
Design and Verification Languages

Stephen A. Edwards
Department of Computer Science

Columbia University, New York, New York

November, 2004

Abstract

After a few decades of research and experimentation, register-
transfer dialects of two standard languages—Verilog and
VHDL—have emerged as the industry standard starting point
for automatic large-scale digital integrated circuit synthesis.
Writing RTL descriptions of hardware remains a largely hu-
man process and hence the clarity, precision, and ease with
which such descriptions can be coded correctly has a profound
impact on the quality of the final product and the speed with
which the design can be created.

While the efficiency of a design (e.g., the speed at which it
can run or the power it consumes) is obviously important, its
correctness is usually the paramount issue, consuming the ma-
jority of the time (and hence money) spent during the design
process. In response to this challenge, a number of so-called
verification languages have arisen. These have been designed
to assist in a simulation-based or formal verification process by
providing mechanisms for checking temporal properties, gen-
erating pseudorandom test cases, and for checking how much
of a design’s behavior has been exercised by the test cases.

Through examples and discussion, this report describes the
two main design languages—VHDL and Verilog—as well as
SystemC, a language currently used to build large simulation
models; SystemVerilog, a substantial extension of Verilog; and
OpenVera, e, and PSL, the three leading contenders for becom-
ing the main verification language.

Contents

1 Introduction 2

2 History 2

3 Design Languages 3
3.1 Verilog . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Coding in Verilog . . . . . . . . . . . 3
3.1.2 Verilog Shortcomings . . . . . . . . 5

3.2 VHDL . . . . . . . . . . . . . . . . . . . . . 6
3.2.1 Coding in VHDL . . . . . . . . . . . 7
3.2.2 VHDL Shortcomings . . . . . . . . . 8

3.3 SystemC . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Coding in SystemC . . . . . . . . . . 9
3.3.2 SystemC Shortcomings . . . . . . . . 9

4 Verification Languages 10
4.1 OpenVera . . . . . . . . . . . . . . . . . . . 11
4.2 The e Language . . . . . . . . . . . . . . . . 13
4.3 PSL . . . . . . . . . . . . . . . . . . . . . . 14
4.4 SystemVerilog . . . . . . . . . . . . . . . . . 15

5 Conclusions 17

1



1 Introduction

Hardware description languages—HDLs—are now the pre-
ferred way to enter the design of an integrated circuit, hav-
ing supplanting graphical schematic capture programs in the
early 1990s. A typical design methodology in 2004 starts with
some back-of-the-envelope calculations that lead to a rough
architectural design. This architecture is refined and tested for
functional correctness by implementing it as a large simula-
tor written in C or C++ for speed. Once this high-level model
is satisfactory, it is passed to designers who re-code it in a
register-transfer-level (RTL) dialect of VHDL or Verilog—the
two industry-dominant HDLs. This new model is often sim-
ulated to compare it to the high-level reference model, then
fed to a logic synthesis system such as Synopsys’ Design
Compiler, which translates the RTL into an efficient gate-level
netlist. Finally, this netlist is given to a place-and-route system
that ultimately generates the list of polygons that will become
wires and transistors on the chip.

None of these steps, of course, is as simple as it might
sound. Translating a C model of a system into RTL requires
adding many details, ranging from protocols to cycle-level
scheduling. Despite many years of research, this step remains
stubbornly manual in most designs. Synthesizing a netlist from
an RTL dialect of an HDL has been automated, but is the result
of many years of university and industrial research, as are all
the automated steps after it.

Verifying that the C or RTL models are functionally correct
presents an even more serious challenge. At the moment, sim-
ulation remains the dominant way of raising confidence in the
correctness of these models, but has many drawbacks. One of
the more serious is the need for simulation to be driven by ap-
propriate test cases. These need to exercise the design, prefer-
ably the difficult cases that expose bugs, and be both compre-
hensive and relatively short since simulation takes time.

Knowing when simulation has exposed a bug and estimating
how complete a set of test cases actually is are two other major
issues in a simulation-based functional verification methodol-
ogy. The verification languages discussed here attempt to ad-
dress these problems by providing facilities for generating bi-
ased, constrained random test cases, checking temporal prop-
erties, and checking functional coverage.

2 History

Many credit Reed [44] with the first hardware description lan-
guage. His formalism, simply a list of Boolean functions that
define the inputs to a block of flip-flops driven by a single clock
(i.e., a synchronous digital system), captures the essence of an
HDL: a semi-formal way of modeling systems at a higher level
of abstraction. Reed’s formalism does not mention the wires
and vacuum tubes that would actually implement his systems,
yet it makes clear how these components should be assembled.

