HIGH PERFORMANCE ELLIPTIC CURVE CRYPTO-PROCESSOR FOR FPGA PLATFORMS

Debdeep Mukhopadhyay Dept. of Computer Science and Engg. IIT Kharagpur

Outline

- Elliptic Curve Cryptography
- Finite Field Arithmetic
- The Elliptic Curve Crypto Processor
- Performance Comparisons

Conclusion

Two Important Paradigms

Faster

- Higher Clocks
- Parallelism
- Large Bandwidth

Smaller

- Low Power
- Smaller Area

Both Applications require security

Security on Miniature Devices

Current Security Algorithms (RSA)

□ Key size of 2048 bits ... too large

Too Computationally Intensive ... (too much power and too slow)

Solution : Elliptic Curve Cryptography

Smaller key and yet large security

Key Comparison						
ECC Key size	Key Ratio					
163	1024	1:6				
256	3072	1:12				
384	7680	1:20				
512	15360	1:30				

 Small size of implementation and less power consumption

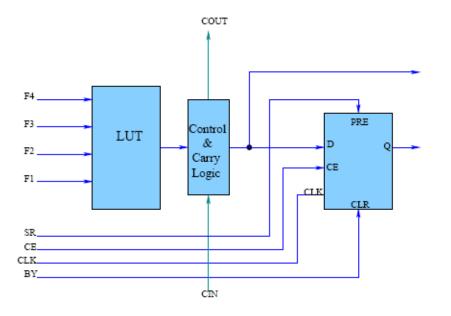
BUT IS IT FAST ENOUGH ??

SOLUTION : HARDWARE ACCELERATORS

Objective of the Work

 To build hardware accelerators for ECC on FPGA platforms for high performance applications.

FPGA Logic Block



LUT

- Four Input, One Output.
- Can contain 16x1 SRAM.
- Can implement any four input truth table.

LUT Utilization

 $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ requires 1 LUT

 $y_2 = x_1 \oplus x_2$ also requires 1 LUT

*y*₂ Results in an *under utilized LUT*

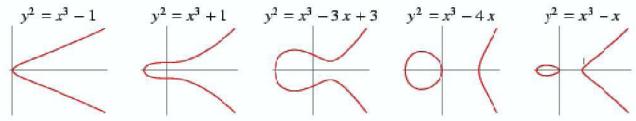
Design goal is to reduce the number of under utilized LUTs

Elliptic Curves

 An Elliptic Curve is the set of points which satisfy the equation

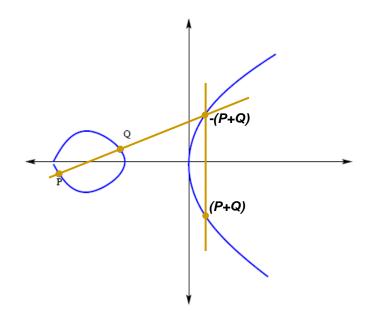
$$y^2 + xy = x^3 + ax^2 + b$$

 Inserting different values of constants would give different elliptic curves.



 Points on the elliptic curve along with a special point called *the point at infinity* form a Group under addition.

Point Addition (P+Q)



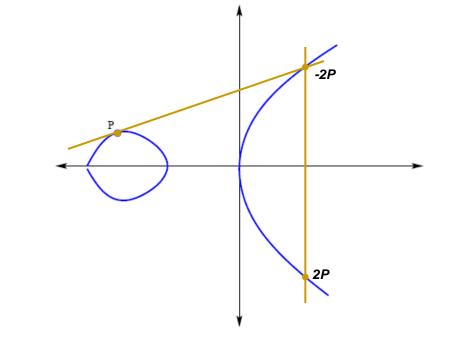
Equation for Point Addition $P = (x_1, y_1), Q = (x_2, y_2)$ and $(P + Q) = (x_3, y_3)$

$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a$$

$$y_3 = \lambda(x_1 + x_3) + x_3 + y_1$$

where $\lambda = (y_1 + y_2)/(x_1 + x_2).$

Point Doubling



Equation for Point Doubling, $P = (x_1, y_1)$, $(2P) = (x_4, y_4)$

$$x_{3} = \lambda^{2} + \lambda + a = x_{1}^{2} + \frac{b}{x_{1}^{2}}$$
$$y_{3} = x_{1}^{2} + \lambda x_{3} + x_{3}$$

where $\lambda = x_1 + (y_1/x_1)$.

