
February 17, 2007 National Workshop on VLSI
Design 2006

1

Physical Design
Automation

Physical Design Physical Design
AutomationAutomation

Speaker: Speaker:
Debdeep Debdeep MukhopadhyayMukhopadhyay

Dept of Comp. Sc and Dept of Comp. Sc and EnggEngg
IIT Madras, ChennaiIIT Madras, Chennai

2

Synthesis Flow
High-Level
Synthesis

Logic
Synthesis

Physical
Design

Fabrication and
Packaging

Figures adopted with permission from Prof. Ciesielski, UMASS

3

Physical Design
Circuit
Design

Partitioning

Floorplanning
&

Placement

Routing

Fabrication

4

What is Backend?
• Physical Design:
1. FloorPlanning : Architect’s job

2. Placement : Builder’s job

3. Routing : Electrician’s job

At sub-micron level

5

System Level Partitioning

Board Level Partitioning

Chip Level Partitioning

System

PCBs

Chips

Subcircuits
/ Blocks

So, what is Partitioning?

6

Partitioning of a Circuit

7

Why partition ?
• Ask Lord Curzon ☺

– The most effective way to solve problems of high
complexity : Parallel CAD Development

• System-level partitioning for multi-chip designs
– Inter-chip interconnection delay dominates system

performance
• IO Pin Limitation
• In deep-submicron designs, partitioning defines

local and global interconnect, and has significant
impact on circuit performance

8

Objectives
• Since each partition can correspond to a

chip, interesting objectives are:
– Minimum number of partitions

• Subject to maximum size (area) of each
partition

– Minimum number of interconnections
between partitions
• Since they correspond to off-chip wiring with

more delay and less reliability
• Less pin count on ICs (larger IO pins, much

higher packaging cost)
– Balanced partitioning given bound

for area of each partition

9

Circuit Representation
• Netlist:

– Gates: A, B, C, D
– Nets: {A,B,C}, {B,D}, {C,D}

• Hypergraph:
– Vertices: A, B, C, D
– Hyperedges: {A,B,C}, {B,D}, {C,D}

– Vertex label: Gate size/area
– Hyperedge label:

Importance of net (weight)

A
B

C D

A
B

C D

10

Circuit Partitioning:
Formulation

Bi-partitioning formulation:
Minimize interconnections between partitions

• Minimum cut: min c(x, x’)

• minimum bisection: min c(x, x’) with |x|= |x’|

• minimum ratio-cut: min c(x, x’) / |x||x’|

X X’

c(X,X’)

11

A Bi-Partitioning Example

Min-cut size=13
Min-Bisection size = 300
Min-ratio-cut size= 19

a

b

c e

d f

mini-ratio-cut min-bisection

min-cut 9

10

100
100 100

100100

100

4

Ratio-cut helps to identify natural clusters

12

Iterative Partitioning
Algorithms

• Greedy iterative improvement
method (Deterministic)
– [Kernighan-Lin 1970]

• Simulated Annealing (Non-
Deterministic)

13

Restricted Partition Problem

• Restrictions:
– For Bisectioning of circuit
– Assume all gates are of the same size
– Works only for 2-terminal nets

• If all nets are 2-terminal, hypergraph Æ graph

a
b

c d
Hypergraph
Representation

Graph
Representation

a
b

c d

14

Problem Formulation
• Input: A graph with

– Set vertices V (|V| = 2n)
– Set of edges E (|E| = m)
– Cost cAB for each edge {A, B} in E

• Output: 2 partitions X & Y such that
– Total cost of edge cuts is minimized
– Each partition has n vertices

• This problem is NP-Complete!!!!!

15

A Trivial Approach
• Try all possible bisections and find the best one
• If there are 2n vertices,

of possibilities = (2n)! / n!2 = nO(n)

• For 4 vertices (a,b,c,d), 3 possibilities
1. X={a,b} & Y={c,d}
2. X={a,c} & Y={b,d}
3. X={a,d} & Y={b,c}

• For 100 vertices, 5x1028 possibilities
• Need 1.59x1013 years if one can try 100M

possbilities per second

16

Definitions
• Definition 1: Consider any node a in

block X. The contribution of node a
to the cutset is called the external
cost of a and is denoted as Ea, where
Ea =Σcav (for all v in Y)

• Definition 2: The internal cost Ia of
node a in X is defined as follows:

