
1

Design
Verification with ‘e’

The language ‘e’

• Contains all the constructs necessary for a
complete verification tool
– Allows objects in the verification environment to be

extended
– Needs to express constraints
– Coverage engine
– Temporal engine : Capture protocols rules in a

concise fashion
• Specman elite tool from Verisity Design supports

the e language

2

Components

Data object
Protocol
checkers

Test
Creation

Input
driver

DUT
(verilog)

Coverage
Analyzers

Output
Receivers

Data
Checkers

Data Object

• Used to represent stimulus item or one
test vector

• Different tests have types of values for this
field
– Router: packets
– Video processor: frames
– Micro-processor: instructions

• Random stimulus item generator

3

Test creation

• Set of constraints placed on the
generation of the fields in the data object

• More restrictive constraints lead to
directed testing

Unit vs Struct

• Unit is very similar to struct
• Static verification object that does not

move through the verification system
• A struct is a dynamic object such as a

packet or instruction that moves through
the system

4

Input Driver

• A unit is defined to represent the driver
• Input procedure which takes one stimulus

item and applies to the DUT
• Also has a procedure to call the input

procedure multiple times to apply many
stimulus item to the DUT

Output Receiver

• A unit to represent a receiver object
• Procedure to collect raw output from DUT

and convert to a data object format
• Has to follow the interface protocol

expected by the DUT at the output port
• Receiver then passes this data object to

the data checker to compare against
expected data

5

Data checker

• A unit to represent a data checker object
• Gets an output data from the receiver and

compares with the expected data
• Has a procedure to generate and store the

expected data
• May be instantiated in the receiver object
• Or a centralized object instantiated directly

Protocol Checker

• A unit is used
• Monitors that the protocols at the input and

output interfaces are not violated

Coverage Analyzer
• Defines a set of basic, transition and

cross-coverage items to monitor specific
events in the simulation

• Statistics displayed after simulation for
further testing

6

e Hierarchy
sys

verification_environment

data driver receiver protocol

checker

cover

data

checker
1. Reusable
2. Portable

Interaction Between Specman Elite and
Simulator

External
Libraries

Specman Elite
Contains all e

Codes
+ verification

hierarchy

DUV
Contains DUV

Related
verilog code

Simulator

Stubs File
Created

by
Specman

Elite

clk

data

reset

d_out1

d_out2

d_out3

Misc simulation files

TOP
Contains clocks, input output registers/net

that Specman Elite drives or samples

7

Flow of Simulation

Specman Elite Simulator

Syntax of ‘e’

8

Naming Conventions

• User defined names, struct names : all
start with CAPITAL letters

• User defined struct member names (fields,
events, methods): all start with LOWER
case letters

• In both cases each of the parts of the
name start with CAPITAL letters

• HDL signals : all lower case, parts of the
name are separated with underscores

Naming example
<'

// type names start with a capital letter each part of a name
starts with capital letter...therefore PacketSize and not
Packetsize, Packet_size or anything else

type PacketSize : [small, medium, big];

// unit and struct names start with a capital letter
unit ChipEnv {

// fields, events, methods (in one word - struct members)
// start with lower case letter

chipAddress : uint;
event configDone;

9

Naming Example
resetChip() is {

// a reference to an HDL signal name,
// all lower case, parts separated by underscores

'sys_reset' = 0;
};

// another user defined method
endSim() is {
• // a method that is a part of the e language - follows
• // the e proposed standard naming conventions
• // (names are all lower case,
• // parts of a name are separated by underscores)
dut_error("simulation ended without error");

};
};

• '>

Directed vs Random Verification

• Directed: The designer has to think about the
places where the bug can hide and then write
test-benches to check the design at those points

• But a DUV may behave differently if a different
set of inputs are applied to reach those points

• Writing requires knowledge of the design
• Also with the increase in the number of test

cases for a million transistor design directed test
benches require lot of time

10

Hence Random

• Constrained Random Testbenches:
– Provide constraints or limits to the inputs
– Within this limit generate inputs randomly

• May want dependencies…
• Takes care of Simulation Time
• “Garbage Collection”: no memory leak

AO vs OO
• AO: One can ‘extend’ data structures and methods in

another file
• Example:
<‘ struct Fruits{

apples : uint;
oranges : uint;
sumFruitsUp() : return uint is{
result = apples + oranges;
};

};
‘>

11

AO coding

<‘extend Fruits{
mangoes : uint;
papayas : uint;
sumFruitsUp(): return uint is also {

result += mangoes + papayas;
};

};
>’

Packet.e : The OO approach
<‘
struct Packet {

%header : byte;
%payload : list of byte;
keep payload.size() < 200;
%crc : byte;

//this method describes packet conversion
convert () : Packet is{ };
//this method converts o/p data from DUV to packet structure
rebuild(packetBytes : list of byte) : Packet is{
};

};
‘>

12

Packet.e : AO approach

<‘
struct Packet{
%header : byte;
%payload : list of byte;
keep payload.size() < 200;
%crc : byte;

};
‘>

DataChecker.e

<‘
extend Packet{

convert() : Packet is {
};

rebuild(packetBytes: list of byte): Packet is{
};

};
‘>

13

Data Types

• Scalar Types
– Numeric

• length: int; //int -> numeric data, size = 32 bits
• addr:uint(bits:24); //unsigned + number, size=32bits
• valid:bit; //1 bit field