Scalar Multiplication

- Given a point P=(x,y)
 determine kP = P + P + P + (k times)
- Double and Add algorithm

Double/Add	Value
/	value
-	Р
D	2P
D&A	4P + P = 5P
D&A	10P + P = 11P
D	22P
	- D D&A

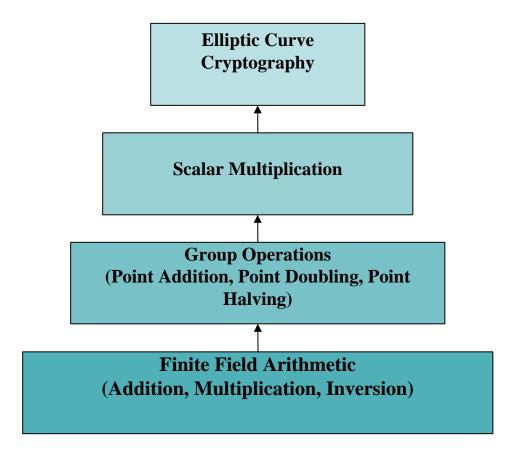
Elliptic Curves in Cryptography

- Given k and P it is easy to find kP
- Given kP and P it is hard to find k.
- Therefore, k is the *Private Key*, and kP is the *Public Key*.

Elliptic Curves in Cryptography

- Each x and y coordinate on the elliptic curve is taken from a finite field.
- Two finite fields are considered
 - Prime Field (GF(p))
 - Binary Finite Field (GF(2^m))

ECC Construction



Binary Finite Fields

Addition

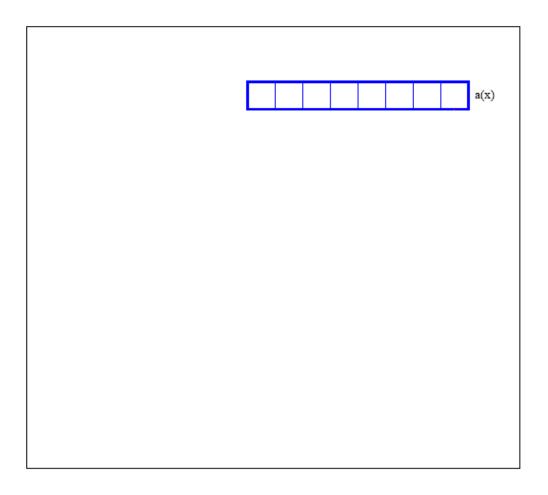
□ Is done by a simple XOR operation.

- Subtraction
 - Same as addition.

Multiplication

Multiplication is done using polynomial multiplication, followed by a modular operation with the irreducible polynomial.

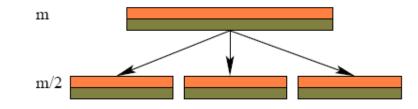
Squaring



Finite Field Multiplication

- We choose the Karatsuba multiplier as it is the fastest.
- For Elliptic Curves there are three types of combinational Karatsuba multipliers.
 - Simple Karatusba Multiplier.
 - Binary Karatsuba Multiplier.
 - General Karatsuba Multiplier.

