
HIGH PERFORMANCE ELLIPTIC CURVE
CRYPTO-PROCESSOR FOR FPGA

PLATFORMS

Chester Rebeiro1 and Debdeep Mukhopadhyay2

Abstract

The paper proposes an efficient implementation of a nGF(2) Elliptic Curve

Processor (ECP) targeted for FPGA platforms. The efficiency is obtained by
novel implementations of the underlying finite field primitives required for the
ECP. Results are furnished to show that we can realize compact and faster
designs compared to existing implementations.

Keywords: Elliptic Curve Cryptography, FPGA, High Performance
Implementations

1. Introduction
Elliptic Curve Cryptography (ECC) was invented independently by Koblitz [4]
and Miller [6] in 1985. Since then, the security and efficiency of ECC has been
accepted, and ECC has been incorporated in several security standards. For a
given level of security, the size of the key and the operations involved in ECC
computation is shorter than other crypto algorithms. This makes ECC an
attractive alternative for today’s hand held devices where processing bandwidth,
memory resources and power are limited. NIST’s standard for Digital Signatures
[11] recommends using a prime field or a binary extension field for elliptic
curves. Binary extension fields have the advantage that field additions can be
performed by XOR operations, therefore no carry is involved. This leads to
implementations that require lesser area and have higher performance.

Implementations of Elliptic Curve Cryptosystems follow a layered
hierarchical scheme. The performance of the top layers of the hierarchy is
greatly influenced by the performance of the underlying layers. It is therefore
important to have efficient implementations of finite field operations such as
squaring, addition, multiplication and inversion. Among these, finite field
multiplication and inversion most critically affect the performance of the Elliptic
Curve Cryptosystem.

In the first part of the paper we present our implementations of the
important finite field primitives. Our implementation of the finite field
multiplier is based on the Karatsuba [2] algorithm. It has the best area time
product on an FPGA compared to existing implementations [9] [12]. Our
inversion algorithm is a generalization of the Itoh-Tsujii algorithm [1], and
computes the inverse in lesser clock cycles compared to the best sequential Itoh-
Tsujii implementation [10].

The second part of the paper discusses our implementation of an Elliptic
Curve Crypto processor. The implementation is based on the Lopez Dahab
projective coordinate system [5] as is done by contemporary works like [8].

1. MS Scholar, Dept. of Computer Science and Engineering, IIT Madras
2. Assistant Professor, Dept. of Computer Science and Engineering, IIT Kharagapur

However our design also includes the final inverse calculation which is not
present in [8].

Section 2 reviews Elliptic Curve Cryptography. Section 3 presents our
implementation of the Finite Field Primitives used in the Elliptic Curve
Processor. The design of the Elliptic Curve processor is discussed in Section 4,
while the results are reported in Section 5. Section 6 has the conclusion.

2. Preliminaries

A non super singular Elliptic Curve over the field (2)
n

GF is the set of points

(,) (2) (2)n nx y GF GF∈ × that satisfy the equation

 2 3y xy x ax b+ = + + (1)

where a and (2)nb GF∈ . The points on the Elliptic Curve together with the

point at infinity (O) form an abelian group under addition. The point O is the
identity element of the group. The basic operations that are performed on the
group are point addition and point doubling. The equations for the elliptic curve
(represented by Equation 1) arithmetic in affine coordinates are shown below. In
the table, 1 1(,)P x y O= ≠ is a point on the elliptic curve and 2 2(,)Q x y O= ≠ is

another point on the curve such thatQ P≠ .

Point
Addition

()P Q+

2
3 1 2

3 1 3 3 1

1 2 1 2

()

() /()

x x x a

y x x x y

y y x x

λ λ
λ

λ

= + + + +
= + + +

= + +

Point
Doubling

(2)P

2
3

3 1 3 3 1

1 1 1

()

/

x a

y x x x y

x y x

λ λ
λ

λ

= + +
= + + +

= +

The Elliptic Curve Scalar multiplication()Q kP= is performed by adding P k
times over the curve, where P is a point on the curve, called the base point and

0k ≠ is a positive integer. The scalar multiplication of the pointP is computed
using the Algorithm 1.

