiplicative inverse,
followed by an affine mapping. Thus the input byte z is related to the output
y of the S-Box by the relation, y = A.x~! + B, where A and B are constant
matrices[184].

2. The ShiftRows Step: Each row of the state matrix is rotated by a certain number
of byte positions. This is a byte transposition step.

3. The MixColumn Step: The MixColumn is a bricklayer permutation operating
on the state column by column. Each column of the state matrix is considered
as a 4-dimensional vector where each element belongs to GF(2%). A 4x4 matrix
M whose elements are also in GF(2®8) is used to map this column into a new
vector. This operation is applied on all the 4 columns of the state matrix [184].

4. AddRoundKey: Each byte of the array is exclusive-ored with a byte from a
corresponding array of round subkeys.
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The first 9 rounds of Rijndael are identical except the last round in which the Mix-
Column step does not exist.

Y ]

ADD ROUND ADD ROUND

KEY KEY
BYTE SUB BYTE SUB
ROUND 1 -9 SHIET ROW ROUND 10
SHIFT ROW
ADD ROUND

MIX COLUMN KEY

\

Figure 9.2: The Round Transforms of Rijndael

9.3 Fault Model Used and the Attack Environ-

ment

In this work, the fault assumed is a single byte fault. Single byte fault means the
fault f;; is injected in one particular byte b;;, where 7 refers to the row position and j
refers to the column position in the state matrix (0 < 4,j < 3). The number of bits in
the byte which are affected by the fault is indicated by w(f;;), where 0 < w(f;;) <8.
If the fault f;; is injected at the input of the r*" round then it is denoted as e

As the attacker does not have full control over the round in which the fault is
injected, the value of r can vary. Keeping in mind the present technology of fault
injection it is practical to assume that the value of r can deviate by atmost + 1. If
the attacker wishes to inject fault at the input of the ninth round, he may end up
doing so at the input of the eighth round or the last round. In this work we therefore
develop the attacking strategy so that he can detect the location of the fault (that
is the round in which the fault is induced) from the output ciphertexts. Based upon
the round in which the fault is injected the attacker uses three different strategies to
reveal the key.

Before stating the fault attack techniques we outline two practical scenarios where
the attack may be carried out. The scenarios show that depending upon the imple-
mentation of cryptographic hardware there are two different requirements on the
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attacker in order to inject the fault at any precise round location.

e Scenario 1: Certain implementations of Rijndael requires pipelining at all stages
(unrolled rounds), due to the requirement of throughput. Thus each key requires
access to an unshared key memory. Hence, the entire key has to be stored in
a key register or memory. In such a case the attacker wishes to cause faults
in the value that is being read from the memory while leaving the value stored
in the memory unaffected. This does not hamper the normal functionality of
the device and is thus undetectable. Further, in such an implementation large
number of faulty ciphertexts can be obtained, since the key stored in the memory
is unaffected. Thus the requirement on the attacker in such a case is Control
on Fault Location.

e Scenario 2: The other way in which block ciphers like AES-Rijndael are im-
plemented is through iterative structures (rolled rounds) or a combination of
unrolled and rolled rounds. In such a case the key is not stored in the memory
and thus the requirement on the attacker is Control on Fault Timing.

Imprecise control over fault location or fault timing hinders the attacker to be able
to inject a fault at a predetermined round key. In our present attack, we assume that
the attacker intends to inject fault in a byte at the input of the 9** round, but may
end up in inducing the fault at the input of 8 round or at the input of last round.
In the following sections we present strategies through which the attacker identifies
the round in which the fault is injected and accordingly he applies three alternate
strategies to discover the key. The three alternate strategies are:

1. Strategy 1: When the attacker injects fault at the input of the last round

2. Strategy 2: When the attacker injects fault at the input of the penultimate
round

3. Strategy 3: When the attacker injects fault at the input of the eighth round

9.4 Attack Based on Strategy 1

In this section we are going to describe a fault attack on AES where the fault is
induced at the input of the last round AES S-Box.

The last round of AES Rijndael does not have a diffusion step and is a bytewise
operation. In this attack a fault is induced at a byte position in the last round S-Box
input. The attacker obtains a pair of ciphertexts (C1, C}), where C; refers to the fault
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free encryption and C] is the faulty ciphertext. The byte in which the fault has been
induced can be trivially identified from the difference of C; and Cf.

We assume in this attack that the attacker can induce a fixed byte fault. A filter
based on GF(2*) operations is built using a differential property of the S-Box of AES.
The attacker uses the filter to reduce the key space drastically. Results show that
the filter pass only 2 keys, out of which one is the correct key. The correct key is
confirmed using another pair of ciphertexts. Thus the key byte is revealed using only
2 faulty ciphertexts. The differential property and the developed filter is first stated,
followed with the description of the actual attack.

9.4.1 The differential property of the Galois Field Inverse

The filter for strategy 1 is based on a differential property of the inverse step of AES
Rijndael. The inverse mapping is a differentially 4-uniform mapping [154], means that
for any non-zero input difference and any output difference the number of possible
inputs have an upper bound of four. In this case we use a special case of the Galois
Field Inverse to develop a filter using computations in the sub-field. This makes the
acceptance or rejection of the guessed keys fast.

The inverse of a GF(2%) element can be computed by expressing it as a polynomial
of the first degree with coefficients from GF(2*), [200]. In order to map an element
in GF(28) to an element in the composite field GF((2*)?), the element is multiplied
with a transformation matrix, 7.

One such matrix 7" is as follows [162],

10 100000)
10101100
11010010
c_l0o1110000
11000110
01010010
00001010
\11011101)

The current work uses (z2 + x + w'*) as the irreducible polynomial for Galois
Multiplication in the composite field. Here w is the primitive element of GF'(2*) and
the field polynomial for computation in GF(2%) is z* + x + 1. Thus, w'* = w3 + 1.
The multiplicative inverse for the arbitrary polynomial (bx + c), where (b, c) are in
GF(2*), can be computed as[200]:
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dr +e= (bx +c)' = b(B*w™ + be+ ) rx + (b+ o) (BPw' +be+ )7 (9.1)

The architecture for the computation of inverse is shown in Fig. 9.3.

b c
— in[7] = in[4] in[3] — in[0]
Y
Square 4 Square 4
‘ Mult 4 '
Constant Add 4
Mult wr14

\—> Add 4
¢

Inverse 4
‘ i
Y Mult 4
= Mult4
Y
d e

Figure 9.3: Computation of the Inverse in GF((2%)?).

Let two such parallel inverse blocks be considered(Fig. 9.4). One of them operates
on X, an element in GF((2*)?). The other one operates on the complement of X which
is X'.

Let X = bz + ¢ and therefore X' = b’z + ¢ where b,b',c and ¢ all belongs to
GF(2%). Also b is the complement of ¥'. Similarly c is the complement of ¢’.

The inverses are f(X) =dz+e = X !and f(X') = dz+¢ = (X')}, where
d,d’,e and € all belongs to GF(2*).

Hence the differential, de = e + €'
= (b+c)(P*w" +bc+ )7+ (U + ) ((V) 2w + b + ()
=(b+c)dB,as (b+c)=(+).

Here 6B = (b®w'* 4+ be + )71 + ((0')*w' + b'd + (¢)?)~h

Thus, the Galois Field inverse yields a differential property in its lower nibble(4 bits)
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X X'
Inverse 1 Inverse 2
Y Y’

Figure 9.4: Differential Property of the Inverse module in GF((2%)?).

as the following equation is obtained,

de=(b+c)iB (9.2)

9.4.2 Attack Using the Filter

The filter developed in the previous subsection may be used to attack Rijndael using
the fact that the field GF(2®) is isomorphic to the composite field GF((2*)?). The
filter developed is used to reduce the key space drastically. The operations of Rijndael
in the final round are bytewise. Hence in the last round of the algorithm (Fig. 9.5)
the transformation of each of the bytes may be observed independently. The attacker
obtains a pair of ciphertexts, out of which one is the faulty ciphertext. The faulty
ciphertext is obtained when there is a byte fault at the input of the last round S-Box.
The Rijndael algorithm has transformations in GF(28).

