
Introduction to
Model Checking

Debdeep Mukhopadhyay
IIT Madras

How good can you fight bugs?

Comprising of three parts

• Formal Verification techniques consist of
three parts:

1. A framework for modeling systems
– some kind of specification language

2. A specification language
– for describing the properties to be verified

3. A verification method
– for establishing if the description of the

system satisfies the specification

Proof-based verification

• The system description is a set of formula
Γ in a suitable logic

• The specification is another formula ϕ
• The verification method is finding a proof

that Γ├ ϕ
– ├ means deduction

• It typically needs the user guidance and
expertise

Model-based verification

• The system is represented by a model M
for an appropriate logic

• The specification is again represented by
a formula ϕ

• The verification method consist of
computing whether a model M satisfies ϕ
– M satisfies ϕ : M╞ ϕ

• The computation is usually automatic for
finite models

Degree of automation

• From fully automated to fully manual

Full- vs. property-verification

• The specification may describe a single
property of the system, or it may describe
its full behavior (expensive).

Intended domain of application

• Hardware, software
• Sequential, concurrent
• Reactive , terminating

– Reactive: reacts to its environment, and is not
meant to terminate (e.g. operating systems,
embedded systems, computer hardware)

Pre- vs. post-development

• Verification is of greater advantage if
introduced early in system development

Model checking

• Model checking is an automatic, model-
based, property-verification approach

• It is intended to be used for concurrent
and reactive systems
– The purpose of a reactive system is not

necessarily to obtain a final result, but to
maintain some interaction with its
environment

Temporal Logic (cont.)
• In model checking:

– The models M are transition systems
– The properties φ are formulas in temporal

logic
• Model checking steps:

1. Model the system using the description
language of a model checker : M

2. Code the property using the specification
language of the model checker : φ

3. Run the model checker with the inputs M
and φ

Model checker based on
satisfaction

M

Model
Checker

p → F q
yes

no

φ

Error Trace

Linear vs. Branching
• Linear-time logics think of time as a set of paths

– path is a sequence of time instances
• Branching time logics represent time as a tree

– it is rooted at the present moment and branches out
into the future

• Many logics were suggested during last years that fit into
one of above categories

• We study LTL in linear time logics and CTL in branching
time logics

Linear vs. Branching (cont.)
• Linear Time

– Every moment has a
unique successor

– Infinite sequences
(words)

– Linear Time Temporal
Logic (LTL)

• Branching Time
– Every moment has

several successors
– Infinite tree
– Computation Tree

Logic (CTL)

Propositional Linear Temporal
Logic

• Express properties of “Reactive Systems”
– interactive, nonterminating

• For PLTL, a model is an infinite state
sequence

…210 ,, sss=σ

• Temporal operators
– “Globally”: G p at t iff p for all t’ ≥ t.

p p p p p p p p p p p...
G p...

Temporal operators...
– “Future”: F p at t iff p for some t’ ≥ t.

p p p p p p
F p...

– “Until”: p U q at t iff
• q for some t’ ≥ t and
• p in the range [t, t’)

p p p p p p

p U q...

p p p q

– “Next-time”: X p at t iff p at t+1

Examples

• Liveness: “if input, then eventually output”
G (input ⇒ F output)

• Strong fairness: “infinitely send implies
infinitely recv.”

GF send ⇒ GF recv

atomic props

infinitely often

Recap: What is a model?

• Atoms: Atomic formulas (such as p. q, r,
…).

• These atoms stand for atomic facts which
may be true for a system.

• e,g
– Printer crypto-6 is working
– Process encipher is suspended
– Content of the register ‘key’ is the integer

value 6

Model

• A Model is a transition system.
• A transition system M=(S, ,L) is a set of

states S endowed with a transition relation
(a binary relation on S), such that every

state s from S, has some successor state
s’ which is also from S. Thus s s’

• Also associated with each state is a set of
atomic propositions which are true at that
state, described by a labeling function, L

Example

p,q

q,rq

s0

s1
s2

S = {s0, s1, s2}

transitions = s0→ s1 ,
s1→ s1 , s2→ s1 , s2→
s0 , s0 → s2

L(s0) = {p,q}

L(s1) = {q}

L(s2) = {q,r}

Example
N1,N2
turn=0

T1,N2
turn=1

T1,T2
turn=1

C1,N2
turn=1

C1,T2
turn=1

N1,T2
turn=2

T1,T2
turn=2

N1,C2
turn=2

T1,C2
turn=2

N = noncritical, T = trying, C = critical

PATH

Propositional temporal logic

In Negation Normal Form
AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path

