
Decision Diagrams
&
Equivalence Checking

--- Introduction to Formal V

Instructor : Debdeep Mukhopadhyay, CSE IIT Madras

Introduction

Fundamental Problem is to find out
whether two Boolean Functions are
functionally equivalent
Are the following expressions
equivalent?

y=(~a)c+b(~c)+a(~b)
y=a(~c)+(~b)c+(~a)b

They are equivalent…
The forms are not therefore
canonical

Checking Equivalence
is NP-complete

Expand the combinational function
in minterm form and compare them
term by term.
Property: Two equivalent functions
have identical minterm expressions.
This property is known as canonicity
of representation.
But runs into exponential size.

So, we require Compactness

But also canonicity is necessary.
As logical equivalence is a NP-complete
problem, all canonical representations are
exponential in the worst case.
However if for all practical purposes, if
the size is reasonable (manageable with
our present day computation power) we
are happy!
So, various techniques have been
proposed for various kinds of functions:
like BDDs for Boolean functions; An
alternative technique is called SAT.

Binary Decision Diagrams

Defn: A BDD is a directed acyclic
graph (DAG) that represents a
Boolean function.
A node in the BDD is associated
with a Boolean variable and has 2
outgoing edges

A Pictorial Description

xi

1-node 0-node

y z

f=xiy+(~xi)z

Functions from BDDs

f=ab+a(~b)c+(~a)(~b)d+a(~b)c
// From the on-set: paths which lead to 1

~f=(~a)(~b)(~d)+a(~b)(~c)+(~a)b(~c)
//From the off-set: path which leads to 0

Using DeMorgan’s laws,
f=(a+b+d)(~a+b+c)(a+(~b)+c)

A top down recursive algorithm

Compute BDDFunction(x)
Input: a BDD
Output: the Boolean function
represented by the BDD,

1. x=root of BDD
2. If x is a constant, return the constant
3. Let y and z be the 1-node and the 0-node

respectively of x
4. Return

xBDDFunction(y)+(~x)BDDFunction(z)

Ordered BDDs (OBDDs)
Compute the Boolean Functions of the
following BDDs:

They are identical=> Ordering is important for canonicity

OBDD is a BDD with variables, that conform to an order.

Ordering x<y means that in any path in the OBDD, y is child of x

Still not unique

Example: Same ordering but
different DDs for the same function:

y=ab+a(~b)c+(~a)bc+(~a)(~b)d
y=ab+a(~b)c+(~a)bc+(~a)(~b)d

Why two c nodes?

Merge

Merge: Merge nodes A and B, if
they have the same 0-node and 1-
node

Eliminate

Eliminate a node with two edges
pointing to the same node

Canonicity of ROBDD

Theorem: Two Boolean Functions
are equivalent iff their reduced
OBDDs (ROBDD) are identical with
respect to any variable ordering

Operations on BDDs
Construction of BDDs:

Shannon’s expansion: any function can
be expressed in the form:
f=xfx+(~x)f(~x)

Corresponds to a BDD with node x,
with 1-edge pointing to fx and 0-edge
pointing to f(~x)

Example: Construct the BDD for
f=ab+(~b)c. Choose variable ordering
a<b<c
Requires 2n cofactor function for n
variable function=>Here 23 steps

Bottom Up approach
BDDs are built for a, b and c(3
operations)
ApplyAnd/Not to build ab, ~b, ~bc
(3 operations)
ApplyOr to build f=ab+(~b)c (1
operation)
Thus in total we have 7 operations
inplace of 16 operations if we apply
Shannons cofactor technique
All the Apply Operations are
polynomial in the number of nodes.

Incremental BDD construction

--- (dotted lines represent 0-nodes); solid lines
represent 1-nodes.

Reduction

Transforms a BDD into a ROBDD by
applying recursively merge and
eliminate
Compexity is O(n), where n is size
of BDD
Merge and eliminate are applied in
the reverse ordering of the pre-
decided order.

Reduction

Direction of Reduction

operation

Restriction

Set certain variables to set values
To restrict v to 1, simply direct all
incoming edges to v to their 1-
nodes
To restrict v to 0, direct all incoming
edges to v to their 0-nodes
Reduce the resultant BDDs
Clean up the BDD, by removing all
nodes (except root) which does not
have incoming edges.