Let us consider one byte of the state matrix after the 9** round of Rijndael algo-
rithm, say the (i, j)** byte of the state matrix. The byte is xored with the 9" round
key byte, K9; ;. The attacker induces a fault in which he converts the 9" round key
byte to K9; ; by finding the complement of some of the bits. The attacker replaces
byte Kgi,j by:

K9, = K9;;®T 'F, where F is an all one vector.

Since, T"'F = [11000100]* the attacker only gets the 1°¢,2"¢ and 6™ bits of the 9%
round key complemented.

In order to perform the fault attack, the cryptanalyst studies two sets of the
cipher. In one set, Fig. 9.5 he considers the actual cipher where the elements belongs
to GF(2%). In the figure, the first block (Fig. 9.5(a)) refers to the fault free tenth
round, whereas the second block (Fig. 9.5(b)) refers to the faulty last round of
Rijndael.
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The other set, Fig. 9.6 is a reference cipher where the elements belong to GF((2*)?).
In this figure, also as in the first set, the first block refers to the fault free case, whereas
the second block refers to the case where fault has been injected at the input of the
last round.

Due to the isomorphism between GF(28) and GF(2*)? the two sets (Fig. 9.5 and
Fig. 9.6) can be related by the matrix 7.

The reference cipher, as already described is built by describing all the states
and the transformations of the original cipher in the composite field GF((2*)?). In

Byte of K9 Byte of K9
K3, K9
(Bx+C) B'x+C)
Sub Byte Sub Byte
Shift Row Shift Row
(Dx + E) (D'x+FE)
é 10 R
(D1x + E1) (DI'x +EY)
a. Fault Free Cipher b. Faulty Cipher

Figure 9.5: Last round of Rijndael in GF(28)

the reference ciphers k9;; is the (i, 7)™ byte of the 9 round key. It has a one-one
mapping with K9, ;, the corresponding key byte in the original cipher, due to the
isomorphism between GF(28) and GF((2*)?).

Thus, k9;; = T(K9; ;) and k9;, = T(K9;) = T(K9,®T~'F) = T(K9,) & F.
Thus in the reference cipher the 9 round key is complemented. Hence, k9; ; is the
bit complement of £9; ;. Thus in the reference cipher (Fig. 9.6) (b'z + ) is the bit
complement of (bz + ¢).

Let the affine transformation in GF(2®) be represented as Y = A(X) + B and in
GF((2*)?) reference cipher be represented as y = A'(z) + B’, where (X,Y) € GF(28)
and (z,y) € GF(2*)2. Then, y =T(Y) and z = T(X).

Thus, y=T(Y)=TA(X)+TB
=TAT~\(z) + TB.
Hence, A’ = TAT~! and B' = TB. The SubByte operation in the reference cipher is
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y = A'(z7!) + B', where the inverse is in GF(2%)%

We compute the differentials of the output bytes from the two blocks of the
reference ciphers depicted in Fig. 9.6. The differential from the reference ciphers
(Fig. 9.6) is denoted by,

(6dx + de) = (dlx +el) + (dl'z + el’) = A'[(bx + ¢)~ + (V'z + )71
The differential in the reference ciphers can be related to that in the the original
cipher in GF(2%) (Fig. 9.5) by,

6Dz +6FE =T 'A'[(bx +¢)~' + (V'z + )7'].

In other words,

(bx +c) '+ (Vx4 ) AT (§Dx + 6F)
or,(b+c¢)dB = lower nibble{A’ 'T(§ Dz + 6 E)}, from equation 9.2(9.3)
or,(b+c¢)dB = lower nibble{TA~!(6Dz + 0E)}

since (bz + ¢) and (b'z + ¢') are bit complements of each other and A’ = TAT~'. In
the above equations lowernibble refers to the least significant 4 bits.

Thus we arrive at a filter for rejecting the wrong guesses while trying to attack
full round Rijndael.

Byte of k9 Byte of k9’
k9| H Ea— k9’ .
J |
(bx +c) (b'x+c)
Sub Byte Sub Byte
Shift Row Shift Row
(dx +€) (dx+¢€)
! T T KOy
(dix + €el) ¢ (d'x +el’)
a.  Fault Free Cipher b. Faulty Cipher

Figure 9.6: Last round of Rijndael in GF(2*)?

Based on the above filter an algorithm to attack the full round Rijndael Cryp-
tosystem is outlined below. It may be noted that the revelation of any round key of
Rijndael leads to the knowledge of the original master key.
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Algorithm 9.1 : To obtain the tenth round Key byte: K10;; (that is the
(i, 7)™ byte of the tenth round key). Let K be the expanded round keys for all
the ten rounds in the fault free cipher. Thus, K={K0,K1,..., K9, K10}. Likewise
for the faulty cipher, K' ={KO0,K1,..., K9, K10}, indicating that the ninth round
round key is injected with the fault

e Stepl: Encrypt P using K to obtain C. Thus C = E(P,K). One of the bytes
of the state matriz of C is (Dlxz + E1).

e Step2: Encrypt P using K' to obtain C'. The key K' differs from K only in
the fact that the (i,§)™ byte of the 9th round key is modified. The 15¢,2™ and
6" bits of K9;; are complemented. The corresponding byte of the faulty state
matriz is D1'x + E1’

e Step8: Xor the output bytes to obtain §Dx + 6F ; §Dx + 6FE = (D1z + E1) +
(Dl'z + E1')

e Step): Randomly guess (b,c) where b,c ¢ GF(2%)

e Stepb: Use the filter (b+ c)d B=lower nibble{TA~'(6Dx + 6E)}
where 6B = (D*w* +be + )7+ (0w + ' + (¢)?) 7L, where (V, )
are complements of (b, c)
If the guess passes the filter evaluate possible tenth round key as
K10;; =T 'A'(bz +¢) ' + B'|+ (Dz + E)
= [AT '(bz+c) '+B|+(Dz+E), since A’ =TAT ! and B' = TB.

e Step6: Check whether K10, ; gives (D'z+ E') from (B'x+C"). If it is true then
K10,; is a possible key byte.

The above algorithm is applied 16 times concurrently for faults at all the byte
positions of the state matrix. Statistical analysis have been performed and it has been
found that the developed filter effectively screens out wrong guesses. A significant
reduction has been observed in the total number of keys, proving the efficacy of the
filter designed to remove wrong guesses.

9.4.3 A Working Example

In the present section an example has been cited to explain the working of the above
attack. The Rijndael algorithm is applied on a 128 bit plaintext PT. The plaintext
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may be conceptualised as a 4x4 matrix, in which each element is a byte. In the

present context let,

00000000
01000011
11110110
10101000

PT =

The input key is

00101011
01111110
00010101
00010110

KO =

10001000
01011010
00110000
10001101

00101000
10101110
11010010
10100110

00110001
00110001
10011000
10100010

10101011
11110111
00010101
10001000

11100000
00110111
00000111
00110100

00001001
11001111
01001111
00111100

The keyscheduling algorithm generates the round keys for the encryption algorithm.
Thus the total set of keys for the 10 rounds is K = {K0, K1,K2,..., K9, K10}. In
the process the 9" round key is denoted as

10101100
01110111
01100110
11110011

K9 =

00011001
11111010
11011100
00100001

00101000
11010001
00101001
01000001

01010111
01011100
00000000
01101110

The cryptanalyst obtains the ciphertext obtained by encrypting PT by K. Let the

ciphertext be

10010101
11101111
01110011
00101110

CT =

11110110
00100101
01101110
11101011

11011010
01111101
11001001
00000101

11101000
11100001
11110010
01000001

Now due to a malicious effort made by the attacker the 9** round key is manipu-
lated. Thus the K9 is replaced in K by K9', where

10001111
01010100
01000101
11010000

K9' =

00111010
11011001
11111111
00000010

00001011
11110010
00001010
01100010

01110100
01111111
00100011
01001101
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Note that each byte of K9 are changed such that the 6**,2"¢ and 1 bits are comple-
mented. Thus K' = {K0,K1,K2,...,K9,K10}. The eavesdropper then observes
the modified ciphertext obtained by encrypting P with K’. Thus he obtains another
cipher

01100011 10100110 11100011 00011000

00011101 00110100 00111100 01000000

00110111 11111010 00111010 00011001

10111110 01001101 11000010 01111010

CT =

The attacker uses the knowledge of C'T and CT' to arrive at the round keys. The
keyscheduling algorithm of Rijndael has the property that the revelation of any round
keys leads to the calculations of all the round keys. In the present attack the 10
round key is evaluated. The present example has

11010000 11001001 11100001 10110110
00010100 11101110 00111111 01100011
11111001 00100101 00001100 00001100
10101000 10001001 11001000 10100110

K10 =

The table 9.1 shows the result of a run of the attack. The cryptanalyst uses the
developed filter in reducing the possible key space. Further, let us take a random index
of the state matrix to investigate the working of the attack. For example for index
03 in table 9.1 the two possible keys passing the filter are {11000111, 10110110}.
It may be observed that the correct key byte is 10110110 which exists in the reduced
set. In order to ascertain which of the two key bytes is the actual key the attacker
obtains another pair of ciphertexts and intersects the two reduced sets. The workload
in the present case may be calculated from table 9.1. Since, the last round of AES is
bytewise, the entire key may be obtained through the parallel operation of the filter,
and thus in 2 runs of the algorithm.

