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Advanced Concepts in 
Simulation Based Verification

Topics planned to be covered

• Test Bench Organization and Design

• Test Scenarios, Assertions and Coverage
– Checking and Coverage Analysis in relation to 

Specman
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Test Bench Organization 
& Design

-- Simulation Based Verification is 
all about writing proper 

test-benches

Components of a test-bench

Initialization Input 
Stimuli

Response 
Assessment

Verification
Utility

Clock Gen
& Sync

Interface

DUV
The best of verification 
engineers shall use a large 
number of languages for 
modeling various aspect…

We know e, verilog, C, 
C++…
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How to invoke verilog
from e

Using HDL Tasks and Functions

• In TCMs, it is possible to call HDL tasks 
and functions directly from e code

• Useful because some codes are better 
written in certain languages

• We wish to use the best of all…
• From industry’s point of view, there are 

some legacy codes in verilog, C/C++ 
which are tested and hence are proven
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Bus Functional Models
(One Such Case)

Bus Functional Models

• Encapsulates detailed operations among 
the test-bench and the device under 
verification as high level procedures

• High level bus instructions, instead of bit 
patterns, are issued

• Instructions are translated into lower level 
bit values and applied to the design

• Interactions between the test-bench and 
the DUT are at the transaction level
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BFM (contd..)

• Create a wrapper that enables the device 
to receive and send bus commands, and 
the wrapper disassembles/assembles the 
commands to/from bits

• Wrapper is called an interpreter or 
transactor

• Verification environment becomes easy to 
maintain

Components and Structures

commands/ transactions

CPU

read  write statusTransactors

Memory

read  write status
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Memory read/write Timing Diagram
Addr

~CS

~READ

~WE

Data

ta

td tr ta tds

Transactors using Verilog Task 
• task read_memory;

input [31:0] in_address;
output [31:0] out_data;
begin

addresstemp <= in_address;
CS<=1’b0;
#`ta READ <= 1’b0;
#’td out_data <= data;
#’tr READ <= 1’b1;
CS <= 1’b1;

end
endtask
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Transactors using Verilog Task
• task write_memory;

input [31:0] in_address;
input [31:0] in_data;
begin

addresstemp <= in_address;
CS<=1’b0;
#`ta WE <= 1’b0;
dataread <= in_data;
#’tds WE <= 1’b1;
CS <= 1’b1;

end
endtask

The complete BFM
module memory_BFM(address,data);
input [31:0] address;
inout [31:0] data; reg[31:0] dataread, addresstemp;
memory 

mem(.CS(CS),.read(READ),.WE(WE),.address(addresstemp),.data(data));
assign data = (READ?) out_data:dataread;// as inout is a wire…

task read_memory;
…
end task
task write_memory;
…
end task
endmodule
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Test-Bench in verilog
• module testbench;

memory_BFM mem(.address(address),.data(data));
always @(posedge clk) 
begin

mem.write_memory(addr,data);
@(posedge clk)
mem.write_memory(addr,data);
@(posedge clk)
mem.read(addr,data);

end
endmodule

Note, now the BFM has only 
Transaction-level entities like 

address and data

Specman & Verilog Tasks

e-code
(Call HDL tasks 
and functions 
directly from 

e-code)  

BFM1

task read

task write

BFM2

task send

task ack

DUV
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Verilog Task through e
<‘ struct mem_w{

addr: int;
data: int(bits: 32);

};
unit receiver{

verilog task ‘top.write_mem’(addr:32:in,data:32:out);
put_mem(mw:mem_w) @mem_write_enable is{

‘top.write_mem’(mw.addr,mw.data);
};

};
‘> See for “verilog function”…Page 162, Palnitkar’s Book

Initialization

• All good circuits should initialize after 
power on

• However it is required to maintain 
separate initialization constructs in the 
test-bench, as:
– Simulation starting from its legal state shall 

take a lot of time
– Simulation emulates an exceptional condition 

that the normal sequence starting from the 
legal initial state will not reach.
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Initialization

• Hard coding initialization blocks in the test-
bench is not a good practice, instead 
describe methods
– initialize(…);

