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Abstract 
 

The paper proposes an efficient implementation of a nGF(2 )  Elliptic Curve 

Processor (ECP) targeted for FPGA platforms. The efficiency is obtained by 
novel implementations of the underlying finite field primitives required for the 
ECP. Results are furnished to show that we can realize compact and faster 
designs compared to existing implementations. 
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1. Introduction 
Elliptic Curve Cryptography (ECC) was invented independently by Koblitz [4] 
and Miller [6] in 1985. Since then, the security and efficiency of ECC has been 
accepted, and ECC has been incorporated in several security standards. For a 
given level of security, the size of the key and the operations involved in ECC 
computation is shorter than other crypto algorithms. This makes ECC an 
attractive alternative for today’s hand held devices where processing bandwidth, 
memory resources and power are limited. NIST’s standard for Digital Signatures 
[11] recommends using a prime field or a binary extension field for elliptic 
curves. Binary extension fields have the advantage that field additions can be 
performed by XOR operations, therefore no carry is involved. This leads to 
implementations that require lesser area and have higher performance.  

Implementations of Elliptic Curve Cryptosystems follow a layered 
hierarchical scheme. The performance of the top layers of the hierarchy is 
greatly influenced by the performance of the underlying layers. It is therefore 
important to have efficient implementations of finite field operations such as 
squaring, addition, multiplication and inversion. Among these, finite field 
multiplication and inversion most critically affect the performance of the Elliptic 
Curve Cryptosystem. 

In the first part of the paper we present our implementations of the 
important finite field primitives. Our implementation of the finite field 
multiplier is based on the Karatsuba [2] algorithm. It has the best area time 
product on an FPGA compared to existing implementations [9] [12]. Our 
inversion algorithm is a generalization of the Itoh-Tsujii algorithm [1], and 
computes the inverse in lesser clock cycles compared to the best sequential Itoh-
Tsujii implementation [10]. 

The second part of the paper discusses our implementation of an Elliptic 
Curve Crypto processor. The implementation is based on the Lopez Dahab 
projective coordinate system [5] as is done by contemporary works like [8]. 
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However our design also includes the final inverse calculation which is not 
present in [8]. 

Section 2 reviews Elliptic Curve Cryptography. Section 3 presents our 
implementation of the Finite Field Primitives used in the Elliptic Curve 
Processor. The design of the Elliptic Curve processor is discussed in Section 4, 
while the results are reported in Section 5. Section 6 has the conclusion. 
 
2. Preliminaries 

A non super singular Elliptic Curve over the field (2 )
n

GF is the set of points 

( , ) (2 ) (2 )n nx y GF GF∈ ×  that satisfy the equation  

 2 3y xy x ax b+ = + +  (1) 

where a and (2 )nb GF∈ . The points on the Elliptic Curve together with the 

point at infinity (O ) form an abelian group under addition. The point O  is the 
identity element of the group. The basic operations that are performed on the 
group are point addition and point doubling. The equations for the elliptic curve 
(represented by Equation 1) arithmetic in affine coordinates are shown below. In 
the table, 1 1( , )P x y O= ≠ is a point on the elliptic curve and 2 2( , )Q x y O= ≠ is 

another point on the curve such thatQ P≠ . 
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The Elliptic Curve Scalar multiplication( )Q kP= is performed by adding P  k  
times over the curve, where P is a point on the curve, called the base point and 

0k ≠ is a positive integer. The scalar multiplication of the pointP is computed 
using the Algorithm 1. 

 
The cost of an inversion in affine coordinates is much more expensive than any 
other field operation. Inversions can be reduced by using a projective coordinate 
representation. A pointP in projective coordinates is represented using three 
coordinates. In Lopez Dahab (LD) projective coordinates [5] the curve in 
Equation 1 is transformed to the following.  
 2 3 2 2 4Y XYZ X Z aX Z bZ+ = + +  (2) 

  Algorithm 1: Elliptic Curve Scalar Multiplier 
  Input : An integer 0k ≠ of length l bits and base point P  

  Output : Q kP=  

1. begin 
2.     Q O=  

3.     for  2i l= − downto 0 do 
4.         Double( )Q Q=  

5.          if 1
i

k = then 

6.              Add( , )Q Q P=  

7.         end 
8.     end 
9. end 



The LD projective coordinates( , , )X Y Z correspond to the affine coordinates 

/x X Z= and 2/y Y Z= . Doubling the point 1 1 1( , , )P X Y Z= results in the 

point 3 3 32 ( , , )P X Y Z= . 
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=
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When implemented in hardware, these equations can be parallelized to generate 
the double in three clock cycles [8] as shown below. 
 

Table 1: Parallel Point Doubling 
cycle 

0C  1C  

1 2 2
3 1 1Z X Z=  4

1 1T Z=  

2 4 2
2 1 1 3 1 1( )( )T X T Z Y T= + + +  4

3 1 1X X T= +  

3 
3 1 3 2Y T Z T= +  - 

Adding two points 1 1 1( , , )P X Y Z= and 2 2( , ,1)Q X Y= in LD coordinates 

system results in the point 3 3 3( , , )R X Y Z= as shown below.  

 
1 1
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2 1 2 1 1 1
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In hardware, the equations for point addition can be parallelized to complete 
in eight clock cycles [8].  

 
Table 2: Parallel Point Addition 

cycle 
0C  1C  

1 
1

2
3 2 1Y Y Z Y= +   

2 
3 2 1 1X X Z X= +   

3 
1 3 1T X Z=   

4 2 2
3 3 1 1( )X X Z T= +  2

3 1Z T=  

5 2
3 3 1 3 3X Y T X Y= + +  1 3 1T Y T=  

6 
1 2 3 3T X Z X= +   

7 2
3 2 2 3( )Y X Y Z= +  2 3T T=  

8 
3 2 3 1 3( )Y T Z T Y= + +   

 
3. Implementing Finite Field Primitives on a Xilinx FPGA 
Maximizing the performance of the finite field primitives requires the design to 
be customized for the target hardware. The Xilinx FPGA [13] is made up of 
Configurable Logic Blocks (CLBs). Each CLB on a Xilinx Virtex 4 FPGA 
contains two slices. Each slice contains two lookup tables (LUTs). The LUT is 
the smallest programmable element in the FPGA. A LUT has four inputs and 
can be configured for any logic function having a maximum of four inputs. The 



LUT can also be used to implement logic functions having less than four inputs, 
two for example. In this case only half the LUT is utilized the remaining part is 
not utilized. Such a LUT having less than four inputs is an under utilized LUT. 
Most compact implementations are obtained when the utilization of each LUT is 
maximized. The percentage of under utilized LUTs in a design is determined 
using Equation 4. kLUT signifies thatk inputs out of 4 are used by the design 

block realized by the LUT. So, 2LUT and 3LUT are under utilized LUTs, 

while 4LUT is fully utilized.  

 2 3

2 3 4

% *100
LUT LUT

UnderUtilizedLUTs
LUT LUT LUT

+
=

+ +
 (4) 

3.1.  Finite Field Multiplication 

Finite field multiplication of two elements in the field (2 )nGF is defined 

as ( ) ( ) ( ) mod ( )C x A x B x P x= , where ( )A x , ( )B x and ( ) (2 )nC x GF∈ and 

( )P x is the irreducible polynomial of degreen which generates the field (2 )nGF . 
Implementing the multiplication requires two steps. First, the polynomial 
product '( ) ( ) ( )C x A x B x= is determined then, the modulo operation is done 

on '( )C x . The Karatsuba algorithm is used for the polynomial multiplication. 

The Karatsuba algorithm achieves its efficiency by splitting the n bit 

multiplicands into two 2-term polynomials: / 2( ) n
h lA x A x A= +  and  

/ 2( ) n
h lB x B x B= + . The multiplication is then done using three/ 2n bit 

multiplications as shown in Equation 5. The three/ 2n bit multiplications are 
then implemented recursively.  

 

/ 2 / 2

/ 2

/ 2

'( ) ( )( )

( )

(( )( ) )

n n
h l h l

n n
h h h l l h l l

n n
h h h l h l h h l l l l

C x A x A B x B
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 (5) 

The basic recursive Karatsuba multiplier cannot be applied directly to ECC 
because the binary extension fields used in standards such as [11] have a degree 
which is prime. There have been several published works such as the Binary 
Karatsuba Multiplier [9], the Recursively Applied Iterative Karatsuba [7], the 
Simple Karatsuba Multiplier [12] and the General Karatsuba Multiplier [12]. 
The Simple Karatsuba Multiplier is the basic recursive Karatsuba multiplier with 
a small modification. If ann bit multiplication is needed to be done, n being any 
integer, it is split into two polynomials as in Equation 5. The lA and lB terms 

have / 2n bits and the hA and hB terms have / 2n bits. The Karatsuba 

multiplication can then be done with two / 2n bit multiplications and 
one / 2n bit multiplication. In the General Karatsuba Multiplier, the 

multiplicands are split into more than two terms. For example ann term 
multiplier is split inton different terms. 