The cost of an inversion in affine coordinates is much more expensive than any
other field operation. Inversions can be reduced by using a projective coordinate
representation. A pointP in projective coordinates is represented using three
coordinates. In Lopez Dahab (LD) projective coordinates [5] the curve in
Equation 1 is transformed to the following.
 2 3 2 2 4Y XYZ X Z aX Z bZ+ = + + (2)

 Algorithm 1: Elliptic Curve Scalar Multiplier
 Input : An integer 0k ≠ of length l bits and base point P

 Output : Q kP=

1. begin
2. Q O=

3. for 2i l= − downto 0 do
4. Double()Q Q=

5. if 1
i

k = then

6. Add(,)Q Q P=

7. end
8. end
9. end

The LD projective coordinates(, ,)X Y Z correspond to the affine coordinates

/x X Z= and 2/y Y Z= . Doubling the point 1 1 1(, ,)P X Y Z= results in the

point 3 3 32 (, ,)P X Y Z= .

2 2
3 1 1

4 4
3 1 1

4 2 4
3 1 3 3 3 1 1()

Z X Z

X X bZ

Y bZ Z X aZ Y bZ

=

= +

= + + +

 (3)

When implemented in hardware, these equations can be parallelized to generate
the double in three clock cycles [8] as shown below.

Table 1: Parallel Point Doubling
cycle

0C 1C

1 2 2
3 1 1Z X Z= 4

1 1T Z=

2 4 2
2 1 1 3 1 1()()T X T Z Y T= + + + 4

3 1 1X X T= +

3
3 1 3 2Y T Z T= + -

Adding two points 1 1 1(, ,)P X Y Z= and 2 2(, ,1)Q X Y= in LD coordinates

system results in the point 3 3 3(, ,)R X Y Z= as shown below.

1 1

2 2 2
2 1 2 1 1 1

2 2
3 3 3 2 3

2
2 2 3 3 3

()

() ()

A Y Z Y B X Z X C Z B D B C aZ

Z C E AC X A D E F X X X

G X Y Z Y E Z F G

= + = + = = +

= = = + + = +

= + = + +

In hardware, the equations for point addition can be parallelized to complete
in eight clock cycles [8].

Table 2: Parallel Point Addition

cycle
0C 1C

1
1

2
3 2 1Y Y Z Y= +

2
3 2 1 1X X Z X= +

3
1 3 1T X Z=

4 2 2
3 3 1 1()X X Z T= + 2

3 1Z T=

5 2
3 3 1 3 3X Y T X Y= + + 1 3 1T Y T=

6
1 2 3 3T X Z X= +

7 2
3 2 2 3()Y X Y Z= + 2 3T T=

8
3 2 3 1 3()Y T Z T Y= + +

3. Implementing Finite Field Primitives on a Xilinx FPGA
Maximizing the performance of the finite field primitives requires the design to
be customized for the target hardware. The Xilinx FPGA [13] is made up of
Configurable Logic Blocks (CLBs). Each CLB on a Xilinx Virtex 4 FPGA
contains two slices. Each slice contains two lookup tables (LUTs). The LUT is
the smallest programmable element in the FPGA. A LUT has four inputs and
can be configured for any logic function having a maximum of four inputs. The

LUT can also be used to implement logic functions having less than four inputs,
two for example. In this case only half the LUT is utilized the remaining part is
not utilized. Such a LUT having less than four inputs is an under utilized LUT.
Most compact implementations are obtained when the utilization of each LUT is
maximized. The percentage of under utilized LUTs in a design is determined
using Equation 4. kLUT signifies thatk inputs out of 4 are used by the design

block realized by the LUT. So, 2LUT and 3LUT are under utilized LUTs,

while 4LUT is fully utilized.

 2 3

2 3 4

% *100
LUT LUT

UnderUtilizedLUTs
LUT LUT LUT

+
=

+ +
 (4)

3.1. Finite Field Multiplication

Finite field multiplication of two elements in the field (2)nGF is defined

as () () () mod ()C x A x B x P x= , where ()A x , ()B x and () (2)nC x GF∈ and

()P x is the irreducible polynomial of degreen which generates the field (2)nGF .
Implementing the multiplication requires two steps. First, the polynomial
product '() () ()C x A x B x= is determined then, the modulo operation is done

on '()C x . The Karatsuba algorithm is used for the polynomial multiplication.

