
The e Language: A Fresh Separation of Concerns

Yoav Hollander Matthew Morley Amos Noy
Verisity Ltd., 8 Hamelacha St., Rosh-Ha-Ain 48091, Israel

December 20.2000

Abstract

The e programming language enjoys widespread use in the
microchip industry with applications to specification, mod-
eling, testing and verification of hardware systems and their
operating environments. Unique features of e include a com-
bination of object oriented and constraint oriented mecha-
nisms for the specification of data formats and interdepen-
dencies, interesting mechanisms of inheritance, and an effi-
cient combination of interpreted and compiled code. Since
the language is also extensible if serves as a living, industrial
scale, implementation and application of the aspect oriented
programming paradigm. This paper briefly describes the e
language highlighting its novel features and their particular
suitability to the task of hardware verification, and reports
on our experience of aspect oriented programming in this in-
tense commercial setting.

1 Introduction

With the advent of the object oriented paradigm there
also came the realisation that despite its numerous ben-
efits it is often the case that the unit of modularization
reuse is not the class, but rather a slice of behavior
affecting several classes. The research on aspect ori-
ented programming (AOP) [I]. subjecr oriented pro-
gramming (SOP) [2], and the work on adaptive pro-
gramming (AP) [3], represent almost a decade of at-
tempts to address this problem. The influential AOP
group [I] motivate the departure from the traditional
OOP approach thus:

crosscut the system’s class and module structure.
Much of the complexity and brittleness in existing
systems appears to stem from the way in which
the implementation of these kinds of concerns
comes to be intertwined throughout the code.”

Mezini and Lieberherr [4] similarly observe that while
object oriented techniques have given the programmer
excellent data abstraction mechanisms, objects them-
selves are cumbersome when it comes to expressing
aspects of behaviour that affect several data types. Con-
versely, OOP fails in naturally facilitating non-invasive
extension mechanisms for layering new functionality
over existing code. Essentially the same issue motivates
the SOP community [2], and authors such as Laue-
sen [5], Wilde [7], Fisler [8] amongst many others.

Fundamentally, the AOP/SOP/AP quest is for mecha-
nisms that will allow one to encapsulate concems (fea-
tures, or aspects) in modules even if they happen to
cross class boundaries; the intent is to be able to ap-
ply different combinations of these modules to exist-
ing code rather than manually modifying it. This pa-
per describes a solution to the separation of concems
problem which is represented in the e [6] programming
and modeling language, which blends the 00 paradigm
with its own unique programming approach.

Unusually e has emerged from, and is today extensively
applied in, a competitive industrial setting. Research di-
rections such as AOP, SOP and AP emphasized the tra-
ditional software development model in which a basic
product is subject to changes and additions over its life-
time, often by different teams. In our domain, that of “Objects have been a great success at facilitat-

ing the separation of concerns. [. . . I But objects
are i n their ab i l l tv to SvStemic fitnctionol verification of hardware, the software lifecy-
concerns that are not]o;a]ized to a mod.
ule’s boundaries. [.. ,] Rather than staying well
localized within a class, these concerns tend to

c k IS greatly accelerated, while the software is needed
to Support a product line of systems as well as a huge
suite of tests.

0-7695-1095-7/01 $10.00 0 2001 EEE 41

42

A few words are needed here to explain the term nents. It is not normally desirable for a test engineer to
functional verification as used by the design automa- write code for adapting a library interface as would be
tion community. The target of this verification activ- done in more traditional kinds of software; what is re-
ity are hardware devices including CPUs and other mi- quired is a software component that is easily configured
crochips, network equipment such as routers, and sys- from without via constraints coming from the require-
tems combining hardware with embedded software. We ments of the environment in which the component is
shall refer to all these simply as “hardware” in the se- embedded. These constraints can be as simple as setting
quel. Functional verification is the process by which the configuration parameters (architectural constraints) of
correctness of the hardware design is established, the the device being incorporated, or they may shape the
term resting having long been associated in this com- data input space. .~

