Introduction to Model Checking

Debdeep Mukhopadhyay IIT Madras

How good can you fight bugs?

Comprising of three parts

- Formal Verification techniques consist of three parts:
- 1. A framework for modeling systems
 - some kind of specification language
- 2. A specification language
 - for describing the properties to be verified
- 3. A verification method
 - for establishing if the description of the system satisfies the specification

Proof-based verification

- The system description is a set of formula
 Γ in a suitable logic
- The specification is another formula φ
- The verification method is finding a proof that $\Gamma \models \varphi$
 - – means deduction
- It typically needs the user guidance and expertise

Model-based verification

- The system is represented by a model ${\ensuremath{\mathcal{M}}}$ for an appropriate logic
- The specification is again represented by a formula φ
- The verification method consist of
 computing whether a model *M* satisfies φ
 M satisfies φ : *M* ⊧ φ
- The computation is usually **automatic** for finite models

Degree of automation

• From fully automated to fully manual

Full-vs. property-verification

• The specification may describe a single property of the system, or it may describe its full behavior (expensive).

Intended domain of application

- Hardware, software
- Sequential, concurrent
- Reactive , terminating
 - Reactive: reacts to its environment, and is not meant to terminate (e.g. operating systems, embedded systems, computer hardware)

Pre- vs. post-development

• Verification is of greater advantage if introduced early in system development

Model checking

- Model checking is an automatic, modelbased, property-verification approach
- It is intended to be used for *concurrent* and *reactive* systems
 - The purpose of a reactive system is not necessarily to obtain a final result, but to maintain some interaction with its environment

Temporal Logic (cont.)

- In model checking:
 - The models ${\mathcal M}$ are transition systems
 - The properties φ are formulas in temporal logic
- Model checking steps:
 - 1. Model the system using the description language of a model checker : \mathcal{M}
 - 2. Code the property using the specification language of the model checker : φ
 - 3. Run the model checker with the inputs ${\cal M}$ and φ

Model checker based on satisfaction

Linear vs. Branching

- Linear-time logics think of time as a set of paths
 - path is a sequence of time instances
- Branching time logics represent time as a **tree**
 - it is rooted at the present moment and branches out into the future
- Many logics were suggested during last years that fit into one of above categories
- We study LTL in linear time logics and CTL in branching time logics

Linear vs. Branching (cont.)

- Linear Time
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- Branching Time
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)

Propositional Linear Temporal Logic

- Express properties of "Reactive Systems" – interactive, nonterminating
- For PLTL, a *model* is an infinite state sequence

$$\sigma = s_0, s_1, s_2 \dots$$

Temporal operators

- "Globally":
$$G p \text{ at } t \text{ iff } p \text{ for all } t' \ge t.$$

 $p p \quad p p \quad p p \quad p p p p p p p p \dots$
 $\overline{G p \dots}$

- "Until": p U q at t iff

• q for some $t' \ge t$ and

- "Next-time": X p at t iff p at t+1

Examples

- Liveness: "if input, then eventually output" $G \text{ (input } \Rightarrow F \text{ output)}$ f atomic props
- Strong fairness: "infinitely send implies infinitely recv."

$$GF send \implies GF recv$$

Recap: What is a model?

- Atoms: Atomic formulas (such as p. q, r, ...).
- These atoms stand for atomic facts which may be true for a system.
- e,g
 - Printer crypto-6 is working
 - Process encipher is suspended
 - Content of the register 'key' is the integer value 6

Model

- A Model is a transition system.
- A transition system M=(S,→,L) is a set of states S endowed with a transition relation → (a binary relation on S), such that every state s from S, has some successor state s' which is also from S. Thus s→s'
- Also associated with each state is a set of atomic propositions which are true at that state, described by a labeling function, L

Example

$$S = \{s_0, s_1, s_2\}$$

transitions = $s_0 \rightarrow s_1$, $s_1 \rightarrow s_1$, $s_2 \rightarrow s_1$, $s_2 \rightarrow$ s_0 , $s_0 \rightarrow s_2$ $L(s_0) = \{p,q\}$ $L(s_1) = \{q\}$ $L(s_2) = \{q,r\}$

N = noncritical, T = trying, C = critical

Propositional temporal logic

In Negation Normal Form

AP – a set of atomic propositions

Temporal operators:

Not Until ¬(pUq)

• Whenever q occurs there must be a nonoccurrence of p before.