Simple Karatsuba Multiplier



Split multiplicands into two

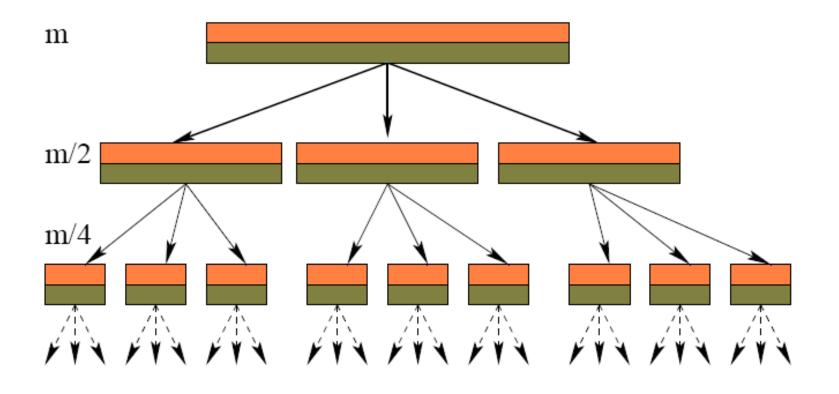
$$A(x) = A_h x^{m/2} + A_I$$
$$B(x) = B_h x^{m/2} + B_I$$

Use three m/2 bit multiplications

$$C'(x) = (A_h x^{m/2} + A_I)(B_h x^{m/2} + B_I)$$

= $A_h B_h x^m + (A_h B_I + A_I B_h) x^{m/2} + A_I B_I$
= $A_{lh} B_h x^m$
+ $((A_h + A_I)(B_h + B_I) + A_h B_h + A_I B_I) x^{m/2}$
+ $A_I B_I$

Recursive Simple Karatsuba Multiplier



General Karatsuba Multiplier

- Instead of splitting into two, splits into more than two.
 - For example, an m bit multiplier is split into m different multiplications.

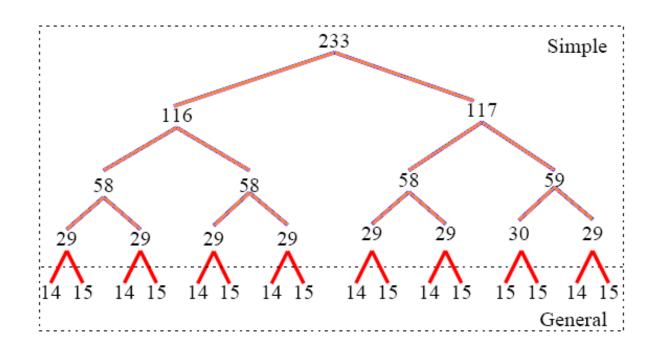
Comparing the General and Simple

m		Gene	eral		Sim	ple
	Gates	LUTs	LUTs Under	Gates	LUTs	LUTs Under
			Utilized			Utilized
2	7	3	66.6%	7	3	66.6%
4	37	11	45.5%	33	16	68.7%
8	169	53	20.7%	127	63	66.6%
16	721	188	17.0%	441	220	65.0%
29	2437	670	10.7%	1339	669	65.4%
32	2977	799	11.3%	1447	723	63.9%

Hybrid Karatsuba Multiplier

- For all recursions less than 29 use the General Karatsuba Multiplier.
- For all recursions greater than 29 use the Simple Karatsuba multiplier

233 bit Hybrid Karatsuba Multiplier



Multiplicative Inverse

- Given an element 'a', find a⁻¹ in the field such that a.a⁻¹ = 1.
- Techniques
 - Extended Euclid's Algorithm
 - Fermat's Little Theorem
- Fermat's Little Theorem is more efficient on hardware than the Euclidean technique.
- Fermat's Little Theorem
 - $a^{-1} = a^{n-2} \mod n$
 - For example $3^*3^{(5-2)} \mod 5 = 3^*2 \mod 5 = 1$

Itoh-Tsujii method for Binary Finite Fields

- We need to find $a^{-1} = a^{2^{m}-2}$ for m=233
- We first define an addition chain for m 1
 (1,2,3,6,7,14,28,29, 58,116, 232)
- Then, define $\beta_k = a^{2^{k-1}}$ then $a^{-1} = (a^{2^{232}-1})^2 = (\beta_{232})^2$
- Also define the recursion $\beta_{k+j} = (\beta_k)^{2^J} \beta_j$

Computing the inverse of 'a'