The working example shows that the application of the filter reduces the key space
from 2'% to 2, with a complexity of 28. With the development of the work referred
to in [61] the present attack becomes the most powerful of all the fault attacks in
existing literature. The reasons are:

1. The number of faulty ciphertexts is only 2, with the time complexity of the
attack being only 28.

2. The fault can be injected at any byte and the corresponding fault position is
easily detected from the ciphertext pair, since the last round is bytewise

3. The filter based on which the pruning of keys is performed is based on GF(2*)
operations and is thus very fast. The easy and fast rejection of wrong keys leads
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Table 9.1: Reduction of keyspace in Strategy 1

Index Fault Free Byte | Faulty Byte | No of keys
L ; (Dz + E) (D'x + E') passing
of the filter
state matrix | D E D’ E’
00 1001 0101 0110 | 0011 2
01 1111 0110 1010 | 0110 2
02 1101 1010 1110 | 0011 2
03 1110 1000 0001 | 1000 2
10 1110 1111 0001 | 1101 2
11 0010 0101 0011 | 0100 2
12 0111 1101 0011 | 1100 2
13 1110 0001 0100 | 0000 2
20 0111 0011 0011 | 0111 2
21 0110 1110 1111 | 1010 2
22 1100 1001 0011 | 1010 2
23 1111 0010 0001 | 1001 2
30 0010 1110 1011 | 1110 2
31 1110 1011 0100 | 1101 2
32 0000 0101 1100 | 0010 2
33 0100 0001 0111 | 1010 2

NB: Index I;; means (i + 1) row and (j + 1) column of the state matrix.

to real time attack, with the key being cracked in few seconds in a PC.

9.5 Attack Based on Strategy 2

Our next fault attack is when the fault is induced in a byte of the state matrix before
the SubByte of the penultimate round (i.e. the 9 round).

The 9" round has a diffusion step, so a disturbance in one byte affects 4 bytes at
the output. The last round does not have a diffusion step and so the disturbances
remain in 4 bytes of the state matrix. If one traces the disturbance in the state
matrix through the last two rounds the following properties can be identified. These
properties can be utilized to develop an attack against the block cipher, where the
fault induced may be random.
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9.5.1 Property of the State Matrix

Fig. 9.7 shows the propagation of the fault, when it is induced in a byte at the input
of the ninth round Byte Sub. In the figure we show the case when the fault is induced
at the 00" byte of the state matrix. The fault value is say f, and after the Byte Sub,
the fault value is transformed to a value f’. The byte fault is propagated to four byte
positions. As the figure suggests, the faults at the input of the tenth round Byte Sub
have values of 2f', f', f' and 3f'. The faulty values after the tenth round Byte Sub
gets transformed into Fy, Fy, F5 and F,. The attacker obtains a pair of ciphertext,
(CT,CT'"). The ciphertext CT is a fault free ciphertext and the ciphertext CT" is the
ciphertext, when a fault is induced in a byte. When a bytewise fault is induced at
the input of the ninth round Byte Sub, the difference of the ciphertexts CT" and CT’
has the pattern as shown in Fig. 9.7 after the tenth round ShiftRow. Observing the
signature the attacker gets confirmed about the fact that he has been able to induce
fault before 9" round MixColumn.

f f— fr— 2f" =
fr—
Ninth Ninth fr—=
Round Round
Byte Sub Shift 3
Row
Ninth Tenth Round Byte Sub
Round
Mix Ry
Column
)
]
Fy
Tenth Round ShiftRow
F ™
Fs
Fiq

Figure 9.7: Propagation of Fault Induced in the input of the ninth round of
Rijndael

The fault pattern as shown in Fig. 9.7 depicts the difference between the fault
free ciphertext CT and the faulty ciphertext CT’. Let the values of the bytes shaded
in Fig. 9.7 after the tenth round Shift Round Key in the ciphertext C'T" be denoted
by z1, T2, 3 and 4. Then the corresponding values for the fault free ciphertext CT”
is denoted by x; + F, o + F5, x3 + F3 and x4 + Fj. Here the sign + stands for the
bit-wise exclusive-or operation of two bytes. The corresponding key bytes are Ki,
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KQ, Kg and K4.

The fault pattern gives the following set of equations:

ISB(£E1+K1)+ISB($1+F1+K1) = 2[ISB($2+K2)—|—ISB(:L‘2+F2—I—K2)]
ISB(CE2+K2)+ISB(.’I)Q+FQ+K2) = ISB(:L'3+K3)+ISB(.’E3—|-F3+K3)
ISB(za + K1) + ISB(z4 + Fy + K1) = 3[ISB(w + Ks) + ISB(x2 + Fy + K>)]

In the above set of equations ISB stands for the Inverse Byte Sub operation,
which is defined as the inverse of the Byte Sub step. The values of (1,2, 3, Z4)
and (z1 + Fi,z9 + Fy, 23 + F3,24 + F}) are known to the adversary. The attacker
intends to compute the values of K1, K5, K5 and K, from the equations. The attacker
evaluates the keys as follows: The attacker guesses the bytes K; and K5 and checks
whether they satisfy the first equation. The solution sets for the second and third
equations are searched in parallel. Thus the time complexity of the key conjuring is
2'6_ Finally since the variable K, is in all the three equations, the solution set of K5
from each equation is intersected to arrive at a reduced solution space for K5. The
reduced space of K, is then used to find a reduced set of K;, K3 and K, from the
three equations. It may be noted that the above attack does not depend upon the
value of the induced fault, which may be random. This completes a single pass of the
algorithm with one (CT, CT") pair. In order to ascertain the key bytes, further passes
of the algorithm are run with other (CT, C'T") pairs. We have experimentally verified
that the number of passes of the algorithm does not go beyond two, thus revealing
the key with only two faulty encryptions.

9.5.2 A Working Example

In the present section we outline the working of the attack through an example.
The example may be compared with the results shown in [65, 66] which are the two
most recently reported works on Fault Attacks on AES. In this attack scenario we
assume that the fault is induced in a byte at the input of the ninth round. In such
a scenario the solution proposed in [65] requires about 40 to 50 faulty ciphertexts.
The attack strategy proposed in [66] requires two faulty ciphertexts to evaluate the
key. In both the work proposed in this work and [66] a single pass of the algorithm
reduces the key space of four last round key bytes. In order to fully reveal the key
the attack is applied again by considering another three faulty byte positions. The
work proposed in [66] after one pass of the algorithm (i,e with a single (C'T,CT")
pair) the remaining number of candidate keys is about 1038. Thus if only one faulty
encryption is possible the key space is reduced to approximately 1038* ~ 2%0. We
show in the following example that a single pass of the proposed strategy is better



9.5. Attack Based on Strategy 2

195

than that of [66] and can also ascertain the key in exactly two runs of the algorithm.