Ia =Σcav (for all v in X)

17

Example

• External cost (connection) Ea = 2
• Internal cost Ia = 1

a

b

c

d

X Y

18

Idea of KL Algorithm
• Da = Decrease in cut value if moving a = Ea-Ia

– Moving node a from block X to block Y would
decrease the value of the cutset by Ea and increase it
by Ia

a

b
c

d

X Y

a

b

c

d

X Y

Da = 2-1 = 1
Db = 1-1 = 0

19

Useful Lemmas

• To maintain balanced partition, we must
move a node from Y to X each time we
move a node from X to Y

• The effect of swapping two modules a in X
with b in Y is characterized by the
following lemma:

• Lemma 1: If two elements a in X and b in
Y are interchanged, the reduction in the
cost is given by:

gain(a,b)= gab = Da + Db - 2cab

20

Example
• If switch a & b, gain(a,b) = Da+Db-2cab

– cab: edge cost for ab

a

b

c

d

X Y

a

b

c
d

X Y

gain(a,b) = 1+0-2 = -1

21

Useful Lemmas

• The following lemma tells us how to update the
D- values after a swap.

• Lemma 2: If two elements a in X and b in Y are
interchanged, then the new D-values are given
by

D’k = Dk + 2cka - 2ckb; for all k in X – {a}
D’m = Dm + 2cmb - 2cma; for all m in Y – {b}

• Notice that if a module j is neither
connected to a nor to b then cja = cjb = 0,
and, Dj=D’j

22

Overview of KL Algorithm
• Start from an initial partition {X,Y} of n elements each
• Use lemmas 1 and 2 together with a greedy procedure to

identify two subsets A in X, and B in Y, of equal
cardinality, such that when interchanged, the partition
cost is improved

• A and B may be empty, indicating
in that case that the current
partition can no longer be improved

23

Idea of KL Algorithm
• Start with any initial legal partitions X and Y
• A pass (exchanging each vertex exactly once) is

described below:
1. For i := 1 to n do

From the unlocked (unexchanged) vertices,
choose a pair (A,B) s.t. gain(A,B) is largest

Exchange A and B. Lock A and B.
Let gi = gain(A,B)

2. Find the k s.t. G=g1+...+gk is maximized
3. Switch the first k pairs

• Repeat the pass until there is no
improvement (G=0)

24

Greedy Procedure to Identify A,
B at Each Iteration

1. Compute gab for all a in X and b in Y
2. Select the pair (a1, b1) with maximum gain g1 and lock

a1 and b1

3. Update the D-values of remaining free cells and
recompute the gains

4. Then a second pair (a2, b2) with maximum gain g2 is
selected and locked. Hence, the gain of swapping the
pair (a1, b1) followed by the (a2, b2) swap is G2 = g1 +
g2.

25

Greedy ….(contd.)
5. Continue selecting (a3, b3), … , (ai, bi), … ,

(an, bn) with gains g3, … , gi, … , gn

6. The gain of making the swap of the first k
pairs is Gk = g1+…+gk. If there is no k such
that Gk > 0 then the current partition
cannot be improved; otherwise choose the
k that maximizes Gk, and make the
interchange of {a1, a2, … , ak} with {b1, b2, …
, bk} permanent

February 17, 2007 National Workshop on VLSI
Design 2006

26

Partitioning:
Simulated Annealing

Partitioning: Partitioning:
Simulated AnnealingSimulated Annealing

27

State Space Search
Problem

• Combinatorial optimization problems (like partitioning) can
be thought as a State Space Search Problem.

• A State is just a configuration of the combinatorial objects
involved.

• The State Space is the set of all possible states
(configurations).

• A Neighbourhood Structure is also defined (which states
can one go in one step).

• There is a cost corresponding to each state.
• Search for the min (or max) cost state.

28

Greedy Algorithm
• A very simple technique for State Space

Search Problem.
• Start from any state.
• Always move to a neighbor with the min

cost (assume minimization problem).
• Stop when all neighbors have a higher cost

than the current state.

29

Problem with Greedy Algorithms
• Easily get stuck at local minimum.
• Will obtain non-optimal solutions.

• Optimal only for convex (or concave
for maximization) funtions.

C
os

t

State

30

Greedy Nature of KL
• KL is almost greedy algorithms.

• Purely greedy if we consider a pass as a “move”.