In the five decades since Reed, both the number and the need
for hardware description languages has increased. In 1973,
Omohundro [39] could list nine languages and dozens more
have been proposed since.

The main focus of HDLs has shifted as the cost of digital
hardware has dropped. In the 1950s and 60s, the cost of digital
hardware remained high and was used primarily for general-

purpose computers. Chu’s CDL [13] is representative of lan-
guages of this era: it uses a programming-language-like syn-
tax; has a heavy bias toward processor design; and includes the
notions of arithmetic, registers and register transfer, condition-
als, concurrency, and even microprograms. Bell and Newell’s
influential ISP (described in their 1971 book [6]) was also bi-
ased toward processor design.

The 1970s saw the rise of many more design languages [12,
10]. One of the more successful was ISP’. Developed by
Charles Rose and his student Paul Drongowski at Case West-
ern Reserve in 1975–76, ISP’ was based on Bell and Newell’s
ISP and used in a design environment for multiprocessor sys-
tems called N.mPc [42]. Commercialized in 1980 (and since
owned by a variety of companies), it enjoyed some success,
but starting in 1985, the Verilog simulator (and accompanying
language) began to dominate the market.

The 1980s brought Verilog and VHDL, which remain the
dominant HDLs to this day (2004). Initially successful because
of its superior gate-level simulation speed, Verilog started life
in 1984 as a proprietary language in a commercial product,
while VHDL, the VHSIC (Very High-Speed Integrated Cir-
cuit) Hardware Description Language, was designed at the be-
hest of the US Department of Defense as a unifying represen-
tation for electronic design [17].

While the 1980s was the decade of the widespread commer-
cial use of HDLs for simulation, the 1990s brought them an ad-
ditional role as input languages for logic synthesis. While the
idea of automatically synthesizing logic from an HDL dates
back to the 1960s, it was only the development of multi-level
logic synthesis in the 1980s [11] that made them practical
for specifying hardware, much as compilers for software re-
quire optimization to produce competitive results. Synopsys
was one of the first to release a commercially successful logic
synthesis system that could generate efficient hardware from
register-transfer-level Verilog specifications and by the end of
the 1990s, virtually every large integrated circuit was designed
this way.

Hardware description languages continue to be important
for providing inputs for synthesis and modeling for simulation,
but their importance as aids to validation recently has grown
substantially. Long an important part of the design process,
the use of simulation to check the correctness of a design has
become absolutely critical, and languages have evolved to help
perform simulation quickly, correctly, and judiciously.

Clearly articulated in features recently added to SystemVer-
ilog, it is now common to automatically generate simulation
test cases using biased random variables (e.g., to generate
random input sequences in which reset occurs very little),
check that these cases throughly exercise the design (e.g., by
checking whether certain values or transitions have been over-
looked), and by checking whether invariants have been vio-
lated during the simulation process (e.g., making sure that each
request is followed by an acknowledgement). HDLs are ex-
panding to accommodate such methodologies.

2



3 Design Languages

3.1 Verilog

The Verilog Hardware Description language [28, 29, 1] was
designed and implemented by Phil Moorby at Gateway De-
sign Automation in 1983–84 (see Moorby’s history of the lan-
guage [10]). The Verilog product was very successful, buoyed
largely by the speed of its “XL” gate-level simulation algo-
rithm. Cadence bought Gateway in 1989 and largely because
of pressure from the competing, open VHDL language, made
the language public in 1990. Open Verilog International (OVI)
was formed shortly thereafter to maintain and promote the
standard, IEEE adopted it in 1995, and ANSI in 1996.

The first Verilog simulator was event-driven and very effi-
cient for gate-level circuits, the fashion of the time, but the
opening of the Verilog language in the early 1990s paved the
way for other companies to develop more efficient compiled
simulators, which traded up-front compilation time for simu-
lation speed.

Like tree rings, the syntax and semantics of the Verilog
language embodies a history of simulation technologies and
design methodologies. At its conception, gate- and switch-
level simulation were in fashion, and Verilog contains exten-
sive support for these modeling styles that is now little-used.
(Moorby had worked with others on this problem before de-
signing Verilog [21].)

Like many HDLs, Verilog supports hierarchy, but was orig-
inally designed assuming modules would have at most tens of
connections. Hundreds or thousands of connections are now
common, and Verilog-2001 [29] added a more succinct con-
nection syntax to address this problem.

Procedural or behavioral modeling, once intended mainly
for specifying testbenches, was pressed into service first for
register-transfer-level specifications, and later for so-called be-
havioral specifications. Again, Verilog-2001 added some facil-
ities to enable this (e.g., always @* to model combinational
logic procedurally) and SystemVerilog has added additional
support (e.g., always_comb, always_ff).