Similar conditions prevail in the domain of testing of
non-embedded general purpose software systems: ex-

munity with the process by which manrlfacruring de-
fects are detected. - ~~

In functional verification, the hardware is not tested treme time constraints, high adaptability requirements
directly. Instead a description of the hardware writ- and a multitude of similar, but not identical, con-
ten in a hardware description language (HDL) such as currently maintained testbenches. A major difference
VHDL [9] or Verilog [IO], is compared with adifferent, though is that the cost of post-release defects is so much
high level description of the hardware. Software written higher in hardware than it is in software. Hardware ver-
in e may therefore play a double role. On the one hand ification is therefore required to be much more thor-
it is used for expressing the expected behavior of the ough, and hardware testbenches tend to be very large in
device under test (DUT). On the other hand, it is used comparison with software testbenches. It is illustrative
for exercising a certain functionality of the DUT. to note that many hardware developers apply a tule of

Thus, there are at least
proliferation occurs in e: a collection of test environ- each design engineer.

directions in which code thumb that there must be one verification engineer for

ments describing the different DUTs in a product line, The e programming language dominates the market of
as well as a rich suite of test cases required for thorough testbench automation. In our industrial experience we
coverage. This diversity exists even in a first version of have observed testbenches that constitute some IC500
a functional verification testbench. Thus, e evolved in KLOC. These numbers are dwarfed when compared
a setting in which the need for mechanization of sepa- to testbenches written in languages such as C, C++,
ration of concems was even more important than in a or Ped, which can more than triple the code volume
traditional sortware lifecycle model. in order to achieve similar levels of design assurance.

A further aggravation of the hardware verification do- The practice Of extending the use Of hard-
main is that the testbench software merely plays a sup- ware description languages (which have few high level

porting role in the development of the hardware, The ConStNCtS? Or
capabilities) for the purpose Of

production of a testbench can when there is
a design specification for the hardware, but it can only Of large software
be used once a simulation model of the hardware has The e language, while it is a general purpose program-
been developed. As a result, time constraints on the ming language, has thus grown up specifically to ad-
development of testbenches are even more acute than dress the flexible software demands of functional ver-
those on the hardware which in its tum has a very short ification. This is explained in Section 2 which sets the
time to market, and relatively short lifetime. context of e applications, its design rationale, and gives

testbench definition is even less immune to the maladies

The need for high level, adaptable software for test-
benches is also highlighted by the emerging market for
reusable testbench components [171. This new market
follows the trend towards “systems on a chip” built of
ready-made hardware components. Testbenches must
match the high level of integrability of these compo-

..

a global overview of the language. Then in Section 3 we
describe those features of e that specifically address the
separation of concerns problem-the ability to extend
class and simple type definitions, as well as method
extension. Section 4 discusses other unique features of
the e language which have been shaped by the particu-

43

lar concerns of functional verification. These features
add considerable facilities to the language over and
above the extension mechanism discussed in Section 3,
and include the important when (subtyping) inheritance
mechanism, constraints, and simple data modeling ca-
pabilities. Section 5 concludes.

2 Functional verification and e

*?2.1 A typical verification problem

A functional verification program consists of a more or
less detailed description of the functionality of a device,
its operating environment, and the data transformations
it performs. In general terms functional verification is
predicated on the assumption that a detailed simulation
model of a device has been implemented in a suitable
hardware description language. Such descriptions are
simulated in software or emulated in configurable hard-
ware for the purpose of determining the precise timing
properties of the design, as well as to judge its func-
tional correctness. Given such an implementation of the
device under test (DUT) a suitable testbench needs to
be erected around the DUT in order to subject it to a
large number of tests. The components of a typical test-
bench, or verification environment, for a siple CPU are
displayed in Figure I

Instructions A key element in any verification envi-
ronment is an adequate description of the data be-
ing manipulated4PU instructions, in this case.
Such descriptions typically do form natural classes
of structured data-thus CPU instructions will be
defined by some common elements such as op-
code and addressing mode, but differences emerge
(say) in the operands present causing a classifi-
cation into immediate (e.g., the second operand,
op2, is a two byte integer constant), memory (op2

Reference Model

Figure 1: CPU Design Verification Environment

are legal inputs, and what are not. To some extent
a strong type system helps define legal ranges-it
is easy then to generate a random four bit value for
op2 in the register class. However via types it is
difficult to stipulate, for example, that since regis-
ter zero never holds a branch address an indexed
branch instruction cannot have op2 equal to zero.
Constraints, in the form of Boolean relationships
over the fields of class definitions, contribute the
necessary flexibility, relieving the programmer (or
test writer) of much unnecessary programming.