C
ut

 V
al

ue

Partitions

Pass 1 Pass 2

C
ut

 V
al

ue

Partitions

Move 1
Move 2 A B

B A

A Move

31

Simulated Annealing
• Very general search technique.
• Try to avoid being trapped in local

minimum by making probabilistic moves.
• Popularize as a heuristic for optimization

by:
– Kirkpatrick, Gelatt and Vecchi, “Optimization

by Simulated Annealing”, Science,
220(4598):498-516, May 1983.

32

Basic Idea of Simulated
Annealing

• Inspired by the Annealing Process:
– The process of carefully cooling molten metals

in order to obtain a good crystal structure.
– First, metal is heated to a very high

temperature.
– Then slowly cooled.
– By cooling at a proper rate, atoms will have an

increased chance to regain proper crystal
structure.

• Attaining a min cost state in simulated
annealing is analogous to attaining a good
crystal structure in annealing.

33

Simulated Annealing

State

Cost
Temperature

dropping
Drop back

34

The Simulated Annealing Procedure
Let t be the initial temperature.
Repeat

Repeat
– Pick a neighbor of the current state randomly.
– Let c = cost of current state.

Let c’ = cost of the neighbour picked.
– If c’ < c, then move to the neighbour (downhill

move).
– If c’ > c, then move to the neighbour with

probablility e-(c’-c)/t (uphill move).
Until equilibrium is reached.

Reduce t according to cooling schedule.
Until Freezing point is reached.

35

Things to decide when using SA
• When solving a combinatorial

problem,
we have to decide:
– The state space
– The neighborhood structure
– The cost function
– The initial state
– The initial temperature
– The cooling schedule (how to change t)
– The freezing point

36

Common Cooling Schedules

• Initial temperature, Cooling schedule,
and freezing point are usually
experimentally determined.

• Some common cooling schedules:
– t = αt, where α is typically around 0.95
– t = e-βt t, where β is typically around 0.7
–

37

Hierarchical Design
• Several blocks after partitioning:

• Need to:
– Put the blocks together.
– Design each block.

 Which step to go first?

38

Hierarchical Design
• How to put the blocks together

without knowing their shapes and the
positions of the I/O pins?

• If we design the blocks first, those
blocks may not be able to form a
tight packing.

39

Floorplanning
 The floorplanning problem is to plan

the positions and shapes of the
modules at the beginning of the
design cycle to optimize the circuit
performance:
– chip area
– total wirelength
– delay of critical path
– routability
– others, e.g., noise, heat

dissipation, etc.

40

Floorplanning v.s. Placement
• Both determines block positions to

optimize the circuit performance.
• Floorplanning:

– Details like shapes of blocks, I/O pin
positions, etc. are not yet fixed (blocks
with flexible shape are called soft blocks).

• Placement:
– Details like module shapes and I/O pin

positions are fixed (blocks with no
flexibility in shape are called hard blocks).

41

Floorplanning Problem
• Input:

– n Blocks with areas A1, ... , An
– Bounds ri and si on the aspect ratio of

block Bi

• Output:
– Coordinates (xi, yi), width wi and height

hi for each block such that hi wi = Ai and
ri ≤ hi/wi ≤ si

• Objective:
– To optimize the circuit performance.

42

Bounds on Aspect Ratios
 If there is no bound on the aspect

ratios, can we pack everything tightly?
 - Sure!

 But we don’t want to layout blocks as
long strips, so we require

 ri ≤ hi/wi ≤ si for each i.

43

Slicing and Non-Slicing
Floorplan

• Slicing Floorplan:
One that can be obtained by
repetitively subdividing
(slicing) rectangles
horizontally or vertically.

• Non-Slicing Floorplan:
One that may not be obtained
by repetitively subdividing
alone.

44

Polar Graph Representation
• A graph representation of floorplan.
• Each floorplan is modeled by a pair of directed acyclic

graphs:
– Horizontal polar graph
– Vertical polar graph

• For horizontal (vertical) polar graph,
– Vertex: Vertical (horizontal) channel
– Edge: 2 channels are on 2 sides of a block
– Edge weight: Width (height) of the block

Note: There are many other graph representations.