Let the plaintext be:

00000001
10100110
11110100
01000000

PTl ==

11111110
01101011
10100010
10100101

10000001
11100001
11110111
10001110

11111100
10100011
01111000
11110000

The plaintext is encrypted using Rijndael encryption algorithm. The key matrix

is:
11100111
01110110
00010101
00111110

KO =

and the tenth round key is:

00101101
11110000
11100010
01010101

K10 =

00101000
10101110
11011010
10000010

00010100
11100010
00000111

11101010

The corresponding ciphertext is:

11101110
01011000
11111001
10000101

CT1 -

01111111
01001101
00101001
00111011

10010101
11110111
00110101
10100100

00011101
11010111
10100010
01110000

11110100
10110101
11010010
11111100

01100001
11001111
01011111
01001100

11000101
01000001
10110010
00111100

01100101
10110101
11100010
11110111

The faulty ciphertext for a random fault induced in the 00" position at the input
of the ninth round leads to the following faulty ciphertexts:

00101111
01011000
11111001
10000101

CT, =

01111111
01001101
00101001

10010101

11110100

10110101
01111000

11111100

01100101
11111111

11100010

11110111

The bytes in the faulty ciphertexts which are bolded show how the fault has
propagated. Using the above signature the attacker identifies the round input where
the fault is induced. Accordingly, he applies the equations of strategy 2. Experiments
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show that only 256 possible subkeys satisfy the equations. Thus, with a single faulty
encryption the key space reduces to 256* ~ 232, which is better than the result of
[66].

The actual key can be ascertained if we consider another faulty encryption. Let
another plaintext be:

10101001 01010110 10001101 11001100
11110110 01001011 10100011 10000011
11110100 00000010 10100110 11110000
11110000 11100101 00111100 11110001

PT2 =

The corresponding ciphertext is:

00001101 11111101 00111011 10001101
11000110 00100011 11110101 01110001
11001111 00101110 10100101 11011010
01110011 00001111 10101101 11000100

CT]_ =

and the faulty ciphertext is

01011100 11111101 00111011 10001101
11000110 00100011 11110101 10100001
11001111 00101110 11111011 11011010
01110011 00011011 10101101 11000100

CT, =

The signature of the fault indicates that the fault is induced at the input of the
ninth round of Rijndael. Thus the equations of strategy 2 is applied and it is found
that 272 different possible tenth round key satisfy the equations.

Intersection of the two solution sets leaves only one element, which is the correct
solution. In this example we arrive at the key bytes: K;=11010000, K>=01100011,
K3=00001100 and K4=10001001. The bold elements in the matrix of K10 show that
the guesses are correct.

9.6 Attack Based on Strategy 3

In this attack we assume that the adversary has induced fault in a byte of the input
to the eighth round. If the fault is induced in a byte of the state matrix, which is
input to the eighth round, the disturbance spreads to the entire state matrix when
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it emerges out after the tenth round. However there is a definite pattern in the state
matrix after the ninth round which may be exploited to develop a fault attack. We
assume that the attacker observes the difference between the fault free ciphertext and
the faulty ciphertext (C' and C”) to comprehend where the fault has been induced.
We have shown that the attacker is able to detect from the difference whether the
fault is induced at the input of the ninth round or the last round. If neither of the
cases occur we assume that the fault is induced at the input of the eighth round.

9.6.1 Property of the State Matrix

Fig. 9.8 shows the diffusion of a byte fault induced at the input of the eighth round.
Similar to the previous section the various round operations transform the initial
value of the fault f. The attacker observes, like in the previous cases two ciphers -
one fault free and the other faulty. The difference of the state matrices of the two
ciphers are depicted in Fig. 9.8.

Eighth Eighth [
Round Round
Byte Sub Shift 3f" —
Row "
Eighth i Ninth Round Byte Sub
Round

Mix Column Fi

-

Fy -

Fgom

i Ninth Round Shift Row
R RPN L ALTAL A5 A, 21| Fy| F3|3R Fi™
M| A7) %8| " R Fi| F4|3F32R ) Fa
A 12| A9 P10 Aol P10 11 M 12 F1|3F,4|2F3 R Fs
Al AalP a5 Alg A Als Al 3F2F| F3| R Fg
Tenth Round Shift Row Tenth Round Byte Sub Ninth Round Mix Column

Figure 9.8: Propagation of Fault Induced in the input of eighth round of
Rijndael

The attacker knows the value of CT and CT’ from the two ciphertexts that he
obtain. Let, the two ciphertexts be represented by:
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Ty T2 T3 T4
Ts T T7 Ty
Tg9 Ti0 T11 T12

CT =

T13 T4 T15 L6

and

$1+A1 $2+A2 £E3+A3 .’L‘4+A4
J)5+A6 1‘6+A7 £E7+A8 .’L‘8+A5
To+ A zTo+ A i+ Ay T2+ A
T3+ A Tia+ Az w15+ Ay 116+ Ass

CcT

The corresponding key matrix for the tenth round is:

KOO KOI KOQ K03
KlO Kll K12 K13
KQO K21 K22 K23
K3O K31 K32 K33

We note the state of the differences after the ninth round shift row from Fig. 9.8.
Combining the above facts we obtain the following set of equations to evaluate the
values of the key bytes Koo, K13, Koo and Kizi:

ISB(.’El +K00)+ISB(£E1 +A1 -I—K()()) = Q[ISB(.’Eg—I—Klg)+ISB(:I,‘8+A5+K13)]
ISB(:L'3+K13) +ISB(.’I)8+A5—|-K00) = ISB(.’L'H ‘|‘K22) +ISB(.’L‘11 +A9—|—K22)
[ISB($14+K31) +ISB($14+A13+K31) = 3[ISB(.’L‘8+K13) +ISB(J,‘8+A5+K13)]

The unknowns in the above set of equations is the value of the key bytes Ko, K3,
Ky and K3;. The attacker similar to the previous strategy obtains reduced solution
spaces for the bytes Koo, K13, K99 and K3; from the three equations. The worst case
complexity for one pass of the algorithm is 2'¢ and is again independent of the value
of the fault induced. Similar to strategy 2, another solution set for the key bytes is
obtained with another CT and CT' pair. The two solution sets are intersected to
arrive at the correct key bytes, as the intersection set leaves only one element.

It may be noted that the equations of strategy 2 and 3 are identical and thus the
solutions are of similar nature. A one passes of the algorithm leaves on the average
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Table 9.2: Comparison of Existing Fault Attacks on AES

Reference Fault Model Fault Location No. of
Faulty Encryptions
[64] Force 1 bit to 0 Chosen 128
[64] Implementation Dependent Chosen 256
[63] Switch 1 bit Any bit of ~ 50
chosen bytes
[63] Disturb 1 byte Anywhere among ~ 250
4 bytes
[65] Disturb 1 byte Anywhere between ~ 40
last two MixColumn
[66] Disturb 1 byte Anywhere between 7% 2
round and 8
round MixColumn
This chapter Disturb 1 byte Anywhere between 7% 2
round MixColumn and
last round input

of 256 possible candidate keys and with another faulty encryption identifies the exact
candidate key.

9.7 Comparison of Results and Conclusions

In this section we compare the existing fault based attack on AES with the help of
table 9.2.

Thus the comparisons show that the current fault attack requires the minimum of
faulty encryptions in order to derive the key like [66]. Also the fault location can be
anywhere between the seventh round MixColumn (effectively the input of the eighth
round) and the input of the last round of Rijndael. Also, if the work reported in [66] be
compared with the present attack based on the result with one faulty encryption, then
the present attack reduces the number of candidate keys to an average of about 256
compared to 1036 required in the previous attack. Often the second fault induction
may not be possible, in such a case the present attack is almost (%)4 ~ 1000 times
more powerful than the work reported in [66]. Thus the present attack is better than
the previous fault attacks on AES. The class of attacks thus obviates the necessity of

fault tolerance in cipher structures.






Chapter 10

Customizing Cellular Message

Encryption Algorithm

10.1 Introduction

Cellular Message Encryption Algorithm (CMEA) [2] has been developed by the
Telecommunications Industry Association (TTA) to encrypt digital cellular phone
data. CMEA is one of the four cryptographic primitives specified for telecommuni-
cations and is designed to encrypt the control channel, rather than the voice data.
It is a block cipher which uses a 64 bit key and operates on a variable block length.
CMEA is used to encrypt the control channels of cellular phones. It is distinct from
ORYX, an also insecure stream cipher that is used to encrypt data transmitted over
digital cellular phones.