The Karatsuba algorithm achieves its efficiency by splitting the n bit

multiplicands into two 2-term polynomials: / 2() n
h lA x A x A= + and

/ 2() n
h lB x B x B= + . The multiplication is then done using three/ 2n bit

multiplications as shown in Equation 5. The three/ 2n bit multiplications are
then implemented recursively.

/ 2 / 2

/ 2

/ 2

'() ()()

()

(()())

n n
h l h l

n n
h h h l l h l l

n n
h h h l h l h h l l l l

C x A x A B x B

A B x A B A B x A B

A B x A A B B A B A B x A B

= + +

= + + +

= + + + + + +

 (5)

The basic recursive Karatsuba multiplier cannot be applied directly to ECC
because the binary extension fields used in standards such as [11] have a degree
which is prime. There have been several published works such as the Binary
Karatsuba Multiplier [9], the Recursively Applied Iterative Karatsuba [7], the
Simple Karatsuba Multiplier [12] and the General Karatsuba Multiplier [12].
The Simple Karatsuba Multiplier is the basic recursive Karatsuba multiplier with
a small modification. If ann bit multiplication is needed to be done, n being any
integer, it is split into two polynomials as in Equation 5. The lA and lB terms

have / 2n bits and the hA and hB terms have / 2n bits. The Karatsuba

multiplication can then be done with two / 2n bit multiplications and
one / 2n bit multiplication. In the General Karatsuba Multiplier, the

multiplicands are split into more than two terms. For example ann term
multiplier is split inton different terms.

3.1.1. The Hybrid Karatsuba Multiplier
Our design for the multiplier is based on observations from Table 3.1.1. The
table compares the General and Simple Karatsuba multipliers for gate counts

(two input XOR and AND gates), LUTs required and percentage of under
utilized LUTs on a Xilinx Virtex 4 FPGA.

Table 3: Multiplication Comparison on Xilinx Virtex 4 FPGA
General Simple N

Gates LUTs LUTs Under
utilized

Gates LUTs LUTs Under
Utilized

2 7 3 66.6% 7 2 66.6%
4 37 11 45.5% 33 16 68.7%
8 169 53 20.7% 127 63 66.6%
16 721 188 17.0% 441 220 65.0%
29 2437 670 10.7% 1339 669 65.4%
32 2977 799 11.3% 1447 723 63.9%

For the Simple Karatsuba multiplier, the percentage of under utilized LUTs
is high resulting in bloated area requirements. In the case of the General
Karatsuba multiplier, the percentage of under utilized LUTs is low; therefore
there is better LUT utilization even though the gate count is higher. For 29n > ,
the number of gates in the General Karatsuba multiplier exceeds the benefits
obtained by fully utilizing the LUTs, resulting in bigger area requirements. We
therefore conclude that the General Karatsuba multiplier is more efficient for
small sizes of multiplicands, while the Simple Karatsuba multiplier is efficient
for large multiplicands.

In our proposed Hybrid Karatsuba multiplier, all recursions are done using
the Simple Karatsuba multiplier except the final recursion. The final recursion is
done using a General Karatsuba multiplier when the multiplicands have a size
less than 29 bits. The initial recursions using the Simple Karatsuba multiplier
result in low gate count, while the final recursion using the General Karatsuba
multiplier results in low LUT requirements. For a 233-bit Hybrid Karatsuba
multiplier as shown in Figure 1, the initial four recursions are done using the
Simple Karatsuba multiplier, while the final recursion is done with 14-bit and
15-bit General Karatsuba multipliers.

 Fig 1: 233 Bit Hybrid Karatsuba Multiplier

3.2. Finite Field Inversion

The Multiplicative Inverse of an element (2)na GF∈ is the

element 1 (2)na GF− ∈ such that 1 1 1mod()a a a a n− −⋅ ≡ ⋅ ≡ . From Fermat’s Little

Theorem, the multiplicative inverse can be written as
11 2 2 2 1 2()

n n
a a a

−− − −= = .

