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Abstract

The paper proposes an efficient implementation &F&" ) Elliptic Curve

Processor (ECP) targeted for FPGA platforms. The efficidacgbtained by
novel implementations of the underlying finite field priregivrequired for the
ECP. Results are furnished to show that we can realize compactasiedt f
designs compared to existing implementations.
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1. Introduction

Elliptic Curve Cryptography (ECC) was invented indepengenyl Koblitz [4]
and Miller [6] in 1985. Since then, the security andcadficy of ECC has been
accepted, and ECC has been incorporated in several gestaridards. For a
given level of security, the size of the key and the ap@rs involved in ECC
computation is shorter than other crypto algorithms. Thakes ECC an
attractive alternative for today’s hand held devices wipeocessing bandwidth,
memory resources and power are limited. NIST’s stahfdarDigital Signatures
[11] recommends using a prime field or a binary extenfield for elliptic
curves. Binary extension fields have the advantage thdt diédlitions can be
performed by XOR operations, therefore no carry i®olved. This leads to
implementations that require lesser area and have hyghfermance.

Implementations of Elliptic Curve Cryptosystems folloa layered
hierarchical scheme. The performance of the top lagérthe hierarchy is
greatly influenced by the performance of the underlymgpis. It is therefore
important to have efficient implementations of finiteld operations such as
squaring, addition, multiplication and inversion. Among thefggte field
multiplication and inversion most critically affe¢tet performance of the Elliptic
Curve Cryptosystem.

In the first part of the paper we present our implenimms of the
important finite field primitives. Our implementation ohet finite field
multiplier is based on the Karatsuba [2] algorithm. It Hes best area time
product on an FPGA compared to existing implementations 12]. [Our
inversion algorithm is a generalization of the Itohyiisalgorithm [1], and
computes the inverse in lesser clock cycles compart ioest sequential Itoh-
Tsujii implementation [10].

The second part of the paper discusses our implementaitian Elliptic
Curve Crypto processor. The implementation is basedhenLbpez Dahab
projective coordinate system [5] as is done by contempavarks like [8].
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However our design also includes the final inverse calamawhich is not
present in [8].

Section 2 reviews Elliptic Curve Cryptography. Sect®npresents our
implementation of the Finite Field Primitives used time Elliptic Curve
Processor. The design of the Elliptic Curve processdiscussed in Section 4,
while the results are reported in Section 5. Sectiors@teaconclusion.

2. Preliminaries
A non super singular Elliptic Curve over the fisem(zn )is the set of points
(%, y)O GF(2")x GF(2") that satisfy the equation
y>+xy= X+ axt+ k (1)
whereaandbOGF(2"). The points on the Elliptic Curve together with the

point at infinity (O) form an abelian group under addition. The pdnhts the
identity element of the group. The basic operations d@hatperformed on the
group are point addition and point doubling. The equationthe elliptic curve
(represented by Equation 1) arithmetic in affine coordgate shown below. In
the table,P =(x, y;) # Ois a point on the elliptic curve a@d=(x,, y,) # Ois

another point on the curve such tQat P.

Point )(3:/12+/]+X1+X2+a Point )(3:/]2+/]+a
Addition _ Doubling _

(P+0Q) Vs =AM+ %)+ X%+ Y (2P) Vs =AM+ %)+ X%+ Y
A=+ Y) (X + %) A=x+ W%

The Elliptic Curve Scalar multiplicatid®@ = kP) is performed by addin® k
times over the curve, whefeis a point on the curve, called the base point and
k #0is a positive integer. The scalar multiplication of goentP is computed
using the Algorithm 1.

Algorithm 1: Elliptic Curve Scalar Multiplier
Input : An integer K # O of length | bits and base poinP
Output : Q= kP

1. begin

2 Q=0

3 for i =1 —2downto0do
4 Q = Double@Q)

5. if k =1then
6

7

8

9

Q =Add(Q, P)
end
end
end

The cost of an inversion in affine coordinates is mudhne expensive than any
other field operation. Inversions can be reduced by usprgjective coordinate
representation. A poiR in projective coordinates is represented using three
coordinates. In Lopez Dahab (LD) projective coordinatestifig] curve in
Equation 1 is transformed to the following.

Y2+ XYZ= X7+ a¥ Z+ bZ 2)



The LD projective coordinatéX,Y, Z) correspond to the affine coordinates
x=X/Zandy=Y/Z*. Doubling the pointP=(X,Y, Z) results in the
point2P = (X,,Y;, Z).

Z,=X{Z

X, = X{ +bZ 3

Y, =bZ Z+ X(az+ Y+ b2)

When implemented in hardware, these equations can Heefized to generate
the double in three clock cycles [8] as shown below.

Table 1: Parallel Point Doubling

cycle | C, C,

1 Z,=XZ T.=2

2 T,=(X{+T)(Z+ ¥+ T) X, = X[ +T,
3 Y,=TZ+T, -

Adding two pointsP =(X,,Y,, Z) andQ =(X,,Y,,1) in LD coordinates
system results in the poiRt= ( X,, Y;, Z)as shown below.

A=Y,Z+Y B XZ+ X & ZB B Re &

z,=C E= AC X=A+DrE F= X+ % X

G=(X,*+%)Z Y=(E 3 F G

In hardware, the equations for point addition can be lpéirald to complete
in eight clock cycles [8].

Table 2: Parallel Point Addition

cycle | C, C
1 Y,=Y,Z+Y
2 X; =X, 2+ X
3 L=%X4
4 [ X =XZ+T) Z,=%
5 [ X =%T X+ Y L=
6 T, =X,Z,+ X,
! Y, =(X+Y) % T,=T
8 Y, =(L+Z)T+Y

3. Implementing Finite Field Primitives on a Xilinx FPGA

Maximizing the performance of the finite field prinviéis requires the design to
be customized for the target hardware. The Xilinx FPGA [$3hade up of
Configurable Logic Blocks (CLBs). Each CLB on a Xilinkrtex 4 FPGA
contains two slices. Each slice contains two lookigeta(LUTS). The LUT is
the smallest programmable element in the FPGA. A IHas four inputs and
can be configured for any logic function having a maximdfowr inputs. The



LUT can also be used to implement logic functions haigsg than four inputs,
two for example. In this case only half the LUT idizgid the remaining part is
not utilized. Such a LUT having less than four inputs is an unilered LUT.
Most compact implementations are obtained when the utilizatieaat LUT is
maximized The percentage of under utilized LUTs in a design is detedni
using Equation 4.UT, signifies thak inputs out of 4 are used by the design

block realized by the LUT. Sd.UT, and LUT, are under utilized LUTs,
while LUT, is fully utilized.

LUT, + LUT,
LUT, + LUT, + LUT,

%UnderUtilizedLUTs=

*100 4)

3.1. Finite Field Multiplication
Finite field multiplication of two elements in the fie@F(2") is defined
asC(x)= AX B 3mod A%, where A(X) , B(X) and C(x)00 GF(2") and
P(x) is the irreducible polynomial of degreavhich generates the fiel@F(2").
Implementing the multiplication requires two steps. Fitkte polynomial
productC'(x) = A X B 3 is determined then, the modulo operation is done
onC'(x) . The Karatsuba algorithm is used for the polynomial iplidation.
The Karatsuba algorithm achieves its efficiency by $&pdjttthe n bit
multiplicands into two 2-term polynomialsA(X) = A X'?+ A and
B(x) = B, X'+ B . The multiplication is then done using thre¢2 bit
multiplications as shown in Equation 5. The thmég bit multiplications are
then implemented recursively.
C'()=(AX"*+ A(RX*+ B

=ABX +(AB+ AR X*+ AB (5)

=ABX +((A+ A(B+ B+ AR+ AR X+ Al
The basic recursive Karatsuba multiplier cannot be egptiirectly to ECC
because the binary extension fields used in standardsasutii] have a degree
which is prime. There have been several publisheksveuch as th8inary
Karatsuba Multiplier[9], the Recursively Applied lterative Karatsulyd), the
Simple Karatsuba Multiplief12] and theGeneral Karatsuba Multiplief12].
The Simple Karatsuba Multiplier is the basic recur&iaeatsuba multiplier with
a small modification. If an bit multiplication is needed to be donepeing any
integer, it is split into two polynomials as in EquationTheA, andB, terms

havel n/2 | bits and theA, and B, terms have n/2 | bits. The Karatsuba
multiplication can then be done with tdon/2 | bit multiplications and

one | n/2_| bit multiplication. In the General Karatsuba Multipliethe

multiplicands are split into more than two terms. Fsample am term
multiplier is split inton different terms.

3.1.1. TheHybrid Karatsuba Multiplier

Our design for the multiplier is based on observatioom fiTable 3.1.1. The
table compares the General and Simple Karatsuba medsiplor gate counts



(two input XOR and AND gates), LUTs required and percentage of under
utilized LUTs on a Xilinx Virtex 4 FPGA.

Table3 Multiplication Comparison on Xilinx Virtex 4 FPGA

General Simple
Gates LUTs LUTs Under | Gates| LUTs LUTs Under
utilized Utilized

2 7 3 66.6% 7 2 66.6%

4 37 11 45.5% 33 16 68.7%

8 169 53 20.7% 127 63 66.6%
16 721 188 17.0% 441 220 65.0%
29 2437 670 10.7% 1339 669 65.4%
32 2977 799 11.3% 1447 723 63.9%

For the Simple Karatsuba multiplier, the percentage oéuntlized LUTs
is high resulting in bloated area requirements. In thee aaf the General
Karatsuba multiplier, the percentage of under utilized $Us low; therefore
there is better LUT utilization even though the gatent is higher. Fan > 29,
the number of gates in the General Karatsuba multipkeeeds the benefits
obtained by fully utilizing the LUTSs, resulting in bigger areguirements. We
therefore conclude that the General Karatsuba multiienore efficient for
small sizes of multiplicands, while the Simple Karagsutwltiplier is efficient
for large multiplicands.

In our proposed Hybrid Karatsuba multiplier, all recursiane done using
the Simple Karatsuba multiplier except the final recursitre final recursion is
done using a General Karatsuba multiplier when the muhipts have a size
less than 29 bits. The initial recursions using the Sinaratsuba multiplier
result in low gate count, while the final recursion uding General Karatsuba
multiplier results in low LUT requirements. For a 233-Hybrid Karatsuba
multiplier as shown in Figure 1, the initial four re¢ans are done using the
Simple Karatsuba multiplier, while the final recursisndone with 14-bit and
15-bit General Karatsuba multipliers.

a0 20 20 it 29 30 28
14 15 lﬁl\'l\s 15’\15 14 15 1{\:1\5 14 15 1515 1/4{\}1\
Feneral

Flg 1: 233 Bit Hybrid Karatsuba Multiplier

3.2. Finite Field Inversion

The Multiplicative Inverse of an element alGF(2") is the

elemena™ 0 GF(2")such thaa[@™ = a*[a=1mod(n). From Fermat's Little

Theorem, the multiplicative inverse can be writterads= a% 2= (a? %) 2
The naive technique of implementiag requiregn - 2) multiplications and

(n—1)squarings. Itoh and Tsujii in [1] reduced the number of multiptina
required by an efficient use of addition chains. Addition Chain [3]



fornO Nis a sequence of integers of the fore (u, u, u, --- y) satisfying the
propertiesu, =1,y =n, y = y + yfor k< j<i. An addition chain for 232 is
given by Equation 7.
U=(1236 714 28 58 116 23 (6)
Let S, (a) = azk‘lmGF(Z”)and B, (@) = (,6’k)2j B;[10]. If aO GF(2*®),
thena™ =(3,,,(8))”. Using the addition chain in Equation 7, the inversihef

element can be determined with 232 squarings and 10 multiplicatiortsoams
in the Table 4.

Table 4: Inverse ofald GF(2°**) using the Itoh-Tsujii Algorithm

B, () 'wa (@) Exponentiation

! A(@)

2 B,(a) Ba(3) (B B =a""

3 B(@) Boa(@) (B’ B =a""

4 B(@) Bus(d) (B B,=a"

5 B,(a) Brn(@) (B B =a""

6 B@ Br.(@) (B B, =a’™

7 Bos(a) Brana(®) (Bo) Bu=a"™

8 Buo(@) Brsun(@) (B> B =a"""

9 Bio(@) Bro2s(@) (Bo)” Bro ="

10 Bs(® Beorss(@) (B)” Boy=a2""

Lo @ | Lueud@ (B Ba=a?""

Table 5: Comparison of Squarer and Quad Circuitsdat GF(2°**) on Virtex 4

Circuit Exponentiation #LUTs Delay
Squarer a’ 153 1.483ns
Quad a* 230 1.489ns

3.2.1. The Quad-Itoh Tsujii Algorithm

When implemented on an FPGA, there are advantages ofqushagircuits (i.e.
raising a to the power of 4) instead of squarers. The Table 5paoes the
number of LUTs and the combinational delay &randa’*. We would expect
the area consumed by thaadcircuit be twice that of the squarer. However this
is not the case. Thguad circuit is about 1.5 times the size of the squarer.
Besides this, the combinational delay of the two bldskthe same. This is
because the percentage utilization of a LUT fquadcircuit is greater than that
of a squarer, thus resulting in compact hardware. Based oobttgsvation, we
propose &uad-Itoh Tsujiialgorithm, which uses quad exponentiation circuits
instead of squarers. THguad-Itoh Tsujiialgorithm results in lesser number of
exponentiations required at a marginal increase in area.



Table 6: Inverse ofald GF(2°**) using Quad Itoh Tsuijii Algorithm

a,(a) Ay, (3) Exponentiation
! a,(a) =
2 a,(2) a,.(a) PR
° a,(a) ,.,(a) PP
N a,(a) a,.(a) @) a e
> a,(a) a,.,(a) PP ——
° a,.(@) a,.,(a) @) @ et
! (@) 8,012 O e e
° (@) (@) 0 a e
9 ey (a) LAY (@) a e
10 a,.5(a) Oog(2) (@) ="

-1

Let a,(@=a"" and a,.,(a)=(a,)* a, =(a,)* @, .Computing the

inverse of al GF(2*®) can be done using 116 quad operations and 10
multiplications as shown in Table 6.
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Fig 3: Elliptic Curve Crypto Processor

4. The Elliptic Curve Crypto Processor

This section presents the implementation of the Hili@urve Crypto
Processor (Figure 2) based on the primitives discussker edihe processor

consists of three main modules: the ALU, the registektand the control unit.
The inputs to the processor are the base gom(F,, F) and the keyk The

output is the scalar produkP whose coordinates are stored in the regiskers
andY, at the end of the computation. The scalar multiplicat®rcomputed

using Algorithm 1, and the Tables land 2. Each equatian fiee table is
evaluated using the ALU and the intermediate resultstaredsin the register
bank.
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Fig 3: Quad Block: Rises the Input to the Power4k

The ALU :The main part of the ALU is the Quadblock and the Musipl
The multiplier is based on the Hybrid Karatsuba algorimd is used in the
scalar multiplication as well as during the inversibime Quadblock is used only
during inversion. It consists of cascadgaid circuits. There are 14 cascaded
circuits as shown in the Figu@® If the number of quad operations required is
less than 14, a multiplexer is used to tap out the inteutputs. In this case the
output is obtained in one clock cycle. If the numbequdd operations required
is greater than 14, the output is recycled in the QuadBlgkarer and adder
circuits are replicated several times in the ALU tar@ase throughput. This is
possible at minimum resource overhead because of thpligty of these
circuits. The ALU is capable of producing two outp(®3, C,) per clock cycle.

Of the two outputs, only one can be from a multiplicatiie to the single
multiplier present. The latency of the entire ALUmsainly due to the multiplier.

The Register Bankthere are seven 233 bit dual port registers configured as
three banks. The FPGA'’s distributed RAM is used forpingose. The input to
the registers is either the base point or the outputteoALU or QuadBlock.

The outputs of the register are fed to the inputs of thid. A

The Control Unit:There are 32 control signals,toc,,) that are generated
by the control unit at every clock cycle. These dgsaitch data to : the ALU
(c,,C,,), the inputs to the multipliercf toc; ), the outputs of the ALUG; to ¢, ),
the control for the Quadblockcftoc,,), the inputs and outputs of the register
bank (c,toc,,andc,, toc,) . The Finite State Machine (Figure 4) has 34 states.
The point doubling is implemented with equations from Tdblend requires
three states{1 to D3). The point addition is implemented with equations from
Table 2 and requires eight statéd o A8). The inverse is calculated using the
Quad-Itoh Tsujii (Table 6), and requires twenty one stdt® to 121) for
completion. The Quad-ltoh Tsujii states entered whenctimapletesignal is
asserted. Theompletesignal is issued when all key bits in the kegre
considered. If the least significant bit (LSB) lofs a zero, then the complete
signal is asserted during the D3 state. If the LSR isf one, the statd8 asserts
the completesignal. Theinit states are required to load the initial values into
registers at the cost of 2 clock cycles. The clockesyébr the computation of
the scalar multiplication is related to the hammingglveh of the scalak andl,
which denotes the length of the binary string représgkt

Clockcycless1+3(( F1)- (b D)+ 11(H L 2

=3( -h)+1h+11
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Fig 4: The Finite State Machine for the Elliptic Curve Psxmz

5. Experimental Results

In this section we present the performance resultauofroplementation. Our
test platform is a Xilinx Virtex 4 FPGA. There are el papers which publish
similar works on Elliptic Curve Crypto Processors gmihitives. In order to

have a uniform platform, we have reimplemented somehef important

published works [9] [10] and plugged them into our EC processapmpare

results. The Table 7 compares the results of EC mocegontaining different
multiplications and inverse algorithms. The Clock Cgcle the table is the
cycles required for one doubling, addition and an invét&enk=3, we require

to perform both doubling and addition. In this cadse? andl=2, hence the
design for the Hybrid Karatsuba multiplier with Quad-Itohujiisequires 33

clock cycles. The computation for the remaining archites are similar,
keeping in mind that employing the QuadBlock requires 21 clgcles and the
squarer 31 clock cycles for completion.

From the table, the Hybrid Karatsuba based implementatesult in the
smallest and fastest processors. The Hybrid Karatsobitiplier saves about
2500 LUTs. The processors with the Quad Itoh Tsujii inearsequire the least

clock cycles (10 less than a squarer based implementatiba) P&rformance
metricn, considers the clock cycles. Results show that theepsar with the

Hybrid Karatsuba and the Quad Itoh Tsujii has the best npeafuce. The
Performance metrig, does not consider clock cycles. This shows that the

combination of a Hybrid Karatsuba multiplier and a Squassed Itoh-Tsujii
has best results.

6. Conclusion
This paper presents an implementation of an Ellipticv€ processor. Novel

Table 7: Comparison of various primitives plugged into @#(2>**) ECP

LUTs Frequency | Clock Performance | Performance
(f)inMHz | Cycles (m) (17,)
CcC

( ) f /LUTs* CC f/LUTs
Hybrid Karatsuba, 34394 37.611 33 33.137 1093
Quad Itoh Tusjii
Binary Karatsuba [9] 36970 35.433 33 29.043 958
Quad Itoh Tsujii
Hybrid Karatsuba 33326 37.853 43 26.414 1135
Squarer Itoh Tsujii [10]
Binary Karatsuba [9] 35805 35.669 43 23.167 996

Squarer Itoh Tsujii [10]




techniques for implementing a Karatsuba multiplier and@n Tisujii Inversion
algorithm result in efficient implementations of the m@s®or on FPGA
platforms. The Hybrid Karatsuba multiplier can be usedliiptic Curves to
minimize the LUTs required and increase the operating freyudfhe Quad
Itoh Tsujii algorithm can be used to obtain the output witmimum

computation time.
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