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What is Backend?
• Physical Design:
1. FloorPlanning : Architect’s job

2. Placement       :  Builder’s job

3. Routing           :  Electrician’s job

At sub-micron level 
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System Level Partitioning

Board Level Partitioning

Chip Level Partitioning

System

PCBs

Chips

Subcircuits
/ Blocks

So, what is Partitioning?
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Partitioning of a Circuit
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Why partition ?
• Ask Lord Curzon ☺

– The most effective way to solve problems of high 
complexity : Parallel CAD Development

• System-level partitioning  for multi-chip designs
– Inter-chip interconnection delay dominates system 

performance
• IO Pin Limitation 
• In deep-submicron designs, partitioning defines 

local and global interconnect, and has significant 
impact on circuit performance
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Objectives
• Since each partition can correspond to a 

chip, interesting objectives are:
– Minimum number of partitions

• Subject to maximum size (area) of each 
partition

– Minimum number of interconnections 
between partitions
• Since they correspond to off-chip wiring with 

more delay and less reliability
• Less pin count on ICs (larger IO pins, much 

higher packaging cost)
– Balanced partitioning given bound 

for area of each partition
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Circuit Representation
• Netlist:

– Gates: A, B, C, D
– Nets: {A,B,C}, {B,D}, {C,D}

• Hypergraph:
– Vertices: A, B, C, D
– Hyperedges: {A,B,C}, {B,D}, {C,D}

– Vertex label: Gate size/area
– Hyperedge label: 

Importance of net (weight)

A
B

C D

A
B

C D
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Circuit Partitioning: 
Formulation

Bi-partitioning formulation:
Minimize interconnections between partitions

• Minimum cut:            min c(x, x’)

• minimum bisection:   min c(x, x’) with |x|= |x’|

• minimum ratio-cut:    min c(x, x’) / |x||x’|

X X’

c(X,X’)
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A Bi-Partitioning Example

Min-cut size=13
Min-Bisection size = 300
Min-ratio-cut size= 19

a

b

c e

d f

mini-ratio-cut min-bisection

min-cut 9

10

100
100 100

100100

100

4

Ratio-cut helps to identify natural clusters
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Iterative Partitioning 
Algorithms

• Greedy iterative improvement 
method (Deterministic)
– [Kernighan-Lin 1970]

• Simulated Annealing (Non-
Deterministic)
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Restricted Partition Problem

• Restrictions:
– For Bisectioning of circuit
– Assume all gates are of the same size
– Works only for 2-terminal nets

• If all nets are 2-terminal, hypergraph Æ graph

a
b

c d
Hypergraph
Representation

Graph 
Representation

a
b

c d
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Problem Formulation
• Input: A graph with 

– Set vertices V (|V| = 2n)
– Set of edges E (|E| = m) 
– Cost cAB for each edge {A, B} in E

• Output: 2 partitions X & Y such that
– Total cost of edge cuts is minimized
– Each partition has n vertices

• This problem is NP-Complete!!!!!
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A Trivial Approach
• Try all possible bisections and find the best one
• If there are 2n vertices, 

# of possibilities = (2n)! / n!2 = nO(n)

• For 4 vertices (a,b,c,d), 3 possibilities
1.  X={a,b} & Y={c,d}
2.  X={a,c} & Y={b,d}
3.  X={a,d} & Y={b,c}

• For 100 vertices, 5x1028 possibilities
• Need 1.59x1013 years if one can try 100M   

possbilities per second
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Definitions
• Definition 1: Consider any node a in 

block X. The contribution of node a 
to the cutset is called the external 
cost of a and is denoted as Ea, where 
Ea =Σcav (for all v in Y)

• Definition 2: The internal cost Ia of 
node a in X is defined as follows:

Ia =Σcav (for all v in X)
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Example

• External cost (connection) Ea = 2
• Internal cost Ia = 1

a

b

c

d

X Y
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Idea of KL Algorithm
• Da = Decrease in cut value if moving a = Ea-Ia

– Moving node a from block X to block Y would 
decrease the value of the cutset by Ea and increase it 
by Ia

a

b
c

d

X Y

a

b

c

d

X Y

Da = 2-1 = 1
Db = 1-1 = 0
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Useful Lemmas