Reference model Commonly, but not necessarily, a
reference model will be used to predict correct re-
sponses from the DUT for each datum input dur-
ing a test. Typically functional verification works
at the level of whole transactions rather than clock
cycles of the DUT-in this case a transaction is
initiated by injecting an instruction into the run-
ning simulation, and terminated some time later
by observing a result on one of the device's output
channels. Reference models thus do not need to be
cycle accurate specifications of the hardware, just
functionally accurate.

is a two byte memory address), and register in-
structions (op2 is a four bit register index), Checker The testbench must obviously check the ex-

pected results of the test against the actual com-
Test Generator This software ultimately creates a se-

quence of test vectors (of bits) to stimulate the
DUT whether on-the-fly, or as a prelude to running
a test. Setting aside the question of how to (ran-
domly) generate instances of the data classes in-
volved, the test generator needs to determine what

putation. In CPU verifications there are typically
two types of checker: a data checker that ensures
that all instructions computed the correct results,
and a temporal checker that monitors how each
instruction is executed by the DUT. This latter ac-
tivity calls for the definition of behavioural rules

‘44

(e.g., via executable temporal logic [16, 121, or fi- Specialized Lingual Constructs These include con-
nite automata) that are run concurrently with the struinrs, for example, which provide an effec-
DUT, monitoring its state and progress. tive declarative mechanism for the specification

of configurations and for guiding test generation,

are used to describe time based phenomena, In-
evitably there are many hardware oriented pimi-
tive types and operators on them such bit-access

that the responded to an intempt and bit-slicing (common HDL functions), as well

Coverage Metrics that help the verification engineer and remporul properties (also declarative) which
decide how well the verification is progressing
have to k designed with reference to a

plan. For instance it may be required to

when a branch instruction was being decoded. The
‘responds correctly’ may be a temporal rule in-
voked under such circumstances, but the fact that Simplified textual syntax The rich toolset that e pro-
this scenario occurred during testing would be en- vides to its user must be served in an easy to
tered as a functional coverage point. In a simple use, non-cryptic syntax. The design of the syntax
case one might be content to count how many and the semantics were also influenced by the re-
times this combination of circumstances occurred. ality that the principal users of the language are

not software specialists but mainly hardware engi-
neers who, in particular, may not be schooled in
Object Oriented languages.

as mechanisms for specifying parallel execution,

Given a functional verification environment such as that
envisaged above, tests will be devised to exercise the
design. Sometimes these need to be very deterministic performance The verification of hardware systems
(e.g., in the early phases of the verification effort when of simulation is, almost by definition,
one is testing basic functionality), but better coverage hardware cycle in which
of the state space is achieved through random testing, many operations may place in is
especially when the ‘randomness’ can be directed to-
wards particular goals. Often such goals are expressed addition, the quality of a verification process
as comer cases, particularly where functions of the de-
vice interact with one another. Principally it is for this
PWoSe that the e language has
dom, directed test generation.

by
a slow process,

translated to a sequence of slow software

is highly dependent on its coverage level.
a non-exhaustive verification process may
for months on dedicated powerful servers. This is
the reason why e has a very efficient implementa-
tion; typically, an instruction (such as field access
or function call) in e is implemented in a similar
manner to the equivalent instruction in C.

developed:

2.2 Factors influencing e’s design

Since its initial conception in the early nineties the e
language has evolved to meet the needs of functional
verification engineers. e is used to describe the DUT, its
operating environment, its legal inputs, and its behavior
Over time. Specman, VerisitY’S flagship Product imPle-
menting the language and runtime system, lakes such a
description and uses it to generate test inputs and drive
them into the DUT, cany out temporal and data check-

On the face of it e is a lexically scoped, statically ing by monitoring the device, create coverage reports,

type checked object-oriented language with single in- and assist in debugging.

Even though e is a general-purpose programming Ian- heritance. A strucf in e, just like a class in other pro-
guage (in fact most of Specman is written in e) its de- gramming languages, may declare fields and methods.
sign has been geared towards the task of modeling and Structs may also contain several unique declarative
verifying hardware systems. This specific task imposed components, including constraints (affecting initial val-
a number of important characteristics on the language. ues assigned to fields), event definitions (for monitor-

Compiled and interpmted code F~~ that are
discussed i n section 3 below, [here is a need when
building testbenches to be able to load files which
add new features, constructs, and especially con-
straints, on top of an extant code base. There is
also a need for mixing those independently con-
structed additions in an unrestricted way,

45

ing DUT behaviour), and temporal properties (checking
protocols, etc.). The temporal and concurrent features
of e are not discussed further here, but see [12].