Not Until ¬(pUq)

• Whenever q occurs there must be a non-
occurrence of p before.

p p p p p p

p U q...

p p p q

p p p p p p

¬(p U q)

p p p q

Explanation

: [(|) (, |)]
() : [(|) (, |)]

 := [(|) (, |)]

i j

i j

i j

p q i q j i p
p q i q j i p

i q j i p

∪ = ∃ Π = ∧ ∀ < Π =

¬ ∪ =∀ ¬ Π = ∨ ∃ < Π = ¬

∀ Π = ⇒ ∃ < Π = ¬

Some Finer Points on p U q

• Until demands that q does hold in some future
state i,e Fq

• It does not say anything about what happens
after q occurs
– contrary to English Language: “I smoked until 22’
– Means p=‘I smoke’ was true till q=‘I am 22’ became

true.
– Also after q=‘I am 22’, p=‘I smoke’ does not occur
– In LTL, means p U (G¬p Λ q)

Two more terms

• Weak Until (pWq): Like pUq except q
need not occur.

• Release (pRq): p is released by q. It
means that q occurs entirely or it occurs till
p occurs. Note than unlike until q occurs
also at the time instant when p is asserted.

Operator precedence
• Unary operators including negation have strongest

precedence
– ¬p U q is parsed as (¬p) U q rather than ¬(p U q)

• Temporal binary operators have stronger precedence
than non-temporal binary operators
– p ∧ q U r is parsed as: p ∧ (q U r)

• The precedence over propositional logic is as usual
– First do the AND
– then the ORs and XORs
– finally the IMPLIES and EQUIVALENCEs.

Example
• The parse tree of Fp ∧ Gq →p W r

according to precedence rules

r

W

GF

∧

qp

p

→

More of Until

• What is not pUq?
• We have seen that.
• Here is another expression for that.

() ()p q q p q G q¬ ∪ = ¬ ∪ ¬ ∧¬ ∨ ¬

Intuitive Explanation

• Fq is straight-forward
• Let q occur => Fq

() (())p q q p q Fq∪ = ¬ ¬ ∪ ¬ ∧¬ ∧

t3t2t1

q=1p=0

q=0

q=1

Let t3 be the first time interval when q is true.

Let us contradict the equation, that is pUq does not hold.

Then, there is a time instant t=t2, when p=0. Obviously q=0, as t2<t3
But by RHS, if then at time t=t1, ¬q=0 => q=1

But, t1<t3 and hence we have a violation that t3 is the first time when q=1.
Thus, there is a contradiction and pUq does hold. The equivalence follows.

(())q p q¬ ¬ ∪ ¬ ∧¬

Release

• Release R is dual of U; that is:
p R q ≡ ¬ (¬ p U ¬ q)
p must remain true up to and including the
moment when q becomes true (if there is
one); p releases q

Thus, pRq= Gq V [q U (p Λ q)]
= ¬[F ¬q Λ ¬(q U (p Λ q)]
=¬[¬p U ¬q]

Weak Until

• φ W ψ : Weak Until is related to the Until
with the difference that it does not require
that ψ is eventually hold

• Essentially φ W ψ is a short form for
writing φ U ψ ∨ Gφ

LTL satisfaction by a system

• Suppose M = (S, →, L) is a model, s ∈ S,
and φ an LTL formula

• We write M, s╞ φ if for every execution
path п of M starting at s, we have п╞ φ

• Sometimes M, s╞ φ is abbreviated as s╞
φ

Example

p,q

p,q

s0

q,r
s2

q
s1

q
s1

q,r
s2 s0

p,qq,r
s2 s0

q
s1

q,r
s2

q
s1

1. M, s0╞ X q

2. M, s0╞ G ⌐(p ∧ r)

3. M, s1╞ G q

4. M, s0 ╞ p U q

Practical patterns of specifications

• It is impossible to get to a state where
started holds, but ready does not hold
– G ¬(started ∧¬ready)

• For any state, if a request occurs, then it
will eventually be acknowledged
– G (requested → F acknowledged)

• Whatever happens, a certain process will
eventually be permanently deadlocked
– F G deadlock

Some practical patterns (cont.)

• A certain process is enabled infinitely often
on every computation path
– G F enabled
– In other words, in a path of the system there must

never be a point at which the condition enabled
becomes false and stays false forever

• If a process is enabled infinitely often, then it
runs infinitely often
– G F enabled → G F running

Practical patterns(contd.)