• To maintain balanced partition, we must 
move a node from Y to X each time we 
move a node from X to Y

• The effect of swapping two modules a in X 
with b in Y is characterized by the 
following lemma:

• Lemma 1: If two elements a in X and b in 
Y are interchanged, the reduction in the 
cost is given by:

gain(a,b)= gab = Da + Db - 2cab
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Example
• If switch a & b, gain(a,b) = Da+Db-2cab 

– cab: edge cost for ab

a

b

c

d

X Y

a

b

c
d

X Y

gain(a,b) = 1+0-2 = -1
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Useful Lemmas

• The following lemma tells us how to update the 
D- values after a swap.

• Lemma 2: If two elements a in X and b in Y are 
interchanged, then the new D-values are given 
by 

D’k = Dk + 2cka - 2ckb; for all k in X – {a}
D’m = Dm + 2cmb - 2cma; for all m in Y – {b}

• Notice that if a module j is neither   
connected to a nor to b then cja = cjb = 0,    
and, Dj=D’j
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Overview of KL Algorithm
• Start from an initial partition {X,Y} of n elements each
• Use lemmas 1 and 2 together with a greedy procedure to 

identify two subsets A in X, and B in Y, of equal 
cardinality, such that when interchanged, the partition 
cost is improved

• A and B may be empty, indicating 
in that case that the current    
partition can no longer be improved
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Idea of KL Algorithm
• Start with any initial legal partitions X and Y
• A pass (exchanging each vertex exactly once) is 

described below:
1. For i := 1 to n do

From the unlocked (unexchanged) vertices,
choose a pair (A,B) s.t. gain(A,B) is largest

Exchange A and B. Lock A and B.
Let gi = gain(A,B)

2. Find the k s.t. G=g1+...+gk is maximized
3. Switch the first k pairs

• Repeat the pass until there is no  
improvement (G=0)
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Greedy Procedure to Identify A, 
B at Each Iteration

1. Compute gab for all a in X and b in Y
2. Select the pair (a1, b1) with maximum gain g1 and lock 

a1 and b1

3. Update the D-values of remaining free cells and 
recompute the gains

4. Then a second pair (a2, b2) with maximum gain g2 is 
selected and locked. Hence, the gain of swapping the 
pair (a1, b1) followed by the (a2, b2) swap is G2 = g1 + 
g2.
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Greedy ….(contd.)
5. Continue selecting (a3, b3), … , (ai, bi), … , 

(an, bn) with gains g3, … , gi, … , gn

6. The gain of making the swap of the first k 
pairs is Gk = g1+…+gk. If there is no k such 
that Gk > 0 then the current partition 
cannot be improved; otherwise choose the 
k that maximizes Gk, and make the 
interchange of {a1, a2, … , ak} with {b1, b2, …
, bk} permanent
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Partitioning: 
Simulated Annealing

Partitioning: Partitioning: 
Simulated AnnealingSimulated Annealing
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State Space Search 
Problem

• Combinatorial optimization problems (like partitioning) can 
be thought as a State Space Search Problem.

• A State is just a configuration of the combinatorial objects 
involved.

• The State Space is the set of all possible states 
(configurations).

• A Neighbourhood Structure is also defined (which states 
can one go in one step).

• There is a cost corresponding to each state.
• Search for the min (or max) cost state.
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Greedy Algorithm
• A very simple technique for State Space 

Search Problem.
• Start from any state.
• Always move to a neighbor with the min 

cost (assume minimization problem).
• Stop when all neighbors have a higher cost 

than the current state.



29

Problem with Greedy Algorithms
• Easily get stuck at local minimum.
• Will obtain non-optimal solutions.

• Optimal only for convex (or concave 
for maximization) funtions.

C
os

t

State
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Greedy Nature of KL 
• KL is almost greedy algorithms.

• Purely greedy if we consider a pass as a “move”.