A simple example, drawn from a verification environ-
ment for a packet switching device, demonstrates how
constraints are used in e.

type packet-kind: [empty,short ,
struct packet {

i: int;
j: int;
kind: packet-kind;

keep i < j + 1;
keep j in [1 . . 5] ;

1;

long1 ;

ules). This process is described through a number of
examples below.

Example 3.1 A test specification, in its simplest form,
simply adds a few constraints on top of an existing
environment. For instance, taking the packet example
started in Section 2.2, a test writer might want to spec-
ify: (I) For all packets, z should be equal to j , but no
packet should be empty. To achieve this, she needs to
write the following e file (call it test1 .e):

The first of these two statements.declares an enumer-
ated type, the second declares a structured object with
several scalar fields. The keeps are constraints that
affect initial values assigned to the fields mentioned
whenever an instance of this class is created-Specman
resolves such constraints during a test run in order to
generate a random, directed stream of data for the DUT.
Constraints in e are linear functions over finite domains.

While the synthesis of constraint solving and object ori-
ented programming in e is an interesting subject in it-
self, it is not explored further in this article which rather
focuses on the language constructs that address separa-
tion of concerns. Thus, in addition to the simple inheri-
tance mechanism (which is called like inheritance in e),
the language provides a unique and powerful when in-
heritance mechanism, reminiscent of Chambers’ pred-
icate classes [l l] . Moreover, any e struct can be ex-
tended in a later module: fields, methods, events, and
constraints can be added to it, and method definitions
can be modified or ovemdden. Interpreted files can be
loaded on top of a compiled executable, possibly ex-
tending already-compiled structs. The extension capa-
bilities are discussed in Section 3 below, the when in-
heritance mechanism is deferred until Section 4.

/ / test1.e
extend packet [

keep i == j ;
keep kind ! = empty;

1;

This needs to be loaded on top of the current verifica-
tion environment containing all the previously-defined
files, and executed - in Specman this is achieved by
hitting the “test” button to generate packets randomly,
based on the augmented set of constraints.

Example 3.2 To take a slightly more complicated ex-
ample. Assume that the test writer wants to specify
a “special packets test”: (I) For all packets, z should
be equal to j, but no packet should be empty, and (2)
the value j should be the same for all packets gener-
ated during a given test. For (I) , all that is needed is
tes t l . e as defined above. To implement (2):

/ / spec ia l . e
import t es t l ;
extend sys (

t e s t - j : int;
keep t e s t - j in [1 . . 5 1 ;

1;
extend packet (

) :

keep j == sys.test . j ;

The first line includes the definitions from earlier files
so that they will be loaded (or reloaded) when the spe-
cial. e test file is loaded into the verification environ-
ment. The second line extends the definition of another

3.1 Motivation struct, sys, by adding a field and a constraint. Finally
the packet struct is extended with another constraint

One of the basic things people do with e i s to define that will have the effect of keeping j in every packet

3 The aspect-oriented features of e

structs, and then extend those structs in later files (mod- the same throughout the test.

46

This is feature-oriented programming: The file s p e -
c i a l . e implemented the “special packets test” feature
by layering additional code over existing classes.

Note that this extension mechanism is quite unlike that
of C++ or Java, for instance, where class definitions can
only be extended via the subtyping mechanism. Thus,
in particular, the struct sys above is modified by the ad-
ditional field, but no subtype is created.

Example3.3 Assume a test writer now wants to ar-

3.2 Orthogonal extensions

Because of the extreme time pressure associated with
functional verification, a verification team will often
split into several groups (or individuals), each group
developing verification extensions to the basic environ-
ment. e was specifically built so as to allow multiple,
independent groups to extend (add features to) some
base functionality without bumping into each other and
while allowing an integrator to later combine these ex-
tensions at will. In that. it is close in mint to SOP.

range that at the end of the test a count of all packets
should be printed: One common practice is to divide work according to

the chapters of the test plan written for the DUT. As-
sume, for instance, that one of the features of our packet
router DUT is its ability to handle parity errors. One
person might go ahead and implement the part of the
verification environment which takes care of genera-

i ty-errors. e (say).

