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Introduction

Fundamental Problem is to find out 
whether two Boolean Functions are 
functionally equivalent
Are the following expressions 
equivalent?

y=(~a)c+b(~c)+a(~b)
y=a(~c)+(~b)c+(~a)b

They are equivalent…
The forms are not therefore 
canonical



Checking Equivalence 
is NP-complete

Expand the combinational function 
in minterm form and compare them 
term by term.
Property: Two equivalent functions 
have identical minterm expressions. 
This property is known as canonicity 
of representation.
But runs into exponential size.



So, we require Compactness

But also canonicity is necessary. 
As logical equivalence is a NP-complete 
problem, all canonical representations are 
exponential in the worst case.
However if for all practical purposes, if 
the size is reasonable (manageable with 
our present day computation power) we 
are happy!
So, various techniques have been 
proposed for various kinds of functions: 
like BDDs for Boolean functions; An 
alternative technique is called SAT.



Binary Decision Diagrams

Defn: A BDD is a directed acyclic 
graph (DAG) that represents a 
Boolean function.
A node in the BDD is associated 
with a Boolean variable and has 2 
outgoing edges 



A Pictorial Description

xi

1-node 0-node

y z

f=xiy+(~xi)z



Functions from BDDs

f=ab+a(~b)c+(~a)(~b)d+a(~b)c
// From the on-set: paths which lead to 1

~f=(~a)(~b)(~d)+a(~b)(~c)+(~a)b(~c)
//From the off-set: path which leads to 0

Using DeMorgan’s laws, 
f=(a+b+d)(~a+b+c)(a+(~b)+c)



A top down recursive algorithm

Compute BDDFunction(x)
Input: a BDD
Output: the Boolean function 
represented by the BDD, 

1. x=root of BDD
2. If x is a constant, return the constant
3. Let y and z be the 1-node and the 0-node 

respectively of x
4. Return 

xBDDFunction(y)+(~x)BDDFunction(z)



Ordered BDDs (OBDDs)
Compute the Boolean Functions of the 
following BDDs:

They are identical=> Ordering is important for canonicity

OBDD is a BDD with variables, that conform to an order.

Ordering x<y means that in any path in the OBDD, y is child of x



Still not unique

Example: Same ordering but 
different DDs for the same function: 

y=ab+a(~b)c+(~a)bc+(~a)(~b)d
y=ab+a(~b)c+(~a)bc+(~a)(~b)d

Why two c nodes?



Merge

Merge: Merge nodes A and B, if 
they have the same 0-node and 1-
node



Eliminate

Eliminate a node with two edges 
pointing to the same node



Canonicity of ROBDD

Theorem: Two Boolean Functions 
are equivalent iff their reduced 
OBDDs (ROBDD) are identical with 
respect to any variable ordering



Operations on BDDs
Construction of BDDs: 

Shannon’s expansion: any function can 
be expressed in the form: 
f=xfx+(~x)f(~x)

Corresponds to a BDD with node x, 
with 1-edge pointing to fx and 0-edge 
pointing to f(~x)

Example: Construct the BDD for 
f=ab+(~b)c. Choose variable ordering 
a<b<c
Requires 2n cofactor function for n 
variable function=>Here 23 steps



Bottom Up approach
BDDs are built for a, b and c(3 
operations)
ApplyAnd/Not to build ab, ~b, ~bc
(3 operations)
ApplyOr to build f=ab+(~b)c (1 
operation)
Thus in total we have 7 operations 
inplace of 16 operations if we apply 
Shannons cofactor technique
All the Apply Operations are 
polynomial in the number of nodes.  



Incremental BDD construction

--- (dotted lines represent 0-nodes); solid lines
represent 1-nodes.



Reduction

Transforms a BDD into a ROBDD by 
applying recursively merge and 
eliminate 
Compexity is O(n), where n is size 
of BDD
Merge and eliminate are applied in 
the reverse ordering of the pre-
decided order.



Reduction

Direction of Reduction 

operation



Restriction

Set certain variables to set values
To restrict v to 1, simply direct all 
incoming edges to v to their 1-
nodes
To restrict v to 0, direct all incoming 
edges to v to their 0-nodes
Reduce the resultant BDDs
Clean up the BDD, by removing all 
nodes (except root) which does not 
have incoming edges.