C
ut

 V
al

ue

Partitions

Pass 1 Pass 2

C
ut

 V
al

ue

Partitions

Move 1
Move 2 A B

B A

A Move
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Simulated Annealing
• Very general search technique.
• Try to avoid being trapped in local 

minimum by making probabilistic moves.
• Popularize as a heuristic for optimization 

by:
– Kirkpatrick, Gelatt and Vecchi, “Optimization 

by Simulated Annealing”, Science, 
220(4598):498-516, May 1983.
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Basic Idea of Simulated 
Annealing

• Inspired by the Annealing Process:
– The process of carefully cooling molten metals 

in order to obtain a good crystal structure.
– First, metal is heated to a very high 

temperature.
– Then slowly cooled.
– By cooling at a proper rate, atoms will have an 

increased chance to regain proper crystal 
structure.

• Attaining a min cost state in simulated   
annealing is analogous to attaining a good  
crystal structure in annealing.
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Simulated Annealing

State

Cost
Temperature

dropping
Drop back
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The Simulated Annealing Procedure
Let t be the initial temperature.
Repeat

Repeat
– Pick a neighbor of the current state randomly.
– Let c = cost of current state.

Let c’ = cost of the neighbour picked.
– If c’ < c, then move to the neighbour (downhill 

move).
– If c’ > c, then move to the neighbour with 

probablility e-(c’-c)/t (uphill move).
Until equilibrium is reached.

Reduce t according to cooling schedule.
Until Freezing point is reached.
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Things to decide when using SA
• When solving a combinatorial 

problem, 
we have to decide:
– The state space
– The neighborhood structure
– The cost function
– The initial state
– The initial temperature
– The cooling schedule (how to change t)
– The freezing point



36

Common Cooling Schedules

• Initial temperature, Cooling schedule, 
and freezing point are usually 
experimentally determined.

• Some common cooling schedules:
– t = αt, where α is typically around 0.95
– t = e-βt t, where β is typically around 0.7
– ......
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Hierarchical Design
• Several blocks after partitioning:

• Need to:
– Put the blocks together.
– Design each block.

 Which step to go first?
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Hierarchical Design
• How to put the blocks together 

without knowing their shapes and the 
positions of the I/O pins?

• If we design the blocks first, those 
blocks may not be able to form a 
tight packing.
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Floorplanning
 The floorplanning problem is to plan 

the positions and shapes of the 
modules at the beginning of the 
design cycle to optimize the circuit 
performance:
– chip area
– total wirelength
– delay of critical path
– routability
– others, e.g., noise, heat 

dissipation, etc.
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Floorplanning v.s. Placement
• Both determines block positions to 

optimize the circuit performance.
• Floorplanning:

– Details like shapes of blocks, I/O pin 
positions, etc. are not yet fixed (blocks 
with flexible shape are called soft blocks).

• Placement:
– Details like module shapes and I/O pin 

positions are fixed (blocks with no 
flexibility in shape are called hard blocks).
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Floorplanning Problem
• Input:

– n Blocks with areas A1, ... , An
– Bounds ri and si on the aspect ratio of 

block Bi

• Output:
– Coordinates (xi, yi), width wi and height 

hi for each block such that hi wi = Ai and 
ri ≤ hi/wi ≤ si

• Objective:
– To optimize the circuit performance.
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Bounds on Aspect Ratios
 If there is no bound on the aspect 

ratios, can we pack everything tightly?
 - Sure!

 But we don’t want to layout blocks as 
long strips, so we require

 ri ≤ hi/wi ≤ si for each i.
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Slicing and Non-Slicing 
Floorplan

• Slicing Floorplan: 
One that can be obtained by 
repetitively subdividing 
(slicing) rectangles 
horizontally or vertically.