	$\beta_{u_i}(a)$	$\beta_{u_j+u_k}(a)$	Exponentiation
1	$eta_1(a)$		a
2	$eta_2(a)$	$eta_{1+1}(a)$	$(\beta_1)^{21}\beta_1 = a^{2^2-1}$
3	$eta_3(a)$	$eta_{2+1}(a)$	$(\beta_2)^{21}\beta_1 = a^{2^3-1}$
4	$eta_6(a)$	$eta_{3+3}(a)$	$(\beta_3)^{2^3}\beta_3 = a^{2^6-1}$
5	$eta_7(a)$	$eta_{6+1}(a)$	$(\beta_6)^{2^1}\beta_1 = a^{2^7 - 1}$
6	$eta_{14}(a)$	$eta_{7+7}(a)$	$(\beta_7)^{2^7}\beta_7 = a^{2^{14}-1}$
7	$eta_{28}(a)$	$eta_{ extsf{14+14}}(extsf{a})$	$(\beta_{14})^{2^{14}}\beta_{14} = a^{2^{2^8}-1}$
8	$eta_{29}(a)$	$eta_{28+1}(a)$	$(\beta_{28})^{21}\beta_1 = a^{2^{29}-1}$
9	$eta_{58}(a)$	$eta_{29+29}(a)$	$(\beta_{29})^{2^{29}}\beta_{29} = a^{2^{58}-1}$
10	$eta_{116}(a)$	$eta_{58+58}(a)$	$(\beta_{58})^{2^{58}}\beta_{58} = a^{2^{116}-1}$
11	$eta_{232}(a)$	$eta_{ extsf{116}+ extsf{116}}(a)$	$(\beta_{116})^{2^{116}}\beta_{116} = a^{2^{232}-1}$

In all we need 232 squarings and 10 multiplications.

Using Quads instead of Squarers

Field	Squar	er Circuit	Quad	Circuit	Size ratio
	#LUT₅	Delay (ns)	#LUTq	Delay (ns)	$\frac{\#LUT_q}{2(\#LUT_s)}$
$GF(2^{233})$	153	1.48	230	1.48	0.75

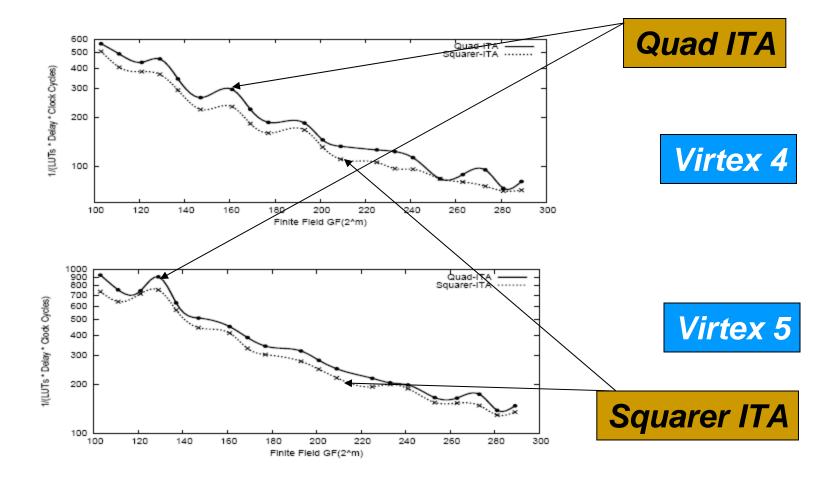
- On an FPGA, Quads have better LUT utilization compared to squarers.
- Delay of a quad and a squarer is the same
- Therefore we propose a Quad Itoh-Tsujii algorithm which uses quad circuits instead of squarers..