p a r i t y - e r r o r s . e might contain new fields related to
modeling parity errors. (Where do we want the error?
On the packet header or on the data? If on the data, on
which byte of the data? And so on,) It might well im-
pose new constraints connecting these fields and other
fields of the environment, new coverage points, or
new methods. Using this file, a test writer will be able
to devise a whole bunch of pafity-error-specific tests
(making use of the new fields and/or methods).

f / c 0 u n t i n g . e
extend sys (

!packet.count: int;
finalize0 is also {

This task calls for a new field to the top level struct
sys (the ! initialises it to 0, the default value of this
type, rather than the constraint solver to pick
a random initial value), and an extension to an exist-
ing method of this StmCt which was already provided
to execute cleanup code at the end of a test run. The is
also appends code to the existing method body; isJirsl
and is only are alternative ways to extend (or override)
methods. In parallel, another person might write a module called

t i m i n g - i s s u e s . e, containing all that is needed to -
Next (but in the same module): control the relative timing of packets. For instance, it -~

would add fields to the packet struct determining the de-
lay before injecting it into the DUT, and perhaps other
fields for controlling whether or not the verification en-
vironment is to send Dackets into the D O ~ S of the device

post-generate0 is also {
sys.packet.count += 1;

I back-to-back, or on all input channels at once, etc.

This modifies another predefined method (one that is
actually defined for all structs) which is executed when
a new instance of the packet class is created.

Note that c o u n t i n g . e and s p e c i a l . e are indepen-
dent. One could load either, both or none, and the
“right” thing would still happen, even though both ex-
tend the same set of classes. Thus, each such file corre-
sponds to a feature (or subject, in SOP parlance).

Test writers might decide to import either file, or none,
or both (in which case they would have the flexibility
of influencing both parity error behaviour and timing
behaviour). These are everyday needs for functional
verification engineers which are adequately addressed
by e’s exrend mechanism. However, this mechanism
does not resolve all orthoganality issues on its own.
Programmers need to adopt some conventions to en-
sure that any two extensions will be loadable in any
order. For instance, namespace conventions are needed

47

to avoid name clashes if two aspects introduce fields
of the same name; more insidious collisions may arise
when methods are extended. The is also method exten-
sion used in Example 3.3 is relatively safe to use but is
only (used to ocenide a function definition) may cause
code to break. Such problems are ameliorated by the
when subtyping mechanism discussed in Section 4.3.

3.3 Other uses of extension

Here are some other cases where the ability to extend
a bunch of classes from the outside is very useful for a
verification or modeling language:

Ease of debugginglanalysis It is very easy to add spe-
cialized debug code to be loaded on top of existing
functionality. For instance, such code might latch
into “interesting” events so as to create a GUI vi-
sualizer for the DUT.

Design exploration It is very easy to change the con-
figuration from the outside (typically via con-
straints), so as to see how the DUT behaves e.g.
with a bigger intemal buffer, more ports, fewer
pipeline stages.

Replacing callback registrations Many program-
ming environments have a facility for registering
a callback, saying in effect “when X happens, call
my routine Y”. e does not have such a facility,
nor does it need one. For each such “interesting”
X, there should be a published method (which
is often empty initially), which can be extended
by any user in any other file. Providing such
empty “hook” methods is a convention employed
by Specman itself, and verification environment
builders are also encouraged to follow it.

3.4 Extending in-place

Note that in all of the above examples, the user needs
the extension to be done in-place (i.e., the original class
has to be extended, rather than creating a new class).
The issue is that if one creates a new subclass, then
one needs to go back to all places where instances
of the original class are created, and change them to

create instances of the new class. This process is te-
dious, invasive and error prone. While it may be possi-
ble to address the need using the Abstract Factory pat-
tern [15], the approach is cumbersome because of the
need to manage a profusion of sub-classes, especially
when dealing with multiple orthogonal extensions.

The problem of influencing what class gets created was
well described by Kiczales [I31 who observed that the
usefulness of inheritance is severely limited in regular
00 languages because they provide no mechanism to
change from the outside the &pes of created objects.
Kiczales’ seminal work was very influential in the early
development of e, and is still very relevant today. His
solution, truces, is different from the one adopted in e,
although traces could be implemented using constraints
to influence when subtypes, and methods under them.

