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Design
Verification with ‘e’

The language ‘e’

• Contains all the constructs necessary for a 
complete verification tool
– Allows objects in the verification environment to be 

extended
– Needs to express constraints 
– Coverage engine
– Temporal engine : Capture protocols rules in a 

concise fashion 
• Specman elite tool from Verisity Design supports 

the e language
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Components

Data object
Protocol 
checkers

Test 
Creation

Input 
driver

DUT
(verilog)

Coverage 
Analyzers

Output 
Receivers

Data 
Checkers

Data Object

• Used to represent stimulus item or one 
test vector

• Different tests have types of values for this 
field
– Router: packets
– Video processor: frames
– Micro-processor: instructions

• Random stimulus item generator
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Test creation

• Set of constraints placed on the 
generation of the fields in the data object

• More restrictive constraints lead to 
directed testing

Unit vs Struct

• Unit is very similar to struct
• Static verification object that does not 

move through the verification system
• A struct is a dynamic object such as a 

packet or instruction that moves through 
the system
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Input Driver

• A unit is defined to represent the driver
• Input procedure which takes one stimulus 

item and applies to the DUT
• Also has a procedure to call the input 

procedure multiple times to apply many 
stimulus item to the DUT

Output Receiver

• A unit to represent a receiver object
• Procedure to collect raw output from DUT 

and convert to a data object format
• Has to follow the interface protocol 

expected by the DUT at the output port
• Receiver then passes this data object to 

the data checker to compare against 
expected data
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Data checker

• A unit to represent a data checker object
• Gets an output data from the receiver and 

compares with the expected data
• Has a procedure to generate and store the 

expected data
• May be instantiated in the receiver object
• Or a centralized object instantiated directly

Protocol Checker

• A unit is used
• Monitors that the protocols at the input and 

output interfaces are not violated

Coverage Analyzer
• Defines a set of basic, transition and 

cross-coverage items to monitor specific 
events in the simulation

• Statistics displayed after simulation for 
further testing
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e Hierarchy
sys

verification_environment

data driver receiver protocol

checker

cover

data 

checker
1. Reusable
2. Portable

Interaction Between Specman Elite and 
Simulator

External 
Libraries

Specman Elite
Contains all e 

Codes 
+ verification 

hierarchy

DUV
Contains DUV 

Related
verilog code

Simulator

Stubs File
Created 

by 
Specman

Elite

clk

data

reset

d_out1

d_out2

d_out3

Misc simulation files

TOP
Contains clocks, input output registers/net 

that Specman Elite drives or samples
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Flow of Simulation

Specman Elite Simulator

Syntax of ‘e’
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Naming Conventions

• User defined names, struct names : all 
start with CAPITAL letters

• User defined struct member names (fields, 
events, methods): all start with LOWER 
case letters

• In both cases each of the parts of the 
name start with CAPITAL letters

• HDL signals : all lower case, parts of the 
name are separated with underscores 

Naming example
<'

// type names start with a capital letter each part of a name 
starts with capital letter...therefore PacketSize and not 
Packetsize, Packet_size or anything else

type PacketSize : [small, medium, big]; 

// unit and struct names start with a capital letter
unit ChipEnv {

// fields, events, methods (in one word - struct members) 
// start with lower case letter 

chipAddress : uint;
event configDone;
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Naming Example
resetChip() is {

// a reference to an HDL signal name, 
// all lower case, parts separated by underscores

'sys_reset' = 0;
};

// another user defined method
endSim() is {
• // a method that is a part of the e language - follows 
• // the e proposed standard naming conventions 
• // (names are all lower case, 
• // parts of a name are separated by underscores)
dut_error("simulation ended without error");

};
}; 

• '>

Directed vs Random Verification

• Directed: The designer has to think about the 
places where the bug can hide and then write 
test-benches to check the design at those points

• But a DUV may behave differently if a different 
set of inputs are applied to reach those points

• Writing requires knowledge of the design
• Also with the increase in the number of test 

cases for a million transistor design directed test 
benches require lot of time
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Hence Random

• Constrained Random Testbenches: 
– Provide constraints or limits to the inputs
– Within this limit generate inputs randomly

• May want dependencies…
• Takes care of Simulation Time
• “Garbage Collection”: no memory leak

AO vs OO
• AO: One can ‘extend’ data structures and methods in 

another file
• Example:
<‘ struct Fruits{

apples : uint;
oranges : uint;
sumFruitsUp() : return uint is{
result = apples + oranges;
};

};
‘>
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AO coding

<‘extend Fruits{
mangoes : uint;
papayas :  uint;
sumFruitsUp(): return uint is also {

result += mangoes + papayas;
};

};
>’

Packet.e : The OO approach
<‘
struct Packet { 

%header : byte;
%payload : list of byte;
keep payload.size() < 200;
%crc : byte;

//this method describes packet conversion
convert () : Packet is{ };
//this method converts o/p data from DUV to packet structure
rebuild(packetBytes : list of byte) : Packet is{
};

};
‘>
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Packet.e : AO approach

<‘
struct Packet{
%header : byte;
%payload : list of byte;
keep payload.size() < 200;
%crc : byte;

};
‘>

DataChecker.e

<‘
extend Packet{

convert() : Packet is {
};

rebuild(packetBytes: list of byte): Packet is{    
};

};
‘>
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Data Types 

• Scalar Types
– Numeric

• length: int; //int -> numeric data, size = 32 bits
• addr:uint(bits:24); //unsigned + number, size=32bits
• valid:bit; //1 bit field