Quad Itoh Tsujii Algorithm

	α_{u_i}	$\alpha_{\mathbf{u_j}+\mathbf{u_k}}$	Exponentiation
1	α_1		a ³
2	α_2	α_{1+1}	$(\alpha_1)^{4^1} \alpha_1 = a^{4^2 - 1}$
3	α_3	α_{2+1}	$(\alpha_2)^{4^1} \alpha_1 = a^{4^3 - 1}$
4	α_6	α_{3+3}	$(\alpha_3)^{4^3}\alpha_3 = a^{4^6-1}$
5	α_7	α_{6+1}	$(\alpha_6)^{41}\alpha_1 = a^{4^7 - 1}$
6	α_{14}	α_{7+7}	$(\alpha_7)^{47}\alpha_7 = a^{4^{14}-1}$
7	α_{28}	α_{14+14}	$(\alpha_{14})^{4^{14}}\alpha_{14} = a^{4^{28}-1}$
8	α_{29}	α_{28+1}	$(\alpha_{28})^{41}\alpha_1 = a^{4^{29}-1}$
9	α_{58}	α_{29+29}	$(\alpha_{29})^{4^{29}}\alpha_{29} = a^{4^{58}-1}$
10	α_{116}	α_{58+58}	$(\alpha_{58})^{4^{58}}\alpha_{58} = a^{4^{116}-1}$

 We now require 115 quads (instead of 232) and 10 multiplications. We save 7 clock cycles.

Performance of Quad-Itoh Tsujii on Virtex 4 and 5 Platforms



Comparisions for NIST Binary Curves having irreducible Trinomials

Field	Algorithm	LUTs	Delay	Clks	Т	Р
			(ns)		(ns)	
		Virtex	4			
$GF(2^{233})$	Squarer-ITA	27897	10.2	36	367.2	97.6
$GF(2^{233})$	Quad-ITA	26122	10.3	30	309	123.9
$GF(2^{409})$	Squarer-ITA	64970	12.9	40	516	29.8
$GF(2^{409})$	Quad-ITA	60644	15.8	32	505.6	32.6
		Virtex	5			
$GF(2^{233})$	Squarer-ITA	21379	7.09	33	234	199.9
$GF(2^{233})$	Quad-ITA	20950	7.79	30	233.7	204.2
$GF(2^{409})$	Squarer-ITA	47785	8.56	40	342.4	61.1
$GF(2^{409})$	Quad-ITA	44948	9.2	35	322	69.1

Comparision for Inversion in GF(2¹⁹³) on XCV3200efg1156 Platform

Implementation	Resources	Freq	Clock	Time	Р
	Utilized	(MHz)	Cycles	μsec	
	(Slices, Brams)	(f)	(c)	(c/f)	
Sequential [3]	10065, 12	21.2	28	1.32	75.2
Parallel [4]	11081, 12	21.2	20	0.94	95.7
Quad-ITA	10420, 0	35	21	0.6	160

- The Quad-ITA offers the best performance than sequential or parallel ITA.
- We have tested on this on various fields and on modern FPGAs.

Multiplication vs Inversion

- Finite field inversion is several times more expensive than multiplication.
- Therefore we need to reduce the inversions present.
- One solution is to use a 3 coordinate system (Projective Coordinates)
- Each 2 coordinate point (x,y) called Affine Point, is mapped to a unique point in the projective plane with coordinates (X,Y,Z)

Projective Coordinates

Point Addition

 $A = y_2 \cdot Z_1^2 + Y_1 ; B = x_2 \cdot Z_1 + X_1 ; C = Z_1 \cdot B$ $D = B^2 \cdot (C + a \cdot Z_1^2) ; Z_3 = C^2 ; E = A \cdot C ; X_3 = A^2 + D + E$ $F = X_3 + x_2 \cdot Z_3 ; G = (x_2 + y_2) \cdot Z_3^2 ; Y_3 = (E + Z_3) \cdot F + G$