4 Extending extend

In the previous section we discussed e’s extend mecha-
nism which allows one to modify classes in place. Now
we discuss other features of the language that comple-
ment this mechanism which we have found to be essen-
tial components of a high level verification language.

4.1 No pre-processor

Most of the experimental AOP languages coming out of
AOP/SOP research are implemented as pre-processors:
The tool takes program fragments (corresponding to
different aspects) from separate files, and “weaves”
them into a single program (say in Java). This approach
would not suffice in functional verification. Firstly, for
performance reasons, most of the e code is eventually
compiled (at least for production tuns). However, in
each particular run, a different test, adding or modify-
ing constraints, fields, or methods, will be loaded on top
of this compiled environment, This process must be rel-
atively quick as it happens very frequently during ver-
ification. Thus, a pre-processing style of implementing
AOP is not practical. For example we need to extend
some methods and add fields without invalidating (and
re-compiling) the underlying environment.

Another reason pre-processing is problematic is debug-
ging. When single-stepping through methods, the user

48

would like to see the source of methods she has writ- method is called, except doors in hospitals, which
ten, rather than the mangled results of a more corn- should print hiss. This unique inheritance mechanism is
plex pre-processing phase. Note, however, that there is more flexible than the regular (single or multiple) inher-
a tradeoff here: Aspect-weaving-through-preprocessing itance scheme, and is similar in spirit to Craig Cham-
may allow more powerful transformations. bers' predicate classes [I I] .

First it should be noted that e has the "regular" 00 sin-
gle inheritance. Thus one can write:

l s t r u c t packet (. . I ; I 4.2 The need for environmental acquisition

One of the main things one does in e is knowledge rep-
resentation: trying to model the (concrete and abstract)
"things" which influence the DUT. Here is a typical
thing one might want to say: By default, all doors are
green, except that car doors all have the color of the car.
This can be captured as follows:

s t r u c t e therne tpacket l i k e packet (. . I ;

in order to specialise packets to Ethernet packets, say.
However for modeling we recommend writing the same
thing using when inheritance. This is done by explicitly
specifying determinant fields-the fields which deter-
mine the "dimensions" used for inheritance. Determi-
nants in e can be fields of Boolean or enumerated type,

For example to capture various kinds of packet:

s t r u c t door (but not arbitrary predicates as Chambers suggested.
co lo r : co lor ;
keep soft color == green;

out ("Packet length is "

d a t a . s i z e 0 . " b y t e s . ") ;

constraint, that must be satisfied, applied to the same
field by another piece of code. Such an overrule is used
in the car struct where one captures the requirement that
all the car doors have the same colour as the car:

struct car I
color : color ;
n u o f - d o o r s : int [2 . . 5 1 ;
doors[num.of~doorsl : l is t of door;
keep for each i n doors {

i t . c o l o r == color
1;

1 ;
This problem in knowledge representation and pro-
gramming, that of an object's need to acquire attributes
based on its role within a composite rather than its par-
ents alone, was described by Gil and Lorenz in [14].
The e language addresses this environmental acquisi-
tion problem to a large extent via constraints.

1 ; J
We can use the protocol field in order to specialise
packets according to need. The when subtyping is im-
plicit in this extension of the packet StNCt:

header: e therne theader ;
show0 is first (

out (" I am an Ethernet packet. ") ;

4.3 Using when inheritance

Using when inheritance one can easily express things
like: All doors should print bung when their shu t ()

I) ;
There is, in this case, only one field of a type that
matches the 'Ethernet' determinant. The when subtype
thus inherits all fields etc., from the virtual packet class,
and provides its own methods and fields. The when sub-
typing can be expressed more explicitly thus:

extend packet (

when Ethernet packet (. . I
when I E E E packet { . . I

49

extend Ethernet packet (

1;
keep simple-ormulti == simple;

There are two main reasons why when inheritance is separation of concerns. The main use of e is modeling

our experience and that of our customers, many times
easier than writing them in a language which does not
have constraints and separation of concerns.

more appropriate than like inheritance for the kind of
knowledge representation needed in the context of ver-
ification: Orthoganality, and constraints.