• Non-Slicing Floorplan:
One that may not be obtained 
by repetitively subdividing 
alone.
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Polar Graph Representation
• A graph representation of floorplan.
• Each floorplan is modeled by a pair of directed acyclic 

graphs:
– Horizontal polar graph
– Vertical polar graph

• For horizontal (vertical) polar graph,
– Vertex: Vertical (horizontal) channel
– Edge: 2 channels are on 2 sides of a block
– Edge weight: Width (height) of the block

Note: There are many other graph representations.
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Polar Graph: Example

Horizontal Polar Graph

V
ertical P

olar G
raph
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Simulated Annealing using Polish Expression 
Representation

Simulated Annealing using Polish Expression Simulated Annealing using Polish Expression 
RepresentationRepresentation

D.F. Wong and C.L. Liu,D.F. Wong and C.L. Liu,
““A New Algorithm for A New Algorithm for FloorplanFloorplan DesignDesign””

DAC, 1986, pages 101DAC, 1986, pages 101--107.107.
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Representation of Slicing Floorplan

62

3

54

7

1

Slicing Floorplan
V

H H

2 1 3H

V

6 4

V

7 5

Slicing Tree

Polish Expression
(postorder traversal

of slicing tree) 21H67V45VH3HV
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Polish Expression
• Succinct representation of slicing floorplan

– roughly specifying relative positions of blocks
• Postorder traversal of slicing tree

1. Postorder traversal of left sub-tree
2. Postorder traversal of right sub-tree
3. The label of the current root

• For n blocks, a Polish Expression contains n operands (blocks) 

and n-1 operators (H, V).
• However, for a given slicing floorplan, the corresponding 

slicing tree (and hence polish expression) is not unique. 
Therefore, there is some redundancy in the representation.
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Skewed ST and Normalized PE
• Skewed Slicing Tree: 

– no node and its right son are the same.
• Normalized Polish Expression:

– no consecutive H’s or V’s.

62

3

54

7

1

Slicing Floorplan
V

H H

2 1 3H

V

6 4

V

7 5

Slicing Tree (Skewed)

Polish Expression
21H67V45VH3HV

V

H H

2 1 HV

6 V7 3

Slicing Tree

4 5

21H67V45V3HHV
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Normalized Polish Expression
• There is a 1-1 correspondence between Slicing 

Floorplan, Skewed Slicing Tree, and Normalized 
Polish Expression.

• Will use Normalized Polish Expression to 
represent slicing floorplans.
– What is a valid NPE? 

• Can be formulated as a state space search 
problem.
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Neighborhood Structure
• Chain: HVHVH.... or VHVHV....

• The moves:
M1: Swap adjacent operands (ignoring chains)
M2: Complement some chain
M3: Swap 2 adjacent operand and operator

(Note that M3 can give you some invalid NPE.
So checking for validity after M3 is needed.)

16H35V2HV74HV
Chains



52

Example of Moves

2
1

543

34V2H5V1H

1
4

3 2 5

32V4H5V1H

1

5

4
23

32V45HV1H

1

4 5
3 2

32V45VH1H

M1

M3

M2
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Shape Curve
• To represent the possible shapes of 

a block.

w

h

(0,0)

wh = A

Soft block
Block with several 

existing design

w

h

(0,0)

Feasible
region

Feasible
region
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Combining Shape Curves 

• 12V:

• 12H:

1 2

h

w

12V

1
2

2

1

w

h

2
1

12H
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Find the Best Area for a 
NPE

• Recursively combining shape curves.

V

23

Pick the
best

1

2

3
1

H
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Updating Shape Curves after Moves

• If keeping k points for each shape curve, 
time for shape curve computation for each 
NPE is O(kn).

• After each move, there is only small 
change in the floorplan. So there is no 
need to start shape curve computation 
from scratch.

• We can update shape curves incrementally
after each move.

• Run time is about O(k log n).
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Initial Solution
• 12V3V4V...nV

2 31 .... n
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Annealing Schedule
• Ti = αTi-1 where α=0.85
• At each temperature, try k x n moves 

(k is around 5 to 10)
• Terminate the annealing process if 

– either # of accepted moves < 5%
– or the temperate is low enough
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Problem formulation
• Input:

– Blocks (standard cells and macros) B1, ... , Bn

– Shapes and Pin Positions for each block Bi

– Nets N1, ... , Nm

• Output:
– Coordinates (xi , yi ) for block Bi.
– No overlaps between blocks
– The total wire length is minimized
– The area of the resulting block is minimized or given a 

fixed die
• Other consideration: timing, routability, clock, 

buffering and interaction with physical synthesis
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Importance of Placement
• Placement is a key step in physical design 
• Poor placement consumes large area, 

leads to difficult/ impossible routing task
• Ill placed layout cannot be improved by 

high quality routing
• Quality of placement:

– Layout area 
– Routability
– Performance (usually timing, measured by 

delay of critical/ longest net)
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Placement
affects chip area
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…And also Wire Length
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Force Directed Approach
• Transform the placement problem to 

the classical mechanics problem of a 
system of objects attached to 
springs

• Analogies:
– Module (Block/Cell/Gate) = Object
– Net = Spring
– Net weight = Spring constant
– Optimal placement = Equilibrium 

configuration
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An Example

Resultant 
Force
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Force Calculation
• Hooke’s Law: 

– Force = Spring Constant  x  Distance
• Can consider forces in x- and y-direction separately:

(xi, yi)

(xj, yj)

)(F
)(F

)()(F

Cost Net 
)()( Distance

y

x

22

22

ijij

ijij

ijijij

ij

ijijij

yyc
xxc

yyxxc

c
yyxxd

−=
−=

−+−=

−+−=

F
Fx

Fy
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Problem Formulation
• Equilibrium: Σj cij (xj - xi) = 0 for all module i
• However, trivial solution: xj = xi for all i, j. 

Everything placed on the same position!
• Need to have some way to avoid overlapping
• A method to avoid overlapping:

– Add some repulsive force which is inversely 
proportional to distance (or distance squared)

• Solution of force equations correspond to the 
minimum potential energy of system
–

2 2

1
[( ) ( ) ]

n
i i

x y
i

PE F F
=

= +∑
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Comments on 
Force-Directed Placement

9Use directions of forces to guide the 
search

9Usually much faster than simulated 
annealing

x Focus on connections, not shapes of blocks
x Only a heuristic; an equilibrium 

configuration does not necessarily give a 
good placement

? Successful or not depends on the way to 
eliminate overlapping
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Routing in design flow

A C

B

Post Placed 
Netlist

AND
OR

INV

Floorplan/Placement

Routing
Process of finding 
geometric layouts of the 
net
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The Routing Problem
• Apply it after Placement
• Input:

– Netlist
– Timing budget for, typically, critical nets
– Locations of blocks and locations of pins

• Output:
– Geometric layouts of all nets

• Objective:
– Minimize the total wire length, the number of vias, or just 

completing all connections without increasing the chip area.
– Each net meets its timing budget.
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The Routing Constraints
• Examples:

– Placement constraint
– Number of routing layers
– Delay constraint
– Meet all geometrical constraints (design rules)
– Physical/Electrical/Manufacturing constraints:

• Crosstalk
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Steiner Tree
• For a multi-terminal net, we can construct a 

spanning tree to connect all the terminals 
together.

• But the wire length will be large.
• Better use Steiner Tree:

 A tree connecting all terminals and some 
additional nodes (Steiner nodes).

• Rectilinear Steiner Tree:
 Steiner tree in which all the edges run 

horizontally and vertically. 

Steiner
Node
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Routing Problem is Very Hard

• Minimum Steiner Tree Problem: 
– Given a net, find the Steiner tree with the 

minimum length.
– Input :An edge weighted graph G=(V,E) 

and a subset D (demand points)
– Output: A subset of vertices V’(such that 

D is covered) and induces a tree of 
minimum cost over all such trees

– This problem is NP-Complete!
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Heuristic Algorithms
• Use MST (minimum spanning tree) 

algorithms to start with
– CostMST/CostRMST≤3/2
– Heuristics can guarantee that the weight of 

RST is at most 3/2 of the weight of the 
optimal tree 

• Apply local modifications to reach a RMST 
(rectilinear minimum steiner tree)
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Kinds of Routing
• Global Routing
• Detailed Routing

– Channel
– Switchbox

• Others:
– Maze routing
– Over the cell routing
– Clock routing
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General Routing Paradigm

 Two phases:
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Extraction and 
Timing Analysis

• After global routing and detailed 
routing, information of the nets can be 
extracted and delays can be analyzed.