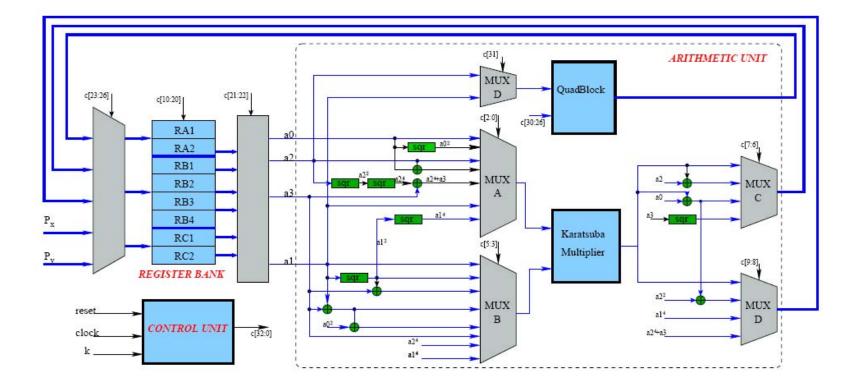
Point Doubling

$$Z_4 = X_1^2 \cdot Z_1^2$$
; $X_4 = X_1^4 + b \cdot Z_1^4$
 $Y_4 = b \cdot Z_1^4 \cdot Z_4 + X_4 \cdot (a \cdot Z_4 + Y_1^2 + b \cdot Z_1^4)$

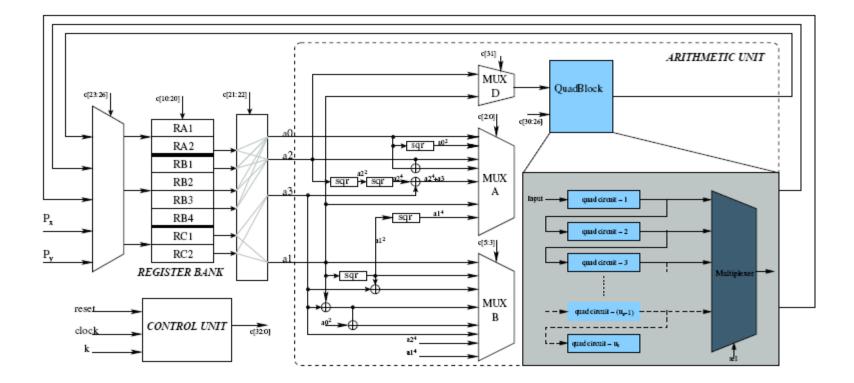
Conversion between Projective and Affine

$$x = X/Z$$
 $y = Y/Z^2$

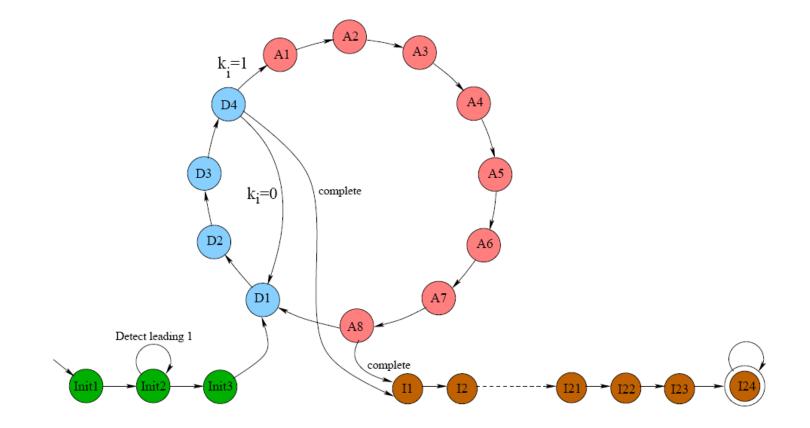
The Elliptic Curve Crypto Processor



QuadBlock



The FSM



Parallel Point Arithmetic

Point Addition

Clock	Operation 1 (c_0)	Operation $2(c_1)$
1	$RB_1 = RB_2 \cdot RC_1^2 + RB_1$	-
2	$RA_1 = RA_2 \cdot RC_1 + RA_1$	-
3	$RB_3 = RA_1 \cdot RC_1$	-
4	$RA_1 = RA_1^2 \cdot (RC_1^2 + RB_3)$	-
5	$RC_2 = RB_1 \cdot RB_3$	$RA_1 = RB_1 \cdot RB_3 + RA_1 + RB_1^2$
6	$RC_1 = RB_3^2$	$RB_3 = RA_2 \cdot RB_3^2 + RA_1$
7	$RB_1 = (RA_2 + RB_2) \cdot RC_1^2$	-
8	$RB_1 = (RC_2 + RC_1) \cdot RB_3 + RB_1$	-