45

Polar Graph: Example

Horizontal Polar Graph

V
ertical P

olar G
raph

February 17, 2007 National Workshop on VLSI
Design 2006

46

Simulated Annealing using Polish Expression
Representation

Simulated Annealing using Polish Expression Simulated Annealing using Polish Expression
RepresentationRepresentation

D.F. Wong and C.L. Liu,D.F. Wong and C.L. Liu,
““A New Algorithm for A New Algorithm for FloorplanFloorplan DesignDesign””

DAC, 1986, pages 101DAC, 1986, pages 101--107.107.

47

Representation of Slicing Floorplan

62

3

54

7

1

Slicing Floorplan
V

H H

2 1 3H

V

6 4

V

7 5

Slicing Tree

Polish Expression
(postorder traversal

of slicing tree) 21H67V45VH3HV

48

Polish Expression
• Succinct representation of slicing floorplan

– roughly specifying relative positions of blocks
• Postorder traversal of slicing tree

1. Postorder traversal of left sub-tree
2. Postorder traversal of right sub-tree
3. The label of the current root

• For n blocks, a Polish Expression contains n operands (blocks)

and n-1 operators (H, V).
• However, for a given slicing floorplan, the corresponding

slicing tree (and hence polish expression) is not unique.
Therefore, there is some redundancy in the representation.

49

Skewed ST and Normalized PE
• Skewed Slicing Tree:

– no node and its right son are the same.
• Normalized Polish Expression:

– no consecutive H’s or V’s.

62

3

54

7

1

Slicing Floorplan
V

H H

2 1 3H

V

6 4

V

7 5

Slicing Tree (Skewed)

Polish Expression
21H67V45VH3HV

V

H H

2 1 HV

6 V7 3

Slicing Tree

4 5

21H67V45V3HHV

50

Normalized Polish Expression
• There is a 1-1 correspondence between Slicing

Floorplan, Skewed Slicing Tree, and Normalized
Polish Expression.

• Will use Normalized Polish Expression to
represent slicing floorplans.
– What is a valid NPE?

• Can be formulated as a state space search
problem.

51

Neighborhood Structure
• Chain: HVHVH.... or VHVHV....

• The moves:
M1: Swap adjacent operands (ignoring chains)
M2: Complement some chain
M3: Swap 2 adjacent operand and operator

(Note that M3 can give you some invalid NPE.
So checking for validity after M3 is needed.)

16H35V2HV74HV
Chains

52

Example of Moves

2
1

543

34V2H5V1H

1
4

3 2 5

32V4H5V1H

1

5

4
23

32V45HV1H

1

4 5
3 2

32V45VH1H

M1

M3

M2

53

Shape Curve
• To represent the possible shapes of

a block.

w

h

(0,0)

wh = A

Soft block
Block with several

existing design

w

h

(0,0)

Feasible
region

Feasible
region

54

Combining Shape Curves

• 12V:

• 12H:

1 2

h

w

12V

1
2

2

1

w

h

2
1

12H

55

Find the Best Area for a
NPE

• Recursively combining shape curves.

V

23

Pick the
best

1

2

3
1

H

56

Updating Shape Curves after Moves

• If keeping k points for each shape curve,
time for shape curve computation for each
NPE is O(kn).

• After each move, there is only small
change in the floorplan. So there is no
need to start shape curve computation
from scratch.

• We can update shape curves incrementally
after each move.

• Run time is about O(k log n).

57

Initial Solution
• 12V3V4V...nV

2 31 n

58

Annealing Schedule
• Ti = αTi-1 where α=0.85
• At each temperature, try k x n moves

(k is around 5 to 10)
• Terminate the annealing process if

– either # of accepted moves < 5%
– or the temperate is low enough

59

Problem formulation
• Input:

– Blocks (standard cells and macros) B1, ... , Bn

– Shapes and Pin Positions for each block Bi

– Nets N1, ... , Nm

• Output:
– Coordinates (xi , yi) for block Bi.
– No overlaps between blocks
– The total wire length is minimized
– The area of the resulting block is minimized or given a

fixed die
• Other consideration: timing, routability, clock,

buffering and interaction with physical synthesis

60

Importance of Placement
• Placement is a key step in physical design
• Poor placement consumes large area,

leads to difficult/ impossible routing task
• Ill placed layout cannot be improved by

high quality routing
• Quality of placement:

– Layout area
– Routability
– Performance (usually timing, measured by

delay of critical/ longest net)