The naive technique of implementing1a− requires(2)n− multiplications and

(1)n− squarings. Itoh and Tsujii in [1] reduced the number of multiplications
required by an efficient use of addition chains. An Addition Chain [3]

for n N∈ is a sequence of integers of the form 0 1 2()rU u u u u= � satisfying the

properties 0 1, , r i j ku u n u u u= = = + for k j i≤ < . An addition chain for 232 is

given by Equation 7.
 (1 2 3 6 7 14 28 58 116 232)U = (6)

Let 2 1 (2)()
k n

k GFa aβ − ∈= and 2() ()
j

k j k jaβ β β+ = [10]. If 233(2)a GF∈ ,

then 1 2
232(())a aβ− = . Using the addition chain in Equation 7, the inverse of the

elementa can be determined with 232 squarings and 10 multiplications as shown
in the Table 4.

Table 4: Inverse of 233(2)a GF∈ using the Itoh-Tsujii Algorithm
 ()

iu aβ ()
j ku u aβ + Exponentiation

1
1()aβ

2
2 ()aβ 1 1()aβ + 1 22 2 1

1 1() aβ β −=
3

3()aβ 2 1()aβ + 1 32 2 1
2 1() aβ β −=

4
6()aβ 3 3()aβ + 3 62 2 1

3 3() aβ β −=
5

7()aβ 6 1()aβ + 1 72 2 1
6 1() aβ β −=

6
14()aβ 7 7()aβ + 7 142 2 1

7 7() aβ β −=
7

28()aβ 14 14()aβ + 14 282 2 1
14 14() aβ β −=

8
29()aβ 28 1()aβ + 1 292 2 1

28 1() aβ β −=
9

58()aβ 29 29()aβ + 29 582 2 1
29 29() aβ β −=

10
116()aβ 58 58()aβ + 58 1162 2 1

58 58() aβ β −=
11

232()aβ 116 116()aβ + 116 2322 2 1
116 116() aβ β −=

Table 5: Comparison of Squarer and Quad Circuits for 233(2)a GF∈ on Virtex 4

Circuit Exponentiation #LUTs Delay
Squarer 2a 153 1.483ns

Quad 4a 230 1.489ns

3.2.1. The Quad-Itoh Tsujii Algorithm
When implemented on an FPGA, there are advantages of using quad circuits (i.e.
raising a to the power of 4) instead of squarers. The Table 5 compares the
number of LUTs and the combinational delay for 2a and 4a . We would expect
the area consumed by the quad circuit be twice that of the squarer. However this
is not the case. The quad circuit is about 1.5 times the size of the squarer.
Besides this, the combinational delay of the two blocks is the same. This is
because the percentage utilization of a LUT for a quad circuit is greater than that
of a squarer, thus resulting in compact hardware. Based on this observation, we
propose a Quad-Itoh Tsujii algorithm, which uses quad exponentiation circuits
instead of squarers. The Quad-Itoh Tsujii algorithm results in lesser number of
exponentiations required at a marginal increase in area.

Table 6: Inverse of 233(2)a GF∈ using Quad Itoh Tsujii Algorithm

 ()
iu aα ()

j ku u aα + Exponentiation

1
1()aα 3a

2
2()aα 1 1()aα + 1 24 4 1

1 1() aα α −=

3
3()aα 2 1()aα + 1 34 4 1

2 1() aα α −=

4
6()aα 3 3()aα + 3 64 4 1

3 3() aα α −=

5
7()aα 6 1()aα + 1 74 4 1

6 1() aα α −=

6
14()aα 7 7()aα + 7 144 4 1

7 7() aα α −=

7
28()aα 14 14()aα + 14 284 4 1

14 14() aα α −=

8
29()aα 28 1()aα + 1 294 4 1

28 1() aα α −=

9
58()aα 29 29()aα + 29 584 4 1

29 29() aα α −=

10
116()aα 58 58()aα + 58 1164 4 1

58 58() aα α −=

Let 4 1()

k

k a aα −= and 2 2() () ()
k j

k j j k k jaα α α α α+ = = .Computing the

inverse of 233(2)a GF∈ can be done using 116 quad operations and 10
multiplications as shown in Table 6.

a22

a12

a14

a24

a14

a02

a02

a14

a2

a0

a3

a22

a14

a24+a3

a24+a3

A
MUX

B
MUX

C
MUX

D
MUX

D
MUX

sqrsqr

sqr

sqr

a24

sqr

sqr

a2

a3

a1

QuadBlock

a0

Dual Port Memory
Banks

Px

Py

(7 x 233)

c[5:3]

c[2:0]

c[31]

c[9:8]

c[7:6]

c[30:26]
c[10:20]

c[21:22]
c[23:26]