The syntax and semantics of Verilog are a compromise be-
tween modeling clarity and simulation efficiency. A “reg” in
Verilog, the variable storage class for behavioral modeling, is
exactly a shared variable. This means it simulates very effi-
ciently (e.g., writing to a reg is just an assignment to memory),
but also means that it can be misused (e.g., when written to by
two concurrently-running processes) and misinterpreted (e.g.,
its name suggests a memory element such as a flip-flop, but it
often represents purely combinational logic).

Thomas and Moorby [47] has long been the standard text
on the language (Moorby was the main designer), and the lan-
guage reference manual [28], since it was adopted from the
original Verilog simulator user manual, is surprisingly read-
able. Other references include Palnitkar [40] for an overall de-
scription of the language, and Mittra [37] and Sutherland [46]
for the programming language interface (PLI). Smith [45]
compares Verilog and VHDL. French et al. [22] present a
clever way of compiling Verilog simulations and also discuss
more traditional ways.

3.1.1 Coding in Verilog

A Verilog description is a list of modules. Each module has a
name; an interface consisting of a list of named ports, each
with a type, such as a 32-bit vector, and a direction; a list
of local nets and regs; and a body that can contain instances
of primitive gates such as ANDs and ORs, instances of other
modules (allowing hierarchical structural modeling), continu-
ous assignment statements, which can be used to model com-
binational datapaths, and concurrent processes written in an
imperative style.

Figure 1 shows the various modeling styles supported in
Verilog. The two-input multiplexer circuit in Figure 1(a) can
be represented in Verilog using primitive gates (Figure 1(b)),
a continuous assignment (Figure 1(c)), a user-defined primi-
tive (a truth table, Figure 1(d)), and a concurrent process (Fig-
ure 1(e)). All of these models exhibit roughly the same behav-
ior (minor differences occur when some inputs are undefined)
and can be mixed freely within a design.

One of Verilog’s strengths is its ability to also represent test-
benches within the model being tested. Figure 1(f) illustrates
a testbench for this simple mux, which applies a sequence of
inputs over time and prints a report of the observed behavior.

Communication within and among Verilog processes takes
place through two distinct types of variables: nets and regs.
Nets model wires and must be driven either by gates or by
continuous assignments. Regs are exactly shared memory lo-
cations and can be used to model memory elements. Regs can
be assigned only by imperative assignment statements that ap-
pear in initial and always blocks. Both nets and regs can be
single bits or bit vectors, and regs can also be arrays of bit vec-
tors to model memories. Verilog also has limited support for
integers and floating-point numbers. Figure 2 shows a variety
of declarations.

The distinction between regs and nets in Verilog is prag-
matic: nets have slightly more complicated semantics (e.g.,
they can be assigned a capacitance to model charge storage
and they can be connected to multiple tri-state drivers to model
busses), but regs behave exactly like memory locations and are
therefore easier to simulate quickly. Unfortunately, the seman-
tics of regs make it easy to inadvertently introduce nondeter-
minism in the language (e.g., when two processes simultane-
ously attempt to write to the same reg, the result is undefined).
This will be discussed in more detail in the next section.

Figure 3 illustrates the syntax for defining and instantiating
models. Each module has a name and a list of named ports,
each of which has a direction and a width. Instantiating such a
module consists of giving the instance a name and listing the
signals or expressions to which is connected. Connections can
be made positionally or by port name, the latter being preferred
for modules with many (perhaps ten or more) connections.

Continuous assignments are a simple way to model both
Boolean and arithmetic datapaths. A continuous assignment
uses Verilog’s comprehensive expression syntax to define a
function to be computed and its semantics are such that the
value of the expression on the right of a continuous expression
is always copied to the net on the left (regs are not allowed on
the left of a continuous assignment). Practically, Verilog sim-

3



g1
g4

g2

g3

a

b
sel

fnsel

f1

f2

(a)

module mux(f,a,b,sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodule

(b)

module mux(f,a,b,sel);
output f;
input a, b, sel;

assign f = sel ? a : b;

endmodule

(c)

primitive
mux(f,a,b,sel);

output f;
input a, b, sel;

table
1?0 : 1;
0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;
00? : 0;

endtable
endprimitive

(d)

module
mux(f,a,b,sel);

output f;
input a, b, sel;
reg f;

always
@(a or b or sel)
if (sel) f = a;
else f = b;

endmodule

(e)

module testbench;
reg a, b, sel;
wire f;

mux dut(f, a, b, sel);

initial begin
$display("a,b,sel->f");
$monitor($time,,

"%b%b%b -> ",
a, b, sel, f);

a = 0; b = 0 ; sel = 0;
#10 a = 1;
#10 sel = 1;
#10 b = 1;
#10 sel = 0;

end
endmodule

(f)