• Do not embed the test-bench initialization 
block into the DUT

Sometimes using verilog and PLI 
test-benches s can be handy

• Reasons:
– File Management ($readmemh) 
– PLI supports efficient searching for state elements and memory, and initalize

them
– void initialize_flipflop( ){

db=fopen(“database”,”r”);
module=acc_fetch_by_name(“my design”);
cell=NULL;
while(cell=acc_next_cell(module,cell){

if(cell is sequential){
port=acc_next_port(cell,port);
if(port is output){

get_init_value(db,port,&value);
acc_set_value(port,&value,&delay);

}
}

}
}
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Integrating the testbenches

e-code 
Test-bench

verilog test-bench
(with tasks) PLI C-code

Data Files

Clock Generation Module

• In Specman we have seen examples of 
generating clock 

• A circuit may have multiple clock domains
• Generate them independently, if they are 

so
• Write Clock Multipliers and dividers 

separately 
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Clock Dividers

• i=i%N; //Divide by N
if(i==0) derived_clock=~derived_clock;
i=i+1;
(This is not the best way to divide in 
hardware, but for test-benches it is more 
compact and without any hardware 
components)

Clock Multipliers(verilog)

• always @(posedge base_clk) 
begin //if N is known before hand
repeat (2N) clock = #(period/(2N)) ~clock;
end

• forever clock = #(period/(2N)) ~clock;
//if N is not known before hand
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Lab exercise

• Write an e module to call a verilog task to 
generate three clocks: Clock 1, 2 and 3. 
We do it so that, Clock 2 is a divided by 2 
and Clock 3 is a multiplied by 2 clock…

Modelling Jitter

• Jitter is a common phenomenon in digital 
design, we may need to verify in such an 
environment

• Verilog Modelling:
– initial clock1=1’b0;

always clock1 = #1 ~clock1;
jitter=$random(seed) % RANGE;
assign clock1_jittered= #(jitter) clock1;

How can we model jitter in ‘e’?
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Clock Synchronization 

• Independent waveforms should be first 
synchronized for various reasons

• always (fast_clock)
clock_synchronized<=clock1

//fast clock is the fastest clock in the design

Clock Generator Network

Primary 
Clock

Source

Random 
Frequency

Phase
(jitters etc)

Multiplier

Divider

Phase Shifter

Clock
distributor
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Stimulus Generation

• Synchronous  Stimuli

Stimuli Memory Input Vector

Design

Corresponding Code in Verilog
• reg [M:0] input_vectors [N:0];

reg [M:0] vector;
initial begin
$load_memory (input_vectors,”stim_file”);
i=0;

end
always @(posedge stimulus_clock)
begin

if(apply_input==TRUE) begin
vector = input_vectors[i];
design.address<=vector[31:0];
…
design.address<=vector[M:M-31];

end
end
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Asynchronous Generation
• always 

begin
@(ready1 or ready2)
arm = ready1 | ready2;

end
always @(negedge arm)
begin
transmit_data();

end

ready1

ready2

arm

data

Self Checking Codes

• Dumping signals and comparing with 
golden responses slow down the 
simulation process

• Checking is moved to the test-bench, so 
that signals are monitored and compared 
against, continuously

• Technique is called self-checking
• Consists of two parts: detection and alert
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Self-checking test-bench structure

Is Monitored signal equal to expected 
Behavior ? 

Error tracing information

Alert component

Detection Component

Self-checking code

no yes

Example of a self-checking 
test-bench for a Multiplier 

multiplier inst(.in1(mult1),.in2(mult2),.prod(prod));
---------------------------------------------
expected = mult1 * mult2;
---------------------------------------------
if(expected != prod)
begin
$display(“ERROR: incorrect product”);
print the exception values…

end
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Co-Simulation

Model
simulaton

Error 
handler

initializer

Model
simulaton

synhronizer

comparator

Error 
handler

Stimulus 

DataBase

Co-simulation (contd.)