Example

c=0 d=1 Reduce



Boolean Operations

As discussed we require Apply 
operations on BDDs, like AND, OR, 
etc
Construct the BDD X for y=ab+c
Construct the BDD for Applynot(X)
Just need to flip the leaf nodes.



The ITE operator

ITE(A,B,C)=AB+(~A)C
Any node in the BDD can be 
expressed using the operator.

xi

1-node 0-node

y z

f=xiy+(~xi)z

ITE(xi,y,z)



ITE operator encompasses all binary 
and unary operators



Compute ITE

ITE(A,B,C)=AB+(~A)C
=x(AB+(~A)C)x+(~x)(AB+(~A)C)(~x)

=x(AxBx+(~A)xCx)+(~x)(A(~x)B(~x)+(~A)(~x)
C(~x))

=ITE(x,ITE(Ax,Bx,Cx),ITE(A(~x),B(~x),C(~x)))



Recursive Approach

1. Generates the BDD recursively
2. Recursion stops for trivial cases
3. X=ITE(1,X,Y)=ITE(0,Y,X)=ITE(X,1,0)=ITE(Y,X,X)
4. 1=ITE(1,1,Y)=ITE(0,Y,1)=ITE(X,1,1)=ITE(Y,X,X)



Reduction while construction

Merge : Maintain a unique table, which 
remembers all the unique BDDs which 
have been generated. Indexed by the 
node and the 1-node and 0-node
When calls of ITE(Ax,Bx,Cx) and 
ITE(A(~x),B(~x),C(~x))) return, before ITE(A,B,C)=

(x,ITE(Ax,Bx,Cx),ITE(A(~x),B(~x),C(~x))) is created, 
we first check for the table for an entry with x 
node and the same 1 and 0 node.
If such a node exists, use it.



Eliminate

If then node is identical to else
node, no extra node is created.
We shall use ITE to compute Apply 
operations.
Dynamic programming can be 
handy.



ApplyOr(X,Y)

X+Y=ITE(X,1,Y)=(a,ITE(X.2,1,Y.2),ITE(X.3,1,Y.3))
ITE(X.3,1,Y.3)=(b,ITE(X.4,1,Y.3),ITE(X.6,1,Y.3))
ITE(X.6,1,Y.3)=ITE(0,1,Y.3)=Y.3//add Y.3 = c to table
ITE(X.4,1,Y.3)=(c,ITE(1,1,1),ITE(0,1,0))=(c,1,0)=Y.3 (already 
exists so return but donot create extra node => merge with 
previous instance)
ITE(X.2,1,Y.2)=(b,ITE(X.5,1,Y.5),ITE(X.6,1,Y.3))
ITE(X.6,1.Y.3)=Y.3 (already computed once)
ITE(X.5,1,Y.5)=1

c

1 0

b

a

b

1

Eliminate

Merge



Final BDD



Complexity

Maintain table entries with 
arguments
If previous query is made, do not 
recompute
Possible size of table to compute 
ITE(A,B,C) is O(|A||B||C|). 



Final Algorithm



Variable Ordering
Different variable ordering can cause 
drastic differences in BDD size.
Task of finding an optimal variable 
ordering for a function is hard (NP-hard).
Let us observe certain facts to help us in 
choosing the order. However these are 
heuristics, and so they do not guarantee 
an optimal solution. However they 
produce near optimal solutions or good 
results for most practical purposes.



Example

Build a BDD for 
(a1^a2)(b1^b2)(c1^c2)

Consider order:
Order I:  a1<a2<b1<b2<c1<c2

Order II: a1<b1<c1< a2<b2<c2



BDDs

Number of nodes in I is 11, while that in II is 23. Improper ordering can 
lead to explosion. 



Observation 1

Observe that in I, the values of a1
and a2 determine the result much 
quickly
When the variables are ordered 
together early that completely 
determine the value of the function, 
fewer nodes appear on the paths 
from BDD root to constant roots, 
and hence simpler BDDs result.



Size of BDD depends on height.

Intuitive Informal Proof: 
Size of BDD depends on height and width
Width of BDD may be defined as the number of 
paths from root to constant nodes. 
Height of BDD is the average number of nodes 
from root to constant nodes.
But each nodes lead to 2 paths.
So, with the number of nodes, the number of 
paths also increase=> width depends on 
height
So, size is determined by the height of BDD.