61

Placement
affects chip area

62

…And also Wire Length

63

Force Directed Approach
• Transform the placement problem to

the classical mechanics problem of a
system of objects attached to
springs

• Analogies:
– Module (Block/Cell/Gate) = Object
– Net = Spring
– Net weight = Spring constant
– Optimal placement = Equilibrium

configuration

64

An Example

Resultant
Force

65

Force Calculation
• Hooke’s Law:

– Force = Spring Constant x Distance
• Can consider forces in x- and y-direction separately:

(xi, yi)

(xj, yj)

)(F
)(F

)()(F

Cost Net
)()(Distance

y

x

22

22

ijij

ijij

ijijij

ij

ijijij

yyc
xxc

yyxxc

c
yyxxd

−=
−=

−+−=

−+−=

F
Fx

Fy

66

Problem Formulation
• Equilibrium: Σj cij (xj - xi) = 0 for all module i
• However, trivial solution: xj = xi for all i, j.

Everything placed on the same position!
• Need to have some way to avoid overlapping
• A method to avoid overlapping:

– Add some repulsive force which is inversely
proportional to distance (or distance squared)

• Solution of force equations correspond to the
minimum potential energy of system
–

2 2

1
[() ()]

n
i i

x y
i

PE F F
=

= +∑

67

Comments on
Force-Directed Placement

9Use directions of forces to guide the
search

9Usually much faster than simulated
annealing

x Focus on connections, not shapes of blocks
x Only a heuristic; an equilibrium

configuration does not necessarily give a
good placement

? Successful or not depends on the way to
eliminate overlapping

68

Routing in design flow

A C

B

Post Placed
Netlist

AND
OR

INV

Floorplan/Placement

Routing
Process of finding
geometric layouts of the
net

69

The Routing Problem
• Apply it after Placement
• Input:

– Netlist
– Timing budget for, typically, critical nets
– Locations of blocks and locations of pins

• Output:
– Geometric layouts of all nets

• Objective:
– Minimize the total wire length, the number of vias, or just

completing all connections without increasing the chip area.
– Each net meets its timing budget.

70

The Routing Constraints
• Examples:

– Placement constraint
– Number of routing layers
– Delay constraint
– Meet all geometrical constraints (design rules)
– Physical/Electrical/Manufacturing constraints:

• Crosstalk

71

Steiner Tree
• For a multi-terminal net, we can construct a

spanning tree to connect all the terminals
together.

• But the wire length will be large.
• Better use Steiner Tree:

 A tree connecting all terminals and some
additional nodes (Steiner nodes).

• Rectilinear Steiner Tree:
 Steiner tree in which all the edges run

horizontally and vertically.

Steiner
Node

72

Routing Problem is Very Hard

• Minimum Steiner Tree Problem:
– Given a net, find the Steiner tree with the

minimum length.
– Input :An edge weighted graph G=(V,E)

and a subset D (demand points)
– Output: A subset of vertices V’(such that

D is covered) and induces a tree of
minimum cost over all such trees

– This problem is NP-Complete!

73

Heuristic Algorithms
• Use MST (minimum spanning tree)

algorithms to start with
– CostMST/CostRMST≤3/2
– Heuristics can guarantee that the weight of

RST is at most 3/2 of the weight of the
optimal tree

• Apply local modifications to reach a RMST
(rectilinear minimum steiner tree)

74

Kinds of Routing
• Global Routing
• Detailed Routing

– Channel
– Switchbox

• Others:
– Maze routing
– Over the cell routing
– Clock routing

75

General Routing Paradigm

 Two phases:

76

Extraction and
Timing Analysis

• After global routing and detailed
routing, information of the nets can be
extracted and delays can be analyzed.

• If some nets fail to meet their timing
budget, detailed routing and/or global
routing needs to be repeated.

77

Routing Regions

78

Global Routing

 Global routing is divided into
3 phases:
1. Region definition
2. Region assignment
3. Pin assignment to routing

regions

February 17, 2007 National Workshop on VLSI
Design 2006

79

Maze RoutingMaze RoutingMaze Routing

80

Maze Routing Problem
• Given:

– A planar rectangular grid graph.
– Two points S and T on the graph.
– Obstacles modeled as blocked vertices.

• Objective:
– Find the shortest path connecting S and

T.
• This technique can be used in global or

detailed routing (switchbox) problems.