• Assume that DUV is a microprocessor and the 
reference model is instruction level accurate

• After both models are initialized, the RTL model 
is started with the reset signal

• Reference model also simulates off its memory
• Then they resynchronize after each instruction 

(instruction level accurate)
• Exchange signals like instruction_retired
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Re-synchronization
• When the instruction_retired signal rises, the RTL model 

blocks and passes the register values and memory to 
the ref. model for comparison (call back in ‘e’)

• always @(instruction_retired)
begin
if(instruction_retired)

begin
halt_simulation;
$pass_states_for_comparison;
resume_simulation;

end
end

An Implementation

• A Sample Implementation can be through 
semaphores

Reference Model 
Thread

RTL Model 
Thread

Comparison 
Thread
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An Implementation
• //reference model thread

• void execute_instructions()
{ 

done=0;
while(!done){

next_pc(&pc);
execute_instr(pc);
sem_incr(&ref_comp);
sem_wait(&ref_resume);
}

}

• //RTL model thread

• void pass_states_for_compare()
{

…
instruction_thread = tf_get(1);
gr1=tf_get(2);
…
sem_incr(&rtl_comp);
sem_wait(&rtl_resume);
}

• // comparator thread

• void compare_thread()
{

sem-wait(&rtl_comp);
sem_wait(&ref_comp);

if(!errors){
sem_incr(&rtl_resume);

sem_incr(&ref_resume);
}

else //handle errors
}

Checking Temporal Expressions

• Timing verification requires to express 
timing requirements in terms of clock 
cycles (synchronous) and absolute time 
intervals (asynchronous)

• Ex: 
– Out must rise between second and third clock 

cycles after the lowering of both in_a and in_b
– Out must rise between 2 and 3 ns after the 

lowering of both in_a and in_b
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Timing to be verified
Synchronous 

Timing
Asynchronous 

Timing

Lab Exercise

• Write the corresponding e-codes if the 
timing is synchronous (i.e 2 and 3 are 
clock cycles).
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Asynchronous Timing : 
Fork and Join

• condition = in_a & in_b;
…
@(posedge condition)
begin 

arrived=1’b0;
fork: chk_lower_lmt;

#2 disable chk_lower_lmt;
@(negedge out) arrived=1’b1;

join
if(arrived==1’b1) error(“lower lmt time is violated”);
end

Asynchronous Timing : 
Fork and Join

• condition = in_a & in_b;
…
@(posedge condition)
begin 

arrived=1’b0;
fork: chk_upper_lmt;

#6 disable chk_upper_lmt;
@(negedge out) begin 

arrived=1’b1;disable chk_upper_lmt; end
join

if(arrived !=1’b1) error(“upper lmt time is violated”);
end
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Checking for absence of 
Transitions

• @(negedge CS)
begin

fork: stable_address;
@(address[0] or address[1] or … address[31])
$error(“address changing while accessing”);
@(posedge CS)  disable stable_address;

join
end

Test Scenarios, Assertions 
and Coverage
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Verification Space

• When shall you say that a sequential 
circuit is completely verified?
– If all its reachable states are visited from an 

initial state and all transitions from that state 
are verified.

• If there is a sequential circuit with S states, 
and R is the number of possible inputs, 
then the number of input patterns is SR 

• So, that is not possible!
• So, our goal is to simulate the design over 

a well-selected subset of all inputs in a 
systematic manner, so that my level of 
confidence is also high

• So, we need metrics for coverage analysis
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How do we know when we have 
errors?

Checking the output response is not the best idea, because of 
latency problems (Why?). It is also possible that the error is not 
detected.

Assertions 

Relationships among test 
scenarios, assertions and coverage

Circuit

Test Scenarios, 
test plan

Monitor Assertions

Controllability Observability

Coverage
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Test Plan: Extracting Functionality 
from Architectural Specifications

• Represent a Digital System as a finite state 
machine:
– Q0: Initial States
– S: Valid Initial States
– I: Valid Inputs
– O: Valid Outputs

• X->Y|I: Transition from X to Y under valid input I
• X=>Y|I: Sequence of transitions from X to Y 

under application of consequent inputs
• Ω is a don’t care state

Generate 

• Prove that this covers the entire input and state 
space…

• Combine 5 and 6
• Combine 3 and 4, then with 2 and then with 1. 

|ΩΩ→Ω

|
1. | :  Design receives an invalid input

2. | :  Design is in an invalid state, how does it recover?