Karatsuba

Multiplier

ALU

Y2

T2

Z1

T1

X1

X2

Y1

Control Unit

reset

clock

k
c[31:0]

Fig 3: Elliptic Curve Crypto Processor

4. The Elliptic Curve Crypto Processor

This section presents the implementation of the Elliptic Curve Crypto
Processor (Figure 2) based on the primitives discussed earlier. The processor

consists of three main modules: the ALU, the register bank and the control unit.
The inputs to the processor are the base point (,)x yP P P= and the key k. The

output is the scalar product kP whose coordinates are stored in the registers 1X

and 1Y at the end of the computation. The scalar multiplication is computed
using Algorithm 1, and the Tables 1and 2. Each equation from the table is
evaluated using the ALU and the intermediate results are stored in the register
bank.

The ALU : The main part of the ALU is the Quadblock and the Multiplier.
The multiplier is based on the Hybrid Karatsuba algorithm and is used in the
scalar multiplication as well as during the inversion. The Quadblock is used only
during inversion. It consists of cascaded quad circuits. There are 14 cascaded
circuits as shown in the Figure 3. If the number of quad operations required is
less than 14, a multiplexer is used to tap out the interim outputs. In this case the
output is obtained in one clock cycle. If the number of quad operations required
is greater than 14, the output is recycled in the QuadBlock. Squarer and adder
circuits are replicated several times in the ALU to increase throughput. This is
possible at minimum resource overhead because of the simplicity of these
circuits. The ALU is capable of producing two outputs 0 1(,)C C per clock cycle.
Of the two outputs, only one can be from a multiplication due to the single
multiplier present. The latency of the entire ALU is mainly due to the multiplier.

The Register Bank: There are seven 233 bit dual port registers configured as
three banks. The FPGA’s distributed RAM is used for the purpose. The input to
the registers is either the base point or the outputs of the ALU or QuadBlock.
The outputs of the register are fed to the inputs of the ALU.

The Control Unit: There are 32 control signals (0c to 32c) that are generated
by the control unit at every clock cycle. These signals switch data to : the ALU
(21 22,c c), the inputs to the multiplier (0c to 5c), the outputs of the ALU (6c to 9c),

the control for the Quadblock (26c to 31c), the inputs and outputs of the register

bank (10c to 20c and 23c to 26c) . The Finite State Machine (Figure 4) has 34 states.
The point doubling is implemented with equations from Table 1 and requires
three states (D1 to D3). The point addition is implemented with equations from
Table 2 and requires eight states (A1 to A8). The inverse is calculated using the
Quad-Itoh Tsujii (Table 6), and requires twenty one states (I1 to I21) for
completion. The Quad-Itoh Tsujii states entered when the complete signal is
asserted. The complete signal is issued when all key bits in the keyk are
considered. If the least significant bit (LSB) of k is a zero, then the complete
signal is asserted during the D3 state. If the LSB of k is one, the state A8 asserts
the complete signal. The init states are required to load the initial values into
registers at the cost of 2 clock cycles. The clock cycles for the computation of
the scalar multiplication is related to the hamming weight h of the scalar k and l,
which denotes the length of the binary string representing k.

1 3((1) (1)) 11(1) 21

3() 11 11

Clockcycles l h h

l h h

= + − − − + − +
= − + +

Fig 3: Quad Block: Raises the Input to the Power of 4k

quad circuit − 13

quad circuit − 14

Multiplexer

Control

Input

quad circuit − 3

quad circuit − 2

quad circuit − 1

5. Experimental Results
In this section we present the performance results of our implementation. Our
test platform is a Xilinx Virtex 4 FPGA. There are several papers which publish
similar works on Elliptic Curve Crypto Processors and primitives. In order to
have a uniform platform, we have reimplemented some of the important
published works [9] [10] and plugged them into our EC processor to compare
results. The Table 7 compares the results of EC processors containing different
multiplications and inverse algorithms. The Clock Cycles in the table is the
cycles required for one doubling, addition and an inverse. When k=3, we require
to perform both doubling and addition. In this case, h=2 and l=2, hence the
design for the Hybrid Karatsuba multiplier with Quad-Itoh Tsujii requires 33
clock cycles. The computation for the remaining architectures are similar,
keeping in mind that employing the QuadBlock requires 21 clock cycles and the
squarer 31 clock cycles for completion.