81

Grid Graph

X
X

Area Routing Grid Graph
(Maze)

S

T

S

T

S

TX

9

9

9

Simplified
Representation

X

Blocked cells

82

Maze Routing

S

T

83

Lee’s Algorithm

 “An Algorithm for Path Connection and
its Application”, C.Y. Lee, IRE
Transactions on Electronic Computers,
1961.

84

Basic Idea

• A Breadth-First Search (BFS) of the
grid graph.

• Always find the shortest path possible.
• Consists of two phases:

– Wave Propagation
– Retrace

85

An Illustration

S

T

0 1

1

2

2

4

4 6

3

3

3

5

55

86

Wave Propagation
• At step k, all vertices at Manhattan-

distance k from S are labeled with k.
• A Propagation List (FIFO) is used to

keep track of the vertices to be
considered next.

S

T

0 S

T

0 1 2

1 2

3 4 5

4 5 6

3

3S

T

0 1 2

1 2

3

3

3

5
After Step 0 After Step 3 After Step 6

87

Retrace
• Trace back the actual route.
• Starting from T.
• At vertex with k, go to any vertex

with label k-1.
S

T

0 1 2

1 2

3 4 5

4 5 6

3

3

5
Final labeling

88

How many grids visited using Lee’s algorithm?

S

T

1
1

1
1 2

2
22

2
2
3

3
3

3
3

3
3

3
4

4
4

4
4

4
45
5

5
5

5

5
5

5
5
6

6
6

6
6

6

6
6

6
6

6
6

6
6 7

777

7
7

7

7
7

7 7
7

7
7

7
7

7
8

8
8

8
8

8
8

8
8

8
8

8

8
8
9

9
9

9
9

9 9
9

9
9

9
9

9

9
9

9
9

9 10
10

10
10

10
10

10
10

10
10

10
10

10
10

10

10
10

10
10

11
11

11

11
11

11
11 11

11
11

11
11

11
11

11

11
111212

12

12
12

12
12 12

12

12
12

12
12

12
12

12
13

13
13

13
13

13
13

13
13

13
13

13

13

89

Time and Space Complexity

• For a grid structure of size w × h:
• Time per net = O(wh)
• Space = O(wh log wh) (O(log wh) bits are

needed during exploration phase + one
additional bit to indicate blocked or not)

• For a 2000 × 2000 grid structure:
• 12 bits per label
• Total 6 Mbytes of memory!

• For 4000 x 4000, 48 M bytes!

90

Acker’s coding :
Improvement to Lee’s Algorithm
• The vertices in wave-front L are always

adjacent to the vertices L-1 and L+1 in
the wavefront

• Soln: the predecessor of any wavefront is
labeled different from its successor

• 0,0,1,1,0,….
• Need to indicate blocked or not
• Hence can do away with 2 bits
• Time complexity is not improved

91

Acker’s Technique

S

T

0 1

1

0

0

0

0 0

1

1

1

1

11

February 17, 2007 National Workshop on VLSI
Design 2006

92

Detailed RoutingDetailed RoutingDetailed Routing

93

Detailed routing
• Global routing do not define wires
• They define routing regions
• Detailed router places actual wires

within regions, indicated by the
global router

• We consider the channel routing
problem here…

94

Channel Routing
• A channel is the routing region

bounded by two parallel rows of
terminals

• Assume top and bottom boundary
• Each terminal is assigned a number to

indicate which net it belongs to
• 0 indicates : does not require an

electrical connection

95

Channel Routing

channel

96

Channel Routing

Upper boundaryUpper boundary

Lower boundaryLower boundary

TracksTracks

TerminalsTerminals
ViaVia

TrunksTrunks BranchesBranches

DoglegDogleg

97

Channel Routing

00 11 44 55 11 66 77 00 44 99 1010 1010

22 33 55 33 55 22 66 88 99 88 77 99

How to connect all the points with the same
label with the smallest no. of tracks
(to minimize the channel height)?

98

Horizontal Constraint
Graph (HCV)

00 11 66 11 22 33 55

66 33 55 44 00 22 44

1 2

45

6 3

00 11 66 11 22 33 55

11

22

33 55 44

66

Clique of size 4

99

Left-Edge Algorithm
1. Sort the horizontal segments of the

nets in increasing order of their left
end points.

