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Block Ciphers

 They are common encryption modules which 
operate on blocks of data:
 Ex: AES (Advanced Encryption Standard) 

operates on 128 bit of data.
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Algorithm is known to the adversary; the key is the only secret



Stream Ciphers

 Typically the block size is 1 or a few bits.
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DES S-box

 8 “substitution boxes” or S-boxes
Each S-box maps 6 bits to 4 bits
S-box number 1
input bits (0,5)
 input bits (1,2,3,4)

| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 
1111

-------------------------------------------------------------------------------
-----

00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 
0111

01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 
1000

10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 
0000

11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 
1101

What is the design principle?



AES Substitution

 ByteSub is AES’s “S-box”
 Can be viewed as nonlinear (but invertible) composition of some 

math operations.
 What is the logic behind the construction? What is it based 

on?

 Assume 192 bit block, 4x6 bytes



Design Issues and Modern Challenges
 We require large boolean functions : Typically 

operating on say 32 bits.
 Area required to implement

 A Boolean function with n inputs –
Exponential in n

 More complex if we require to generate more 
than one output simultaneously



Boolean Functions

 Block and stream ciphers can be visualized as Boolean functions.
 A Boolean function is a mapping from {0,1}m{0,1}
 A Boolean function on n-inputs can be represented in minimal sum 

(XOR +) of products (AND .) form:

 This is called the Algebraic Normal Form (ANF)
 If the and terms have all zero coefficients we have an affine function
 If the constant term is further 0, we have a linear function

f(x1,…,xn)=a0+a1. x1 +…+an. xn+
a1,2.x1.x2+…+ an-1,n.xn-1.xn+…

…+a1,2,..,n x1.x2 ...xn



Boolean Function

 A Boolean function is a mapping from 
{0,1}m{0,1}

 Sequence of a Boolean Function:

0 1 2 1

: {0,1} be a Boolean Function.
Binary sequence ( ( ), ( ),..., ( )) 

is called the Truth Table of 
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Balanced Function

 A Boolean function is said to be balanced if 
its truth table has equal number of ones and 
zeros.

 Thus in the sequence of a balanced Boolean 
function the number of 1s and -1s are the 
same.



Scalar Product of Sequences

 Consider f and g as two Boolean functions.

 Consider, η be the sequence of f and ε be the sequence 
of g.

 Define,

, (# no of cases when f=g)-(#no of cases when f g)   



Non-linearity
 The non-linearity of a Boolean function can be 

defined as the distance between the function and 
the set of all affine functions.
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A Compact Representation of all the 
linear functions
 Hadamard Matrix: Any rxr matrix with elements in {-1,1} if HHT=rIr, 

where Ir is the identity matrix of dimension rxr.
 Walsh Hadamard Matrix: 

 Each row of Hn is the sequence of a linear function in x
belonging to {0,1}n

 Each row, li is the sequence of the Boolean function,
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Balancedness

 The truth-table of the Boolean function has an 
equal number of 0’s and 1’s.

 XOR is a balanced function.
 AND is an unbalanced function.
 So, we prefer XOR…



Non-linearity

 What is a linear function?
 f is said to be linear wrt + if 

 f(x+y)=f(x)+f(y)

1 2 1 2 1 2 1 2
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So, XOR is a linear function. But we want non-linear functions. 
So, we don’t want XOR! 



Computing Non-linearity.

0110111

1010001

1100010

0000000

x1^x2x2x10x1x2x2x1

Non-linearity is the minimum distance from the truth tables of the linear equations.
Here it is 1. So, non-linearity of AND is 1.



A Schematic Diagram
Linear 

Transformations



Construction of         Mapping

 The n-bit input is split into two portions:
 x of size k bits 
 y of size n-k bits

Input, z = (y, x)
 2(n-k) kxk Linear Transformations

 Each transformation operates on x
 Converts the k-bit input to a k-bit output

 The multiplexer chooses one of the k bits 
depending on y

Output, Q(z) = {q1(z), …… , qk(z) } 

n k



Properties of the set S

 Formed of linear transformation of order k 
and elements in GF(2) i,e {0, 1}

 The transformations represented in the form 
of matrices, Tk have maximal period:

2 1

(2 ) \{0} and 1 2 1,

( ) ( ) ,  where I is a  
identity matrix.
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Properties of the set S
2 2{ , ,..., } contains a set of 2 1 invertible

matrices of dimension 

From this set we choose 2  linear transformations 
for the linear array of transformations.
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2k - 1 > 2(n-k)

↔ 2k > 2(n-k)

↔ k > n-k
↔ k > n/2



Properties of the set S



Mathematical Formulation
 Linear transformations can be represented as 

k x k matrices:

 Mathematically, the output k-bit vector Q(z) is
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Cryptographic Properties



Resiliency



Cryptographic Properties



Cryptographic Properties
 For each component function qi(z)

 Non – linearity is at least 2n-1 – 2k-1, k>n/2
 It is balanced

 Same is true for any non-zero linear 
combinations

 Algebraic degree is at least (n-k+1)
Mapping Q(z) = { q1(z), …… , qk(z) } is regular 

from Vn to Vk

 Number of mappings generated is  2 1
2

k

n kP 
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Strict Avalanche Criterion
 Boolean function f on Vn satisfies SAC iff

f(x)     f(x α) is balanced for all α Є Vn
 Original construction Q(z) does not satisfy SAC
 For z’ = Wz,

 Q(Wz) satisfies SAC
 W is a non-degenerate n x n matrix with entries 

from GF(2)

1 0 ... 0
0 1 0 ... 0

;
... ... ... ...
1 0 0 0

n k

kXn k k

I
W D

D I




 
         
  
 



Example : 8x5 mapping
 n=8, k>4=5

T =       1    1    0    0   0
1    1    1    0   0
0   1    0    1   0
0   0   1     0   1
0   0   0    1    1



Compute Q(156), assume key=0
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Q(156)=192



Cryptographic Properties
 Non-linearity is 112 which is very high 

(maximum for 8 variables 120)
 Degree of each function is 4
 All non-zero combinations are balanced and 

have non-linearity of 112.
 Robustness against Differential Cryptanalysis 

is 0.848, bias in the Linear Approximation 
Table is 16.

 Each boolean function satisfies SAC



VLSI Design of the Architecture

 Input y denotes the CA to be selected
 NB: All the CA are the same machine in different states of 

evolution (the clock cycles are different)
 y determines the number of cycles, s, the CA is to be applied
 A mapping, g, from y to s is required=> Q(z)=Tg(y)(x)

 (Alternate expression of the construction)
 Domain of g is Vn-k, while range is Vk

 One to many mapping (as, k>n/2)
 No deterministic hardware possible



Restricted Design Architecture
 Restrict the clock cycles to 2(n-k)

 Mapping becomes (n-k) to (n-k)
 Permutation is done by using XORing with a 

secret k, s
 Value of s for a given y, will depend on the 

secret key, key of n-k bits
 Number of possible permutations 2n-k

 Cryptographic properties remain the same, as 
this is an equivalent representation.



Restricted Design Architecture
 Each CA is to be cycled s times i.e. T needs 

to be multiplied s times
 Square and multiply algorithm is used for 

better performance
 Output is obtained in O(n-k) time
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Experimental Results
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Flip-FlopDimension XOR MUX

8 x 5 26 15

10 x 6 54 24

16 x 9 208 63

24 x 13 691 141

Observation: Growth of the resources is polynomial
with dimension



Scalability



Comparisons
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Small and compact designs 
survive…



Thank You