Explanation

$$p \cup q \coloneqq \exists i [(\Pi^i \models q) \land (\forall j < i, \Pi^j \models p)]$$
$$\neg (p \cup q) \coloneqq \forall i [\neg (\Pi^i \models q) \lor (\exists j < i, \Pi^j \models \neg p)]$$
$$\coloneqq \forall i [(\Pi^i \models q) \Rightarrow (\exists j < i, \Pi^j \models \neg p)]$$

Some Finer Points on p U q

- Until demands that q does hold in some future state i,e Fq
- It does not say anything about what happens after q occurs
 - contrary to English Language: "I smoked until 22'
 - Means p='I smoke' was true till q='I am 22' became true.
 - Also after q='I am 22', p='I smoke' does not occur
 - In LTL, means $p U (G \neg p \land q)$

Two more terms

- Weak Until (pWq): Like pUq except q need not occur.
- Release (pRq): p is released by q. It means that q occurs entirely or it occurs till p occurs. Note than unlike until q occurs also at the time instant when p is asserted.

Operator precedence

- Unary operators including negation have strongest precedence
 - $-\neg p U q$ is parsed as $(\neg p) U q$ rather than $\neg (p U q)$
- Temporal binary operators have stronger precedence than non-temporal binary operators

 $-p \land q Ur$ is parsed as: $p \land (q Ur)$

- The precedence over propositional logic is as usual
 - First do the AND
 - then the ORs and XORs
 - finally the IMPLIES and EQUIVALENCEs.

More of Until

- What is not pUq?
- We have seen that.
- Here is another expression for that.

$$\neg (p \cup q) = \neg q \cup (\neg p \land \neg q) \lor G \neg q$$

Intuitive Explanation
$$(p \cup q) = \neg(\neg q \cup (\neg p \land \neg q)) \land Fq$$

- Fq is straight-forward
- Let q occur => Fq

Let t_3 be the first time interval when q is true.

Let us contradict the equation, that is pUq does not hold.

Then, there is a time instant $t=t_2$, when p=0. Obviously q=0, as $t_2 < t_3$

But by RHS, if $\neg(\neg q \cup (\neg p \land \neg q))$ then at time t=t₁, $\neg q=0 \Rightarrow q=1$

But, $t_1 < t_3$ and hence we have a violation that t_3 is the first time when q=1. Thus, there is a contradiction and pUq does hold. The equivalence follows.

Release

• Release R is dual of U; that is:

 $p \mathsf{R} q \equiv \neg (\neg p \mathsf{U} \neg q)$

p must remain true up to and including the moment when *q* becomes true (if there is one); *p* releases *q*

Thus, pRq= Gq V [q U (p \land q)] = \neg [F \neg q \land \neg (q U (p \land q)] = \neg [\neg p U \neg q]

Weak Until

- φ W ψ: Weak Until is related to the Until with the difference that it does not require that ψ is eventually hold
- Essentially φ W ψ is a short form for writing φ U $\psi \lor$ G φ

LTL satisfaction by a system

- Suppose $\mathcal{M} = (S, \rightarrow, L)$ is a model, $s \in S$, and φ an LTL formula
- We write $\mathcal{M}, s \models \varphi$ if for every execution path π of \mathcal{M} starting at s, we have $\pi \models \varphi$
- Sometimes \mathcal{M} , $s \models \varphi$ is abbreviated as $s \models \varphi$

Example

Practical patterns of specifications

- It is impossible to get to a state where started holds, but ready does not hold

 G¬(started ^¬ready)
- For any state, if a request occurs, then it will eventually be acknowledged

-G (requested \rightarrow F acknowledged)

 Whatever happens, a certain process will eventually be permanently deadlocked

- F G deadlock

Some practical patterns (cont.)