Figure 1: Verilog examples. (a) A multiplexer circuit. (b) The
multiplexer as a Verilog structural model. (c) The multiplexer
using continuous assignment. (d) A user-defined primitive for
the multiplexer. (e) The multiplexer in imperative code. (f) A
testbench for the multiplexer.

wire a; // Simple wire
tri [15:0] dbus; // 16-bit tristate bus
tri #(5,4,8) b; // Wire with delay
reg [-1:4] vec; // Six-bit register
trireg (small) q; // Wire stores charge
integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit memory

Figure 2: Various Verilog net and reg definitions.

module mymod(out1, out2, in1, in2);
output out1; // Outputs first by convention
output [3:0] out2; // four-bit vector
input in1;
input [2:0] in2;

// Module body: instances,
// continuous assignments,
// initial and always blocks

endmodule

module usemymod;
reg a;
reg [2:0] b;
wire c, e, g;
wire [3:0] d, f, h;

// simple instance
mymod m1(c, d, a, b);

// instance with part-select input
mymod m2(e, f, c, d[2:0]),

// connect-by-name
m3(.in1(e), .in2(f[2:0]),

.out1(g), .out2(h));

endmodule

Figure 3: Verilog structure: An example of a module definition
and another module containing three instances of it.

ulators implement this by recomputing the expression on the
right whenever any variable it references changes. Figure 4 il-
lustrates some continuous assignments.

Behavioral modeling in Verilog uses imperative code en-
closed in initial and always blocks that write to reg variables
to maintain state. Each block effectively introduces a concur-
rent process that is awakened by an event and runs until it hits
a delay or a wait statement. The example in Figure 5 illustrates
basic behavioral usage.

Figure 6 shows a more complicated behavioral model,
in this case a simple state machine. This example is writ-
ten in a common style where the combinational and se-
quential parts of a state machine are written as two sep-
arate processes. The first process is purely combinational.
The @(a or b or state) directive triggers its execution
when signals a, b, or state change. The code consists of a mul-
tiway choice—a case statement—and performs procedural as-
signments to the o and nextState registers. This illustrates one
of the odder aspects of Verilog modeling: both are declared
reg, yet neither corresponds to the output of a latch or flip-flop.
Instead, this reflects the Verilog requirement that procedural
assignment can only be performed on regs.

The second process models a pair of flip-flops that holds the
state between cycles. The @(posedge clk or reset)
directive makes the process sensitive to the rising edge of the
clock or a change in the reset signal. At the positive edge of
the clock, the process captures the value of the nextState
variable and copies it to state.

The example in Figure 6 illustrates the two types of behav-
ioral assignments. The assignments used in the first process
are so-called blocking assignments, written =, and take ef-

4



module add8(sum, a, b, carryin);
output [8:0] sum;
input [7:0] a, b;
input carryin;

// unsigned arithmetic
assign sum = a + b + carryin;
endmodule

module datapath(addr_2_0, icu_hit, psr_bm8, hit);
output [2:0] addr_2_0
output icu_hit
input psr_bm8;
input hit;
wire [31:0] addr_qw_align;
wire [3:0] addr_qw_align_int;
wire [31:0] addr_d1;
wire powerdown;
wire pwdn_d1;

// part select, vector concatenation is {}
assign addr_qw_align =

{ addr_d1[31:4], addr_qw_align_int[3:0] };

// if-then-else operator
assign addr_offset =

psr_bm8 ? addr_2_0[1:0] : 2’b00;

// Boolean operators
assign icu_hit = hit & !powerdown & !pwdn_d1;

// ...

endmodule

Figure 4: Verilog modules illustrating continuous assignment.
The first is a simple eight-bit full adder producing a nine-bit
result. The second is an excerpt from a processor datapath.

fect immediately. Non-blocking assignments are written <=
and have somewhat subtle semantics. Instead of taking ef-
fect immediately, the right-hand-sides of non-blocking assign-
ments are evaluated when they are executed, but the assign-
ment itself does not take place until the end of the current time
instant. Such behavior effectively isolates the effect of non-
blocking assignments to the next clock cycle, much like the
output of a flip-flop is only visible after a clock edge. In gen-
eral, non-blocking assignments are preferred when writing to
state-holding elements for exactly this reason. See Figure 7
and the next section for a more extensive discussion of block-
ing vs. non-blocking assignments.