3. | :  Design starts in a valid state, goes to an invalid state (bug)
4. | :  Design beh

I

I

I

S

S S
S S

Ω

Ω

Ω→Ω
Ω→Ω

→Ω

→
→

0

0

aves as per the specifications
5. :  Design on power on enters into a valid initial state from any state

6. :  Design on power on enters into an invalid state (bug) 

Q

Q

Ω⇒

Ω⇒
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Example of a Disk Controller
• Generate test scenarios for a disk controller, 

using the state space approach.
• Architectural Specifications:

– A disk is partitioned into concentric circular strips 
called tracks and each track is further partitioned into 
sectors. 

– There are 6 types of registers: command, track, 
sector, data-out, data-in and status

– Commands can be Restore, Seek, Step-in, Step-out, 
Read(track and sector), Write(track and sector), 
Address, Interrupt 

Disk Controller
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Possible Test Scenarios

• Category 1: Give illegal inputs, like illegal 
address, consecutive data requests 
without a grant and see how the design 
responds.

• Category 2: Set the controller in an illegal 
state (may be an illegal op-code) and 
observe whether the controller detects and 
recovers from it.

Possible Test Scenarios
• Category 3: Assume that the controller is in a 

valid state, and attempt to drive it to an invalid 
state with valid inputs. For example, are there 
track or sector values for which the controller 
produces illegal pulses? 

• Category 4: Assume that the controller is in a 
valid state, apply valid inputs and see whether 
the controller goes to an invalid state. Apply the 
valid track and sector values and check whether 
the response signals are correct.
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Possible Test Scenarios

• Category 5: What are the register values 
when the device is powered on? Are they 
correct? 

• Category 6: Under what conditions will 
the controller enter an illegal state on 
power on? What input patterns could drive 
the design to abnormal conditions, like 
motor on is continuously on, on power-on?

Effective in creating the test-scenarios…

Writing Assertions
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Combinational & Sequential 
Assertions

• An assertion is combinational if all its 
terms are so; otherwise its sequential

• To code combinational assertions, only 
combinational logic is required

• To code sequential assertions, a FSM is 
required

• The time interval between the most past 
and the most future is known as the 
window of the expression

Signal Range

• always @(posedge clk)
begin

if((rdy_to_chk==1’b1)&&(‘LOWER > 
S||S>’UPPER’))

$display(…);//error
end
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Unknown Value

• Checking whether signal A is equal to x will not 
work, as none of the bits should be an unknown 
value.

• Trivial solution shall be to check each bit of A 
compared to 1’bx 

• Better solution is to use a reduction xor operator
• By defn of xor, if one of the bits is x, so is the 

output.
• if(^A==1’bx) $display(“Unknown value”);

One hot signals
• A signal is one-hot if exactly one of the bits is 1 at any 

time. 
• if(|(B & (B-’width’b1))!=1’b0)

$display(“Bus B is not one hot);
• Example: B=8’b00001000  //decimal 8

B-8’b1=8’b00000111 //decimal 7
B & (B-8’b1)=8’b00000000

• Workout an example where the input is not one hot
• 8’b0 is not one hot, but will bypass this test, so keep an 

additional check for this…
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Sequential Assertions

• Property: A gray coded signal changes exactly 
one bit at a time

• A = prev_S ^ S;
if(~((A==0)||(A & (A-1)))
$display(“….error…”);

• prev_S = curr_S; //at the pos. edge of clock
curr_S=S;

Circular Queue

always @(posedge clk)
begin

i=i+1 % (N+1);
CQ[i]=S;
j=(i-k>=0) ? i-k : i-k+N+1;
prev_k_S=CQ[j];

end
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Example
• If req is 1, ack goes high 3 cycles later, which causes req

to go low seven cycles later
• Using circular queue:

– Assertion: 
if(prev_10_req == 1’b1)
if(!(prev_7_ack==1’b1 && req == 1’b0))
$display(“assertion failed”);

always @(posedge clk) begin
i=(i+1)%11;
j1=(i-7>=0) ? i-7 : i-7+11;
j2=(i-10>=0)?i-10:i-10+11;
if(CQ_req[j2]==1’b1)

if(!(CQ_req[j1]==1’b1) && (req == 1’b0)) $display(“error”);
end

Assignments for Lab

• Write the e-code for the above assertion
– Using circular queue
– Using temporal expressions

(I am still waiting for Tutorial-3 !!!)