– Boolean=> frame_valid: bool;//logical value
– Enumerated

• List Types
• String Types

Enumerated Data Types

• <‘
type Packet_protocol: [];

‘>
• <‘

extend Packet_protocol:[Eth, IEEE];
struct Packet{
kind : Packet_Protocol;

};
‘>

14

Enumerated Date Type

• Defines the valid values for variable or
field as a list of symbolic constants

• <‘
type Instr_kind: [imm, reg];
‘>

• <‘
type Instr_kind: [imm=4, reg = 8];
‘>

Scalar Subtypes
<‘
type Opcode: [add, sub, or1, and1];
type Logical_opcode: Opcode [or1, and1];
type Small: uint(bits:4);
struct instruct{
op1: Opcode;
op2: Logical_opcode;
length: Small;
}
‘>

Because and & or
are ‘e’ inbuilt

15

List Types
• Hold ordered collection of data elements
<‘
struct Packet{
addr : uint(bits:8);
data1: list of byte;
};

struct Sys{
packets[10]: list of Packet;
values: list of uint(bits: 128);
};
‘>

String Type
<‘
struct Dtypes{

m() is{ //METHOD
var message: string;
message=“This is string”;
print message;
};

};
‘>
NOTE: var is used to declare a variable inside a method

16

Verification with e
• e & HDL Hierarchy

– “sys” is implicitly defined
– topmost struct in Verification environment

<'
struct Data {

<data internals>
};

struct Protocol {
<protocol internals>

};

struct Collect {
<collect internals>

};

Verification with e

struct Error {
<error internals>

};

struct Driver {
<driver internals>

};

17

struct Checker {
data1: Data;
protocol1: Protocol;
<checker internals>

};

struct Receiver {
collect1: Collect;
error1: Error;
<receiver internals>

};

Verification with e

extend sys {
driver1: Driver;
checker1: Checker;
receiver1:Receiver;

};

'>

• e lends itself very well to a
layered development approach

– The functionality for the base structs can be
extracted from the design specification

– Test-specific changes can then be added
separately using the extend mechanism for
the structs.

Verification with e

18

Driving & Sampling DUT Signals
<‘
struct Driver{//Struct in the e environment
r_Value : uint(bits:4);

read_Value() is{
r_Value=‘~/top/processor/FPU/add/operand’;
};
write_Value() is{
‘~/top/processor/FPU/add/operand’=7;
};
‘>

Computed Signal Names
<‘
struct Driver{
id: uint(bits:2);
r_Value: uint(bits:4);
read_Value() is{
r_Value=‘~/top/processor_(id)/FPU/add/operand’;

};
‘>

19

Syntax Hierarchy

• Statements
• Struct Members
• Actions
• Expressions
• Name Literals

struct Trans{
addr: uint(bits:4);
data: byte;
print_Add_Zero() is{
if(addr==0) then{
print addr;
addr=addr+1;
};
};

};

Please Read “Design Verification
with e” by Samir Palnitkar, pp 50-58
for a detailed list of
statements…actions…..

Actions

• e actions: are lower level procedural
constructs that can be used in combination
to manipulate the fields of a struct or
exchange data with the DUT

• Associated with a method, event or an
“on” struct member

20

Example
<‘ struct Packet{

event xmit_Ready is rise(‘~/top/ready’);
length: byte;
delay: uint;
on xmit_Ready{

transmit();
};
transmit() is{

length=5;
delay=10;
out(“transmitting packet”);
};

};
‘>

Types of Actions
• Creating or modifying variables
• Executing actions conditionally
• Executing actions iteratively
• Invoking methods and routines: invokes

methods and routines
• Time Consuming Actions: causes simulation

time to elapse before a callback is issued by the
simulator

• Generating Data Items
• General Options

21

Time Consuming Actions
• emit: causes a specified event to occur
• wait: suspends execution of the current TCM

until a given temporal expression succeeds
• all of: executes multiple action blocks

concurrently, as branches of a fork. Following
action is reached only when all the branches
have executed

• first of: Following action is reached when any of
the branches of the first of block have been
executed

Example of using events in Time Consuming Methods (TCM)
<'
struct meth {

event pclk is rise('~/top/pclk')@sim;
event ready is rise('~/top/ready')@sim;
event init_complete;
my_tcm() @pclk is {

wait @ready;
wait [2];
wait [3] @ready; //Wait for three occurrences of @ready
init_dut(); //Call a regular method
emit init_complete; //Manually trigger the event

};
};
'>

Highlights

22

Commenting in ‘e’
<'

-- Single line comment
// This is also single line comment
//Code here

'>
Multipe line comment So ignored
<‘
//Code continue..
'>

‘e’ Operators
<'

extend sys {
run() is also {
var a : byte;
var b : byte;
var c : byte;
a = 0xAA;
b = 0x55;
outf (" a = %b b = %b\n", a, b);
// Bitwise negation
c = ~a;
outf ("Bitwise negation a is :%b\n", c);

// Bitwise AND operation

23

Bitwise Operators
c = a & b;
outf ("Bitwise AND of a with b is :%b\n", c);
// Bitwise OR operation
c = a | b;
outf ("Bitwise OR of a with b is :%b\n", c);
// Bitwise XOR operation
c = a ^ b;
outf ("Bitwise XOR of a with b is :%b\n", c);
// Left shift
c = a << 2;
outf ("Left shift a by 2 bits is :%b\n", c);
// Right shift
c = b >> 2;
outf ("Right shift b by 2 bits is :%b\n", c);