2. Place them one by one greedily on
the bottommost available track.

100

Left-Edge Algorithm
00 11 66 11 22 33 55

66 33 55 44 00 22 44

00 11 66 11 22 33 55

66 33 55 44 00 22 44

11

22

33
55

44

66

1. Sort by left end points.1. Sort by left end points.

00 11 66 11 22 33 55

66 33 55 44 00 22 44

11 22
33

55

4466

2. Place nets greedily.2. Place nets greedily.

101

Vertical Constraint
Graph and Doglegs

1

12

2

1

1 imposes a vertical
constraint on 2, as
top terminal belongs
to 1 and bottom
terminal belongs to 2

2 imposes a
vertical
constraint
on 1

2

VCG : Cycle

2

21

1
Dogleg

February 17, 2007 National Workshop on VLSI
Design 2006

102

The Cadence
Tutorial

The Cadence The Cadence
TutorialTutorial

103

Silicon Ensemble (Cadence)

• LEF: Cell boundaries, pins, routing layer (metal)
spacing and connect rules.

• DEF: Contains netlist information, cell placement,
cell orientation, physical connectivity.

• GCF: Top-level timing constraints handed down by
the front end designer are handed to the SE,
using PEARL.

104

The files required
• Pre-running file:
• se.ini- initialization file for SE.

• Create the following directories:
• lef, def, verilog (netlist) , gcf.

• Type seultra –m=300 &, opens SE in
graphical mode.

105

Importing required files
• Import LEF (in the order given):
• header.lef, xlitecore.lef,

c8d_40m_dio_00.lef
• Import gcf file:
• Import verilog netlist, xlite_core.v,

c8d_40m_dio_00.v, padded_netlist.v
• Import the gcf file as system

constraints file.
• Import the .def file for the floor-

planning

106

Structure of a Die
• A Silicon die is mounted inside a chip package.
• A die consists of a logic core inside a power ring.
• Pad-limited die uses tall and thin pads which

maximises the pads used.
• Special power pads are used for the VDD and VSS.
• One set of power pads supply one power ring that

supplies power to the I/O pads only: Dirty Power.
• Another set of power pads supply power to the

logic core: Clean Power.

107

• Dirty Power: Supply large
transient current to the output
transistor.

• Avoids injecting noise into the
internal logic circuitry.

• I/O Pads can protect against
ESD as it has special circuit to
protect against very short high
voltage pulses.

108

Design Styles
• PAD limited design: The number of

PADS around the outer edge of the
die determines the die size , not the
number of gates.

• Opposite to that we have a core-
limited design.

109

Concept of clock Tree

Main
Branch

Clock
Pad

Side
Branches

110

CLK

A1, B1, C1

D1, D2, E1

D3, E2, F1

Clock
Spine

C1 C2 CL

An important result:

The delay through a chain of CMOS gates is minimized when the
ratio between the input capacitance C1 and the load C2 is about 3.

CLOCK DRIVER

111

Clock and the cells

A1

B1

B2

E1
E2

F1

D3

D1
D2

CLK

112

• All clocked elements are driven from
one net with a clock spine, skew is
caused by differing interconnect
delays and loads (fanouts ?).

• If the clock driver delay is much
larger than the inter-connect delay, a
clock spline achieves minimum skew
but with latency.

• Spread the power dissipation through
the chip.

• Balance the rise and the fall time.

113

Placement
• Row based ASICS.
• Interconnects run in horizontal and

vertical directions.
• Channel Capacity: Maximum number

of horizontal connections.
• Row Utilization

114

Routing
• Minimize the interconnect length.

• Maximize the probability that the
detailed router can completely finish
the job.

• Minimize the critical path delay.

115

Conclusion: Our backend
flow

1. Loading initial data.
2. Floor-planning
3. I/O Placing
4. Planning the power routing : Adding Power rings , stripes
5. Placing cells
6. Placing the clock tree.
7. Adding filler cells.
8. Power routing : Connect the rings to the follow pins of the cells.
9. Routing (Global and final routing)
10. Verify Connectivity, geometry and antenna violations.
11. Physical verification (DRC and LVS check using Hercules).

Thank You

116

Main references
• Algorithms for VLSI Physical Design

Automation (Hardcover) by Naveed A.
Sherwani

• Application-Specific Integrated Circuits,
M. J. Sebastian Smith

• Silicon-Ensemble Tool, Cadence®