From the table, the Hybrid Karatsuba based implementations result in the
smallest and fastest processors. The Hybrid Karatsuba multiplier saves about
2500 LUTs. The processors with the Quad Itoh Tsujii inversion require the least

clock cycles (10 less than a squarer based implementation). The Performance
metric 1η considers the clock cycles. Results show that the processor with the
Hybrid Karatsuba and the Quad Itoh Tsujii has the best performance. The
Performance metric2η does not consider clock cycles. This shows that the

combination of a Hybrid Karatsuba multiplier and a Squarer based Itoh-Tsujii
has best results.

6. Conclusion
This paper presents an implementation of an Elliptic Curve processor. Novel

Fig 4: The Finite State Machine for the Elliptic Curve Processor

Table 7: Comparison of various primitives plugged into our 233(2)GF ECP
 LUTs Frequency

(f) in MHz
Clock
Cycles
(CC)

Performance
(1η)

/ *f LUTs CC

Performance
(2η)

/f LUTs

Hybrid Karatsuba,
Quad Itoh Tusjii

34394 37.611 33 33.137 1093

Binary Karatsuba [9]
Quad Itoh Tsujii

36970 35.433 33 29.043 958

Hybrid Karatsuba
Squarer Itoh Tsujii [10]

33326 37.853 43 26.414 1135

Binary Karatsuba [9]
Squarer Itoh Tsujii [10]

35805 35.669 43 23.167 996

techniques for implementing a Karatsuba multiplier and an Itoh Tsujii Inversion
algorithm result in efficient implementations of the processor on FPGA
platforms. The Hybrid Karatsuba multiplier can be used in Elliptic Curves to
minimize the LUTs required and increase the operating frequency. The Quad
Itoh Tsujii algorithm can be used to obtain the output with minimum
computation time.

References
[1] Toshiya Itoh and Shigeo Tsujii. A Fast Algorithm for Computing

Multiplicative Inverses in GF (2m) using Normal Bases. Inf. Comput.,
78(3):171–177, 1988.

[2] Anatoly A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers
on Automata. Soviet Physics Doklady, 7:595–596, 1963.

[3] Donald E. Knuth. The Art of Computer Programming Volumes 1-3 Boxed
Set. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1998.

[4] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[5] Julio López and Ricardo Dahab. Fast Multiplication on Elliptic Curves over
GF(2m) Without Precomputation. In CHES ’99: Proceedings of the First
International Workshop on Cryptographic Hardware and Embedded
Systems, pages 316–327, London, UK, 1999. Springer-Verlag.

[6] Victor Miller. Uses of Elliptic Curves in Cryptography. Advances in
Cryptology, Crypto’85, 218:417–426, 1986.

[7] Steffen Peter and Peter Langendörfer. An Efficient Polynomial Multiplier in
(2)mGF and its application to ecc designs. In DATE ’07: Proceedings of

the conference on Design, automation and test in Europe, pages 1253–1258,
San Jose, CA, USA, 2007. EDA Consortium.

[8] Sabel Mercurio Henríquez Rodríguez et. al. An Fpga Arithmetic Logic Unit
for Computing Scalar Multiplication using the Half-and-Add Method. In
ReConFig 2005: International Conference on Reconfigurable Computing
and FPGAs, Washington, DC, USA, 2005. IEEE Computer Society.

[9] Francisco Rodríguez-Henríquez and Çetin Kaya Koç. On Fully Parallel
Karatsuba Multipliers for GF(2m). In Proc. of the International Conference
on Computer Science and Technology (CST), pages 405–410.

[10] Francisco Rodríguez-Henríquez et.al, Parallel Itoh-Tsujii Multiplicative
Inversion Algorithm for a Special Class of Trinomials. Des. Codes
Cryptography, 45(1):19–37, 2007.

[11] U.S. Department of Commerce,National Institute of Standards and
Technology. Digital Signature Standard (DSS), 2000.

[12] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba
algorithm for Efficient Implementations. Cryptology ePrint Archive, Report
2006/224, 2006.

[13] Xilinx. Virtex-4 User Guide, 2007.