3.1.1.  The Hybrid Karatsuba Multiplier 
Our design for the multiplier is based on observations from Table 3.1.1. The 
table compares the General and Simple Karatsuba multipliers for gate counts 



(two input XOR and AND gates), LUTs required and percentage of under 
utilized LUTs on a Xilinx Virtex 4 FPGA. 
 

Table 3: Multiplication Comparison on Xilinx Virtex 4 FPGA 
General Simple N 

Gates LUTs LUTs Under 
utilized 

Gates LUTs LUTs Under 
Utilized 

2 7 3 66.6% 7 2 66.6% 
4 37 11 45.5% 33 16 68.7% 
8 169 53 20.7% 127 63 66.6% 
16 721 188 17.0% 441 220 65.0% 
29 2437 670 10.7% 1339 669 65.4% 
32 2977 799 11.3% 1447 723 63.9% 

For the Simple Karatsuba multiplier, the percentage of under utilized LUTs 
is high resulting in bloated area requirements. In the case of the General 
Karatsuba multiplier, the percentage of under utilized LUTs is low; therefore 
there is better LUT utilization even though the gate count is higher. For 29n > , 
the number of gates in the General Karatsuba multiplier exceeds the benefits 
obtained by fully utilizing the LUTs, resulting in bigger area requirements. We 
therefore conclude that the General Karatsuba multiplier is more efficient for 
small sizes of multiplicands, while the Simple Karatsuba multiplier is efficient 
for large multiplicands. 

In our proposed Hybrid Karatsuba multiplier, all recursions are done using 
the Simple Karatsuba multiplier except the final recursion. The final recursion is 
done using a General Karatsuba multiplier when the multiplicands have a size 
less than 29 bits. The initial recursions using the Simple Karatsuba multiplier 
result in low gate count, while the final recursion using the General Karatsuba 
multiplier results in low LUT requirements. For a 233-bit Hybrid Karatsuba 
multiplier as shown in Figure 1, the initial four recursions are done using the 
Simple Karatsuba multiplier, while the final recursion is done with 14-bit and 
15-bit General Karatsuba multipliers.  

 
 Fig 1: 233 Bit Hybrid Karatsuba Multiplier 

3.2. Finite Field Inversion 

The Multiplicative Inverse of an element (2 )na GF∈ is the 

element 1 (2 )na GF− ∈ such that 1 1 1mod( )a a a a n− −⋅ ≡ ⋅ ≡ . From Fermat’s Little 

Theorem, the multiplicative inverse can be written as 
11 2 2 2 1 2( )

n n
a a a

−− − −= = . 

The naive technique of implementing1a− requires( 2)n− multiplications and 

( 1)n− squarings. Itoh and Tsujii in [1] reduced the number of multiplications 
required by an efficient use of addition chains. An Addition Chain [3] 



for n N∈ is a sequence of integers of the form 0 1 2( )rU u u u u= �  satisfying the 

properties 0 1, , r i j ku u n u u u= = = + for k j i≤ < . An addition chain for 232 is 

given by Equation 7. 
 (1 2 3 6 7 14 28 58 116 232)U =  (6) 

Let 2 1 (2 )( )
k n

k GFa aβ − ∈= and 2( ) ( )
j

k j k jaβ β β+ = [10]. If 233(2 )a GF∈ , 

then 1 2
232( ( ))a aβ− = . Using the addition chain in Equation 7, the inverse of the 

elementa can be determined with 232 squarings and 10 multiplications as shown 
in the Table 4. 

Table 4: Inverse of 233(2 )a GF∈ using the Itoh-Tsujii Algorithm 
 ( )

iu aβ  ( )
j ku u aβ +  Exponentiation  

1 
1( )aβ    

2 
2 ( )aβ  1 1( )aβ +  1 22 2 1

1 1( ) aβ β −=  
3 

3( )aβ  2 1( )aβ +  1 32 2 1
2 1( ) aβ β −=  

4 
6( )aβ  3 3( )aβ +  3 62 2 1

3 3( ) aβ β −=  
5 

7( )aβ  6 1( )aβ +  1 72 2 1
6 1( ) aβ β −=  

6 
14( )aβ  7 7( )aβ +  7 142 2 1

7 7( ) aβ β −=  
7 

28( )aβ  14 14( )aβ +  14 282 2 1
14 14( ) aβ β −=  

8 
29( )aβ  28 1( )aβ +  1 292 2 1

28 1( ) aβ β −=  
9 

58( )aβ  29 29( )aβ +  29 582 2 1
29 29( ) aβ β −=  

10 
116( )aβ  58 58( )aβ +  58 1162 2 1

58 58( ) aβ β −=  
11 

232( )aβ  116 116( )aβ +  116 2322 2 1
116 116( ) aβ β −=  

 
Table 5: Comparison of Squarer and Quad Circuits for 233(2 )a GF∈ on Virtex 4 

Circuit Exponentiation #LUTs Delay 
Squarer 2a  153 1.483ns 

Quad 4a  230 1.489ns 

 