Point Doubling

		Operation 2(C1)
1	$RC_1 = RA_1^2 \cdot RC_1^2$	$RB_3 = RC_1^4$
2	$RC_1 = RA_1^2 \cdot RC_1^2$ $RB_3 = RB_3 \cdot RB_3$	
3	$RC_2 = (RA_1^4 + RB_3) \cdot (RC_1 + RB_1^2 + RB_3)$	$RA_1 = (RA_1^4 + RB_3)$
4	$RB_1 = RB_3 \cdot RC_1 + RC_2$	

Control Words

Clock	QuadBlock	Register	Register	Register addressing and read	Mux	Mux	Mux	Mux
Cycle	Control	Input	Output	and write	D	C	в	A
~ ,	(c31 · · · c27)		(000001)	(con · · · cin)	(cocg)	(c7 c6)	(cgc4 cg)	(c2c1c0)
D1	00xxx	x 0 1 x	x 0	x101xx100x0	1 1	0.0	0 0 1	0 0 1
D2	0 0 x x x	x 0 0 1	1 1	10010010100	1.0	0.0	100	100
D3	0 0 x x x	x 0 0 0	0 î	100110000xx	ôŏ	1 0	101	101
A1	0 0 x x x	x 0 0 x	0 1	x 0 0 1 0 1 0 0 0 x x	xx	0.1	0 0 1	0 0 0
A2	0 0 x x x	x 0 0 x	10	x 0 0 0 x x 0 0 1 1 0	xx	1 0	ŏŏô	010
A3	0 0 x x x	x0xx	xũ	0110xxxx0x0	xx	ô õ	101	000
A4	0 0 x x x	x 0 x 1	x 0	1100xxxx1x0	0.0	1 1	010	0 0 1
A.5	0 0 x x x	x 0 x 1	0.0	x 1 1 0 x x 0 0 1 x 0	0 1	ôô	ŏõõ	0 1 0
A 6	0 0 x x x	x 0 0 x	1.0	x 0 0 1 x x 1 0 0 0 1	xx	0.1	0 0 0	0 0 0
A7	0 0 x x x	x 0 0 x	1 1	x 0 0 1 0 1 0 0 0 1 x	хx	0.0	0 0 1	0 1 1
A8	0 0 x x x	x 0 0 x	0 1	001110000xx	хx	0.1	0 1 1	0 0 0
I1	0 0 x x x	x 0 x x	хх	x 1 0 x x x x x 0 x x	хх	0.0	0 0 1	101
12	0 0 x x x	x 0 0 x	0 x	x 0 0 1 x x 1 0 0 x x	хx	0.0	0 0 0	1 1 0
13	0 0 x x x	x 0 0 x	0 x	x x 0 1 x x 1 0 0 x x	хх	0.0	1 1 0	101
I4	01001	1 0 x x	0 x	x 1 1 0 x x 1 0 0 x x	хх	хх	xxx	xxx
15	0 0 x x x	x 0 0 x	0 x	x 0 1 1 x x 1 0 0 x x	хх	0.0	0 0 0	0 1 0
I6	0 0 x x x	x 0 0 x	0 x	x 0 0 1 x x 1 0 0 x x	хx	0.0	1 1 0	101
17	0 1 0 1 1	1 0 x x	0 x	x 1 1 0 x x 1 0 0 x x	хх	хх	xxx	xxx
18	0 0 x x x	x 0 0 x	хx	x 0 1 1 x x 1 0 0 x x	хх	0.0	0 0 0	0 1 0
19	0 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x 1 0 0 x x	хх	хх	xxx	xxx
I10	0 0 x x x	x 0 0 x	хx	x 0 1 1 x x 1 0 0 x x	хx	0.0	0 0 0	0 1 0
I11	0 0 x x x	x 0 0 x	0 x	x 0 0 1 x x 1 0 0 x x	хх	0.0	1 1 0	101
I12	0 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x 1 0 0 x x	хх	хх	xxx	xxx
I13	1 1 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x x x 0 x x	хх	хх	xxx	xxx
I14	0 0 x x x	x 0 0 x	0 x	x 0 1 1 x x 1 0 0 x x	хх	0.0	1 1 1	010
I15	0 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x 1 0 0 x x	хх	хх	xxx	xxx
I16	11111	0 0 x x	0 x	x 1 1 0 x x x x 0 x x	хх	хх	xxx	xxx
I17	1 1 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x x x 0 x x	хх	хx	xxx	xxx
I18	1 1 1 1 1 1	0 0 x x	0 x	x 1 1 0 x x x x 0 x x	хх	хx	xxx	xxx
I19	1 1 0 0 1	$0.0 \times x$	0 x	x 1 1 0 x x x x 0 x x	хх	хх	xxx	xxx
120	0 0 x x x	x 0 0 x	0 x	x 1 1 0 x x 1 0 0 x x	хх	0.0	0 0 0	010
I21	0 0 x x x	x x x x	хх	1 1 0 0 x x x x 0 x x	хх	1 1	xxx	xxx