Example

c=0 d=1 Reduce

Boolean Operations

As discussed we require Apply
operations on BDDs, like AND, OR,
etc
Construct the BDD X for y=ab+c
Construct the BDD for Applynot(X)
Just need to flip the leaf nodes.

The ITE operator

ITE(A,B,C)=AB+(~A)C
Any node in the BDD can be
expressed using the operator.

xi

1-node 0-node

y z

f=xiy+(~xi)z

ITE(xi,y,z)

ITE operator encompasses all binary
and unary operators

Compute ITE

ITE(A,B,C)=AB+(~A)C
=x(AB+(~A)C)x+(~x)(AB+(~A)C)(~x)

=x(AxBx+(~A)xCx)+(~x)(A(~x)B(~x)+(~A)(~x)
C(~x))

=ITE(x,ITE(Ax,Bx,Cx),ITE(A(~x),B(~x),C(~x)))

Recursive Approach

1. Generates the BDD recursively
2. Recursion stops for trivial cases
3. X=ITE(1,X,Y)=ITE(0,Y,X)=ITE(X,1,0)=ITE(Y,X,X)
4. 1=ITE(1,1,Y)=ITE(0,Y,1)=ITE(X,1,1)=ITE(Y,X,X)

Reduction while construction

Merge : Maintain a unique table, which
remembers all the unique BDDs which
have been generated. Indexed by the
node and the 1-node and 0-node
When calls of ITE(Ax,Bx,Cx) and
ITE(A(~x),B(~x),C(~x))) return, before ITE(A,B,C)=

(x,ITE(Ax,Bx,Cx),ITE(A(~x),B(~x),C(~x))) is created,
we first check for the table for an entry with x
node and the same 1 and 0 node.
If such a node exists, use it.

Eliminate

If then node is identical to else
node, no extra node is created.
We shall use ITE to compute Apply
operations.
Dynamic programming can be
handy.

ApplyOr(X,Y)

X+Y=ITE(X,1,Y)=(a,ITE(X.2,1,Y.2),ITE(X.3,1,Y.3))
ITE(X.3,1,Y.3)=(b,ITE(X.4,1,Y.3),ITE(X.6,1,Y.3))
ITE(X.6,1,Y.3)=ITE(0,1,Y.3)=Y.3//add Y.3 = c to table
ITE(X.4,1,Y.3)=(c,ITE(1,1,1),ITE(0,1,0))=(c,1,0)=Y.3 (already
exists so return but donot create extra node => merge with
previous instance)
ITE(X.2,1,Y.2)=(b,ITE(X.5,1,Y.5),ITE(X.6,1,Y.3))
ITE(X.6,1.Y.3)=Y.3 (already computed once)
ITE(X.5,1,Y.5)=1

c

1 0

b

a

b

1

Eliminate

Merge

Final BDD

Complexity

Maintain table entries with
arguments
If previous query is made, do not
recompute
Possible size of table to compute
ITE(A,B,C) is O(|A||B||C|).

Final Algorithm

Variable Ordering
Different variable ordering can cause
drastic differences in BDD size.
Task of finding an optimal variable
ordering for a function is hard (NP-hard).
Let us observe certain facts to help us in
choosing the order. However these are
heuristics, and so they do not guarantee
an optimal solution. However they
produce near optimal solutions or good
results for most practical purposes.

Example

Build a BDD for
(a1^a2)(b1^b2)(c1^c2)

Consider order:
Order I: a1<a2<b1<b2<c1<c2

Order II: a1<b1<c1< a2<b2<c2

BDDs

Number of nodes in I is 11, while that in II is 23. Improper ordering can
lead to explosion.

Observation 1

Observe that in I, the values of a1
and a2 determine the result much
quickly
When the variables are ordered
together early that completely
determine the value of the function,
fewer nodes appear on the paths
from BDD root to constant roots,
and hence simpler BDDs result.

Size of BDD depends on height.

