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How good can you fight bugs?



Comprising of three parts

• Formal Verification techniques consist of 
three parts:

1. A framework for modeling systems
– some kind of specification language

2. A specification language
– for describing the properties to be verified

3. A verification method
– for establishing if the description of the 

system satisfies the specification



Proof-based verification

• The system description is a set of formula 
Γ in a suitable logic

• The specification is another formula ϕ
• The verification method is finding a proof 

that  Γ├ ϕ
– ├ means deduction

• It typically needs the user guidance and 
expertise



Model-based verification 

• The system is represented by a model M
for an appropriate logic

• The specification is again represented by 
a formula ϕ

• The verification method consist of 
computing whether a model M satisfies ϕ
– M satisfies ϕ : M╞ ϕ

• The computation is usually automatic for 
finite models



Degree of automation

• From fully automated to fully manual



Full- vs. property-verification

• The specification may describe a single 
property of the system, or it may describe 
its full behavior (expensive).



Intended domain of application

• Hardware, software
• Sequential, concurrent
• Reactive , terminating

– Reactive: reacts to its environment, and is not 
meant to terminate (e.g. operating systems, 
embedded systems, computer hardware)



Pre- vs. post-development

• Verification is of greater advantage if 
introduced early in system development



Model checking

• Model checking is an automatic, model-
based, property-verification approach

• It is intended to be used for concurrent
and reactive systems
– The purpose of a reactive system is not 

necessarily to obtain a final result, but to 
maintain some interaction with its 
environment



Temporal Logic (cont.)
• In model checking:

– The models M are transition systems
– The properties φ are formulas in temporal 

logic
• Model checking steps:

1.  Model the system using the description 
language of a model checker : M

2.  Code the property using the specification 
language of the model checker : φ

3.  Run the model checker with the inputs M
and φ



Model checker based on 
satisfaction

M

Model
Checker

p → F q
yes

no

φ

Error Trace



Linear vs. Branching
• Linear-time logics think of time as a set of paths

– path is a sequence of time instances
• Branching time logics represent time as a tree

– it is rooted at the present moment and branches out 
into the future

• Many logics were suggested during last years that fit into 
one of above categories

• We study LTL in linear time logics and CTL in branching 
time logics



Linear vs. Branching (cont.)
• Linear Time

– Every moment has a 
unique successor

– Infinite sequences 
(words)

– Linear Time Temporal 
Logic (LTL)

• Branching Time
– Every moment has 

several successors
– Infinite tree
– Computation Tree 

Logic (CTL)



Propositional Linear Temporal 
Logic

• Express properties of “Reactive Systems”
– interactive, nonterminating

• For PLTL, a model is an infinite state 
sequence

…210 ,, sss=σ

• Temporal operators
– “Globally”:    G p at t iff p for all t’ ≥ t.

p p p p p p p p p p p...
G p...



Temporal operators...
– “Future”:    F p at t iff p for some t’ ≥ t.

p p p p p p
F p...

– “Until”:    p U q at t iff
• q for some t’ ≥ t  and
• p  in the range [ t, t’ )

p p p p p p

p U q...

p p p q

– “Next-time”:    X p at t iff p at t+1



Examples

• Liveness:  “if input, then eventually output”
G (input ⇒ F output)

• Strong fairness: “infinitely send implies 
infinitely recv.”

GF send  ⇒ GF recv

atomic props

infinitely often



Recap: What is a model?

• Atoms: Atomic formulas (such as p. q, r, 
…).

• These atoms stand for atomic facts which 
may be true for a system.

• e,g
– Printer crypto-6 is working
– Process encipher is suspended
– Content of the register ‘key’ is the integer    

value 6



Model

• A Model is a transition system.
• A transition system M=(S, ,L) is a set of 

states S endowed with a transition relation 
(a binary relation on S), such that every 

state s from S, has some successor state 
s’ which is also from S. Thus s s’

• Also associated with each state is a set of 
atomic propositions which are true at that 
state, described by a labeling function, L



Example

p,q

q,rq

s0

s1
s2

S = {s0, s1, s2}

transitions = s0→ s1 , 
s1→ s1 , s2→ s1 , s2→
s0 , s0 → s2

L(s0) = {p,q} 

L(s1) = {q} 

L(s2) = {q,r}



Example
N1,N2
turn=0

T1,N2
turn=1

T1,T2
turn=1

C1,N2
turn=1

C1,T2
turn=1

N1,T2
turn=2

T1,T2
turn=2

N1,C2
turn=2

T1,C2
turn=2

N = noncritical,  T = trying,  C = critical

PATH



Propositional temporal logic

In Negation Normal Form
AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path



Not Until ¬(pUq)