3.1.2 Verilog Shortcomings

Compared to VHDL, Verilog does a poor job at protecting
users from themselves. Verilog’s regs are exactly shared vari-
ables and the language permits all the standard pitfalls asso-
ciated with them, such as races and nondeterministic behav-
ior. Most users avoid such behavior by following certain rules
(e.g., by restricting assignments to a shared variable to a sin-
gle concurrent process), but the Verilog allows more dangerous
usage. Tellingly, a number of EDA companies exist solely to
provide lint-like tools for Verilog that report such poor coding
practices. Gordon [23] provides a more detailed discussion of
the semantic challenges of Verilog.

module behavioral;
reg [1:0] a, b;

initial begin
a = ’b1;
b = ’b0;

end

always begin
#50 a = ˜a; // Toggle a every 50 time units

end

always begin
#100 b = ˜b; // Toggle b every 100 time units

end

endmodule

Figure 5: A simple Verilog behavioral model. The code in the
initial block runs once at the beginning of simulation to initial-
ize the two registers. The code in the two always blocks runs
periodically: once every 50 and 100 time units respectively.

Non-blocking assignments are one way to ameliorate most
problems with nondeterminism caused by shared variables, but
they, too, can lead to bizarre behavior. To illustrate the use of
shared variables, consider a three-stage shift register. The im-
plementation in Figure 7(a) appears to be correct, but it fact
may not behave as expected because the language says the
simulator is free to execute the three always blocks in any or-
der when they are triggered. If the processes execute top-to-
bottom, the module becomes a one-stage shift register, but if
they execute bottom-to-top, the behavior is as intended.

Figure 7(b) shows a correct implementation of the shift reg-
ister that uses non-blocking assignments to avoid this problem.
The semantics of these assignments are such that the value on
the right hand side of the assignment is captured when the
statement runs, but the actual assignment of values is only
done at the “end” of each instant in time, i.e., after all three
blocks have finished executing. As a result, the order in which
the three assignments are executed does not matter and there-
fore the code always behaves like a three-stage shift register.

However, the use of non-blocking assignments can also be
deceptive. In most languages, the effect of an assignment can
be felt by the instruction immediately following it, but the
delayed-assignment semantics of a non-blocking assignment
violates this rule. Consider the erroneous decimal counter in
Figure 8(a). Without knowing the subtle semantics of Verilog
non-blocking assignments, the counter would appear to count
from 0 to 9, but in fact it counts to 10 before being reset be-
cause test of o by the if statement gets the value of o from
the previous clock cycle, not the results of the o <= o + 1
statement. A corrected version is shown in Figure 8(b), which
uses a local variable count to maintain the count, blocking
assignments to touch it, and finally a non-blocking assignment
to o to sent the count outside the module.

Coupled with the rules for register inference, the circuit im-
plied by the counter in Figure 8(b) is actually just fine. While
both o and count are marked as reg, only the count vari-
able will actually become a state-holding element.

5



module FSM(o, a, b, reset);
output o;
reg o; // declared reg: o is assigned procedurally
input a, b, reset;
reg [1:0] state; // only "state" holds state
reg [1:0] nextstate;

// Combinational logic block: sensitive to changes
// on all inputs and outputs.
// o and nextState always assigned

always @(a or b or state)
case (state)

2’b00: begin
o = a & b;
nextState = a ? 2’b00 : 2’b01;

end
2’b01: begin

o = 0; nextState = 2’b10;
end
default: begin

o = 0; nextState = 2’b00;
end

endcase

// Sequential block: sensitive to clock edge

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

endmodule

Figure 6: A Verilog behavioral model for a state machine illus-
trating the common practice of separating combinational and
sequential blocks.

3.2 VHDL

Although VHDL and Verilog have grown to be nearly inter-
changeable, they could not have had more different histories.
Unlike Verilog, VHDL was deliberately designed to be a stan-
dard hardware description language after a lengthy, deliberate
process. As Dewey explains [17], VHDL was created at the
behest of the U. S. Department of Defense in response to the
desire to incorporate integrated circuits (specifically very high
speed integrated circuits, hence the name of the program from
which VHDL evolved, VHSIC) in military hardware. Start-
ing with a summer study at Woods Hole, Massachusetts in
1981, requirements for and scope of the language were first
established, then after a bidding process, a contract to develop
the language was awarded in 1983 to three companies: Inter-
metrics, which was the prime contractor for Ada, the software
programming language developed for the U. S. military in the
early 1980s; Texas Instruments; and IBM. Dewey and de Geus
describe this history in more detail [18].

The VHDL language was created in 1983 and 1984, es-
sentially concurrent with Verilog, and first released publicly
in 1985. