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Two Important Paradigms

 Faster
 Higher Clocks
 Parallelism
 Large Bandwidth

 Smaller
 Low Power
 Smaller Area

Both Applications require security
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Security on Miniature Devices

 Current Security Algorithms (RSA)
 Key size of 2048 bits … too large
 Too Computationally Intensive … (too much 

power and too slow)

Solution : Elliptic Curve Cryptography
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Why ECC

 Smaller key and yet large security

 Small size of implementation and less power 
consumption

BUT IS IT FAST ENOUGH ?? 

SOLUTION : HARDWARE ACCELERATORS 
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Objective of the Work

 To build hardware accelerators for ECC on 
FPGA platforms for high performance 
applications.
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FPGA Logic Block

 LUT
 Four Input , One Output.
 Can contain 16x1 SRAM.
 Can implement any four input truth table.
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LUT Utilization

requires 1 LUT

also requires 1 LUT

Results in an under utilized LUT

Design goal is to reduce the 
number of under utilized LUTs
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Elliptic Curves

 An Elliptic Curve is the set of points which satisfy the 
equation

 Inserting different values of constants would give different 
elliptic curves.

 Points on the elliptic curve along with a special point 
called the point at infinity form a Group under addition.
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Point Addition (P+Q)

-(P+Q)

(P+Q)
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Point Doubling 

-2P

2P
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Scalar Multiplication

 Given a point P=(x,y)                                
determine kP = P + P + P + …. (k times)

 Double and Add algorithm
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Elliptic Curves in Cryptography

 Given k and P it is easy to find kP
 Given kP and P it is hard to find k.
 Therefore, k is the Private Key, and kP is the 

Public Key.
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Elliptic Curves in Cryptography

 Each x and y coordinate on the elliptic curve 
is taken from a finite field.

 Two finite fields are considered
 Prime Field  (GF(p))
 Binary Finite Field (GF(2m))
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ECC Construction

Elliptic Curve 
Cryptography

Scalar Multiplication

Group Operations
(Point Addition, Point Doubling, Point 

Halving)

Finite Field Arithmetic
(Addition, Multiplication, Inversion)
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Binary Finite Fields

 Addition
 Is done by a simple XOR operation.

 Subtraction
 Same as addition.

 Multiplication
 Multiplication is done using polynomial 

multiplication, followed by a modular operation 
with the irreducible polynomial.
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Squaring
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Finite Field Multiplication

 We choose the Karatsuba multiplier as it is 
the fastest.

 For Elliptic Curves there are three types of 
combinational Karatsuba multipliers.
 Simple Karatusba Multiplier.
 Binary Karatsuba Multiplier.
 General Karatsuba Multiplier.
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Simple Karatsuba Multiplier
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Recursive Simple Karatsuba Multiplier
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General Karatsuba Multiplier

 Instead of splitting into two, splits into more 
than two.
 For example, an m bit multiplier is split into m 

different multiplications.
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Comparing the General and Simple

 Hybrid Karatsuba Multiplier
 For all recursions less than 29 use the General 

Karatsuba Multiplier.
 For all recursions greater than 29 use the Simple 

Karatsuba multiplier
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Example

 233 bit Hybrid Karatsuba Multiplier
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Multiplicative Inverse

 Given an element ‘a’, find a-1 in the field such that 
a.a-1 = 1.

 Techniques
 Extended Euclid’s Algorithm
 Fermat’s Little Theorem

 Fermat’s Little Theorem is more efficient on 
hardware than the Euclidean technique.

 Fermat’s Little Theorem
 a-1 = an-2 mod n
 For example 3*3(5-2) mod 5 = 3*2 mod 5 = 1
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Itoh-Tsujii method for Binary Finite Fields

 We need to find a-1 = a2m-2 for m=233
 We first define an addition chain for m – 1
 (1,2,3,6,7,14,28,29, 58,116, 232)

 Then, define βk= a2k-1 then a-1 = (a2232-1)2 = 
(β232)2

 Also define the recursion βk+j= (βk)2jβj
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Computing the inverse of ‘a’

 In all we need 232 squarings and 10 
multiplications.
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Using Quads instead of Squarers

 On an FPGA, Quads have better LUT utilization compared 
to squarers.

 Delay of a quad and a squarer is the same
 Therefore we propose a Quad Itoh-Tsujii algorithm which 

uses quad circuits instead of squarers..
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Quad Itoh Tsujii Algorithm

 We now require 115 quads (instead of 232) and 
10 multiplications. We save 7 clock cycles.
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Performance of Quad-Itoh Tsujii on 
Virtex 4 and 5 Platforms

Virtex 4

Virtex 5

Quad ITA

Squarer ITA
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Comparisions for NIST Binary Curves 
having irreducible Trinomials
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Comparision for Inversion in GF(2193) on 
XCV3200efg1156 Platform

 The Quad-ITA offers the best performance 
than sequential or parallel ITA.

 We have tested on this on various fields and 
on modern FPGAs.
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Multiplication vs Inversion

 Finite field inversion is several times more 
expensive than multiplication.

 Therefore we need to reduce the inversions 
present.

 One solution is to use a 3 coordinate system 
(Projective Coordinates)

 Each 2 coordinate point (x,y) called Affine 
Point, is mapped to a unique point in the 
projective plane with coordinates (X,Y,Z)
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Projective Coordinates

 Point Addition

 Point Doubling

 Conversion between Projective and Affine
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The Elliptic Curve Crypto Processor
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QuadBlock
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The FSM
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Parallel Point Arithmetic
Point Addition

Point Doubling
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Control Words
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Performance Results
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Comparisons

 Saqib 2004, does not do the final conversion from projective to 
affine coordinates

 Chelton 2008, has better latency than our implementation, but 
we have a better area time product.

 Area time product : Chelton is 894 while our area time product 
is 606.
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Conclusion

 The paper presents an implementation of an 
Elliptic Curve Crypto Processor. 

 High speed obtained by implementations of 
 Hybrid Karatsuba multiplier
 Quad Itoh Tsujii inversion algorithm.

 The Hybrid Karatsuba multiplier can be used 
to minimize LUT requirements and increase 
operating frequency.

 The Quad Itoh Tsujii algorithm can be used to 
reduce computation time.
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