In March 1997, Counterpane Systems and UC Berkeley jointly [3] published at-
tacks on the cipher showing it had several weaknesses. In the paper the authors have
presented several attacks on CMEA which are of practical threat to the security of
digital cellular systems. The authors describe an attack on CMEA which requires
40 — 80 known plaintexts, has time complexity about 224 — 232, and finishes in min-
utes or hours of computation on a standard workstation. The authors point out that
the cryptanalysis of CMEA underscores the need for an open cryptographic review
process. Thus having faith on new algorithms which are designed close door is always
dangerous. The use of such algorithms can lead to a total collapse of the cellular
telephonic industry. CMEA is used to protect sensitive control data, such as the
digits dialled by the cellphone user. A successful break of CMEA might reveal user
calling patterns. Finally, compromise of the control channel contents could lead to
the leaking of any confidential data (like credit card numbers, bank account numbers

201
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and voice mail PIN numbers) that the user types on the keypad.

Following the revelation of the weakness of CMEA, a patchup algorithm called
ECMEA was standardised by TTA. A further enhancement of ECMEA, called SCEMA,
is also developed [2]. However according to [3] the previous cryptanalysis of all the
crypto-algorithms proposed by TTA clearly demonstrate that there is a need of ex-
plicitly stating security assumptions during every step of the design. Also security
components should not be reused without thoroughly examining the implications of
reuse. Although it has been proposed that the future generation cellular networks
(CDMA 2000 1X Revision A) will use AES(Rijndael)[184], the implementation con-
straints of a wireless network might prove to be a concern. This motivates the design
of special ciphers for wireless telephones (networks) but at the same time which are
evaluated meticulously. The security margins of such algorithms must be stated so as
to increase confidence in the ciphers. In other words, dedicated as well as standard
block cipher security analysis should be presented for the ciphers which are used to
prevent frauds in such important networks. In these lines, the present work revisits
the CMEA algorithm. The algorithm has been analyzed to understand the reasons
of its insecurity. Based upon the analysis the CMEA has been modified to CMEA-I.
The new algorithm has been analyzed and it has been shown that the original at-
tacks does not work against the cipher. Also the diffusion and confusion properties
of CMEA-I has been demonstrated by means of Avalanche analysis. The security of
CMEA depends on the strength of the T-Box. Hence, security margins have been
presented to establish that the T-Box provides sufficient security margins against
linear and differential cryptanalysis.

The chapter is organised as follows. In section 10.2 the preliminaries have been
stated which details the original CMEA algorithm and the attacks against it. In sec-
tion 10.3 the CMEA algorithm has been analyzed to understand why the algorithm
breaks in the face of the attacks detailed in section 10.2. Section 10.4 presents the
customized CMEA with necessary modifications to plague the existing weaknesses
of CMEA. Section 10.5 performs a security analysis of CMEA-I. The section shows
how CMEA-I prevents the attack proposed in [3]. The diffusion and confusion prop-
erties of CMEA-I has also been analyzed in the section using Avalanche criterion.
Linear and differential cryptanalysis has been performed on the T-Box in the section.
The efficiency of the cipher has been discussed in section 10.6. Finally section 10.7
concludes the work.

10.2 Preliminaries

This section describes the CMEA algorithm and the existing cryptanalysis of CMEA.
CMEA is a byte-oriented variable width block cipher with a 64 bit key. Block sizes
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may be any number of bytes. CMEA is optimized for 8-bit microprocessors with
severe resource limitations.

10.2.1 The CMEA as it is

CMEA has three layers. The first layer performs one non-linear pass on the block,
affecting left-to-right diffusion. The second layer is a purely linear, unkeyed operation
intended to make changes in the opposite direction. One can think of the second step
as xoring the right half of the block onto the left half. The third layer performs a
final non-linear pass on the block from left to right. In fact, it is the inverse of the
first layer.

CMEA obtains its non-linearity in the first and third layer from an 8-bit keyed
lookup table known as the T-Box. The T-Box calculates its 8-bit output as
T(z) = C(((C((C(((C((z @ Ko) + K1) + 2) @ Ky) + Ks) + 2) @ Ky) + K5) +2) @
Kg) + K7) + z, x is the input byte and K, ; represents the 8 byte key. In this
equation C is an unkeyed 8-bit lookup table known as the CaveTable. The operation
@ represents a bit-wise xor, while + denotes binary addition on the operands. All the
operations are 8 bit operations. The algorithm encrypts an n-byte message I . ,_1
to a ciphertext Cy . ,—1 under the key Ky_7 as follows:

Algorithm 10.1 y, =10
for(i=0;i<mn;i++)
{
P/ =P +T(y; ®1)
Yirr = yi + B

for(i=0;i< [n/2];i++)
P'=Peo(F,_;_, V1)

20=20
for(i=0;i<mn;i++)
{

Ziy1 =z + B

Ci=P'-T(z 1)
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Recovering the values of all the 256 T-Box entries is equivalent to the breaking
of CMEA even if the keys are not recovered. The values of T'(0) occupies a position
of special importance. T'(0) is always used to obtain Cy from P,. Without 7°(0) one
cannot trivially predict where other T-Box entries are likely to be used. Knowing
T(0) lets us learn the inputs to the T-Box lookups that modify the second byte in
the message. The CAVE Table has very skewed statistical distribution. 92 of the
possible 256 eight bit values never appear.

10.2.2 Attacks on CMEA

The attacks against CMEA are briefed next. The attacks [3] can be categorised into
two broad types:

A Chosen Plaintext Attack

CMEA is weak against chosen-plaintext attacks; one can recover all the T-Box entries
with about 338 chosen texts (on average) and very little work. The attacker does not
have control over the block length. The attack has two steps.

1. Recovery of T'(0)
For each guess of x, where z is a byte, the message P = (1 — z,1 — z,1 —
z,...,1 —x) is encrypted, where the sign — denotes binary subtraction. Each
byte has the value (1 — z). If the result is of the form C' = (—z,...) then with
very high probability 7(0) = x. There are only 256-92=164 possible values
of T(0), thus the correct value is expected to be guessed using on the average
164/2 = 82 trials.

2. Recovery of the remaining T-Box entries
For each byte j, to learn the value of T'(j) let k = ((n — 1) & j) — (n — 2),
where the desired blocks are n bytes long. The encryption of P = (1-7(0),1—
T7(0),...,1 =T(0),k — T(0),0) is obtained. If the result is of the form C =
(t—1T(0),...) then with high probability 7'(j) = ¢, with a possible ambiguity in
the LSB. The second phase requires 256 more chosen plaintexts, thus requiring
338 chosen plaintexts on the whole.

A Known Plaintext attack on 3-byte blocks

Because of the skewed distribution of the CAVE Table 7'(0) can have 164 possibilities.
For each guess at T(0), a 256x256 array of p; ; is constructed which checks whether
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T(i) = j is possible for each i,j. All values for T'(i), i > 0, are initially listed as
possible. Since, T'(i) — i is a CAVE Table output and the Cave Table has a non-
uniform distribution, one can immediately rule out the 92 values for T'(7).

Using each known plaintext/ciphertext pair lets us establish implications of the
form, T(0) = t,,T(i) =j=>T(') =4

If we have eliminated 7'(i") = j' as impossible, then we can conclude T'(i) = j is
impossible. In this way p; ; is reduced. One either reaches a conclusion or moves to
phase 2.

The second phase recovers the CMEA key from the information previously stored
in the p; ; array. The key recovery is based on pruned search. First one guesses Kg
and K;. Then the effect of the last one-fourth of the T-Box is peeled off and checked
whether it is a valid T-Box entry. Because of the skew in the CAVE Table incorrect
key guesses are easily identified. The pruned key search is continued by guessing K,
and K5. Though the pruned search complexity grows very fast, the T-Box can be
subjected to a classic meet-in-the-middle attack. One can work halfway through the
T-Box given only K 3, and one can work backwards up to the middle given just
K,..7 and look for a match. The combination of the pruned search and the meet-
in-the-middle attack cryptanalysis recovers the entire CMEA Key with 40-80 known
plaintexts.

