Recent works on Fault and Cache Attacks

Debdeep Mukhopadhyay Dept of CSE, IIT Kharagpur

4/6/2010

Topics

Multiple Byte Fault Attacks on AES

Differential Cache Trace Attacks on CLEFIA

Multi-byte Fault Attacks on AES

4/6/2010

Fault Model Used

- Multi Byte Faults (more practical)
 - Attacker induces fault at the input of the 8th round in some bytes
 - Fault value should be non-zero but can be arbitrary
- Improves the fault coverage.

Diagonal of AES State Matrix

Definition 1. Diagonal: A diagonal is a set of four bytes of the state matrix, where the i^{th} diagonal is defined as follows:

$$D_i = \{ b_{j,(j+i)mod4} \quad ; \quad 0 \le j < 4 \}$$
(1)

According to the above definition and with reference to the state matrix of AES (refer figure 2) we obtain the following four diagonals.

 $D_0 = (b_{00}, b_{11}, b_{22}, b_{33})$ $D_1 = (b_{01}, b_{12}, b_{23}, b_{30})$ $D_2 = (b_{02}, b_{13}, b_{20}, b_{31})$ $D_3 = (b_{03}, b_{10}, b_{21}, b_{32})$

Fault Models

- M0: One Diagonal affected.
- M1: Two Diagonals affected.
- M2: Three Diagonals affected.
- M3: Four Diagonals affected.

NTT Labs, Japan

Fault Injection Set Up

Tools Used:

- AES Core Implemented on Xilinx Spartan 3E.
- Agilent Wavefrom (80 MHz)Generator
- Xilinx Chipscope Pro Embedded Logic Analyzer.

NTT Labs, Japan

Equivalence of Faults according to M0

Faults induced in Diagonal D₀ at the input of 8th round AES are all equivalent.

4/6/2010

Inter-relationships depending on the Diagonals affected

Equations if Diagonal D₀ is affected

 $\mathbf{CT} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{12} & x_{14} & x_{15} & x_{16} \end{pmatrix} \quad \mathbf{CT}' = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5' & x_6' & x_7' & x_8' \\ x_9' & x_{10}' & x_{11}' & x_{12}' \\ x_{12}' & x_{14}' & x_{15}' & x_{16}' \end{pmatrix} \quad \mathbf{K_{10}} = \begin{pmatrix} \kappa_1 & \kappa_2 & \kappa_3 & \kappa_4 \\ \kappa_5 & \kappa_6 & \kappa_7 & \kappa_8 \\ \kappa_9 & \kappa_{10} & \kappa_{11} & \kappa_{12} \\ \kappa_{12} & \kappa_{14}' & \kappa_{15}' & \kappa_{16}' \end{pmatrix}$

 $ISB(x_1 + k_1) + ISB(x'_1 + k_1) = 2[ISB(x_8 + k_8) + ISB(x'_8 + k_8)]$ $ISB(x_8 + k_8) + ISB(x'_8 + k_8) = ISB(x_{11} + k_{11}) + ISB(x'_{11} + k_{11})$ $ISB(x_{14} + k_{14}) + ISB(x'_{14} + k_{14}) = 3[ISB(x_8 + k_8) + ISB(x'_8 + k_8)]$

There are in total 4 such systems of equations for a diagonal D₀.
Each system of equation gives 2⁸ keys on an average.

•AES key size gets reduced to 2³².

•If the attacker does not know which diagonal is affected, then key size is 4.2³²=2³⁴.

Fault Injected across 2 Diagonals (Fault Model M₁)

Equations if Diagonals D_0 and D_1 are affected

$$a_{0} = ISB(x_{1} + k_{1}) + ISB(x'_{1} + k_{1})$$

$$a_{1} = ISB(x_{8} + k_{8}) + ISB(x'_{8} + k_{8})$$

$$a_{2} = ISB(x_{11} + k_{11}) + ISB(x'_{11} + k_{11})$$

$$a_{3} = ISB(x_{14} + k_{14}) + ISB(x'_{14} + k_{14})$$

- The equation reduces the space of the 4 key bytes of AES to 2¹⁶
- Two faulty ciphertexts reduce it to a unique value on an average (experimental result).

NTT Labs, Japan

Fault Injected across 3 Diagonals (Fault Model M₂)

8 th Round	9 th Round							
Round Input After After After Mix Column		After Mix Column						
	After After Byte Sub Shift Row	2F1 + 3F6 + F11	2F5 + 3F10 + F4	2F4 + F3 + F8	3F2 + F7 + F12			
	F1 F5 F9 F1 F5 F9 F2 F6 F10 F6 F10 F2	F1 + 2F6 + 3F11	F5 + 2F10 + F4	F9 + 3F3+ F8	2F2 + 3F7 + F12			
	F3 F7 F11 F3 F7 F4 F8 F12 F4 F8 F12	F1 + F6 + 2F11	F5 + F10 + 3F4	F9 + 2F3 + 3F8	F2 + 2F7 + 3F12			
		3F1 + F6 + F11	3F5 + 2F10 + 2F4	3F9 + F3 + 2F8	F2 + F7 + 2F12			
		Invariant for any fault injected within diagonal D0, D1 and D2						

$$a_{0} = 2F_{1} + 3F_{6} + F_{11}$$

$$a_{1} = F_{1} + 2F_{6} + 3F_{11}$$

$$a_{2} = F_{1} + F_{6} + 2F_{11}$$

$$a_{3} = 3F_{1} + F_{6} + F_{11}$$

$$11a_{0} + 13a_{1} = 9a_{2} + 14a_{3}$$

4/6/2010

Equations if D_0 , D_1 and D_2 are affected

$$a_{0} = ISB(x_{1} + k_{1}) + ISB(x'_{1} + k_{1})$$

$$a_{1} = ISB(x_{8} + k_{8}) + ISB(x'_{8} + k_{8})$$

$$a_{2} = ISB(x_{11} + k_{11}) + ISB(x'_{11} + k_{11})$$

$$a_{3} = ISB(x_{14} + k_{14}) + ISB(x'_{14} + k_{14})$$

- The equation reduces the space of the 4 key bytes of AES to 2²⁴
- Four faulty ciphertexts reduce it to a unique value on an average (experimental result).

NTT Labs, Japan

Experimental Results

	Clock	No	Model 0	Model 1	Model 2	Model 3		970	20	199	145	995	0	
	Frequency (MHz)	Fault	(M0)	(M1)	(M2)	(M3)		37.5 99.0	1 69	101	100	0/1	0	
	36.0	512	0	0	0	0	V	36.0	130	191	129	-34 4706	0	
	36.1	512	0	0	0	0		38.1	27	116	185	185	0	
	36.2	512	0	0	0	_ 0_ /		38.2	40	127	_198 _	_147 _	_ 0 _	
-7	36.3	510	2	0	0			38.3	26	69	155	257	5	
	36.4	511	1	0	0	0		38.4	17	62	137	254	42	
	36.5	508	4	0	0	0		38.5	0	20	68	361	63	
	36.6	504	8	0	0	0 0		38.6	0	0	16	319	177	
	36.7	507	5	0	0 /			38.7	0	2	20	293	197	
	36.8	490	22	0	9⁄	0		38.8	n i	1	8	200	213	
	36.9	489	23	0	/0	0		98.0	ő	11	49	968	01	i
	37.0	419	79	14	0	0		90.0	18	50	444 107	- 300 90.9	00	
	37.1	448	60	4 /	0	0		39.0	15		107	-300 10∺	23	
	37.2	434	64	13	1	0		39.1	0	2	12	197	301	
1	37.3	408	94	1/5	0	0		39.2	0	5	26	339	142	
	37.4	408	99	5	0	0		39.3	0	3	11	285	213	
	37.5	248	226	38	0	0		39.4	0	0	0	134	378	i
_	37.6	214	205	84	9	0		39.5	0	0	6	138	368	i
	37.7	128	205	122	57	0		39.6	0	0	0	150	362	
	37.8	76	1/80	133	123	0		39.7	0	0	0	21	491	
	37.9	20	/122	145	225	0		90.8	n	ō	0	18	494	
	38.0	158	191	129	34	0		90.0	0	0	n o	14	409	
	38.1	27	116	185	185	0		39.9	0	0	0	14	430 E10	
	38.2	40	-127	198	147	0		40.0	0	U	U	U	512	

4/6/2010

ATTACK REGION

Conclusions

- The work investigates the effect of multiple byte faults on AES.
- The fault modeling is based on diagonals being affected by random faults.
- The work extends the coverage of the attack compared to previous works.
- Shows experimentally that multiple byte faults attacks are feasible.
- Future scope of work: Efficient Countermeasures against these attacks.