• If some nets fail to meet their timing 
budget, detailed routing and/or global 
routing needs to be repeated.
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Routing Regions
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Global Routing

 Global routing is divided into 
3 phases:
1. Region definition
2. Region assignment
3. Pin assignment to routing 

regions
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Maze RoutingMaze RoutingMaze Routing
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Maze Routing Problem
• Given:

– A planar rectangular grid graph.
– Two points S and T on the graph.
– Obstacles modeled as blocked vertices.

• Objective:
– Find the shortest path connecting S and 

T.
• This technique can be used in global or 

detailed routing (switchbox) problems.
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Grid Graph

X
X

Area Routing Grid Graph
(Maze)

S

T

S

T

S

TX

9

9

9

Simplified
Representation

X

Blocked cells
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Maze Routing

S

T
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Lee’s Algorithm

 “An Algorithm for Path Connection and 
its Application”, C.Y. Lee, IRE 
Transactions on Electronic Computers, 
1961.
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Basic Idea

• A Breadth-First Search (BFS) of the 
grid graph.

• Always find the shortest path possible.
• Consists of two phases:

– Wave Propagation
– Retrace
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An Illustration

S

T

0 1

1

2

2

4

4 6

3

3

3

5

55
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Wave Propagation
• At step k, all vertices at Manhattan-

distance k from S are labeled with k.
• A Propagation List (FIFO) is used to 

keep track of the vertices to be 
considered next.

S

T

0 S

T

0 1 2

1 2

3 4 5

4 5 6

3

3S

T

0 1 2

1 2

3

3

3

5
After Step 0 After Step 3 After Step 6
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Retrace
• Trace back the actual route.
• Starting from T.
• At vertex with k, go to any vertex 

with label k-1.
S

T

0 1 2

1 2

3 4 5

4 5 6

3

3

5
Final labeling
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How many grids visited using Lee’s algorithm?
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Time and Space Complexity

• For a grid structure of size w × h:
• Time per net = O(wh)
• Space = O(wh log wh)  (O(log wh) bits are 

needed during exploration phase + one 
additional bit to indicate blocked or not)

• For a 2000 × 2000 grid structure:
• 12 bits per label
• Total 6 Mbytes of memory!

• For 4000 x 4000, 48 M bytes!
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Acker’s coding : 
Improvement to Lee’s Algorithm
• The vertices in wave-front L are always 

adjacent to the vertices L-1 and L+1 in 
the wavefront

• Soln: the predecessor of any wavefront is 
labeled different from its successor

• 0,0,1,1,0,….
• Need to indicate blocked or not
• Hence can do away with 2 bits 
• Time complexity is not improved
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Acker’s Technique

S

T

0 1

1

0

0

0

0 0

1

1

1

1
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Detailed RoutingDetailed RoutingDetailed Routing
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Detailed routing 
• Global routing do not define wires
• They define routing regions
• Detailed router places actual wires 

within regions, indicated by the 
global router

• We consider the channel routing 
problem here…
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Channel Routing
• A channel is the routing region 

bounded by two parallel rows of 
terminals

• Assume top and bottom boundary
• Each terminal is assigned a number to 

indicate which net it belongs to
• 0 indicates : does not require an 

electrical connection
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Channel Routing

channel
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Channel Routing

Upper boundaryUpper boundary

Lower boundaryLower boundary

TracksTracks

TerminalsTerminals
ViaVia

TrunksTrunks BranchesBranches

DoglegDogleg
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Channel Routing

00 11 44 55 11 66 77 00 44 99 1010 1010

22 33 55 33 55 22 66 88 99 88 77 99

How to connect all the points with the same
label with the smallest no. of tracks
(to minimize the channel height)?
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Horizontal Constraint 
Graph (HCV)

00 11 66 11 22 33 55

66 33 55 44 00 22 44

1 2

45

6 3

00 11 66 11 22 33 55

11

22

33 55 44

66

Clique of size 4
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Left-Edge Algorithm
1. Sort the horizontal segments of the 

nets in increasing order of their left
end points.