34

Unclocked Timing Assertions

• Ensure that S remains steady throughout the 
interval marked by events E1 and E2. The 
assertion is active when start signal is high.

• Two named blocks are created : one waiting on 
E1 and the other waiting on E2. If the assertion 
fails before E2 arrives an error is displayed and 
block for E2 is disabled. If E2 arrives before any 
failure then block for E1 is disabled.

Verilog Assertion
• always @(posedge start)

begin: check
@(E1);
@(S) $display(“Error”);

disable stop;
end
always @(posedge start)
begin: stop

@(E2); disable check;
end
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Possible Questions??

• Write the above code in e. (How can you 
disable tcm’s in e ?)

• A trivial solution can be to gate the trigger 
event of the tcm required to be disabled.

Container Assertions

• These assertions check the integrity of the data without knowing the 
exact values. Example, the cache data is unaltered from being filled to it 
being accessed, packet received is the same as that being sent…even 
though it has been processed. Can be quite efficiently implemented 
using ‘e’ because of the ‘push’ and ‘pop’ commands in ‘lists’…
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Coverage

3 Types of Coverage
1. Code Coverage: insight to how thoroughly the 

code is executed by simulation

2. Parameter Coverage: Reveals the extension 
that dimensions and parameters in functional 
units of a design are stressed

3. Functional Coverage: This accounts for the 
amount of operations features or functions in a 
design that are exercised 
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They are complementary

• Code and parameter coverage are with 
respect to an implementation and are thus 
are more easy to compute

• Functional Coverage is based on 
specification and hence are more objective 
but are difficult to compute

Example

• Consider a 64 bit adder wrongly designed 
as a 60 bit adder.   

• We can obtain 100 % code coverage and 
the design can still have a bug. 

• A parameter coverage shall be better. 
• But what if the carry does not propagate 

correctly? We require functional coverage.
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Code Coverage
• Statement Coverage: Collect Statistics 

about statements that are executed in a 
simulation.

Excluding the begin 
& end there are 10 lines

⇒Statement 
Coverage=80%

Block Coverage

• Coverage of some statements imply that 
of other statements.

BLOCKS

Coverage: 66.67%
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Path Coverage

• Measures the 
percentage of path 
exercised

• Path grows 
exponentially with the 
number of conditional 
statements

• If P1 is true, path 
coverage is 25%

Expression Coverage
• Sometimes the transition from a state to another 

depends on complicated expressions
• Question is how does the expression evaluate?
• Any complicated expression can be broken 

down in levels
• For example: (x1x2+x3x4) evaluating to 1, may 

be deeper investigated to see whether x1x2 or 
x3x4 or both evaluates to 1.

• Helps to guide test benches to exercise as many 
parts of the expression as possible
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Expression Coverage(contd.)

• Layer 1: E=y1 + y2;
• Layer 2: y1=x1x2, y2=x3x4

Minimum Input Table of an AND logic

Expression Coverage is the ratio of the cases exercised to the total number 
of cases possible (rows in the minimum input table)

State Coverage
• Calculates the number of states visited over the total 

number of states in a FSM.
• initial pres_state=‘S1;

always @(posedge clk)
case((pres_state,in))
(`S1,a) : next_state=`S3;
(`S2,a) : next_state=`S1;
(`S3,a) : next_state=`S2;
(`S1,b) : next_state=`S2;
(`S3,b) : next_state=`S3;

endcase

Simulation generates seq…a, b, a, b, …
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Transition Coverage

• Records the percentage of transitions 
traversed, and also the frequency.

• Missing Transition: What happens if the 
input is b at S2?

• In the above FSM, with the sequence of a, 
b, a, b, … the transition coverage is 33.3%

• Total number of transitions should be the 
total number of states multiplied by the 
number of possible inputs.

Sequence Coverage

• A state sequence is the sequence of 
states that the FSM traverses under an 
input sequence.