– Boolean=>  frame_valid: bool;//logical value 
– Enumerated

• List Types
• String Types

Enumerated Data Types

• <‘
type Packet_protocol: [ ]; 

‘>
• <‘

extend Packet_protocol:[Eth, IEEE];
struct Packet{
kind : Packet_Protocol;

};
‘>
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Enumerated Date Type 

• Defines the valid values for variable or 
field as a list of symbolic constants

• <‘
type Instr_kind: [imm, reg];
‘>

• <‘
type Instr_kind: [imm=4, reg = 8];
‘> 

Scalar Subtypes
<‘
type Opcode: [add, sub, or1, and1];
type Logical_opcode: Opcode [or1, and1];
type Small: uint(bits:4);
struct instruct{
op1: Opcode;
op2: Logical_opcode;
length: Small;
} 
‘>

Because and & or 
are ‘e’ inbuilt 
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List Types
• Hold ordered collection of data elements
<‘
struct Packet{
addr : uint(bits:8);
data1: list of byte;
};

struct Sys{
packets[10]: list of Packet;
values: list of uint(bits: 128);
}; 
‘>

String Type
<‘
struct Dtypes{

m() is{ //METHOD 
var message: string;
message=“This is string”;
print message;
};

};
‘>
NOTE: var is used to declare a variable inside a method
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Verification with e
• e & HDL Hierarchy

– “sys” is implicitly defined
– topmost struct in Verification environment

<'
struct Data {

<data internals>
};

struct Protocol {
<protocol internals>

};

struct Collect {
<collect internals>

};

Verification with e

struct Error {
<error internals>

};

struct Driver {
<driver internals>

};



17

struct Checker {
data1: Data;
protocol1: Protocol;
<checker internals>

};

struct Receiver {
collect1: Collect;
error1: Error;
<receiver internals>

};

Verification with e

extend sys { 
driver1: Driver;
checker1: Checker;
receiver1:Receiver;

};

'>

• e lends itself very well to a 
layered development approach

– The functionality for the base structs can be 
extracted from the design specification

– Test-specific changes can then be added 
separately using the extend mechanism for 
the structs. 

Verification with e
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Driving & Sampling DUT Signals
<‘
struct Driver{//Struct in the e environment
r_Value : uint(bits:4);

read_Value() is{
r_Value=‘~/top/processor/FPU/add/operand’;
};
write_Value() is{
‘~/top/processor/FPU/add/operand’=7;
};
‘>

Computed Signal Names
<‘
struct Driver{
id: uint(bits:2);
r_Value: uint(bits:4);
read_Value() is{
r_Value=‘~/top/processor_(id)/FPU/add/operand’;

};
‘>
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Syntax Hierarchy

• Statements
• Struct Members
• Actions
• Expressions
• Name Literals

struct Trans{
addr: uint(bits:4);
data: byte;
print_Add_Zero() is{
if(addr==0) then{
print addr;
addr=addr+1;
};
};

};

Please Read “Design Verification 
with e” by Samir Palnitkar, pp 50-58 
for a detailed list of 
statements…actions…..

Actions

• e actions: are lower level procedural 
constructs that can be used in combination 
to manipulate the fields of a struct or 
exchange data with the DUT 

• Associated with a method, event or an 
“on” struct member
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Example
<‘ struct Packet{

event xmit_Ready is rise(‘~/top/ready’);
length: byte;
delay: uint;
on xmit_Ready{

transmit();
};
transmit() is{

length=5;
delay=10;
out(“transmitting packet”);
};

};
‘>

Types of Actions
• Creating or modifying variables
• Executing actions conditionally
• Executing actions iteratively
• Invoking methods and routines: invokes 

methods and routines
• Time Consuming Actions: causes simulation 

time to elapse before a callback is issued by the 
simulator

• Generating Data Items
• General Options



21

Time Consuming Actions
• emit: causes a specified event to occur
• wait: suspends execution of the current TCM 

until a given temporal expression succeeds
• all of: executes multiple action blocks 

concurrently, as branches of a fork. Following 
action is reached only when all the branches 
have executed

• first of: Following action is reached when any of 
the branches of the first of block have been 
executed    

Example of using events in Time Consuming Methods (TCM)
<'
struct meth {

event pclk is rise('~/top/pclk')@sim;
event ready is rise('~/top/ready')@sim;
event init_complete;
my_tcm() @pclk is {

wait @ready;
wait [2];
wait [3] @ready; //Wait for three occurrences of @ready
init_dut(); //Call a regular method 
emit init_complete; //Manually trigger the event

};
};
'>

Highlights



22

Commenting in ‘e’
<' 

-- Single line comment 
// This is also single line comment     
//Code here 

'> 
Multipe line comment So ignored 
<‘
//Code continue..
'> 

‘e’ Operators 
<'

extend sys {
run() is also {
var a : byte;
var b : byte;
var c : byte;
a = 0xAA;
b = 0x55;
outf (" a = %b b = %b\n", a, b);
// Bitwise negation
c = ~a;
outf ("Bitwise negation a  is     :%b\n", c);

// Bitwise AND operation
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Bitwise Operators
c = a & b;
outf ("Bitwise AND of a with b is :%b\n", c);
// Bitwise OR operation
c = a | b;
outf ("Bitwise OR of a with b is  :%b\n", c);
// Bitwise XOR operation
c = a ^ b;
outf ("Bitwise XOR of a with b is :%b\n", c);
// Left shift
c = a << 2;
outf ("Left shift a by 2 bits is  :%b\n", c);
// Right shift
c = b >> 2;
outf ("Right shift b by 2 bits is :%b\n", c);