Orthogonality Using when inheritance, one can have
multiple, orthogonal categories. Packets injected to a
network switch may be characterised variously. E.g.:

Ethernet, IEEE (IEEE1, IEEE2, . . .) or foreign
packets;

simple or multipart packets (except Ethernet pack-
ets which cannot have multiple parts).

and verification of digital hardware. This subject do-
main places a very high premium on separation of con-
cerns, and hence this extend feature was built into the
language from the beginning. We have also explained
how the special needs of hardware verification further
constrain the language design space. For instance, the
disadvantages of pre-processing to combine aspects,
and the need to provide programming constructs hard-
ware engineers find familiar.

We have introduced other e features such as when in-
heritance and constraints, and have shown how these, in
conjunction with extensibility, are important for knowl-
edge representation. These, the reader will have ob-

1;

The select constraint applied here is used to weight the
random generator so that it favours foreign packets over
IEEE packets. In fact such weights are often integer
valued functions of data sampled from the DUT, thus
allowing the generation of packets to be influenced, as
need be, by the current state of the device. This is typi-
cally how e based functional verification works on-the-
fly, directed towards corner cases (of the functionality)
of the design.

jected into a DUT, and checked off once they are com-
pleted. Such abstractions vary in complexity from sim-
ple mechanisms to generate a clock signal for a DUT,
to sophisticated packages for creating streams of CPU
instructions. Clearly these are aspects of a functional
verification environment, but presently they largely ex-
ist in the corpus of e programs as patterns to guide im-
plementations. The question remains whether and how
these can be expressed as adaptive programming com-
ponents or executable patterns.

5 Conclusion
Acknowledgements Our thanks to Yossi Gil at the

We discussed our experience with the e language, and Technion, Haifa, for his help and advice in the prepa-
placed it in the context of other languages supporting pration of this article.

50

References

[I] Xerox Parc. The Aspect-Oriented-Programming web-
http: //-. parc. Xerox. com/csl/- site.

pro j ec ts/aop/

[2] IBM. http://www.research.ibm.com/sop
The Subject-Oriented-Programming website.

[3] Demeter. The Demeter / Adaptive Programming web-
site. h t t p : / / w . c c s . n e u . e d u / r e s e a r c h / -
deme t er f

[4] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play
components for evolutionary software development. In
IOOPSLA’98. ht tp : / /-. in f orma t ik . uni-
siegen.de/ mira/public.html

[5] S . Lauesen. Real-life object-oriented systems. IEEE
soware . 76-83, MarcWApril 1998.

[6] Verisity Ltd. Verisity openly licenses its # I verifica-
ht tp: / /-. verisi ty. coml- tion language.

html/licenseeielease.html

[7] N. Wilde, P. Matthews and R. Huitt. Maintaining
object-oriented software. lEEE Software. IO(I) , 75-80,
Jan. 1993.

[8] K. Fisler, S. Krishnamurthi and K. E. Gray. Implement-
ing Extensible Theorem Provers. In Theorem Proving
in Higher-Order Logics: Enrergirrg Trends, INRIA Re-
search Report, Sept. 1999.

[9] P. J. Ashenden. The Designer’s Guide IO VHDL. Mor-
gan Kaufman Publishers, 1996.

[IO] P. R. Moorby, D. E. Thomas. The Verilog Hardware
Description Language. Kluwer Academic Publishers,
1996.

[I I] C. Chambers. Predicate classes. In Proceedings
ECOOP’93, Kaiserslautern, Germany, July, 1993.

[121 M.J. Morley. Semantics of Temporal e. In Banfi’99
Higher Order Workshop (Formal Methods in Compu-
tation), Ullapool, Sept, 1999.

[I31 G. Kiczales. Traces (A Cut at the “Make Isn’t Generic”
Problem). In Proceedings of the International Sympo-
sium on Object Technologies for Advanced Sofhvure
(ISOTAS’93), pages 2743. JSST, Springer-Verlag.
1993.

[141 J. Gil and D. H. Lorenz. Environmental Acquisition: A
New Inheritance-Like Abstraction Mechanism. ACM
SIGPfANNorices. 31(10), 214-231, October 1996.

[151 E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, 1995.

[I61 B. Moszkowski. A temporal logic for multilevel rea-
soning about hardware. /LEE Computer, l8(2):lCLl9,
1985.

[I71 J. Bergeron Languages run verification ecosystem. EE-
Times, October 16,2000.

http://www.research.ibm.com/sop
http://w.ccs.neu.edu/research
http://siegen.de