};
};
'>

Boolean Operators
<'
extend sys {
run() is also {
var a : bool;
var b : bool;
var c : bool;
var d : bool;
outf (" a = %b b = %b c = %b\n", a, b, c);
// Not Operator
d = !(TRUE);
outf ("Not of (TRUE) is :%b\n", d);
// Boolean AND operation
d = a && c;
outf ("Boolean AND of a with c is :%b\n", d);

24

Boolean operators
// Boolean OR operation
d = a || b;
outf ("Boolean OR of a with b is :%b\n", d);
// Boolean implication operation
d = (2 > 3) => (3 > 2);
outf ("Boolean implication of (2 > 3) => (3 > 2) :%b\n", d);
// Boolean implication operation
d = (4 > 3) => (3 > 4);
outf ("Boolean implication of (4 > 3) => (3 > 4) :%b\n", d);

};
};
'>

‘=>’ : Returns TRUE when the first
expression of two expressions is

FALSE, or when both expressions are TRUE.

<'
type packet_protocol : [ETHERNET, IEEE, ATM];

struct Packet {
protocol : packet_protocol;
// payload is list of bytes
// Which size is always 10 bytes
payload : list of byte;
keep payload.size() == 10;

};
// Just to check our code
extend sys {
// Create the list of the packets
data : list of Packet;
// Set number of packets to generate to 4
// i.e. set the size of list
keep data.size() == 4;
run() is also {
gen data;
for each in data do {
print it;
print it.payload;

};
};

};
'>

An Example on Lists

25

Generating the test using seed 1...
Starting the test ...
Running the test ...
it = packet-@0: packet

-- @new
0 protocol: IEEE
1 payload: (10 items)
it.payload = (10 items, dec):

133 185 157 142 231 104 85 230 102 168 .0

it = packet-@1: packet
-- @new

0 protocol: ATM
1 payload: (10 items)
it.payload = (10 items, dec):

2 44 224 216 156 14 216 12 52 80 .0

it = packet-@2: packet
-- @new

0 protocol: Ethernet
1 payload: (10 items)
it.payload = (10 items, dec):

112 201 150 25 244 227 194 171 77 96 .0

it = packet-@3: packet
-- @new

0 protocol: Ethernet
1 payload: (10 items)
it.payload = (10 items, dec):

69 214 58 191 194 192 64 252 143 82 .0

Creating Hierarchy with
Structs and Units

26

Structs

• Used to define Data Elements and the
behavior of components in a verification
environment

• Syntax:
– struct struct-type {

struct-member1;
struct-member2;
….};

Struct Members

• Data Fields for storing data
• Methods for procedures
• Events for defining temporal triggers
• Coverage groups for defining coverage

points
• when, for specifying inheritance subtypes
• declarative constraints for describing

relations between data fields

27

Struct Members

• on, for specifying actions to perform upon
event occurences

• can be empty also, for future extensions

An example
<‘

type Packet_kind:[ATM, ETH];//enumerated type
struct Packet{

len : int; //field of struct
keep len < 256; //constraint on struct member
kind: Packet_kind; //field of struct
calc_par() is{ //method (procedure) in a struct
}; //end of method definition

}; //end of packet struct
‘>

28

Extending Structs

//extend in the same file
extend sys{ //extend sys structure, which is empty initially

packets: list of Packet;
keep packets.size()==10;
run() is also{

print packets;
};

};
extend Packet{

addr : byte; // add a byte of address
keep len < 128; // extend original packet definition

};
‘>

Extend (in a different file)

packet_extenstion.e
<‘ import packet.e; //import the original

//packet defintion
extend Packet{

keep kind == ATM; //add constraints
keep len == 64; //to the packet definition

};
‘>

29

Original Packet
defintion

Extensions
(…e1…)

Extensions
(…e2…)

Cumulative defintions

packet.e packet.e packet_extenstion.e

Fields inside a struct

• ‘!’ indicates Ungenerated field
– Not assigned any value during the generated

phase
– Useful for fields assigned during the

simulation
– Default value is 0 (NULL)
– For values specified in range, it’s the first

value
• ! num : int [10..15](bits:4);

30

Fields inside a struct

• ‘%’ indicates Denotes a physical field.
These fields, as opposed to virtual fields
are sent to the DUT.

• Order of % and ! is immaterial
• field-name
• type
• min-val..max-val
• (bits|bytes:num)

Example of field definitions
<‘ type NetworkType: [IP=0x0800,ARP=0x8060](bits:16);
struct Header{

%address: uint (bits:48); // Physical Fields
%length:uint[0..32];

};
struct Packet{

hdr_type: NetworkType; //Virtual field
%hdr: Header; //Physical Field
is_legal:bool; //Boolean Virtual Field
!counter:uint; //Not generated when the packet instance is generated

};
extend sys{

packet_i : Packet; //As packet is a struct such a field definition is called
//“instantiation”

};
‘>

31

List Fields
<‘

struct Cell{
%data: list of byte;
%length:uint;
strings: list of string;

};
struct Packet{

%is_legal: bool;
cells: list of Cell;