Intuitive Informal Proof:
Size of BDD depends on height and width
Width of BDD may be defined as the number of
paths from root to constant nodes.
Height of BDD is the average number of nodes
from root to constant nodes.
But each nodes lead to 2 paths.
So, with the number of nodes, the number of
paths also increase=> width depends on
height
So, size is determined by the height of BDD.

First Point

A good variable ordering should
have the property that as variables
are evaluated one by one in the
order, the function value is decided
with fewer number of variables.
In such a case the number of nodes
will be less in a path of the BDD,
thus the height will be less and so
the size of the BDD.

Observation 2

Node sharing reduces the size of the
BDD.
f=ma+[m(~a)+(~m)a][b(~c)+(~b)c]
Note that the values of
successor of b are
independent of the

values of the its predessors.
So, b can be shared.

m

a a

c c

10 0

1 b 0

Point 2

The more independent the
successors and the predecessors
are in a variable ordering, more the
chance for sharing. This results in
smaller BDDs.
A good variable ordering groups
interdependent variables closer
together.

Ordering from a circuit

LEVELS3e
3d
3c
4b

1a

Suggested Order:
a<c<d<e<b

Heuristics

Order first variables whose distance
is less from the output (that is
those that are closer to the output
are placed early in the order). Why?
Order the primary input variables
such that the intermediate node
values are determined as soon as
possible.

Dynamic Variable Ordering
Relevant when choosing ordering while
compositing BDDs.
Compose f, g and h
Static algorithm: Decide the ordering of
the variables in f, g and h before-hand
Dynamic algorithm:

Choose the ordering for f, g and h.
While composing say f and g, as the BDD
size crosses a thresh-hold, perform a
change in the variable ordering and check.
Greedy Algorithms may be effective.

Swapping of two adjacent BDD
variables

Reduction is necessary to maintain local canonicity.

A Heuristic Algorithm:
Using Swap

Any variable ordering can be
obtained by swapping.
However no known guidance exists.
A possible heuristics:

Develop an ordering
Choose a variable
A shifting algorithm moves a selected
variable to all possible positions and
chooses the one with the smallest BDD
size.

Functions and BDD sizes

There are some functions whose
size is always exponential in the no
of input variables: eg multipliers.
There are some functions whose
size is always polynomial in the no
of input variables: eg symmetric
functions

f(a,b,d)=a(~b)(~d)+(~a)b(~d)+(~a)(
~b)d

But most functions are dramatically
sensitive to variable ordering.

Binary Moment Diagrams (BMD)

Bn R
Treats boolean variables as integer
variables restricted to 0 or 1.
Non-terminal nodes have the
interpretation that if the 1-edge is taken,
the variable of the node is included, else
excluded.
A path from the root to a leaf node
represents a term in the polynomial by
multiplying the value of the leaf node and
all included variables along the path.

An example

f(a,b,c)=5(1-a)(1-b)(1-c)+4(1-a)b(1-c)+5a(1-
b)(1-c)+5ab(1-c)+7(1-a)(1-b)c+4(1-
a)bc+7a(1-b)c+6abc=-b+ab+2c-2bc+abc+5

BMD

Reduction

f(a,b,c)=abc+ab-2bc-b+2c+5

Reduction rules:
1. If the 1-edge points to 0, remove the node and redirect the incoming
edges to its 0-node
2. All isomorphic subgraphs are merged.

Boolean Satisfiability

Alternative to BDD in checking
equivalence
The problem of Boolean
Satisfiability decides whether a
Boolean formula has an assignment
of variables such that the
expression evaluates to 1.

Relation with Equivalence Checking

Can be translated into SAT problem
by xoring 2 functions, f and g

d=f ^ g

If expression d is satisfiable, then f
and g are not equivalent.

Otherwise they are equivalent.

The SAT problem

Expression in boolean satisfiability is in
CNF form (POS)
A sum is called clause.
If each clause of the CNF form has atmost
2 variables, then the problem is called 2-
SAT (polynomial time solution exists).
If it has more than 3 variables, 3-SAT
(NP-complete)
Satisfiability of any Boolean function can
be reduced to a 3-SAT problem in
polynomial time.