First Point

A good variable ordering should 
have the property that as variables 
are evaluated one by one in the 
order, the function value is decided 
with fewer number of variables.
In such a case the number of nodes 
will be less in a path of the BDD, 
thus the height will be less and so 
the size of the BDD.



Observation 2

Node sharing reduces the size of the 
BDD.
f=ma+[m(~a)+(~m)a][b(~c)+(~b)c]
Note that the values of 
successor of b are 
independent of the 

values of the its predessors.
So, b can be shared. 

m

a a

c c

10 0

1 b 0



Point 2

The more independent the 
successors and the predecessors 
are in a variable ordering, more the 
chance for sharing. This results in 
smaller BDDs.
A good variable ordering groups 
interdependent variables closer 
together.



Ordering from a circuit

LEVELS3e
3d
3c
4b

1a

Suggested Order:
a<c<d<e<b



Heuristics

Order first variables whose distance 
is less from the output (that is 
those that are closer to the output 
are placed early in the order). Why?
Order the primary input variables 
such that the intermediate node 
values are determined as soon as 
possible.



Dynamic Variable Ordering
Relevant when choosing ordering while 
compositing BDDs.
Compose f, g and h
Static algorithm: Decide the ordering of 
the variables in f, g and h before-hand
Dynamic algorithm: 

Choose the ordering for f, g and h.
While composing say f and g, as the BDD 
size crosses a thresh-hold, perform a   
change in the variable ordering and check.
Greedy Algorithms may be effective.



Swapping of two adjacent BDD 
variables

Reduction is necessary to maintain local canonicity.



A Heuristic Algorithm: 
Using Swap

Any variable ordering can be 
obtained by swapping.
However no known guidance exists.
A possible heuristics: 

Develop an ordering
Choose a variable 
A shifting algorithm moves a selected 
variable to all possible positions and 
chooses the one with the smallest BDD 
size.



Functions and BDD sizes

There are some functions whose 
size is always exponential in the no 
of input variables: eg multipliers.
There are some functions whose 
size is always polynomial in the no 
of input variables: eg symmetric 
functions

f(a,b,d)=a(~b)(~d)+(~a)b(~d)+(~a)(
~b)d

But most functions are dramatically 
sensitive to variable ordering.



Binary Moment Diagrams (BMD)

Bn R
Treats boolean variables as integer 
variables restricted to 0 or 1.
Non-terminal nodes have the 
interpretation that if the 1-edge is taken, 
the variable of the node is included, else 
excluded.
A path from the root to a leaf node 
represents a term in the polynomial by 
multiplying the value of the leaf node and 
all included variables along the path.



An example

f(a,b,c)=5(1-a)(1-b)(1-c)+4(1-a)b(1-c)+5a(1-
b)(1-c)+5ab(1-c)+7(1-a)(1-b)c+4(1-
a)bc+7a(1-b)c+6abc=-b+ab+2c-2bc+abc+5



BMD 

Reduction

f(a,b,c)=abc+ab-2bc-b+2c+5

Reduction rules:
1. If the 1-edge points to 0, remove the node and redirect the incoming
edges to its 0-node
2. All isomorphic subgraphs are merged.   



Boolean Satisfiability

Alternative to BDD in checking 
equivalence
The problem of Boolean 
Satisfiability decides whether a 
Boolean formula has an assignment 
of variables such that the 
expression evaluates to 1.



Relation with Equivalence Checking

Can be translated into SAT problem 
by xoring 2 functions, f and g

d=f ^ g

If expression d is satisfiable, then f 
and g are not equivalent.

Otherwise they are equivalent. 



The SAT problem

Expression in boolean satisfiability is in 
CNF form (POS)
A sum is called clause.
If each clause of the CNF form has atmost
2 variables, then the problem is called 2-
SAT (polynomial time solution exists).
If it has more than 3 variables, 3-SAT 
(NP-complete)
Satisfiability of any Boolean function can 
be reduced to a 3-SAT problem in 
polynomial time. 