};
extend sys{
packets[16]: list of Packet; //list of 16 instances of packet struct

};
‘>

Scalar type, string or struct

List Operations
• size() : This is used to set the size of the list.
• add(item or list) : Add an item to the end of a list
• add0(item or list) : Add an item to the head of a list
• clear(): Delete all items from a list
• delete(index) : Delete an item from a list
• insert(index,item) : Insert an item in a list at a specified

index
• pop(item) : Remove and return the last list item
• pop0(item) : Remove and return the first list item
• push(item) : Add an item to the end of a list
• push0(item) : Add an item to the head of a list
• resize() : Change the size of a list

32

<'
struct packet{

a_list:list of int;
keep a_list.size()==3; //need to use "keep" outside a method
keep a_list=={10;20;40};
list_method() is

{
out("Printing List_method\n");
var i_list:list of int(bits:5);
i_list={2;4;6;8};
var a:int; // var is used inside a method, dont use "keep" here
a = 2; //These variables are like local variales
var i:int;
print a;
print i_list;
i_list.delete(2);
print i_list;
i_list.add(1);
print i_list;
i_list.push(1);
print i_list;
i_list.push0(1);
print i_list;
a=i_list.pop();
print i_list;

AN EXAMPLE WITH LIST METHODS

print a;
var cnt:int;
cnt = i_list.size();
print cnt;
out("\n Binary \n");
for {i=0;i<cnt;i=i+1}
do {outf("%b \t",i_list[i]);};

out("\n");
gen i_list keeping {it.size()==10;};
print i_list;

};
};

extend sys{
data: list of packet;
keep data.size() == 4;//there will be 4 packets generated
run() is also{
gen data;
for each in data do{

print it;
print it.a_list;
it.list_method(); //invoke the method, cant access the variables

};
};

};

'>

33

Welcome to Specman Elite (4.3.6) - Linked on Mon May 30 11:24:07 2005

Loading listfunctions.e ...
read...parse...update...patch...h code...code...clean...GC(sys)...

Doing setup ...
Generating the test using seed 1...
Starting the test ...
Running the test ...

it = packet-@0: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
-10 15 4 -7 -1 9 9 5 -11 8 .0

it = packet-@1: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
6 4 7 11 -15 -8 2 3 -15 -13 .0

it = packet-@2: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

Checking is complete - 0 DUT errors, 0 DUT warnings.

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
4 2 6 -9 -12 -8 -12 6 12 -6 .0

it = packet-@3: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

34

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
4 -15 9 -9 -14 -6 -14 -7 -6 9 .0

No actual running requested.
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.
Doing setup ...
Generating the test using seed 1637073683...
Starting the test ...
Running the test ...

it = packet-@4: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
-11 -11 -1 5 4 10 3 13 -5 -5 .0

it = packet-@5: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
13 12 0 -11 4 -15 0 2 9 -1 .0

it = packet-@6: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
-2 -13 -5 -14 -6 0 -13 -11 -1 -3 .0

it = packet-@7: packet
-- @listfunctions

0 a_list: (3 items)
it.a_list =

0. 10
1. 20
2. 40
Printing List_method

a = 2
i_list = (4 items, dec):

8 6 4 2 .0

i_list = (3 items, dec):
8 4 2 .0

i_list = (4 items, dec):
1 8 4 2 .0

i_list = (5 items, dec):
1 1 8 4 2 .0

i_list = (6 items, dec):
1 1 8 4 2 1 .0

i_list = (5 items, dec):
1 8 4 2 1 .0

a = 1
cnt = 5

Binary

1 10 100 1000 1

i_list = (10 items, dec):
-9 12 1 8 -14 9 0 15 -16 -8 .0

No actual running requested.
Checking the test ...

35

Examples on list methods

• var i_list:list of int;
i_list.add(5); //add the item or list to the

//end; has to be list of same type
• var i_list:list of int;

i_list.add0(5); //add to the start of the list
• var i_list:list of int;

a_list.clear(); // deletes all items from list

Keyed Lists

• Enable faster searching of lists by
designating a field or value to be searched

• Eg: sparse memory implementation
– List which has a large capacity. Say is has

small amount of data spread across.
• Syntax:
![%]list-name: list(key:key-field) of type;

Scalar type, string or structCannot generate
this field

Struct members for structs; it for scalars

36

Keyed Lists are used similar to hash tables.
Example below shows that memory is a list of bytes
and address is the key...

<'
struct base_object {
addr: byte;
data: byte;
};

struct keyed_list {
!memory : list(key:addr) of base_object;
//writing to a keyed list
write_memory(object:base_object) is{

memory.add(object);
print object;

};

//reading from keyed list
read_memory(object:base_object) is{
var local_object:base_object=memory.key(object.addr);
print local_object;

};
};

Returns the list item
That has the key, else

Returns NULL

extend sys{
data: base_object;
olddata: base_object;
mem_model : keyed_list;
run() is also{

//write data
gen data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
gen data;
olddata=data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
gen data;
mem_model.write_memory(data);
mem_model.read_memory(olddata);//retrieve old data

};
};

'>

37

object = base_object-@0: base_object
-- @keylists

0 addr: 230
1 data: 240
object = base_object-@1: base_object

-- @keylists
0 addr: 150
1 data: 147
object = base_object-@2: base_object

-- @keylists
0 addr: 29
1 data: 255
object = base_object-@3: base_object

-- @keylists
0 addr: 111
1 data: 96
object = base_object-@4: base_object

-- @keylists
0 addr: 47
1 data: 67
local_object = base_object-@2: base_object

-- @keylists
0 addr: 29
1 data: 255

WRITING

READING

Key

Another example
<‘extend sys{

!cl: list(key:it) of uint(bits:4);
run() is also{

var ch: uint(bits:4);
var i: int(bits:4);
for i from 0 to 10{

gen ch;
cl.add(ch);

};
if cl.key_exists(8) then {

print cl;
print cl.key_index(8);

}
};

};
‘>

38

Creating Struct Subtypes with when

• Creates a conditional subtype of the
current struct type, if a particular field of
the struct has a given value

• Struct members defined in the when
construct can be accessed only in the
subtype, not in the base struct

Syntax

• when type-qualifier’field-name base-struct_type
{struct-member;….
};

• base-struct-type: parent structure
• Field-name: The name of a field in the base

struct. Only Boolean or enumerated fields are
used

• type-qualifier: one of the legal values for the
field named by field name

39

Explicit when construction
<‘type Reg_n:[REG0, REG1, REG2, REG3];
type Instr_type:[imm,reg];
type Dest_type:[mm_1,reg];
struct instr{

%op1: Reg_n;
kind:Instr_type;
dest: Dest_type;
when REG0’op1 instr{

print_op1() is{
out(“instr op1 is REG0\n”);

};
};

when reg’kind instr{
print_kind() is{

out(“Instr kind is reg\n”);
};

};
};
‘>

Implicit When Construction
<‘ type packet_kind:[transmit,receive];

struct packet{
kind:packet_kind;
when transmit packet{

length: int;
print() is{
outf(“Packet length is %d\n“,length);

};
};

};
‘>

Only visible when
kind == transmit

Question: How do you access these subtype variables and methods?

40

Extending methods defined
in base type

<‘ struct operation{
opcode : [ADD,ADD3];
op1: uint;
op2: uint; result:uint;
do_op(op1:uint,op2:uint): uint is{

result=op1+op2;
};

};

Extending …

extend operation{
when ADD3’opcode operation{

op3: uint;
do_op(op1:uint, op2:uint):uint is also{
result=result+2;
};

};
};

If the method is already described in the base struct
it should have the same number of arguments

in the when extension

41

Extending methods not defined in
the base type

<‘ struct operation{
opcode:[ADD,ADD3];
op1:uint;
op2;uint;

};
extend operation{
when ADD operation{

do_op(op1:uint,op2:uint):uint is{
return op1+op2;

};
};

when ADD3 operation{
do_op(op1:uint,op2:uint):uint is{
return op1+op2+op3;
};

};
};

‘>

Can have different
parameters

and
return types

Units

• Units were introduced in the e-language for easy
portability

• Like structs they are compound data types that
contain fields, methods and other members

• Unlike structs, a unit instance is bound to a
particular component in the DUT (an HDL path)

• Also, each unit has a unique and constant e-
path

42

Units vs Structs
1. The decision of whether to model a DUT component with a unit or a

struct often depends on your verification strategy.

2. You intend to test the DUT component both standalone and
integrated into a larger system. Modeling the DUT component with a
unit instead of a struct allows you to use relative path names when
referencing HDL objects.

3. Your e program has methods that access many signals at runtime.
The correctness of all signal references within units are determined
and checked during pre-run generation. If your e program does not
contain user units, the absolute HDL references within structs are
also checked during pre-run generation. However, if your e program
does contain user units, the relative HDL references within structs
are checked at run time. In this case, using units rather than structs
can enhance runtime performance

So, why structs?
• Struct model abstract collections of data, like packets,

allows you more flexibility as to when you generate the
data.

• With structs, you can generate the data either during
pre-run generation, at runtime, or on the fly, possibly in
response to conditions in the DUT.

• Unit instances, however, can only be generated during
pre-run generation, because each unit instance has a
unique and constant place (an e path) in the runtime
data structure of an e program, just as an HDL
component instance has a constant place in the DUT
hierarchical tree.Thus you cannot modify the unit tree by
generating unit instances on the fly.

43

In short…
• Units are a kind of struct which can be….

– Bound to any particular component in the
DUT

– Has a unique and constant parent unit (a
static e-path) generated during pre-run
generation.

– In short units are static and structs are
dynamic

– Hence structs are used for data items,
whereas units are to describe environment
topologies and configurations

Syntax

• unit unit-type {
unit-member;
…
};

• Unlike structs, units can also have verilog
members

44

Example
sys

fast
_router

chan 0 chal 1 chan 2

top

router_i

chan 0 chal 1 chan 2

e-hierarchy
Verilog hierarchy

Binding the unit
<‘
unit fast_router{

debug_mode:bool;
};

extend sys{
unit_core: fast_router is instance;
keep unit_core.hdl_path()==“top.router_i”;
keep unit_core.debug_mode==TRUE;

};
‘>

45

HDL path for the channels
<‘
unit router_channel{
};

unit fast_router{
channels: list of router_channel is instance;
keep channels.size()==3;
keep for each in channels{
.hdl_path()==append(“chan”,index);};

};
‘>

Constraining Generation

46

Constraints

• Test generation is a process producing
data layouts according to a given
specification. Constraints are statements
that restrict values assigned to data items
by test generation.