Differential Trace Attacks on CLEFIA

4/6/2010

Cache Attacks : The Principle

Classes of Cache Attacks

Three ways to identify cache behavior

- Cache Trace Attacks
- Cache Access Attacks
- Cache Timing Attacks

Bernstein's Cache Timing Experiment

Bernstein's Cache Timing Attack

Clefia Structure

- 128 bit block cipher from Sony.
- Generalized Feistel Structure
- Number of rounds : 18
- Whitening Keys added at the beginning and end.
- Attacking Clefia requires finding any set of 4 round keys.
 - RK0, RK1, RK2, RK3

Timing Attack Results

In around 2²⁶ Clefia encryptions the cipher can be shown to break in the face of cache timing attacks

3 GHz Intel Core 2 Duo

32 kB L1 Cache

1 GB RAM

Linux (Ubuntu 8.04)

gcc -4.2.4 with O3 optimization.

Attack Time:

First Phase (with known key): 1300 sec

Second Phase (with unknown key): 312.5 sec

Chester Rebeiro, Debdeep Mukhopadhyay, Junko Takahashi and Toshinori Fukunaga, "Cache Timing Attacks on Clefia", In the Proceedings of Indocrypt 2009.

Trace Attacks

- The attacker has knowledge of the hits and miss patterns of the cache.
- It is a very powerful side channel.
- But the problem is how to obtain this information?
- We observed power consumptions of the device to identify the hit miss pattern.

Power profiles and hit-miss patterns

Power Consumptions of 4 accesses to the CLEFIA S-Box, S₀.
 But the correspondence is not so obvious for the complete cipher.

4/6/2010

Concept of Differential Trace Attack

$$\langle in_0 \oplus k_0 \rangle = \langle S[in_0 \oplus k_0] \oplus in_1 \oplus k_1 \rangle$$

Reduces the key space from 2^{2n} to $2^{n+\delta}$

In order to reduce the key space further, we take another plaintext, resulting in a hit.

The corresponding equation is:

$$\langle in'_0 \oplus k_0 \rangle = \langle S[in'_0 \oplus k_0] \oplus in'_1 \oplus k_1 \rangle$$

Concept of Differential Trace Attack

Combining these equations we have the following differential equation:

 $\langle in_0 \oplus in_1 \oplus in'_0 \oplus in'_1 \rangle = \langle S[in_0 \oplus k_0] \oplus S[in'_0 \oplus k_0] \rangle$

The uncertainty of the key now depends on the differential property of the S-Box.

Thus, if f_{avg} is the number of keys on an average that would satisfy the above equation, then the key is reduced to:

Adapting the Attack for CLEFIA

Some interesting observations:

- Matrices M₀ and M₁ in the F functions does not attain complete diffusion (is not diffusion optimal).
- If 5 MSBs of the output of each S-Box are known, then 3 bits of F0 and 2 bits of F1 are computable.
- For a differential pair, the CLEFIA S-Boxes cause 60% in S0 and 50% in S1 input output differentials to be invalid.
- For a valid input output differential, on an average 1.28 actual values are possible for S0, while it is 1.007 for S1.

Attack on CLEFIA

- We have developed an algorithm using the above facts to obtain the key in less than 2¹⁴ encryptions.
- The attack employs the above properties, and the differential Cache Trace technique.
- The Cache Traces patterns are vital for the working of the attack.

Obtaining Cache Trace Patterns from the Power Profiles

Test Platform:

- Xilinx XC2VP30 FPGA on the SASEBO side channel attack evaluation board.
- 300 MHz PowerPC-405 core
- 16 kB two way set associative data cache.
- 32 kB of the FPGAs block RAM configured as the processor memory.
- CLEFIA's reference code from SONY was run on PowerPC (http://www.sony.net/clefia)

Power Profiles for two first round access patterns

- The difference is not so obvious as for the single S-Box seen earlier.
- However correlation analysis seems to pick up the small difference.

NTT Labs, Japan

Correlation Analysis with no. of measurements

The power profiles for the same Hit Miss patterns show a strong correlation:

- It increases from 0.997 to 1 with the number of measurements (as shown above)
- For two different patterns it is around 0.8

NTT Labs, Japan

Classification of Hit Miss Patterns

- This helps us to classify the Hit Miss patterns based on their power consumption:
 - for example the first round has 64 Hit Miss patterns.
 - We were able to create 64 different power profiles, corresponding to each Hit Miss pattern
 - This classification helps to identify an unknown Hit Miss pattern from an observed power profile

Present Activities

- We have developed a counter-measure for CLEFIA to prevent the cache attacks:
 - idea: the entire table fits in one cache line.
- We are presently working on Formal Models for cache attacks.

Thank You