• Whenever q occurs there must be a non-
occurrence of p before.

p p p p p p

p U q...

p p p q

p p p p p p

¬(p U q)

p p p q



Explanation

: [( | ) ( , | )]
( ) : [ ( | ) ( , | )]

               := [( | ) ( , | )]

i j

i j

i j

p q i q j i p
p q i q j i p

i q j i p

∪ = ∃ Π = ∧ ∀ < Π =

¬ ∪ =∀ ¬ Π = ∨ ∃ < Π = ¬

∀ Π = ⇒ ∃ < Π = ¬



Some Finer Points on p U q

• Until demands that q does hold in some future 
state i,e Fq

• It does not say anything about what happens 
after q occurs
– contrary to English Language: “I smoked until 22’
– Means p=‘I smoke’ was true till q=‘I am 22’ became 

true.
– Also after q=‘I am 22’, p=‘I smoke’ does not occur
– In LTL, means p U (G¬p Λ q)



Two more terms

• Weak Until (pWq): Like pUq except q 
need not occur.

• Release (pRq): p is released by q. It 
means that q occurs entirely or it occurs till 
p occurs. Note than unlike until q occurs 
also at the time instant when p is asserted. 



Operator precedence
• Unary operators including negation have strongest 

precedence
– ¬p U q is parsed as (¬p) U q rather than ¬(p U q)

• Temporal binary operators have stronger precedence 
than non-temporal binary operators
– p ∧ q U r is parsed as:   p ∧ (q U r)

• The precedence over propositional logic is as usual
– First do the AND
– then the ORs and XORs
– finally the IMPLIES and EQUIVALENCEs. 



Example
• The parse tree of   Fp ∧ Gq →p W r

according to precedence rules

r

W

GF

∧

qp

p

→



More of Until

• What is not pUq?
• We have seen that.
• Here is another expression for that.

( ) ( )p q q p q G q¬ ∪ = ¬ ∪ ¬ ∧¬ ∨ ¬



Intuitive Explanation

• Fq is straight-forward
• Let q occur => Fq

( ) ( ( ))p q q p q Fq∪ = ¬ ¬ ∪ ¬ ∧¬ ∧

t3t2t1

q=1p=0

q=0

q=1

Let t3 be the first time interval when q is true.

Let us contradict the equation, that is pUq does not hold.

Then, there is a time instant t=t2, when p=0. Obviously q=0, as t2<t3
But by RHS, if                         then at time t=t1, ¬q=0 => q=1

But, t1<t3 and hence we have a violation that t3 is the first time when q=1. 
Thus, there is a contradiction and pUq does hold. The equivalence follows.

( ( ))q p q¬ ¬ ∪ ¬ ∧¬



Release

• Release R is dual of U; that is:
p R q ≡ ¬ (¬ p U ¬ q)
p must remain true up to and including the 
moment when q becomes true (if there is 
one); p releases q

Thus, pRq= Gq V [q U (p Λ q)]
= ¬[F ¬q Λ ¬(q U (p Λ q)]
=¬[¬p U ¬q]



Weak Until

• φ W ψ : Weak Until is related to the Until 
with the difference that it does not require 
that ψ is eventually hold

• Essentially φ W ψ is a short form for 
writing        φ U ψ ∨ Gφ



LTL satisfaction by a system

• Suppose M = ( S, →, L) is a model, s ∈ S, 
and φ an LTL formula

• We write M, s╞ φ if for every execution 
path п of M starting at s, we have п╞ φ

• Sometimes M, s╞ φ is abbreviated as s╞
φ



Example

p,q

p,q

s0

q,r
s2

q
s1

q
s1

q,r
s2 s0

p,qq,r
s2 s0

q
s1

q,r
s2

q
s1

1. M, s0╞ X q

2. M, s0╞ G ⌐(p ∧ r)

3. M, s1╞ G q

4. M, s0 ╞ p U q



Practical patterns of specifications

• It is impossible to get to a state where 
started holds, but ready does not hold
– G ¬(started ∧¬ready)

• For any state, if a request occurs, then it 
will eventually be acknowledged
– G (requested → F acknowledged)

• Whatever happens, a certain process will 
eventually be permanently deadlocked
– F G deadlock



Some practical patterns (cont.)

• A certain process is enabled infinitely often
on every computation path
– G F enabled
– In other words, in a path of the system there must 

never be a point at which the condition enabled
becomes false and stays false forever

• If a process is enabled infinitely often, then it 
runs infinitely often
– G F enabled → G F running



Practical patterns(contd.)