• A constraint can be viewed as a property
of a data item or as a relation between
several data items.

You may add constraint using…

• Explicit constraints : This are those
declared using the keep statement or
inside keeping {...} block.

• Implicit constraints : This are those
imposed by type definitions and variable
declarations. Implicit constraints are
always hard.

47

Types of constraints
1. Value constraints : This restrict the range of possible values that

the generator produces for data items, and they constrain the
relationship between multiple items.

2. Order constraints : This influence the sequence in which data
items are generated. Generation order is important because it
affects the distribution of values and the success of generation.

• Both value and order constraints can be hard or soft:

1. Hard constraints : This (either value or order) must be met or an
error is issued. This can not be over ridden.

2. Soft value constraints : This suggest default values but can be
overridden by hard value constraints.

3. Soft order constraints : This suggest modifications to the default
generation order, but they can be overridden by dependencies
between data items or by hard order constraints.

You can define constraints in many ways:

• By defining a range of legal values in the
field or variable declaration

• By defining a list size in the list declaration
• By using one of the keep construct

variations within a struct definition
• By using a gen...keeping action within a

method

48

Example-1
<'
struct constrain_gen_ex1 {

// Explicit constrains
x : int[1,3,5,10..100]; // is the same as
x : int; keep x in [1,3,5,10..100];
// Implicit Constrains
l[20] : list of int; // is the same as l : list of int; keep l.size()==20;
// Value constraints
// Limits the address from 0 to 1024
addr : uint[0..1024];
// Read = 0 and Write = 1
rd_wr: bool;
// Weights for rd_wt command
rd_wt: uint[0..100];
wr_wt: uint[0..100];

•

// Order of generation is different
// rd_wr was declared before rd_wt and wr_wt
keep gen (rd_wt, wr_wt) before (rd_wr);
// Generation based on weight
// Soft Constraint
…
// Hard constraint
data : uint;
keep data != 0xdeadbeaf;

// List constraint Example
payload : list of byte;
keep payload.size() < 10;

};
'>

49

Example-2
<‘ extend my_struct{

keep x>4 and x!=6;// can use and, or
keep x==y+25; //use addition, subtraction
keep z==TRUE; //TRUE, FALSE
keep y==method(); //can use methods
keep x in [5..10,20..30]; //constrain variables to ranges
keep x not in [1..3,5..8]; //Not in a range
keep for each (p) in packets{ //packets is a list of packet

p.length < 10; //each packet’s length field < 10
};
keep packets.size()==50;//can use list pseudo-methods

};
‘>

Implication Constraints

• Remember implications in ‘e’
• X => Y means (not X or (X and Y))
• Examples:

struct packet{
size packet_sizetable;

keep size == SHORT => len < 10;
keep size == MEDIUM => len in [11..19];
keep size == LONG => len < 20;

};

50

Order of Generation
<‘ struct packet{

addr: uint(bits:2);
len: uint(bits:2);
data: list of byte;
parity: byte;

};
extend sys{

packets: list of packet;
debug: bool;

};
‘>

sys

packetpacket debug

addr paritydatalen

data
data

addr paritydatalen

data
data

Implicit Generation

• Constraints involving a method call:
– keep parity==calc_parity(data);

• List slicing
– keep z==my_list[x..y];

• Arithmetic operations
– keep z=x*y;

51

Explicit Generation Order
<‘struct packet{

addr: uint;
len : uint(bits:4);
};

extend packet{
keep len==5 => addr < 50;
keep gen (len) before (addr);

};
‘> What happens if we do not do this ? Discuss in the lab…

Constrain Resolution

• The generator must satisfy all the relevant
constraints defined in:
– The original struct definition
– Extensions to the struct definition
– Other struct definitions using the hierarchical

path notation

52

Soft Constraints

• Specifies default preferences; to be over-
ridden later

• keep soft
• If a soft constraint conflicts with a hard

constraint it is over-ridden
• If it contradicts with other soft constraints,

the last loaded constraint prevails

Example
<‘

struct cons{
x: uint;
keep x in [1..10]; //loaded 1st

keep soft x > 3;//loaded 4th

keep soft x == 8;//loaded 3rd

keep soft x < 6;//loaded 2nd

};
‘>

53

Resetting Soft Constraints
<‘ struct packet{

len : uint;
keep soft len in [64..1500];

};
extend packet{

keep len.reset_soft();//on a per field basis
keep len > 2000;//apply a hard constraint

};
‘>

Weighted Constraints
struct instr{

opcode: cpu_opcode;
keep soft opcode == select{

30 : ADD; //30/60 probability of selecting ADD
20 : ADDI;
10 : [SUB..NOP];

};
};
‘>

54

Procedural Flow
Control

What is a Procedure?