};
};
'>

Boolean Operators
<'
extend sys {
run() is also {
var a : bool;
var b : bool;
var c : bool;
var d : bool;
outf (" a = %b b = %b c = %b\n", a, b, c);
// Not Operator
d = !(TRUE);
outf ("Not of  (TRUE) is     :%b\n", d);
// Boolean AND operation
d = a && c;
outf ("Boolean AND of a with c is :%b\n", d);
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Boolean operators
// Boolean OR operation
d = a || b;
outf ("Boolean OR of a with b is  :%b\n", d);
// Boolean implication operation
d = (2 > 3) => (3 > 2);
outf ("Boolean implication of (2 > 3) => (3 > 2) :%b\n", d);
// Boolean implication operation
d = (4 > 3) => (3 > 4);
outf ("Boolean implication of (4 > 3) => (3 > 4) :%b\n", d);

};
};
'>

‘=>’ :  Returns TRUE when the first 
expression of two expressions is 

FALSE, or when both expressions are TRUE. 

<'
type packet_protocol : [ETHERNET, IEEE, ATM];

struct Packet {
protocol     :  packet_protocol;
// payload is list of bytes
// Which size is always 10 bytes
payload      : list of byte;
keep payload.size() == 10;

};
// Just to check our code
extend sys {
// Create the list of the packets
data : list of Packet;
// Set number of packets to generate to 4
// i.e. set the size of list 
keep data.size() == 4;
run() is also {
gen data;
for each in data do {
print it;
print it.payload;

};
};

};
'>

An Example on Lists



25

Generating the test using seed 1...
Starting the test ...
Running the test ...
it = packet-@0: packet

---------------------------------------------- @new
0 protocol:                       IEEE
1 payload:                        (10 items)
it.payload =  (10 items, dec): 

133 185  157 142 231 104   85 230 102 168 .0

it = packet-@1: packet
---------------------------------------------- @new

0 protocol:                       ATM
1 payload:                        (10 items)
it.payload =  (10 items, dec): 

2  44  224 216 156  14  216  12  52  80 .0

it = packet-@2: packet
---------------------------------------------- @new

0 protocol:                       Ethernet
1 payload:                        (10 items)
it.payload =  (10 items, dec): 

112 201  150  25 244 227  194 171  77  96 .0

it = packet-@3: packet
---------------------------------------------- @new

0 protocol:                       Ethernet
1 payload:                        (10 items)
it.payload =  (10 items, dec): 

69 214   58 191 194 192   64 252 143  82 .0

Creating Hierarchy with 
Structs and Units
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Structs

• Used to define Data Elements and the 
behavior of components in a verification 
environment

• Syntax:
– struct struct-type { 

struct-member1;
struct-member2;
….}; 

Struct Members

• Data Fields for storing data
• Methods for procedures
• Events for defining temporal triggers
• Coverage groups for defining coverage 

points
• when, for specifying inheritance subtypes
• declarative constraints for describing 

relations between data fields 
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Struct Members

• on, for specifying actions to perform upon 
event occurences

• can be empty also, for future extensions

An example
<‘

type Packet_kind:[ATM, ETH];//enumerated type
struct Packet{

len : int; //field of struct
keep len < 256; //constraint on struct member
kind: Packet_kind; //field of struct
calc_par() is{ //method (procedure) in a struct
};  //end of method definition

};   //end of packet struct
‘>
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Extending Structs

//extend in the same file
extend sys{ //extend sys structure, which is empty initially

packets: list of Packet;
keep packets.size()==10;
run() is also{

print packets;
};

};
extend Packet{ 

addr : byte; // add a byte of address
keep len < 128; // extend original packet definition

};
‘>

Extend (in a different file)

packet_extenstion.e
<‘ import packet.e; //import the original

//packet defintion
extend Packet{

keep kind == ATM;  //add constraints
keep len == 64;  //to the packet definition

};
‘>
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Original Packet 
defintion

Extensions 
(…e1…)

Extensions
(…e2…)

Cumulative defintions

packet.e packet.e packet_extenstion.e

Fields inside a struct

• ‘!’ indicates Ungenerated field 
– Not assigned any value during the generated 

phase
– Useful for fields assigned during the 

simulation 
– Default value is 0 (NULL)
– For values specified in range, it’s the first 

value
• ! num : int [10..15](bits:4);
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Fields inside a struct

• ‘%’ indicates Denotes a physical field. 
These fields, as opposed to virtual fields 
are sent to the DUT.