Example

f(a,b,c)=(a+b+c)(~a+b+(~c))(a+(
~b)+(~c))
((~a)+(~b)+(~c))((~a)+(~b)+c)
a=1, b=1, c=0=> fails
a=1, c=0, b=0=> satisfied
Worst case all 23=8 assignments
need to be checked
We present 2 algorithms to solve
SAT problems.

Resolvent Algorithm

Prove that:
f=(x+A)(~x+B)=(x+A)(~x+B)(A+B)
f=xC+(~x)D=xC+(~x)C+CD

A and B are the sum of literals. C
and D are the product of literals.
A+B is called the resolvent of (x+A)
& (~x+D) [useful for Conjunctions]
CD is called the concensus of xC
and ~xD
[useful for Dijunctions]

Result

A+B is satisfiable iff (x+A)(~x+B) is
satisfiable.
Proof: (A+B) is satisfiable=>A,B or
both are satisfiable. Let A be so.
From identity, if x=0, LHS=A, and
hence is satisfiable.
If B is satisfiable let x=1=>LHS=B
and hence is also satisfiable.

Let (x+A)(~x+B) be satisfiable=> x is
either 0 or 1.
Let x=0, LHS=A. So, A is satisfiable and
thus A+B.
If x=1, LHS=B. So, B is satisfiable and
thus is A+B.
QED.
Caution: Solution for A+B does not
necessarily satisfy (x+A)(~x+B). It only
reduces the problem complexity by 1
variable.

Extension to more than 2 clauses

(x+A)(~x+B)(x+C)(~x+D) is satisfiable
iff (A+B)(A+D)(B+C)(C+D) is so.
(a+b)(~a+b), b is unate and a is binate
Straight Forward cases appearing while
resolving :

Unate variable or pure literal rule:
b=1 (assign values so that the clauses which
has the unate variable becomes 1).

Unit clause rule:
(a+b+c)(~b)(b+(~c)+d)=>b=0.

Example
Determine the
satisfiability of

f(a,b,c)=(a+b+c)(~a+
b+
(~c))(a+(~b)+(~c))

(~a+(~b)+(~c))(~a+(~b
)+c)

Resolving over a =>
Expression is satisfiable
iff (~b+(~c)) is
satisfiable. Since it is so,
so is the expression.

a=0, b=0, c=0 satisfies
(~b+(~c)) but does not
satisfy the expression. Technique though elegant cannot be applied

for larger examples as it has to handle
exponential number of terms.

Search Based Algorithm

Algorithm

Select_branch : Choose the branch
such that the chosen assignment
has a high probability to satisfy the
expression.
Example: choose the variable
which has larger number of literals
in the remaining unsatisfied clause.
Infer: After substituting the
assigned values, we apply pure
literal rule and unit clause rules
(already discussed).

Back_track:
Chronological backtracking : Go to the
last variable
Nonchronological Backtracking:
Reverse a previous variable

Example

f=(a+b)(~a+b)(a+(~b)+c)(~a+(~c)+d)(~a+(~b
)+c)(~b+c+(~d))(a+(~d))(~d+e)(~d+e+f)(a+(
~e)+f)
~d and a each appear max times (4)
Assign d=0
After BCP:
f=(a+b)(~a+b)(a+(~b)+c)(~a+(~c))(~a+(~b)+
c)(a+(~e)+f)
Now a and ~a, each highest count of 3. Choose a
=1 => f=b(~c)(~b+c)
Pure literal rule: b=1, c=0…fails
Backtrack to last variable, a and make it 0. So,
f=b(~b+c)(~e+f)
Choose b=1, c=1: obtain f=(~e+f)=>e=0.
Solution: d=0, a=0, b=1, c=1, e=0.

DD based Equivalence Checking

We have seen what is meant by
equivalence checking.
Determine whether an RTL
description is equivalent to its gate-
level description or timing optimized
version.
Derive the ROBDD from both the
circuits
Because of canonicity of ROBDDs,
the two circuits are equivalent iff
their ROBDDs are isomorphic.

Eq checking for seq. circuits

Correspondence of state bits
Equivalence of the 2 circuits reduce
to checking equivalence of the next
state function

Checking equivalence

Perform a xor operation between
the two DDs.