• Interacts with the DUT
• Drives and samples the signals at the

appropriate time
• Required to create interfaces, compute

values, and act upon the fields of a struct
or unit

55

Methods

• Syntax:
method-name ([parameter-list]) [:return-type] is{

action;…};
• Procedures can only be defined inside

methods
• e-method is an operational procedure

containing actions
• method can only be described inside a

struct

Method Definition
<‘
struct Packet{

addr: uint(bits:2);
zero_address() is bool{
if(addr==0) then{

out(“Packet has address 0”);
result=TRUE; //result is an implicit variable
} else{ //which holds the return value
result=FALSE;

};
};

“>

56

Local Variables

• Inside a method, variables are declared
with the var action
– var count:int; //default is 0
– var b_list: list of byte; //default is empty
– var legal:bool;//default is FALSE

Values Accessed in method
<‘ struct C_struct{

len: uint; //fields within local struct
legal: bool; //---------do---------------
d_struct_i : D_struct; //instantiation of a struct
legal_length(min_len:uint):bool is{

var count: int;
if(len>=min_len) then{

result=TRUE;
count+=1;

}else {
result=FALSE;

};

Arguments

Results (return value)

57

if (count==1) then{
d_struct_i.addr=0;
out(“Incremented Counter”);
};
};

}; //end of C_struct
struct D_struct{

addr:uint;
};
‘>

Fields inside other
struct

Invoking Methods

• <‘ extend C_struct{
post_generate() is also{
legal=legal_length(64);
};

};
‘>

Methods are not executed until they
Are invoked

58

Extending Methods
<‘ struct meth{

m() is {
out(“This is…”);

};
};

extend meth{
m() is also{

out(“This is also”);
};

};

• extend meth{
m() is first{
out(“This is first”);

};
};
extend meth{

m() is only{
out(“This is only…”);

};
};

‘>

59

Conditional Actions

• if-then-else
– Syntax

• if bool-exp [then] {action;..}
[else if bool-exp [then] [action;…}
[else {action;…}];

Example
• <‘ struct test1{

a: int;
b: int;
meth1() is {

if a > b then {
print a,b;

} else {
print b,a;

};
};

};

60

• struct test2{
a_ok: bool;
b_ok: bool;
x: int;
y: int;
z: int;
meth2() is{
if a_ok{

print x;
} else if b_ok{

print y;
}

else {
print z;
};

};
};
‘>

61

Case Action
<‘ struct packet{

length: int;
};
struct temp{
packet1: packet;
meth() is {

case packet1.length{
64: {….};
[65..256]:{…};
default: {…};

};
};

};
‘>

For loop
<‘ struct temp{

a: int;
meth() is {
for i from 2 to 2*a do{//i is not needed to be

out(i); //declared
};

for i from 1 to 4 step 2 do{
out(i);

};

62

for i from 4 down to 2 step 2 do{
out(i);
};

};
};
‘>

For Each Loop

• <‘
extend sys{
do_it() is{
var numbers:={8;16;24};
for each in numbers{

print index;
print it;

};

63

• var sum: int;
for each(n) in numbers{

print index;
sum+=n;
print sum;

};
};

};
‘>

Other Constructs

• While
• Repeat
• Output Routines

– out
– Outf
– print
– do_print()

64

Events and Temporal
Expressions

Temporal Expressions

• Timing & Synchronization are important
when e and HDL processes communicate

• Temporal constructs are used to express
and specify properties which vary with
time

• Event Driven

65

Events

• Events define occurences of certain
activities in Specman or HDL (verilog)

• Events can be attached to temporal-
expressions (TEs)

• Can be unattached also
• An attached event is emitted when the TE

succeeds
• Syntax: event event-type [is [only] TE];

Examples
<‘ struct m_str{

event start_cnt;
//unattached event, event manually emitted
event top_clk is fall(‘~/top/r_clk’) @sim
//sim is the sampling event (remember call back)
event stop_cnt is {@start_cnt; [2]}@top_clk;
//emitted when start_cnt is followed by 2 top_clk
event clk is rise(‘~/top/cpu_clk’) @sim;
event sim_ready is change(‘~/top/ready’) @sim;

};
‘>

66

Event Emission

• Events can be emitted explicitly or
implicitly

• Use “emit” construct
• emit [struct-exp.]event-type;
• Does not consume time

Example with Emit

<‘ struct xmit_recv{
event rec_ev;
transmit() @sys.clk is{

wait cycle;//wait for the next emission
//of sys.clk event
emit rec_ev;
out(“Rec emitted”);
};

67

receive() @sys.clk is{
wait @rec_ev;//wait for the next rec_ev

//event, wait stops the TCM
//until the TE succeeds

out(“rec_ev occurred)”;
stop_run();
};

run() is also{
start transmit();//start two parallel processes
start receive();//at 0 simulation time
};

};
extend sys{

event clk is @sys.any;// Finest granularity of time
in Specman
xmtrcv_i: xmit_recv;

};

68

Redefinition
<‘struct m_str{

event m_str;
event top_clk is fall(‘~/top/r_clk’) @sim;
event stop_ct is {
@start_ct; [1]} @top_clk;

};
extend m_str{
event stop_ct is only {@start_ct; [3]}@top_clk;

};
‘>
Event stop_ct now redefined to specify an event which is implicitly

emitted when the event start_ct is followed by 3 occurences of the
event top_clk

Sampling Events

• Events are used to define sampling points
• The TEs are evaluated at these sampling

points
• The sampling period is the interval of time

from the emission of a sampling event to
the next time the sampling event is emitted

• All event emissions within the same
simulation time is “simultaneous”

69

Certain Points

• Thus we see that Q@R means “evaluate
Q every time the sampling event R is
emitted”

• Q@R is a success (at the event R) if Q
has been emitted since the previous
emission of R