3.2.1. The Quad-Itoh Tsujii Algorithm 
When implemented on an FPGA, there are advantages of using quad circuits (i.e. 
raising a to the power of 4) instead of squarers. The Table 5 compares the 
number of LUTs and the combinational delay for 2a  and 4a . We would expect 
the area consumed by the quad circuit be twice that of the squarer. However this 
is not the case. The quad circuit is about 1.5 times the size of the squarer. 
Besides this, the combinational delay of the two blocks is the same. This is 
because the percentage utilization of a LUT for a quad circuit is greater than that 
of a squarer, thus resulting in compact hardware. Based on this observation, we 
propose a Quad-Itoh Tsujii algorithm, which uses quad exponentiation circuits 
instead of squarers. The Quad-Itoh Tsujii algorithm results in lesser number of 
exponentiations required at a marginal increase in area. 

 



Table 6: Inverse of 233(2 )a GF∈ using Quad Itoh Tsujii Algorithm 

 ( )
iu aα  ( )

j ku u aα +  Exponentiation 

1 
1( )aα   3a  

2 
2( )aα  1 1( )aα +  1 24 4 1

1 1( ) aα α −=  

3 
3( )aα  2 1( )aα +  1 34 4 1

2 1( ) aα α −=  

4 
6( )aα  3 3( )aα +  3 64 4 1

3 3( ) aα α −=  

5 
7( )aα  6 1( )aα +  1 74 4 1

6 1( ) aα α −=  

6 
14( )aα  7 7( )aα +  7 144 4 1

7 7( ) aα α −=  

7 
28( )aα  14 14( )aα +  14 284 4 1

14 14( ) aα α −=  

8 
29( )aα  28 1( )aα +  1 294 4 1

28 1( ) aα α −=  

9 
58( )aα  29 29( )aα +  29 584 4 1

29 29( ) aα α −=  

10 
116( )aα  58 58( )aα +  58 1164 4 1

58 58( ) aα α −=  

 
Let 4 1( )

k

k a aα −= and 2 2( ) ( ) ( )
k j

k j j k k jaα α α α α+ = = .Computing the 

inverse of 233(2 )a GF∈ can be done using 116 quad operations and 10 
multiplications as shown in Table 6. 
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Fig 3:  Elliptic Curve Crypto Processor 

 
4. The Elliptic Curve Crypto Processor 

This section presents the implementation of the Elliptic Curve Crypto 
Processor (Figure 2) based on the primitives discussed earlier. The processor  

consists of three main modules: the ALU, the register bank and the control unit. 
The inputs to the processor are the base point ( , )x yP P P=  and the key k. The 

output is the scalar product kP whose coordinates are stored in the registers 1X  

and 1Y at the end of the computation. The scalar multiplication is computed 
using Algorithm 1, and the Tables 1and 2. Each equation from the table is 
evaluated using the ALU and the intermediate results are stored in the register 
bank. 



The ALU : The main part of the ALU is the Quadblock and the Multiplier. 
The multiplier is based on the Hybrid Karatsuba algorithm and is used in the 
scalar multiplication as well as during the inversion. The Quadblock is used only 
during inversion. It consists of cascaded quad circuits. There are 14 cascaded 
circuits as shown in the Figure 3. If the number of quad operations required is 
less than 14, a multiplexer is used to tap out the interim outputs. In this case the 
output is obtained in one clock cycle. If the number of quad operations required 
is greater than 14, the output is recycled in the QuadBlock. Squarer and adder 
circuits are replicated several times in the ALU to increase throughput. This is 
possible at minimum resource overhead because of the simplicity of these 
circuits. The ALU is capable of producing two outputs 0 1( , )C C  per clock cycle. 
Of the two outputs, only one can be from a multiplication due to the single 
multiplier present. The latency of the entire ALU is mainly due to the multiplier.  