• Each design (specification) shall have 
some sequences defined as legal and 
some defined as illegal transitions.

• Provides information about which legal 
state sequences are traversed and which 
illegal sequences are encountered.
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Sequence Coverage

• For the previous run of a, b, a, b, …
the sequences are S1->S2 and S2->S1

• Legal Sequences: S1-> S2; S2->S1;     
S1->S3; S3->S2; S3->S3

• Sequence coverage is 40%
• State Coverage is 66.67%

Parameter Coverage

• Code Coverage is only a starting point
• An empty verification suite has 100% code 

coverage
• To gain further insight into operational 

correctness, parameter coverage is used 
to measure functional units.

• Lets consider an example of verifying a 
stack
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Stack

• Has depth…
• Verifying pop and push, verifies only a 

point in the operational space.
• Possible parameters: Stack depth
• Parameter coverage records the depths 

encountered throughout the simulation
• A good verification code should also check 

the full and empty conditions

Parameters & Equivalent checks

4 bit adder 4 bit adder 4 bit adder 4 bit adder

4 bit adder4 bit adder

4 bit adder
Equivalent 
tests

There are no known algos. to determine 
equivalent tests.
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Three queue, 2 server system

• Spec: Clients can arrive from any source & wait 
in the queue. Server retrieves request from the 
3 queues, if it is empty the server moves to the 
next. Can have a processing time varying from 
3 to 6 units, and depth is 7. 

• Parameters: Server status, Task processing 
time, maximum length of queue, mi

Parameter Coverage Matrix

• Set up monitors in the verification suite.
• 2 bits for server status
• Measure the time for processing, see if it was 

recorder before, if not record it.
• All possible lengths should be noted, for 

simplicity we store the maximum value.
• Compute the coverage.
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Functional coverage

Its Different

• Code Coverage & Parameter Coverage 
measures how much of the design has 
been measured;

• Functional Coverage measures how much 
of the design specification has been 
measured.
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Example

• Decoding of a CPU instruction may have 
separate case statements in the design

• Due to the combination of previously 
decoded values you may have a code 
coverage of 100%

• But the sequence of execution of a 
specific instruction might be incorrect: 
Should be trapped in Func. coverage

Points: its not a wonder drug!

• Relevant and Interesting cases must be 
manually defined

• Did I generate all the relevant cases (with 
respect to what I have said to be 
relevant)?

• Define what to sample: If you are 
interested say in the FIFO occupancy level 
what do you sample? Difference between 
pointers.
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Contd.

• Where to sample? Opcode of an 
instruction can be sampled at several 
paces: decoding unit, execution pipeline, 
program memory interface

• When to sample? Over sampling will make 
performance reductions. Under sampling 
means you can miss bugs. 

Cross & Transition Coverage
• Measures the presence or occurrence of 

combination of values.
• Need to be sampled at the same time.
• Only sample points within the same group can 

be crossed.
• Measures the n-dimensional space where each 

point is a vector with components being the 
covered items.

• Transition coverage measures the occurrence of 
sequence of values.
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100 % Functional Coverage

• …means you have covered all of the 
coverage points you have included in the 
simulation. 

• It makes no statement about the 
completeness of your functional coverage 
model.

One case for cache coherency 
protocol

• One interesting scenario: Two processors 
A and B, have two separate caches. When 
A initiates a read and registers a miss in 
the cache, it snoops Processor B and asks 
it to look in its cache. If it is not there, B 
confirms A and asks main memory to send 
the data to A.  Data is stored in the 
memory and marked as exclusive. 
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Monitor 

• Check whether its read request.
• If it so, check whether it is a hit in A’s 

cache.
• If no, check whether it is a hit in B’s cache.
• If no, emit an event that the scenario has 

occurred. 
• Check whether data is marked exclusive. 

Functional coverage 100 % will only ensure that the scenario I have told 
to be interesting has occurred. It will not check whether the scenario 
is correct or complete.

State Machine Coverage 
using Specman
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Code Taken from SNUG’03
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Observe:
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Bubble Diagram

Idle S1_S

S2_S

S3_s

S4_S

P1

P2

P3
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MISSING STATE: S3_S
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