• Order of % and ! is immaterial
• field-name
• type
• min-val..max-val
• (bits|bytes:num)

Example of field definitions
<‘ type NetworkType: [IP=0x0800,ARP=0x8060](bits:16);
struct Header{

%address: uint (bits:48);   // Physical Fields
%length:uint[0..32];

};
struct Packet{

hdr_type: NetworkType;   //Virtual field
%hdr: Header; //Physical Field
is_legal:bool; //Boolean Virtual Field
!counter:uint; //Not generated when the packet instance is generated

};
extend sys{

packet_i : Packet; //As packet is a struct such a field definition is called   
//“instantiation”

};
‘>
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List Fields
<‘

struct Cell{
%data: list of byte;
%length:uint;
strings: list of string;

};
struct Packet{

%is_legal: bool;
cells: list of Cell;

};
extend sys{
packets[16]: list of Packet; //list of 16 instances of packet struct

};
‘> 

Scalar type, string or struct

List Operations
• size() : This is used to set the size of the list. 
• add(item or list) : Add an item to the end of a list 
• add0(item or list) : Add an item to the head of a list 
• clear(): Delete all items from a list 
• delete(index) : Delete an item from a list 
• insert(index,item) : Insert an item in a list at a specified 

index 
• pop(item) : Remove and return the last list item 
• pop0(item) : Remove and return the first list item 
• push(item) : Add an item to the end of a list 
• push0(item) : Add an item to the head of a list 
• resize() : Change the size of a list 
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<'
struct packet{

a_list:list of int;
keep a_list.size()==3; //need to use "keep" outside a method 
keep a_list=={10;20;40};
list_method() is

{
out("Printing List_method\n");
var i_list:list of int(bits:5);
i_list={2;4;6;8};
var a:int;  // var is used inside a method, dont use "keep" here
a = 2;      //These variables are like local variales
var i:int;
print a;
print i_list;
i_list.delete(2);
print i_list;
i_list.add(1); 
print i_list;
i_list.push(1); 
print i_list;
i_list.push0(1); 
print i_list;
a=i_list.pop();
print i_list;

AN EXAMPLE WITH LIST METHODS

print a;
var cnt:int;
cnt = i_list.size();
print cnt;
out("\n Binary \n");
for {i=0;i<cnt;i=i+1}
do {outf("%b \t",i_list[i]);};

out("\n");
gen i_list keeping {it.size()==10;};
print i_list;

};
};

extend sys{
data: list of packet;
keep data.size() == 4;//there will be 4 packets generated
run() is also{
gen data;
for each in data do{

print it;
print it.a_list;
it.list_method(); //invoke the method, cant access the variables

};
};

};

'>
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Welcome to Specman Elite (4.3.6)  - Linked on Mon May 30 11:24:07 2005

Loading listfunctions.e ...
read...parse...update...patch...h code...code...clean...GC(sys)...

Doing setup ...
Generating the test using seed 1...
Starting the test ...
Running the test ...

it = packet-@0: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
-10  15    4  -7  -1   9    9   5 -11   8  .0

it = packet-@1: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
6   4    7  11 -15  -8    2   3 -15 -13  .0

it = packet-@2: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

Checking is complete - 0 DUT errors, 0 DUT warnings.

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
4   2    6  -9 -12  -8  -12   6  12  -6  .0

it = packet-@3: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0
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a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
4 -15    9  -9 -14  -6  -14  -7  -6   9  .0

No actual running requested.
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.
Doing setup ...
Generating the test using seed 1637073683...
Starting the test ...
Running the test ...

it = packet-@4: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
-11 -11 -1   5   4  10    3  13  -5  -5 .0

it = packet-@5: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
13  12    0 -11   4 -15    0   2   9  -1  .0

it = packet-@6: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
-2 -13   -5 -14  -6   0  -13 -11  -1  -3  .0

it = packet-@7: packet
---------------------------------------------- @listfunctions

0 a_list:                         (3 items)
it.a_list = 

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list =  (4 items, dec): 

8   6   4   2  .0

i_list =  (3 items, dec): 
8   4   2  .0

i_list =  (4 items, dec): 
1   8   4   2  .0

i_list =  (5 items, dec): 
1    1   8   4   2  .0

i_list =  (6 items, dec): 
1   1    8   4   2   1  .0

i_list =  (5 items, dec): 
1    8   4   2   1  .0

a = 1
cnt = 5

Binary 

1 10 100 1000 1 

i_list =  (10 items, dec): 
-9  12    1   8 -14   9    0  15 -16  -8  .0

No actual running requested.
Checking the test ...
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Examples on list methods

• var i_list:list of int;
i_list.add(5); //add the item or list to the   

//end; has to be list of same type
• var i_list:list of int;

i_list.add0(5); //add to the start of the list
• var i_list:list of int;

a_list.clear(); // deletes all items from list

Keyed Lists

• Enable faster searching of lists by 
designating a field or value to be searched

• Eg: sparse memory implementation 
– List which has a large capacity. Say is has 

small amount of data spread across. 
• Syntax:
![%]list-name: list(key:key-field) of type;

Scalar type, string or structCannot generate 
this field

Struct members for structs; it for scalars
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Keyed Lists are used similar to hash tables. 
Example below shows that memory is a list of bytes 
and address is the key...

<'
struct base_object {
addr: byte;
data: byte;
};

struct keyed_list {
!memory : list(key:addr) of base_object;
//writing to a keyed list
write_memory(object:base_object) is{

memory.add(object);
print object;

};

//reading from keyed list
read_memory(object:base_object) is{  
var local_object:base_object=memory.key(object.addr);
print local_object;

};
};

Returns the list item 
That has the key, else

Returns NULL

extend sys{
data: base_object;
olddata: base_object;
mem_model : keyed_list;
run() is also{

//write data
gen data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
gen data;
olddata=data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
mem_model.read_memory(olddata);//retrieve old data

};
};

'>
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object = base_object-@0: base_object
---------------------------------------------- @keylists

0 addr:                           230
1 data:                           240
object = base_object-@1: base_object

---------------------------------------------- @keylists
0 addr:                           150
1 data:                           147
object = base_object-@2: base_object

---------------------------------------------- @keylists
0 addr:                           29
1 data:                           255
object = base_object-@3: base_object

---------------------------------------------- @keylists
0 addr:                           111
1 data:                           96
object = base_object-@4: base_object

---------------------------------------------- @keylists
0 addr:                           47
1 data:                           67
local_object = base_object-@2: base_object

---------------------------------------------- @keylists
0 addr:                           29
1 data:                           255

WRITING

READING

Key

Another example
<‘extend sys{

!cl: list(key:it) of uint(bits:4);
run() is also{

var ch: uint(bits:4);
var i: int(bits:4);
for i from 0 to 10{

gen ch;
cl.add(ch);

};
if cl.key_exists(8) then {

print cl;
print cl.key_index(8);

}
};

};
‘>
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Creating Struct Subtypes with when

• Creates a conditional subtype of the 
current struct type, if a particular field of 
the struct has a given value

• Struct members defined in the when 
construct can be accessed only in the 
subtype, not in the base struct

Syntax

• when type-qualifier’field-name  base-struct_type
{struct-member;….
};

• base-struct-type: parent structure
• Field-name: The name of a field in the base 

struct. Only Boolean or enumerated fields are 
used 

• type-qualifier: one of the legal values for the 
field named by field name
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Explicit when construction
<‘type Reg_n:[REG0, REG1, REG2, REG3];
type  Instr_type:[imm,reg];
type Dest_type:[mm_1,reg]; 
struct instr{

%op1: Reg_n;
kind:Instr_type;
dest: Dest_type;
when REG0’op1 instr{

print_op1() is{
out(“instr op1 is REG0\n”);

};
};

when reg’kind instr{
print_kind() is{

out(“Instr kind is reg\n”);
};

};
};
‘> 

Implicit When Construction
<‘ type packet_kind:[transmit,receive];

struct packet{
kind:packet_kind;
when transmit packet{

length: int;
print() is{
outf(“Packet length is %d\n“,length);

};
};

};
‘>

Only visible when 
kind == transmit

Question: How do you access these subtype variables and methods?
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Extending methods defined 
in base type

<‘ struct operation{
opcode : [ADD,ADD3];
op1: uint;
op2: uint; result:uint;
do_op(op1:uint,op2:uint): uint is{

result=op1+op2;
};

};

Extending …

extend operation{
when ADD3’opcode operation{

op3: uint;
do_op(op1:uint, op2:uint):uint is also{
result=result+2;
};

};
};

If the method is already described in the base struct
it should have the same number of arguments 

in the when extension
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Extending methods not defined in 
the base type

<‘ struct operation{
opcode:[ADD,ADD3];
op1:uint;
op2;uint;

};
extend operation{
when ADD operation{

do_op(op1:uint,op2:uint):uint is{
return op1+op2;

};
};

when ADD3 operation{
do_op(op1:uint,op2:uint):uint is{
return op1+op2+op3;
};

};
};

‘>

Can have different 
parameters 

and 
return types

Units

• Units were introduced in the e-language for easy 
portability

• Like structs they are compound data types that 
contain fields, methods and other members

• Unlike structs, a unit instance is bound to a 
particular component in the DUT (an HDL path)

• Also, each unit has a unique and constant e-
path
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Units vs Structs
1. The decision of whether to model a DUT component with a unit or a 

struct often depends on your verification strategy.

2. You intend to test the DUT component both standalone and 
integrated into a larger system. Modeling the DUT component with a 
unit instead of a struct allows you to use relative path names when 
referencing HDL objects.

3. Your e program has methods that access many signals at runtime. 
The correctness of all signal references within units are determined 
and checked during pre-run generation. If your e program does not 
contain user units, the absolute HDL references within structs are 
also checked during pre-run generation. However, if your e program 
does contain user units, the relative HDL references within structs
are checked at run time. In this case, using units rather than structs
can enhance runtime performance

So, why structs?
• Struct model abstract collections of data, like packets, 

allows you more flexibility as to when you generate the 
data. 

• With structs, you can generate the data either during 
pre-run generation, at runtime, or on the fly, possibly in 
response to conditions in the DUT. 

• Unit instances, however, can only be generated during 
pre-run generation, because each unit instance has a 
unique and constant place (an e path) in the runtime 
data structure of an e program, just as an HDL 
component instance has a constant place in the DUT 
hierarchical tree.Thus you cannot modify the unit tree by 
generating unit instances on the fly. 
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In short…
• Units are a kind of struct which can be….

– Bound to any particular component in the 
DUT

– Has a unique and constant parent unit (a 
static e-path) generated during pre-run 
generation.

– In short units are static and structs are 
dynamic

– Hence structs are used for data items, 
whereas units are to describe environment 
topologies and configurations

Syntax

• unit unit-type {
unit-member;
…
}; 

• Unlike structs, units can also have verilog
members
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Example 
sys

fast 
_router

chan 0 chal 1 chan 2

top

router_i

chan 0 chal 1 chan 2

e-hierarchy
Verilog hierarchy

Binding the unit
<‘
unit fast_router{

debug_mode:bool;
};

extend sys{
unit_core: fast_router is instance;
keep unit_core.hdl_path()==“top.router_i”;
keep unit_core.debug_mode==TRUE;

};
‘>
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HDL path for the channels
<‘
unit router_channel{
};

unit fast_router{
channels: list of router_channel is instance;
keep channels.size()==3;
keep for each in channels{
.hdl_path()==append(“chan”,index);};

};
‘> 

Constraining Generation
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Constraints

• Test generation is a process producing 
data layouts according to a given 
specification.  Constraints are statements 
that restrict values assigned to data items 
by test generation.

• A constraint can be viewed as a property 
of a data item or as a relation between 
several data items. 

You may add constraint using…

• Explicit constraints : This are those 
declared using the keep statement or 
inside keeping {...} block. 

• Implicit constraints : This are those 
imposed by type definitions and variable 
declarations. Implicit constraints are 
always hard. 
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Types of constraints
1. Value constraints : This restrict the range of possible values that 

the generator produces for data items, and they constrain the 
relationship between multiple items. 

2. Order constraints : This influence the sequence in which data 
items are generated. Generation order is important because it 
affects the distribution of values and the success of generation. 

• Both value and order constraints can be hard or soft:

1. Hard constraints : This (either value or order) must be met or an 
error is issued. This can not be over ridden. 

2. Soft value constraints : This suggest default values but can be 
overridden by hard value constraints. 

3. Soft order constraints : This suggest modifications to the default 
generation order, but they can be overridden by dependencies 
between data items or by hard order constraints. 

You can define constraints in many ways:

• By defining a range of legal values in the 
field or variable declaration 

• By defining a list size in the list declaration 
• By using one of the keep construct 

variations within a struct definition 
• By using a gen...keeping action within a 

method 
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Example-1
<'
struct constrain_gen_ex1 {

// Explicit constrains
x : int[1,3,5,10..100]; // is the same as
x : int; keep x in [1,3,5,10..100];
// Implicit Constrains 
l[20] : list of int; // is the same as l : list of int; keep l.size()==20;
// Value constraints
// Limits the address from 0 to 1024
addr : uint[0..1024];
// Read = 0 and Write = 1
rd_wr: bool;
// Weights for rd_wt command
rd_wt: uint[0..100];
wr_wt: uint[0..100];

•

// Order of generation is different
// rd_wr was declared before rd_wt and wr_wt
keep gen (rd_wt, wr_wt) before (rd_wr);
// Generation based on weight
// Soft Constraint
…
// Hard constraint
data : uint;
keep data != 0xdeadbeaf;

// List constraint Example
payload : list of byte;
keep payload.size() < 10;

};
'>
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Example-2
<‘ extend my_struct{

keep x>4 and x!=6;// can use and, or
keep x==y+25; //use addition, subtraction
keep z==TRUE; //TRUE, FALSE
keep y==method(); //can use methods
keep x in [5..10,20..30]; //constrain variables to ranges
keep x not in [1..3,5..8]; //Not in a range
keep for each (p) in packets{ //packets is a list of packet

p.length < 10; //each packet’s length field < 10
};
keep packets.size()==50;//can use list pseudo-methods

};
‘>

Implication  Constraints

• Remember implications in ‘e’
• X => Y means (not X or (X and Y))
• Examples:

struct packet{
size packet_sizetable;

keep size == SHORT => len < 10;
keep size == MEDIUM => len in [11..19];
keep size == LONG => len < 20;

};  
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Order of Generation
<‘ struct packet{

addr: uint(bits:2);
len: uint(bits:2);
data: list of byte;
parity: byte;

};
extend sys{

packets: list of packet;
debug: bool;

};
‘> 

sys

packetpacket debug

addr paritydatalen

data
data

addr paritydatalen

data
data

Implicit Generation

• Constraints involving a method call:
– keep parity==calc_parity(data);

• List slicing
– keep z==my_list[x..y];

• Arithmetic operations
– keep z=x*y;
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Explicit Generation Order
<‘struct packet{

addr: uint;
len : uint(bits:4);
};

extend packet{
keep len==5 => addr < 50;
keep gen (len) before (addr);

};
‘> What happens if we do not do this ? Discuss in the lab…

Constrain Resolution

• The generator must satisfy all the relevant 
constraints defined in:
– The original struct definition
– Extensions to the struct definition
– Other struct definitions using the hierarchical 

path notation
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Soft Constraints

• Specifies default preferences; to be over-
ridden later

• keep soft
• If a soft constraint conflicts with a hard 

constraint it is over-ridden
• If it contradicts with other soft constraints, 

the last loaded constraint prevails

Example
<‘

struct cons{
x: uint;
keep x in [1..10]; //loaded 1st

keep soft x > 3;//loaded 4th

keep soft x == 8;//loaded 3rd

keep soft x < 6;//loaded 2nd

};
‘>
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Resetting Soft Constraints
<‘ struct packet{

len : uint;
keep soft len in [64..1500];

};
extend packet{

keep len.reset_soft();//on a per field basis
keep len > 2000;//apply a hard constraint

};
‘> 

Weighted Constraints
struct instr{

opcode: cpu_opcode;
keep soft opcode == select{

30 : ADD;  //30/60 probability of selecting ADD
20 : ADDI;
10 : [SUB..NOP];

};
};
‘>



54

Procedural Flow 
Control

What is a Procedure?

• Interacts with the DUT
• Drives and samples the signals at the 

appropriate time
• Required to create interfaces, compute 

values, and act upon the fields of a struct
or unit



55

Methods

• Syntax:
method-name ([parameter-list]) [:return-type] is{

action;…};
• Procedures can only be defined inside 

methods
• e-method is an operational procedure 

containing actions
• method can only be described inside a 

struct

Method Definition
<‘
struct Packet{

addr: uint(bits:2);
zero_address() is bool{
if(addr==0) then{

out(“Packet has address 0”);
result=TRUE; //result is an implicit variable 
} else{            //which holds the return value
result=FALSE;

};
};

“>
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Local Variables

• Inside a method, variables are declared 
with the var action
– var count:int; //default is 0
– var b_list: list of byte; //default is empty
– var legal:bool;//default is FALSE

Values Accessed in method
<‘ struct C_struct{

len: uint; //fields within local struct
legal: bool; //---------do---------------
d_struct_i : D_struct; //instantiation of a struct
legal_length(min_len:uint):bool is{

var count: int;
if(len>=min_len) then{

result=TRUE;
count+=1;

}else {
result=FALSE;

};

Arguments

Results (return value)
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if (count==1) then{
d_struct_i.addr=0;
out(“Incremented Counter”);
};
};

}; //end of C_struct
struct D_struct{

addr:uint;
};
‘> 

Fields inside other 
struct

Invoking Methods

• <‘ extend C_struct{
post_generate() is also{
legal=legal_length(64);
};

};
‘>

Methods are not executed until they 
Are invoked
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Extending Methods
<‘ struct meth{

m() is {
out(“This is…”);

};
};

extend meth{
m() is also{

out(“This is also”);
};

};

• extend meth{ 
m() is first{
out(“This is first”);

};
};
extend meth{

m() is only{
out(“This is only…”);

};
};

‘>
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Conditional Actions

• if-then-else
– Syntax

• if bool-exp [then] {action;..}
[else if bool-exp [then] [action;…}
[else {action;…}];  

Example
• <‘ struct test1{

a: int;
b: int;
meth1() is {

if a > b then {
print a,b;

} else {
print b,a;

};
};

};
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• struct test2{
a_ok: bool;
b_ok: bool;
x: int;
y: int;
z: int;
meth2() is{
if a_ok{

print x;
} else if b_ok{

print y;
}

else {
print z;
};

};
};
‘>
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Case Action
<‘ struct packet{

length: int;
};
struct temp{
packet1: packet;
meth() is {

case packet1.length{
64: {….};
[65..256]:{…};
default: {…};

};
};

};
‘>

For loop
<‘ struct temp{

a: int;
meth() is { 
for i from 2 to 2*a do{//i is not needed to be 

out(i);                    //declared
};

for i from 1 to 4 step 2 do{
out(i);

};
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for i from 4 down to 2 step 2 do{
out(i);
};

};
};
‘>

For Each Loop

• <‘
extend sys{
do_it() is{
var numbers:={8;16;24};
for each in numbers{

print index;
print it;

};
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• var sum: int;
for each(n) in numbers{

print index;
sum+=n;
print sum;

};
};

};
‘>

Other Constructs

• While
• Repeat 
• Output Routines

– out
– Outf
– print
– do_print()
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Events and Temporal 
Expressions

Temporal Expressions

• Timing & Synchronization are important 
when e and HDL processes communicate 

• Temporal constructs are used to express 
and specify properties which vary with 
time

• Event Driven
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Events

• Events define occurences of certain 
activities in Specman or HDL (verilog)

• Events can be attached to temporal-
expressions (TEs) 

• Can be unattached also
• An attached event is emitted when the TE 

succeeds
• Syntax: event event-type [is [only] TE];

Examples
<‘ struct m_str{

event start_cnt; 
//unattached event, event manually emitted
event top_clk is fall(‘~/top/r_clk’) @sim
//sim is the sampling event (remember call back)
event stop_cnt is {@start_cnt; [2]}@top_clk;
//emitted when start_cnt is followed by 2 top_clk
event clk is rise(‘~/top/cpu_clk’) @sim;
event sim_ready is change(‘~/top/ready’) @sim;

};
‘>
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Event Emission

• Events can be emitted explicitly or 
implicitly

• Use “emit” construct
• emit [struct-exp.]event-type;
• Does not consume time

Example with Emit

<‘ struct xmit_recv{
event rec_ev;
transmit() @sys.clk is{

wait cycle;//wait for the next emission 
//of sys.clk event 
emit rec_ev;
out(“Rec emitted”);
};
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receive() @sys.clk is{
wait @rec_ev;//wait for the next rec_ev

//event, wait stops the TCM
//until the TE succeeds

out(“rec_ev occurred)”;
stop_run();
};

run() is also{
start transmit();//start two parallel processes 
start receive();//at 0 simulation time
};

};
extend sys{

event clk is @sys.any;// Finest granularity of time 
in Specman
xmtrcv_i: xmit_recv;

};
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Redefinition
<‘struct m_str{

event m_str;
event top_clk is fall(‘~/top/r_clk’) @sim;
event stop_ct is {
@start_ct; [1]} @top_clk;

};
extend m_str{
event stop_ct is only {@start_ct; [3]}@top_clk;

};
‘>
Event stop_ct now redefined to specify an event which is implicitly 

emitted when the event start_ct is followed by 3 occurences of the 
event top_clk

Sampling Events

• Events are used to define sampling points
• The TEs are evaluated at these sampling 

points
• The sampling period is the interval of time 

from the emission of a sampling event to 
the next time the sampling event is emitted

• All event emissions within the same 
simulation time is “simultaneous”
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Certain Points

• Thus we see that Q@R means “evaluate 
Q every time the sampling event R is  
emitted”

• Q@R is a success (at the event R) if Q 
has been emitted since the previous 
emission of R

• Sampling Period for the TE includes the 
last occurence of the sampling event

An Example

Q

R

Q@R

R is the default sampling event of the TE R, but 
it can be over-ridden
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Temporal Expressions

<‘ struct m_str{
event a_event is rise(‘~/top/start’) @sim;
event b_event is rise(‘~/top/end’) @sim;
event clk is rise(‘~/top/clk’) @sim;
event unary_e is @b_event @clk;

//b_event is a temporal expression. unary_e
occurs at clk event when b_event occurs 
in a sampling period 

• event boolean_e is true(‘~/top/clear’==1) 
@clk;

//Emit when TE is true at the rising edge
• event edgep_e is rise(‘~/top/a’==1) @clk;
//emit when the rise TE finds that a has gone 

from 0 to 1 in the sampling period
//is fall and is change are also possible
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Delay and Cycle

temp_oper_example() @clk is{
wait delay (10); //waits for 10 simulation     

//time units
wait cycle; //waits for the next emission of 

//clk
};

};  

Sequence operators

• ; signifies a series of TEs over successive 
emissions of a sampling event

• Each TE following a ; starts evaluating in 
the sampling period, which comes after 
which the preceding TE succeeded

• The sequence succeeds when the final 
expression succeeds

• If any one misses, the sequence rolls back
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Example for Sequences

qclk

ev_a

ev_b

ev_c

{@ev_a;@ev_b;@ev_c;}@qclk

Not & Fail Operators
• event ev_d is {not{@ev_a;@ev_b;@ev_b}@ev_c}@clk

– ev_d is emitted whenever there is an emission of ev_c which is 
not preceded by a TE, which is generation of ev_a and 2 
succesive generations of ev_b

• event ev_d is fail{@ev_b;@ev_c};
– ev_d is emitted if either of the following holds:

• Event ev_b does not occur in the first cycle
• ev_b succeeds in the first cycle, but ev_c is not emitted in the 

second cycle 
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Not vs Fail
pclk

@ev_b

@ev_c

@ev_b
@ev_c

not{@ev_b; 

@ev_c}

fail{@ev_b,  
@ev_c}

Questions???

1. Can we express using the e-temporal 
constructs Property 1 of the Arbiter?

1. LTL Statement: G[ r1 => Xg1 Λ XXg1]

clk

r1

clk
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A Possible Code

event clk is rise(‘~/top/clk’) @sim; 
//Synchronize with DUV 
event r1 is rise(‘~/top/req1’) @clk;
//sampling event is clk
event g10 is {@r1; [1]} @clk;
event g11 is {@g10;[2]} @clk;
event g1 is {g1 and g2}@clk;  

Checking for Property1

event gi0 is rise(‘~/top/g1’)@clk;
event gi1 is fall(‘~/top/g1’)@clk;
event property1;
expect property1 is 

@r1=>{@g1;[2];@g2}@clk;
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Tutorial-3 (contd.)
• Write e-snipets to express and check properties 2 and 3 

of our arbiter.

• Compare the code size of your procedural construction 
with that using temporal constructs. 

Appreciate why ‘e’ is yet another language.

• Think of scenarios or designs (at least one) in which 
synchronization is important and try to express them 
using e-codes

And Operator

• The temporal and succeeds when both 
temporal expressions start evaluating in 
the same sampling period and succeed in 
the same sampling period.
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Example
qclk

TE1

TE2

(TE1 and 
TE2)@qclk

TE3

Or operator

• The or temporal operator succeeds when 
either temporal expression succeeds. An 
or operator creates a parallel evaluation 
for each of its sub-expressions.
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Example
qclk

TE1

TE2

TE3

(TE1 or 
TE2)@clk

Fixed Repeat 

• wait {@ev_a ; [3]*@ev_b; @ev_c} @clk;
--wait action proceeds after ev_a, three 

successive occurrences of ev_b and ev_c
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First Match Variable Repeat

• wait {@ev_a; 
[0..2]*@ev_b;@ev_c}@pclk;

// proceeds after any one of the three 
sequences:

1. {@ev_a;@ev_c}@pclk;
2. {@ev_a;@ev_b;@ev_c}@pclk;
3. {@ev_a;@ev_b;@ev_b;@ev_c}@pclk
They succeed on the first success of the TE

Contd.

• wait {[1..]*@ev_a; @ev_b}@pclk;
//proceeds after more than 1 events of ev_a, 

followed by 1 event ev_b at the next pclk
event

• wait {[..3]*{@ev_a; @ev_b};@ev_c}@pclk;
//proceeds after between 0 and 3 

occurrences of the sequence 
{@ev_a;@ev_b}, followed by the emission 
of ev_c at the next pclk event
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True Match Variable Repeat

• They work on multiple occurrences of a TE 
from a lower to upper bound. They 
succeeds every time the TE holds.

event TE1 is {@reset; ~[3..5]} @pclk;
//succeeds three pclk cycles after reset, 

again at four pclk cycles after reset, again 
after five pclk cycles after reset  

Eventually and Yield

• {@ev_c; @ev_a; eventually @ev_b}@pclk;
//TE succeeds when ev_c is followed by ev_a in 

the next cycle, and then ev_b sometime later
// Used to indicate that the TE should succeed 

some future time
• expect request => {[..99];@ack}@clk;
//The TE succeeds when ack is emitted after 1 to 

100 cycles after request event, used for 
checking
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Best of Luck

Quiz 1 on 20.2.07
(Any Updates will be posted on 

the web-page)