The Register Bank: There are seven 233 bit dual port registers configured as 
three banks. The FPGA’s distributed RAM is used for the purpose. The input to 
the registers is either the base point or the outputs of the ALU or QuadBlock. 
The outputs of the register are fed to the inputs of the ALU. 

The Control Unit: There are 32 control signals (0c to 32c ) that are generated 
by the control unit at every clock cycle. These signals switch data to : the ALU 
( 21 22,c c ), the inputs to the multiplier (0c to 5c ), the outputs of the ALU (6c to 9c ), 

the control for the Quadblock (26c to 31c ), the inputs and outputs of the register 

bank ( 10c to 20c and 23c  to 26c ) . The Finite State Machine (Figure 4) has 34 states. 
The point doubling is implemented with equations from Table 1 and requires 
three states (D1 to D3). The point addition is implemented with equations from 
Table 2 and requires eight states (A1 to A8). The inverse is calculated using the 
Quad-Itoh Tsujii (Table 6), and requires twenty one states (I1 to I21) for 
completion. The Quad-Itoh Tsujii states entered when the complete signal is 
asserted. The complete signal is issued when all key bits in the keyk are 
considered. If the least significant bit (LSB) of k is a zero, then the complete 
signal is asserted during the D3 state. If the LSB of k is one, the state A8 asserts 
the complete signal. The init states are required to load the initial values into 
registers at the cost of 2 clock cycles. The clock cycles for the computation of 
the scalar multiplication is related to the hamming weight h of the scalar k and l, 
which denotes the length of the binary string representing k.  

1 3(( 1) ( 1)) 11( 1) 21

3( ) 11 11

Clockcycles l h h

l h h

= + − − − + − +
= − + +

 

Fig 3:  Quad Block: Raises the Input to the Power of 4k 
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5. Experimental Results 
In this section we present the performance results of our implementation. Our 
test platform is a Xilinx Virtex 4 FPGA. There are several papers which publish 
similar works on Elliptic Curve Crypto Processors and primitives. In order to 
have a uniform platform, we have reimplemented some of the important 
published works [9] [10] and plugged them into our EC processor to compare 
results. The Table 7 compares the results of EC processors containing different 
multiplications and inverse algorithms. The Clock Cycles in the table is the 
cycles required for one doubling, addition and an inverse. When k=3, we require 
to perform both doubling and addition. In this case, h=2 and l=2, hence the 
design for the Hybrid Karatsuba multiplier with Quad-Itoh Tsujii requires 33 
clock cycles. The computation for the remaining architectures are similar, 
keeping in mind that employing the QuadBlock requires 21 clock cycles and the 
squarer 31 clock cycles for completion. 

From the table, the Hybrid Karatsuba based implementations result in the 
smallest and fastest processors. The Hybrid Karatsuba multiplier saves about 
2500 LUTs. The processors with the Quad Itoh Tsujii inversion require the least 

clock cycles (10 less than a squarer based implementation). The Performance 
metric 1η considers the clock cycles. Results show that the processor with the 
Hybrid Karatsuba and the Quad Itoh Tsujii has the best performance. The 
Performance metric2η does not consider clock cycles. This shows that the 

combination of a Hybrid Karatsuba multiplier and a Squarer based Itoh-Tsujii 
has best results. 

6. Conclusion 
This paper presents an implementation of an Elliptic Curve processor. Novel 

Fig 4: The Finite State Machine for the Elliptic Curve Processor 
 

 

Table 7: Comparison of various primitives plugged into our 233(2 )GF ECP 
 LUTs Frequency 

( f ) in MHz 
Clock 
Cycles  
( CC ) 

Performance 
( 1η ) 

/ *f LUTs CC
 

Performance 
( 2η ) 

/f LUTs  

Hybrid Karatsuba, 
Quad Itoh Tusjii 

34394 37.611 33 33.137 1093 

Binary Karatsuba [9] 
Quad Itoh Tsujii 

36970 35.433 33 29.043 958 

Hybrid Karatsuba 
Squarer Itoh Tsujii [10] 

33326 37.853 43 26.414 1135 

Binary Karatsuba [9] 
Squarer Itoh Tsujii [10] 

35805 35.669 43 23.167 996 

 



techniques for implementing a Karatsuba multiplier and an Itoh Tsujii Inversion 
algorithm result in efficient implementations of the processor on FPGA 
platforms. The Hybrid Karatsuba multiplier can be used in Elliptic Curves to 
minimize the LUTs required and increase the operating frequency. The Quad 
Itoh Tsujii algorithm can be used to obtain the output with minimum 
computation time. 
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