Example

f(a,b,c)=(a+b+c)(~a+b+(~c))(a+(
~b)+(~c)) 
((~a)+(~b)+(~c))((~a)+(~b)+c)
a=1, b=1, c=0=> fails
a=1, c=0, b=0=> satisfied
Worst case all 23=8 assignments 
need to be checked
We present 2 algorithms to solve 
SAT problems.



Resolvent Algorithm

Prove that:
f=(x+A)(~x+B)=(x+A)(~x+B)(A+B)
f=xC+(~x)D=xC+(~x)C+CD

A and B are the sum of literals. C 
and D are the product of literals.
A+B is called the resolvent of (x+A) 
& (~x+D) [useful for Conjunctions]
CD is called the concensus of xC
and ~xD
[useful for Dijunctions]



Result

A+B is satisfiable iff (x+A)(~x+B) is 
satisfiable.
Proof: (A+B) is satisfiable=>A,B or 
both are satisfiable. Let A be so. 
From identity, if x=0, LHS=A, and 
hence is satisfiable.
If B is satisfiable let x=1=>LHS=B 
and hence is also satisfiable. 



Let (x+A)(~x+B) be satisfiable=> x is 
either 0 or 1. 
Let x=0, LHS=A. So, A is satisfiable and 
thus A+B. 
If x=1, LHS=B. So, B is satisfiable and 
thus is A+B. 
QED. 
Caution: Solution for A+B does not 
necessarily satisfy (x+A)(~x+B). It only 
reduces the problem complexity by 1 
variable.



Extension to more than 2 clauses

(x+A)(~x+B)(x+C)(~x+D) is satisfiable
iff (A+B)(A+D)(B+C)(C+D) is so. 
(a+b)(~a+b), b is unate and a is binate
Straight Forward cases appearing while 
resolving :

Unate variable or pure literal rule:
b=1 (assign values so that the clauses which 
has the unate variable becomes 1).

Unit clause rule: 
(a+b+c)(~b)(b+(~c)+d)=>b=0.



Example
Determine the 
satisfiability of 

f(a,b,c)=(a+b+c)(~a+
b+
(~c))(a+(~b)+(~c))

(~a+(~b)+(~c))(~a+(~b
)+c)

Resolving over a => 
Expression is satisfiable
iff (~b+(~c)) is 
satisfiable. Since it is so, 
so is the expression.

a=0, b=0, c=0 satisfies 
(~b+(~c)) but does not 
satisfy the expression. Technique though elegant cannot be applied 

for larger examples as it has to handle 
exponential number of terms.



Search Based Algorithm



Algorithm



Select_branch : Choose the branch 
such that the chosen assignment 
has a high probability to satisfy the 
expression. 
Example: choose the variable 
which has larger number of literals 
in the remaining unsatisfied clause.
Infer: After substituting the 
assigned values, we apply pure 
literal rule and unit clause rules 
(already discussed).



Back_track: 
Chronological backtracking : Go to the 
last variable
Nonchronological Backtracking: 
Reverse a previous variable 



Example

f=(a+b)(~a+b)(a+(~b)+c)(~a+(~c)+d)(~a+(~b
)+c)(~b+c+(~d))(a+(~d))(~d+e)(~d+e+f)(a+(
~e)+f)
~d and a each appear max times (4)
Assign d=0
After BCP: 
f=(a+b)(~a+b)(a+(~b)+c)(~a+(~c))(~a+(~b)+
c)(a+(~e)+f)
Now a and ~a, each highest count of 3. Choose a 
=1 => f=b(~c)(~b+c)
Pure literal rule: b=1, c=0…fails
Backtrack to last variable, a and make it 0. So, 
f=b(~b+c)(~e+f)
Choose b=1, c=1: obtain f=(~e+f)=>e=0.
Solution: d=0, a=0, b=1, c=1, e=0.



DD based Equivalence Checking

We have seen what is meant by 
equivalence checking.
Determine whether an RTL 
description is equivalent to its gate-
level description or timing optimized 
version. 
Derive the ROBDD from both the 
circuits
Because of canonicity of ROBDDs, 
the two circuits are equivalent iff
their ROBDDs are isomorphic.



Eq checking for seq. circuits

Correspondence of state bits
Equivalence of the 2 circuits reduce 
to checking equivalence of the next 
state function



Checking equivalence

Perform a xor operation between 
the two DDs.