• An upwards travelling lift at the 2nd floor 
does not change its direction when it has 
passengers wishing to go to the 5th floor:

G(floor2 Λ directionup Λ ButtonPressed5 
(directionup U floor5)



LTL weakness
• The features which assert the existence of a 

path are not (directly) expressible in LTL
• This problem can be solved by: checking 

whether all paths satisfy the negation of the 
required property

• A positive answer to this is a negative answer to 
our original question and vice versa.

• But properties which mix universal and 
existential path quantifiers cannot in general be 
expressed in LTL



LTL Weakness: Examples
• LTL cannot express these features:

– From any state it is possible to get to a restart state 
(i.e., there is a path from all states to a state satisfying 
restart)

– The lift can remain idle on the third floor with its door 
closed (i.e., from all states if there is path to a state in 
which it is on the third floor, there is a path along 
which it stays there)

• LTL cannot assert these because existential and 
universal logics are mixed.

• However, CTL can express these properties



Model checking example:
Mutual exclusion

• The mutual exclusion problem (mutex)  
– Avoiding the simultaneous access to some 

kind of resources by the critical sections of 
concurrent processes

• The problem is to find a protocol for 
determining which process is allowed to 
enter its critical section



Expected Properties

• Safety: Only one process is in its critical section 
at any time.

• Liveness: Whenever any process requests to 
enter its critical section, it will eventually be 
permitted to do so.

• Non-blocking: A process can always request to 
enter its critical section.

• No strict sequencing: Processes need not 
enter their critical section in strict sequence.



Modeling mutex

• Consider each process to be either:
– in its non-critical state n
– trying to enter the critical section t
– or in critical section c

• Each individual process has this cycle:
– n → t → c → n → t → c → n …

• The processes phases are interleaved



2 process mutex

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

• The processes are asynchronous interleaved
– one of the processes makes a transition while the 

other remains in its current state



Checking the properties

• Safety: G ¬(c1 ∧ c2)
– This formula is satisfied in all states

• Liveness: G (t1 → F c1)
– This formula is not satisfied in the initial state!
– s0 → s1 → s3 → s7 → s1 → s3 → s7 → …



Checking the properties

• Non-blocking:
– Consider process 1.
– We wish to check the following property:

• for every states satisfying n1 there exists a state 
which satisfies t1

– This property cannot be expressed in LTL



Checking the properties

• No strict sequencing:
– Processes should not enter their critical 

section in a strict sequence.
– There should be at least one path where strict 

sequencing does not hold
– But LTL cannot express the logic there exists.
– Instead not of there exists is for all.
– Thus we can say that the following property s:

• in all paths there is a strict sequencing
– If the answer is no there is no strict sequence.



No Strict Sequencing

• c1 and c2 need not alternate
• Desired scenario:

– Process 1 acquires critical section (c1)
– Process 1 releases the critical section (¬c1)
– Process 2 does not enter the critical section
(¬c2)

– Process 1 regains access to the critical 
section (c1)



No Strict Sequencing
There exists at least one path with no strict sequencing:

c1 … c1 c1
¬c1
¬c2

¬c2 … ¬c2 c1

Or, in all paths there is strict sequencing:

c1 … c1

c1 … c1 ¬c1 … ¬c1 c2

c1 … c1 ¬c1 … ¬c1

Time

Time1 1 1 1 2[ ( )]G c c W c c Wc→ ¬ ∧¬

Anytime we have 
c1 state, the condn
persists, or it ends 
with a non-c1 state
and in that case there 
is no further c1
unless and until 
we obtain a c2 state. 



Evaluation of the Protocol

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Safety property is satisfied. 
c1 and c2 do not become 
one at the same time in any 
state.

Live-ness property is 
violated. Follow the path
marked in red. Processor 1 
tries to enter the critical 
section but fails.



Evaluation of the Protocol

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Non-blocking: Observe all 
states where n1 is high. 
All of them should 
have at least one path where 
t1 is high in the next clock 
cycle.

The property thus have to 
look for both for all and there 
exists logic and thus cannot 
be expressed in LTL.



No-strict sequencing

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Path marked in red 
shows that “all paths are 
sequencing” is false. 
Thus, no strict sequencing 
is maintained.

Note that since we are 
using LTL, we have negated 
the property: “there exists a 
path with no strict sequencing”



Solution
s0

n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3’

t1 t2

All the four 
properties 

are 
satisfied

s3’’

s3’ and s3’’ now expresses which process was 
requesting for the critical section early. 
Thus the live-ness problem is solved.



The SMV model checker 

• New Symbolic Model Verifier
• Provides a language for describing the 

models.
• The properties are written as LTL (or CTL) 

formulas.
• It produces an output whether the 

specifications hold ‘true’, or a trace to 
show why the specification is false.