• Sampling Period for the TE includes the
last occurence of the sampling event

An Example

Q

R

Q@R

R is the default sampling event of the TE R, but
it can be over-ridden

70

Temporal Expressions

<‘ struct m_str{
event a_event is rise(‘~/top/start’) @sim;
event b_event is rise(‘~/top/end’) @sim;
event clk is rise(‘~/top/clk’) @sim;
event unary_e is @b_event @clk;

//b_event is a temporal expression. unary_e
occurs at clk event when b_event occurs
in a sampling period

• event boolean_e is true(‘~/top/clear’==1)
@clk;

//Emit when TE is true at the rising edge
• event edgep_e is rise(‘~/top/a’==1) @clk;
//emit when the rise TE finds that a has gone

from 0 to 1 in the sampling period
//is fall and is change are also possible

71

Delay and Cycle

temp_oper_example() @clk is{
wait delay (10); //waits for 10 simulation

//time units
wait cycle; //waits for the next emission of

//clk
};

};

Sequence operators

• ; signifies a series of TEs over successive
emissions of a sampling event

• Each TE following a ; starts evaluating in
the sampling period, which comes after
which the preceding TE succeeded

• The sequence succeeds when the final
expression succeeds

• If any one misses, the sequence rolls back

72

Example for Sequences

qclk

ev_a

ev_b

ev_c

{@ev_a;@ev_b;@ev_c;}@qclk

Not & Fail Operators
• event ev_d is {not{@ev_a;@ev_b;@ev_b}@ev_c}@clk

– ev_d is emitted whenever there is an emission of ev_c which is
not preceded by a TE, which is generation of ev_a and 2
succesive generations of ev_b

• event ev_d is fail{@ev_b;@ev_c};
– ev_d is emitted if either of the following holds:

• Event ev_b does not occur in the first cycle
• ev_b succeeds in the first cycle, but ev_c is not emitted in the

second cycle

73

Not vs Fail
pclk

@ev_b

@ev_c

@ev_b
@ev_c

not{@ev_b;

@ev_c}

fail{@ev_b,
@ev_c}

Questions???

1. Can we express using the e-temporal
constructs Property 1 of the Arbiter?

1. LTL Statement: G[r1 => Xg1 Λ XXg1]

clk

r1

clk

74

A Possible Code

event clk is rise(‘~/top/clk’) @sim;
//Synchronize with DUV
event r1 is rise(‘~/top/req1’) @clk;
//sampling event is clk
event g10 is {@r1; [1]} @clk;
event g11 is {@g10;[2]} @clk;
event g1 is {g1 and g2}@clk;

Checking for Property1

event gi0 is rise(‘~/top/g1’)@clk;
event gi1 is fall(‘~/top/g1’)@clk;
event property1;
expect property1 is

@r1=>{@g1;[2];@g2}@clk;

75

Tutorial-3 (contd.)
• Write e-snipets to express and check properties 2 and 3

of our arbiter.

• Compare the code size of your procedural construction
with that using temporal constructs.

Appreciate why ‘e’ is yet another language.

• Think of scenarios or designs (at least one) in which
synchronization is important and try to express them
using e-codes

And Operator

• The temporal and succeeds when both
temporal expressions start evaluating in
the same sampling period and succeed in
the same sampling period.

76

Example
qclk

TE1

TE2

(TE1 and
TE2)@qclk

TE3

Or operator

• The or temporal operator succeeds when
either temporal expression succeeds. An
or operator creates a parallel evaluation
for each of its sub-expressions.

77

Example
qclk

TE1

TE2

TE3

(TE1 or
TE2)@clk

Fixed Repeat

• wait {@ev_a ; [3]*@ev_b; @ev_c} @clk;
--wait action proceeds after ev_a, three

successive occurrences of ev_b and ev_c

78

First Match Variable Repeat

• wait {@ev_a;
[0..2]*@ev_b;@ev_c}@pclk;

// proceeds after any one of the three
sequences:

1. {@ev_a;@ev_c}@pclk;
2. {@ev_a;@ev_b;@ev_c}@pclk;
3. {@ev_a;@ev_b;@ev_b;@ev_c}@pclk
They succeed on the first success of the TE

Contd.

• wait {[1..]*@ev_a; @ev_b}@pclk;
//proceeds after more than 1 events of ev_a,

followed by 1 event ev_b at the next pclk
event

• wait {[..3]*{@ev_a; @ev_b};@ev_c}@pclk;
//proceeds after between 0 and 3

occurrences of the sequence
{@ev_a;@ev_b}, followed by the emission
of ev_c at the next pclk event

79

True Match Variable Repeat

• They work on multiple occurrences of a TE
from a lower to upper bound. They
succeeds every time the TE holds.

event TE1 is {@reset; ~[3..5]} @pclk;
//succeeds three pclk cycles after reset,

again at four pclk cycles after reset, again
after five pclk cycles after reset

Eventually and Yield

• {@ev_c; @ev_a; eventually @ev_b}@pclk;
//TE succeeds when ev_c is followed by ev_a in

the next cycle, and then ev_b sometime later
// Used to indicate that the TE should succeed

some future time
• expect request => {[..99];@ack}@clk;
//The TE succeeds when ack is emitted after 1 to

100 cycles after request event, used for
checking

80

Best of Luck

Quiz 1 on 20.2.07
(Any Updates will be posted on

the web-page)