10.3 Why is CMEA weak?

A detailed study of the CMEA algorithm shows why CMEA is susceptible to chosen
plaintext and known plaintext attacks. In this section the properties of the algorithm
which make the cipher weak have been identified. The CMEA algorithm is modified to
a new algorithm named CMEA-I plaguing the weaknesses of the existing CMEA. The
security of CMEA-I has been analyzed in the following section. Recovery of all values
of the 256 T-Box entries is equivalent to the breaking of the cipher, so the strength
of the T-Box requires special attention and hence has been treated subsequently in
details.

e Property 1 If the plaintext is of the form P = {1 —z,1 —z,...,1 —z} and
the ciphertext is of the form C' = {—z,...} then with very high probability
T(0) ==.

Analysis: Pj= P, +T(0)=1 -z + T(0).
If T(0) = x, we have P} = 1.

Thus, yy =yo+ Pp=0+1=1.
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Likewise, P =P+ T(1® 1) =1—z+ T(0).
If T(0) = x, we have P| = 1.

Thus, o=y + P/ =1+1=2.

Thus continuing we have P _; = 1.

So, P{ =Pj@&(P,_,V1)=1&1=0.
Hence, Cy = P{ —T(0) = —-T7(0) = —=.

The probability when using the CaveTable is dependent on the fact that the
initial guess for 7°(0) is correct and the possible number of trials is thus only
(256-92)/2 = 82 on the average.

Property 2 If the plaintext is of the form P = {1 — T(0),1 — 7(0),...,1 —
T(0),k — T(0),0} and the ciphertext is C = {t — T(0),...} where k = ((n —
1) ® j) — (n — 2) then with very high probability ¢t = T'(j).

Analysis: It has been shown that P/ = 1 and y;1; = (¢ + 1), where 0 < 3
< (n-3).
Now, P! o =P,_o+T(Yn—2® (n — 2))

= P, o+ T(0), since y, o =n— 2

=k—-T(0)+T7T(0) = k.
Using this fact, ¥, 1 =yn o+ P, _,

=n—-2)+k=Mn—-1)@j.
Therefore, P!, = P,_1 +T(yp—1® (n — 1))
=0+T(j).
Thus, Cy= Py —T(0)
or, t = 7(0) = P} @ (P,_,\/1) = T(0)
o, t=10(T(G)V)
=T(j),

with a very high probability, with some confusion with the LSB.

Property 3 The CMEA algorithm uses a skewed CAVE Table[3]. The CAVE
Table is not a permutation and 92 of the possible 256 values does not occur.

Property 4 The CMEA algorithm uses a four round T-Box which can be
subjected to meet-in-the-middle attack[3].

Using the above properties one can explain why the CMEA algorithm is weak
against the chosen plaintext and known plaintext attacks. The causes of the attacks
are enlisted as follows:
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. Chosen Plaintext Attack: The CMEA algorithm is weak against chosen plain-

text attack because of properties 1 and 2.

Known Plaintext Attack: The known plaintext attack is powerful against the
CMEA algorithm because of properties 3 and 4.

10.4 Customized Cellular Message Encryption Al-

gorithm : CMEA-I

Analyzing the above properties the CMEA algorithm has been modified. The resul-
tant cipher is presented in this section.

e Modification 1 Clearly the update equation of P; needs to be changed so that

properties 1 and 2 work no more. The modified equation is of the form:

Bl =P+ T(y: & f(i,n))

such that as we vary i from 0 to (n — 1) (where n is the number of byte blocks
in the plaintext) the T-Box is not predictably accessed. In the original CMEA
property 1 exists because for a particular nature of the input plaintext and key
the T-Box was always referred at the point 0. So, the function f(i,n) should
be such that the T-Box is accessed at different points. After considering several
forms of the function f(i,n) the proposed function is f(i,n) = (2i)%n, where
% represents the modulo operation.

Hence the update equation is:
Py =P+ T(y; @ ((21)%n))

Thus the algorithm is transformed into:

Algorithm 10.2 y, =0
for(i=0;i <mn;i++)
{
P =P+ T(y; @ ((2)%n))
Yir1 =yi + B

for(i=0;i< [n/2];i++)
Pz'” = Pz'l S (P'rlz—i—l \/ 1)
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20=0
for(i=0;i <mn;i++)
{
zit1 =2 + P
Oy = P!~ T(z & ((20)%n)

e Modification 2 The CAVE Table is replaced with the AES S-Box which can
be efficiently implemented[200]. Thus the distribution is no more skewed and
all the possible 256 values appear as a possibility.

e Modification 3 The T-Box previously had 4 rounds. The number of rounds of
the T-Box has been increased to 8 rounds to prevent meet-in-the-middle attack.
The output of the 4 round T-Box is recycled again through the T-Box.

10.5 Security Analysis of CMEA-I

In the present section the security of CMEA-I has been analyzed. The analysis shows
that the scheme does not break under a chosen plaintext and known plaintext attack.
Avalanche analysis has been performed on CMEA-I. The results show that the scheme
provides the necessary diffusion and confusion necessary for a strong cryptographic
scheme. The security of the T-Box plays a vital role in the security of the cipher. So,
the T-Box has been also analyzed using linear and differential cryptanalysis.

10.5.1 How CMEA-I prevents Chosen-Plaintext and Known-

Plaintext attacks?

Due to the modifications incorporated in the cipher the original attack does not work
for CMEA-I. For 50,000 variations of the key, plaintexts of the form (1 — 7°(0),1 —
T(0),...,1=T(0)) gives ciphertext of the form (—7°(0),...) only 0.766% of the time.
However we present a modified attack in lines with the original attack and show that
the cipher prevents the attack successfully.

Let the P, block of the plaintext be (1 — zg).
Thus Py = Py + T(yo @ 0)

= 1—$0+T(0@0)

=1- To + T(O)
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Let 2o =T(0). So Py =1and yy =y + Pj = 1.
Similarly, Pl = P, + T(1 & 2)
=P +T(3).

It may be pointed out that the operator & stands for bit-wise xor of the binary
representation of its operands. Hence, 1 & 2 means {00000001} & {00000010} =
{00000011}, which in decimal means 3.

Hence if we have Pj=1 — z; and let z; = T'(3).

So, Pl=1landy, =y, + P =1+1=2.

Likewise, Py = Py + T (y2 ® 4)

=P +T(24)
:1—$2+T(6),1fP2:1—332
= 1, using the guess x5 = T'(6).

y3:y2+P2’:2+1:3.
For the fourth block, P = P; + T'(y3 & 6)
=P;+T(3d6)
:1—$3+T(5), lfP3:]_—.Z'3
Thus if we have four blocks in the plaintext (without loss of generality) then
Pl =Pi® (P;\/1)=0.

and hence, Co=0-T(0) = =T(0).

Thus for 4 input blocks if one obtains chosen plaintexts of the form P = (1 —
T7(0),1-T(3),1—T7(6),1—T(5)) then the ciphertext is of the form C = (-=7°(0),...).
Then the number of trials on the average is (256*)/2 which is equivalent to a brute
force search on the entire plaintext space and is much larger than that required for
original CMEA. (Note that as the CAVE Table has been replaced by the S-Box of
Rijndael-AES the number of possible values of each T-Box access is 256).

The following proof shows that the attack is inefficient against CMEA-I.

Proof: During the attack we find that at each stage y; = i and f(i,n) = (2i)%n,
where % refers to the modulo operation. Let CMEA-I break in the face of the attack.
For the attack to work the T-Box must be accessed at the same point for at least a
single case. In other words there should be repetition in the point at which the T-Box
is accessed.

Let us have two instances of i, namely i; and iy (4, # 42), for which the T-Box is
accessed at the same point. Thus,

i1 @ ((2i1)%n) = i & ((242)%n)
or, (i1 @ i) = 2(iy B iz)%n
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If, 2(iy ®i2) < n, then the equation is possible if 4; = iy, contradicting our initial
assumption.

Also, if 2(iy @ i2) = kn +r > n (where £ > 1 and r < n), we have
or, (kn+7)/2=(kn+r)%n=r

or, kn = r, which is not possible as r < n. Thus we arrive at a contradiction,
and hence the T-Box is not accessed at the same point. Thus the attack does not
work against CMEA-I.