- A certain process is enabled <u>infinitely often</u> on every computation path
 - G F enabled
 - In other words, in a path of the system there must never be a point at which the condition enabled becomes false and stays false forever
- If a process is enabled infinitely often, then it runs infinitely often
 - -GF enabled $\rightarrow GF$ running

Practical patterns(contd.)

 An upwards travelling lift at the 2nd floor does not change its direction when it has passengers wishing to go to the 5th floor:

G(floor2 \land directionup \land ButtonPressed5 \rightarrow (directionup U floor5)

LTL weakness

- The features which assert the existence of a path are **not** (directly) expressible in LTL
- This problem can be solved by: checking whether all paths satisfy the negation of the required property
- A positive answer to this is a negative answer to our original question and vice versa.
- But properties which mix universal and existential path quantifiers cannot in general be expressed in LTL

LTL Weakness: Examples

- LTL cannot express these features:
 - From any state it is *possible* to get to a restart state (i.e., there is a path from all states to a state satisfying restart)
 - The lift *can* remain idle on the third floor with its door closed (i.e., from *all* states if there is path to a state in which it is on the third floor, *there is* a path along which it stays there)
- LTL cannot assert these because existential and universal logics are mixed.
- However, CTL can express these properties

Model checking example: Mutual exclusion

- The mutual exclusion problem (mutex)
 - Avoiding the simultaneous access to some kind of resources by the *critical sections* of concurrent processes
- The problem is to find a *protocol* for determining which process is allowed to enter its critical section

Expected Properties

- **Safety:** Only one process is in its critical section at any time.
- Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so.
- Non-blocking: A process can always request to enter its critical section.
- No strict sequencing: Processes need not enter their critical section in strict sequence.

Modeling mutex

- Consider each process to be either:
 - in its non-critical state n
 - trying to enter the critical section *t*
 - or in critical section *c*
- Each individual process has this cycle: $-n \rightarrow t \rightarrow c \rightarrow n \rightarrow t \rightarrow c \rightarrow n$...
- The processes phases are interleaved

2 process mutex

- The processes are asynchronous interleaved
 - one of the processes makes a transition while the other remains in its current state

Checking the properties

- Safety: G ¬(c₁ ∧ c₂)
 This formula is satisfied in all states
- Liveness: G $(t_1 \rightarrow F c_1)$
 - This formula is not satisfied in the initial state!

$$- S_0 \rightarrow S_1 \rightarrow S_3 \rightarrow S_7 \rightarrow S_1 \rightarrow S_3 \rightarrow S_7 \rightarrow \dots$$

Checking the properties

- Non-blocking:
 - Consider process 1.
 - We wish to check the following property:
 - for every states satisfying n₁ there exists a state which satisfies t₁
 - This property cannot be expressed in LTL

Checking the properties

- No strict sequencing:
 - Processes should not enter their critical section in a strict sequence.
 - There should be at least one path where strict sequencing does not hold
 - But LTL cannot express the logic there exists.
 - Instead not of there exists is for all.
 - Thus we can say that the following property s:
 - in all paths there is a strict sequencing
 - If the answer is no there is no strict sequence.

No Strict Sequencing

- c₁ and c₂ need not alternate
- Desired scenario:
 - Process 1 acquires critical section (c₁)
 - Process 1 releases the critical section $(\neg c_1)$
 - Process 2 does not enter the critical section $(\neg c_2)$
 - Process 1 regains access to the critical section (c₁)

No Strict Sequencing

There exists at least one path with no strict sequencing:

Or, in all paths there is strict sequencing:

Anytime we have c_1 state, the condn persists, or it ends with a non- c_1 state and in that case there is no further c_1 unless and until we obtain a c_2 state.

$$G[c_1 \to c_1 W(\neg c_1 \land \neg c_1 W c_2)]$$

Evaluation of the Protocol

Evaluation of the Protocol

No-strict sequencing

The SMV model checker

- New Symbolic Model Verifier
- Provides a language for describing the models.
- The properties are written as LTL (or CTL) formulas.
- It produces an output whether the specifications hold 'true', or a trace to show why the specification is false.