2. Place them one by one greedily on 
the bottommost available track.
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Left-Edge Algorithm
00 11 66 11 22 33 55

66 33 55 44 00 22 44

00 11 66 11 22 33 55

66 33 55 44 00 22 44

11

22

33
55

44

66

1. Sort by left end points.1. Sort by left end points.

00 11 66 11 22 33 55

66 33 55 44 00 22 44

11 22
33

55

4466

2. Place nets greedily.2. Place nets greedily.
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Vertical Constraint 
Graph and Doglegs

1

12

2

1

1 imposes a vertical 
constraint on 2, as 
top terminal belongs 
to 1 and bottom 
terminal belongs to 2

2 imposes a 
vertical 
constraint 
on 1

2

VCG : Cycle

2

21

1
Dogleg
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The Cadence 
Tutorial

The Cadence The Cadence 
TutorialTutorial
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Silicon Ensemble (Cadence)

• LEF: Cell boundaries, pins, routing layer (metal) 
spacing and connect rules.

• DEF: Contains netlist information, cell placement, 
cell orientation, physical connectivity.

• GCF: Top-level timing constraints handed down by 
the front end designer are handed to the SE, 
using PEARL.
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The files required
• Pre-running file: 
• se.ini- initialization file for SE.

• Create the following directories: 
• lef, def, verilog (netlist) , gcf.

• Type seultra –m=300 &, opens SE in 
graphical mode.
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Importing required files
• Import LEF (in the order given): 
• header.lef, xlitecore.lef, 

c8d_40m_dio_00.lef
• Import gcf file:
• Import verilog netlist, xlite_core.v, 

c8d_40m_dio_00.v, padded_netlist.v
• Import the gcf file as system 

constraints file.
• Import the .def file for the floor-

planning
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Structure of a Die
• A Silicon die is mounted inside a chip package.
• A die consists of a logic core inside a power ring.
• Pad-limited die uses tall and thin pads which 

maximises the pads used.
• Special power pads are used for the VDD and VSS.
• One set of power pads supply one power ring that 

supplies power to the I/O pads only: Dirty Power.
• Another set of power pads supply power to the 

logic core: Clean Power.



107

• Dirty Power: Supply large 
transient current to the output 
transistor.

• Avoids injecting noise into the 
internal logic circuitry.

• I/O Pads can protect against 
ESD as it has special circuit to 
protect against very short high 
voltage pulses.
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Design Styles
• PAD limited design: The number of 

PADS around the outer edge of the 
die determines the die size , not the 
number of gates.

• Opposite to that we have a core-
limited design.
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Concept of clock Tree

Main 
Branch

Clock 
Pad

Side 
Branches
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CLK

A1, B1, C1

D1, D2, E1

D3, E2, F1

Clock 
Spine

C1 C2 CL

An important result:

The delay through a chain of CMOS gates is minimized when the 
ratio between the input capacitance C1 and the load C2 is about 3.

CLOCK  DRIVER



111

Clock and the cells

A1

B1

B2

E1
E2

F1

D3

D1
D2

CLK
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• All clocked elements are driven from 
one net with a clock spine, skew is 
caused by differing interconnect 
delays and loads (fanouts ?).

• If the clock driver delay is much 
larger than the inter-connect delay, a 
clock spline achieves minimum skew 
but with latency.

• Spread the power dissipation through 
the chip.

• Balance the rise and the fall time.
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Placement
• Row based ASICS.
• Interconnects run in horizontal and 

vertical directions.
• Channel Capacity: Maximum number 

of horizontal connections.
• Row Utilization
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Routing 
• Minimize the interconnect length.

• Maximize the probability that the 
detailed router can completely finish 
the job.

• Minimize the critical path delay.
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Conclusion: Our backend 
flow

1. Loading initial data.
2. Floor-planning
3. I/O Placing
4. Planning the power routing : Adding Power rings , stripes
5. Placing cells
6. Placing the clock tree.
7. Adding filler cells.
8. Power routing : Connect the rings to the follow pins of the cells.
9. Routing ( Global and final routing )
10. Verify Connectivity, geometry and antenna violations.
11. Physical verification (DRC and LVS check using Hercules).

Thank You
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Main references
• Algorithms for VLSI Physical Design 

Automation (Hardcover) by Naveed A. 
Sherwani

• Application-Specific Integrated Circuits, 
M. J. Sebastian Smith

• Silicon-Ensemble Tool, Cadence®