Also the number of chosen plaintexts grows exponentially with the number of
blocks. For an n byte block the number of chosen plaintexts is of the order of 256™.
Thus the number of plaintexts to be investigated is equal to that in a brute force
search on the entire plaintext space. Such a large number of plaintext requirement
makes the attack ineffective against CMEA-I. O

As the CAVE Table has been replaced by the AES S-Box the skewness of the
CAVE Table does not exist. Also all the 256 values may appear. The T-Box has
been extended to eight rounds and thus a meet-in-the-middle attack does not work.

The known plaintext attack against the original CMEA was found to be ineffective
against the customized CMEA (CMEA-I).

10.5.2 Diffusion and Confusion in the CMEA-I Algorithm

Diffusion and confusion are two important properties necessary for the security of
block ciphers [146]. The current section of the chapter deals with diffusion and con-
fusion in the CMEA-I algorithm. The CMEA-I algorithm has been subjected to
Avalanche Attack to test the confusion and diffusion which the cipher provides. A
function has a good avalanche effect when a change in one bit of the input results in
a change of half of the outputs bits.

Diffusion criteria requires that a change in a single bit of the plaintext should
cause a change in several bits in the ciphertext (the key is kept constant). In order
to test the diffusion property the CMEA-I algorithm has been subjected on pairs of
plaintext which differ by one bit. The number of output bits affected should have a
mean of n/2 where n is the number of bits of the cipher. In other words it is expected
that for a good cipher approximately half of the output bits should be affected. The
experiments have been performed on a block size of three-bytes (24 bits). In Fig. 10.1
the frequency of the number of bits affected has been plotted versus the number of bits
affected. The plot shows that around 12 bits are affected for a maximum number of
cases. Also the computed average is around 11.98. The plot shows that the algorithm
provides sufficient diffusion property.

Confusion criteria requires that a change in a single bit in the key should cause a
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change in several bits in the ciphertext (the plaintext is kept constant). In order to
test the confusion property the CMEA-I algorithm has been used to encrypt plain-
texts with pairs of keys which differ by one bit. The number of output bits affected
according to the Avalanche criterion should be around n/2 where n is the number
of bits of the cipher. The experiments have been performed again on a block size of
three-bytes (24 bits). In Fig. 10.2 the frequency of the number of bits affected has
been plotted versus the number of bits affected. The plot shows that around 12 bits
are affected for a maximum number of cases. Also the computed average is around
11.91. The plots show that the confusion property is satisfied by CMEA-I.

«40°  One bit change in plain text: KEY=a1 74 {3 dd { 76 B2 14

. S — S — ¥

Frequency
A}
!
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Bit changes

Figure 10.1: Avalanche Effect to show diffusion

10.5.3 Finer Issues of Security

The T-Box plays a central role in the cipher structure of CMEA. One can gather
information about the T-Box entries from the known CMEA encryptions. Also if the
T-Box is compromised and all the T-Box outputs can be identified then the CMEA
algorithm is also broken. So, the problem reduces to the cryptanalysis of the T-Box
algorithm, given information about the input and output of some of the elements.
More formally in this section we shall inspect given the T-Box input and outputs for
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Figure 10.2: Avalanche Effect to show confusion

some values is it possible to obtain the other T-Box elements or to recover the key. We
analyze the T-Box algorithm under linear and differential attacks [30, 29, 147, 148].

Differential Analysis of the T-Box

Differential Analysis on a block cipher observes that given a certain input difference if
a particular output difference occurs with a high probability. In an ideal cipher for an
n-bit block the probability should be of the order of 1/2". Differential cryptanalysis
seeks to exploit a scenario where a particular output difference §Y occurs given a
particular input difference §X with a very high probability. The pair (6X,0Y) is
referred to as a differential.

We first observe the security which a single round of the T-Box provides against
a differential attack. Fig. 10.3 shows the single round of T-Box.

Given z; and z5 (the input and output pair at any point) one can calculate z3.
Thus the problem reduces to the cryptanalysis of the portion in the T-Box shown in
Fig. 10.4. In Fig. 10.4, dx; and 0z, are same and does not depend upon the key.
Once we know dx5 and dx3 and observe the differential property of the addition block
to obtain information about K; we can also infer information about Kj.
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Figure 10.3: One round T-Box

From the differentials of the addition block we observe the following two facts:

1. For a fixed (0x9,dx3) can certain keys be ruled out?

2. What is the worst case size of the reduced key space?

Analysis of one round of the T-Box brings the following observations to the surface.
We have created tables for the entire key space and noted how many keys are possible
for each pair of (dxy,0x3). The tables show that the distribution is very sparse
and there are large number of cases where a (dx,dx3) pair is not possible for any
key. There are instances for which certain keys can be immediately ruled out. The
remaining set of possible keys varies in size and ranges from as low as 2 to 254 (except
the (0,0) pair where all the keys are possible). Thus in such worst case scenario a
random search over only 2 values will reveal K; and hence K,. Hence, one round
of the T-Box shows weakness. So, we require to increase the number of rounds of
T-Box.

Let us calculate the maximum probability of a differential to pass through one
round of the T-Box. It was found that there exists weak keys for each possible §z;.
The weak key is defined to be a key for which there is a dx3 which always occurs
for the particular dz; and the key. Next the dzs which serves as an input to the
S-Box was considered. The corresponding output differential dz, with the highest
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Figure 10.4: Differential Analysis of T-Box

probability was observed. Next for all these dz;,’s and dx4’s the possible dx5’s were
found which had the highest probability.

The above steps were done for all the possible dx1’s and their corresponding weak
keys. The analysis results in the worst case maximum probability of obtaining a dx;
for any given dx;.

The probability worked to around 0.0078, so for 8 rounds of the T-Box the proba-
bility is around 1.37 x 1077, which is negligible. If we do not use the weak keys then
the worst case probability of the passing of differential reduces to around 0.0039. But
this reduces the key space.

Linear Cryptanalysis of the T-Box

The S-Box of AES is known to be resistant against Linear Cryptanalysis(LC). The
current subsection works out the security margin which the T-Box provides against
LC and shows that the scheme is at least as secured as the AES S-Box.

Linear Cryptanalysis tries to take advantage of high probability occurrences of
linear expressions involving plaintext bits, the ciphertext bits and subkey bits. The
difference of the probability from the probability 1/2 is known as the bias of the linear
equation. Linear Cryptanalysis exploits linear approximations with a large bias. It
is a known plaintext attack, that is the attacker does not choose which plaintexts are
available. The basic idea is to approximate the operation of a portion of the cipher
with a linear expression where the linearity refers to a mod-2 bitwise operation (®).

We obtain a linear expression relating the bits of 1, x5 and the keys K, and Kj,
refer Fig. 10.3. In order to do so, we follow the usual technique of forming smaller
linear equations with large bias and then combine them using Piling-Up lemma to
obtain the resultant bias.
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The expressions may be derived as follows:
x5][0] = 4[0] & x1[0] with probability 1,
=f(ws[ir], z3[ia], - - -, z3[ix]) ® 21[0],

where f is a linear approximation for the S-box with the largest bias egp.

It may be pointed out that any other expression involving bits of x1,z, and x5
has a smaller bias, the greatest among them being 1 (theorem 6.2).

Using theorem 6.2, the biases of linear expressions where x3[i;] is expressed in
terms of z1[i1], Koli1] and K;j[i; — 1] is:

ac3[i1] = .%'Q[il] & Kl[Zl] (&) Kl[il — 1],W1th bias 1/4,
= l‘l[il] D K()[’ll] (&) Kl[ll] D Kl[il — 1],W1th bias 1/4

Similarly, $3[i2] = xl[ig] D K()[’LQ] (&) K1 [12] (&) Kl[ig — 1], with bias 1/4
$3[i3] = $1[7;3] D K()[’Lg] D K1[23] D Kl[ig - 1], with bias 1/4
$3[ik] = $1[7;k] (&) KQ[Z]C] (&) Kl[lk] (&) Kl[’ik — 1], with bias 1/4

Combining the biases using Piling-Up lemma we obtain the bias of the complete
linear expression:

.’E5[O] = f(l‘l[’l:l],xl[iz],...,xl[ik],Ko[’il],Ko[iQ],...,Ko[ik],Kl[il],Kl[il—1],K1[’i2],
Kilis — 1], ..., Kqlig], Ki[ix, — 1]) & 21][0]

The bias of the linear trail of T-Box of CMEA-I denoted by €cprpa—; is thus:
ko
€ECMEA-T = 2 (Z) (GRD) =

Thus the security margin provided by the modified T-Box of CMEA-I against
Linear Cryptanalysis is thus at least as much as the AES S-Box. It also supports
our claim made in chapter 6 that mixing arithmetic operations, like addition with
binary operations, like xor helps us to build ciphers which are more resistant against
cryptanalytic attacks in general and linear attacks in particular.
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10.6 Efficiency of CMEA-I

In this section we compare the efficiency of the design with respect to the original
CMEA algorithm, which is known to be suited for the telecommunication industry.
The CMEA algorithm is optimized for 8 bit micro-processors with severe resource
limitations[3]. The CMEA algorithm has been modified in the following three places
in order to prevent successful cryptanalysis of CMEA-I.

e The update equation of P; has been changed to P/=P; + T (y; & ((27)%n)).
e The CAVE Table is replaced with the AES S-Box.

e The number of rounds of T-Box has been increased to eight rounds.