Performance Results

	LUTs	Frequency	Clock Cycles	Performance η_1	Performance η_2
		freq	CC	(freq/(LUTs * CC))	(freq/LUTs)
Hybrid Karatsuba	34394	$37.611 \mathrm{MHz}$	33	33.137	1093
Quad-Itoh Tsujii					
Binary Karatsuba [9]	36970	35.433MHz	33	29.043	958
Quad-Itoh Tsujii					
Hybrid Karatsuba	33326	37.853 MHz	43	26.414	1135
Squarer-Itoh Tsujii[10]					
Binary Karatsuba [9]	35805	35.669MHz	43	23.167	996
Squarer-Itoh Tsujii[10]					

Comparisons

Work	Platform	Field	Slices	LUTs	Gate	Freq	Latency	Latency
		m			Count	(MHz)	(ms)	/bit (ns)
Orlando 2000	XCV400E	163	-	3002	-	76.7	0.21	1288
Bednara 2002	XCV1000	191	-	48300	-	36	0.27	1413
Kerins 2002	XCV2000	239	-	-	74103	30	12.8	53556
Gura 2003	XCV2000E	163	-	19508	-	66.5	0.14	858
Mentens 2004	XCV800	160	-	-	150678	47	3.810	23812
Lutz 2004	XCV2000E	163	-	10017	-	66	0.075	460
Sagib 2004	XCV3200	191	18314	-	-	10	0.056	293
Pu 2006	XC2V1000	193	-	3601	-	115	0.167	865
Ansari 2006	XC2V2000	163	-	8300	-	100	0.042	257
Chelton 2008	XCV2600E	163	15368	26390	238145	91	0.033	202
	XC4V200	163	16209	26364	264197	153.9	0.019	116
This Work	XCV3200E	233	20325	40686	333063	25.31	0.074	317
	XC4V140	233	20917	39303	334709	64.46	0.029	124

- Saqib 2004, does not do the final conversion from projective to affine coordinates
- Chelton 2008, has better latency than our implementation, but we have a better area time product.
- Area time product : Chelton is 894 while our area time product is 606.

Conclusion

- The paper presents an implementation of an Elliptic Curve Crypto Processor.
- High speed obtained by implementations of
 - Hybrid Karatsuba multiplier
 - Quad Itoh Tsujii inversion algorithm.
- The Hybrid Karatsuba multiplier can be used to minimize LUT requirements and increase operating frequency.
- The Quad Itoh Tsujii algorithm can be used to reduce computation time.

References

- Chester Rebeiro, Debdeep Mukhopadhyay: High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms. INDOCRYPT 2008: 376-388
- Chester Rebeiro, Sujoy Sinha Roy, Sankara Reddy and Debdeep Mukhopadhyay,
 "Revisiting the Itoh-Tsujii Inversion Algorithm for FPGA Platforms", To Appear in IEEE Transactions on VLSI Systems.