• An upwards travelling lift at the 2nd floor
does not change its direction when it has
passengers wishing to go to the 5th floor:

G(floor2 Λ directionup Λ ButtonPressed5
(directionup U floor5)

LTL weakness
• The features which assert the existence of a

path are not (directly) expressible in LTL
• This problem can be solved by: checking

whether all paths satisfy the negation of the
required property

• A positive answer to this is a negative answer to
our original question and vice versa.

• But properties which mix universal and
existential path quantifiers cannot in general be
expressed in LTL

LTL Weakness: Examples
• LTL cannot express these features:

– From any state it is possible to get to a restart state
(i.e., there is a path from all states to a state satisfying
restart)

– The lift can remain idle on the third floor with its door
closed (i.e., from all states if there is path to a state in
which it is on the third floor, there is a path along
which it stays there)

• LTL cannot assert these because existential and
universal logics are mixed.

• However, CTL can express these properties

Model checking example:
Mutual exclusion

• The mutual exclusion problem (mutex)
– Avoiding the simultaneous access to some

kind of resources by the critical sections of
concurrent processes

• The problem is to find a protocol for
determining which process is allowed to
enter its critical section

Expected Properties

• Safety: Only one process is in its critical section
at any time.

• Liveness: Whenever any process requests to
enter its critical section, it will eventually be
permitted to do so.

• Non-blocking: A process can always request to
enter its critical section.

• No strict sequencing: Processes need not
enter their critical section in strict sequence.

Modeling mutex

• Consider each process to be either:
– in its non-critical state n
– trying to enter the critical section t
– or in critical section c

• Each individual process has this cycle:
– n → t → c → n → t → c → n …

• The processes phases are interleaved

2 process mutex

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

• The processes are asynchronous interleaved
– one of the processes makes a transition while the

other remains in its current state

Checking the properties

• Safety: G ¬(c1 ∧ c2)
– This formula is satisfied in all states

• Liveness: G (t1 → F c1)
– This formula is not satisfied in the initial state!
– s0 → s1 → s3 → s7 → s1 → s3 → s7 → …

Checking the properties

• Non-blocking:
– Consider process 1.
– We wish to check the following property:

• for every states satisfying n1 there exists a state
which satisfies t1

– This property cannot be expressed in LTL

Checking the properties

• No strict sequencing:
– Processes should not enter their critical

section in a strict sequence.
– There should be at least one path where strict

sequencing does not hold
– But LTL cannot express the logic there exists.
– Instead not of there exists is for all.
– Thus we can say that the following property s:

• in all paths there is a strict sequencing
– If the answer is no there is no strict sequence.

No Strict Sequencing

• c1 and c2 need not alternate
• Desired scenario:

– Process 1 acquires critical section (c1)
– Process 1 releases the critical section (¬c1)
– Process 2 does not enter the critical section
(¬c2)

– Process 1 regains access to the critical
section (c1)

No Strict Sequencing
There exists at least one path with no strict sequencing:

c1 … c1 c1
¬c1
¬c2

¬c2 … ¬c2 c1

Or, in all paths there is strict sequencing:

c1 … c1

c1 … c1 ¬c1 … ¬c1 c2

c1 … c1 ¬c1 … ¬c1

Time

Time1 1 1 1 2[()]G c c W c c Wc→ ¬ ∧¬

Anytime we have
c1 state, the condn
persists, or it ends
with a non-c1 state
and in that case there
is no further c1
unless and until
we obtain a c2 state.

Evaluation of the Protocol

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Safety property is satisfied.
c1 and c2 do not become
one at the same time in any
state.

Live-ness property is
violated. Follow the path
marked in red. Processor 1
tries to enter the critical
section but fails.

Evaluation of the Protocol

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Non-blocking: Observe all
states where n1 is high.
All of them should
have at least one path where
t1 is high in the next clock
cycle.

The property thus have to
look for both for all and there
exists logic and thus cannot
be expressed in LTL.

No-strict sequencing

s0
n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3

Path marked in red
shows that “all paths are
sequencing” is false.
Thus, no strict sequencing
is maintained.

Note that since we are
using LTL, we have negated
the property: “there exists a
path with no strict sequencing”

Solution
s0

n1 n2

c1 n2
t1 t2

n1 t2t1 n2

n1 c2

t1 c2c1 t2

s1 s5

s2
s6

s7s4

s3’

t1 t2

All the four
properties

are
satisfied

s3’’

s3’ and s3’’ now expresses which process was
requesting for the critical section early.
Thus the live-ness problem is solved.

The SMV model checker

• New Symbolic Model Verifier
• Provides a language for describing the

models.
• The properties are written as LTL (or CTL)

formulas.
• It produces an output whether the

specifications hold ‘true’, or a trace to
show why the specification is false.