The first change is a minor functional change and does not require any extra
computation with respect to the CMEA algorithm. The multiplication by 2 is a
simple shift left operation and hence has no negative effect on the efficiency of the
original CMEA algorithm.

The second change advocates the replacement of the CAVE Table with the AES
S-Box. The AES S-Box, unlike the DES S-Box and the CAVE Tables can be imple-
mented through a compact algebraic equation [184]. The structured algorithm of AES
S-Box makes it amenable to efficient implementations both in hardware and software
[168, 165, 200, 167]. Still the S-Box of Rijndael is secured as it has withstood lot of
cryptanalysis [184].

The third modification of CMEA-I is the increase of the number of rounds in
T-Box from four to eight. Although this increases the computation slightly but is
compensated by the fact that replacement of CAVE Table by AES S-Box can lead to
extremely fast designs [166]. Further it may be added that like CMEA, CMEA-I is
also a self-invertible encryption algorithm and hence conducive for implementations.

10.7 Conclusion

In the present work the original CMEA algorithm has been modified into CMEA-I.
The chapter shows how the existing cryptanalysis of CMEA fails to break CMEA-I.
It has been shown that the T-Box provides sufficient security margin to the cipher
CMEA-I in the face of linear and differential cryptanalysis. In short, the work demon-
strates that with suitable modifications the original CMEA algorithm can be made
strong and hence can be suitable for wireless security.



Chapter 11

Concluding Remarks and Open

Problems

The dissertation searches for cryptographic primitives, which are efficient to imple-
ment in hardware and also exhibit cryptographic strength. Finally, the primitives
have been used to compose various ciphers and protocols. Cellular Automata (CA)
have been employed extensively to realize the goals.

e The work shows both theoretically and through practical experiments that a
special class of CA, the complemented CA possess some remarkable properties
which may be used to develop block ciphers and vary the session key of a key
agreement protocol.

e The work shows that CA may be employed to develop cryptographically robust
S-Boxes. The thesis presents two such schemes: The first one is an informal
approach, but extremely efficient method. It shows how repetition of simple
rules may develop good S-Boxes. The second technique provides a more formal
method to construct S-Boxes. Both theoretically and experimentally it has
been confirmed that the S-Boxes made out of CA are cryptographically strong,
efficient to implement and also programmable.

e The work also investigates the effect of key mixing using integer addition on lin-
ear cryptanalysis of block ciphers. It has been shown, theoretically and through
experimentations using toy ciphers, that performing such a key mixing indeed
improves the security margin of the cipher. Finally, a CA based MDS mapping
has been designed which is also self-invertible. The CA based crypto-primitives
and the methods developed have been finally integrated to form a new block
cipher named SPAMRC. Theoretically the security margin of 4 rounds of the
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cipher against Differential and Linear Cryptanalysis have been estimated. Re-
sults show that the cipher provides formidable resistance against two of the
most powerful cryptanalytic techniques.

The work develops a CA based technique to generate expander graphs using
polynomial space. The graph has been used to develop an expanding collection
which can be employed to realize a one-way function. Experimental results
show that such a one-way function is extremely conducive for VLSI implemen-
tations and saves the area-delay product compared to conventional one-way
functions. Finally the one-way function developed have been used to develop
a key-agreement protocol with authentication, key confirmation and key fresh-
ness. The work assures the security of the protocol in the Bellare-Rogaway
model.

Next, the work analyzes two standard cryptographic algorithms: AES and
CMEA. The work concludes, both theoretically and through simulations that
AES when subjected to faults can be vulnerable. The work proposes the
strongest attacks of its kind in literature to the best of our knowledge. Fi-
nally it has been shown that although the original CMEA algorithm has been
broken by cryptanalysis, proper modifications in the algorithm can lead to a
stronger version which can prevent the existing attacks on CMEA.

11.1 Open Problems and Future Scope of Work

Following are some interesting extensions of our current work which can be carried
out in the future.

e In the construction of CASBox, it has been analyzed that the resulting S-Boxes

are strong against Differential and Linear Cryptanalysis, have high non-linearity
and algebraic degree and satisfies the properties of SAC and balancedness.

A natural extension of the present work would be to consider the following
properties of the S-Box:

1. Algebraic immunity: Although the CASBox lacks any straight forward
algebraic relation and the algebraic degree is high, one may further obtain
boolean equations (Algebraic Normal Forms) of the component bits and
compare it against a fixed S-Box.

In these lines, we may interpret the CASBox as follows. The CASBox oper-
ates on the input z = (y, z) and results in an output Q(z) = (Q2(2), Q1(2)).
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The construction has been discussed in details in chapter 5. The con-
struction may be analyzed in an equivalent manner.

The output @Q;(z) is derived from the input z, by operating a maximum
length CA, characterized by the matrix 7. The number of clock cycles are
the output of a function r, operating on the input y. Thus, the number
of clock cycles to be applied is 7(y) and the output Q,(y,z) = T7® (x). Tt
might be interesting to further analyze the function in the light of algebraic
analysis.

2. Differential Power Analysis: Prouff had introduced the notion of Trans-
parency Order (1,)[51]. The property deals with the ability of S-Boxes to
thwart single-bit or multi-bit DPA attacks. If this parameter is sufficiently
small, then the S-Box is able to withstand DPA attacks without modifica-
tions in implementation. The modifications are not desirable as they make
the cipher about twice slower. In [201] a lower bound of 7, was calculated
for various functions including the AES S-Box. It was shown that the AES
S-Box has a high transparency order (> 7.8) and quite close to the worst
case transparency order (8) for an 8-bit S-Box. In order to compute the
resistance of CASBox against DPA it is an open problem to compute its
transparency order.

e The proof of theorem 6.2 shows that if the carry term is bent then the bias
of any linear approximation is 2-¢*1 and hence falls exponentially fast with
the bit position. Such a key mixing would improve greatly the resistance of
ciphers against Linear and possibly even Differential attacks. Hence, it would
be interesting to define an ideal composition (denoted by o) between the key K
and the data X:

Y = XoK

It is intended that the carry term propagating from bit 4 to bit (i + 1), denoted
by ¢; is a bent function of the variables (z;, vi, i 1,%i 1,---,%0,%)- In other
words, we require a recursive method to generate a bent function, ¢; of 2(i + 1)
variables from z;,y; and also the previous carry term, c¢;_; which is a bent
function in 27 variables. It would be interesting to search whether such a key
mixing is possible.

e Security margin of SPAMRC against Linear and Differential Cryptanalysis have
been computed. However the key schedule for SPAMRC needs to be developed.
Finally, the block cipher needs to be evaluated against more sophisticated at-
tacks like Truncated Differential Cryptanalysis, Impossible Differential Crypt-
analysis, Higher Order Differential Cryptanalysis, Boomerang, Related Key,
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Interpolation and Slide Attacks.

Protecting against a fault based side-channel attack by duplicating the hardware
is a trivial solution and incurs a lot of wastage of hardware resources. In order
to save on hardware, it may be inferred from the fault attack presented in the
work and those compared with, that only the last three rounds of AES are
required to be fault tolerant. It would be interesting to develop a complete
AES hardware which can prevent fault attacks and yet impose minimal penalty
on the performance of the device.
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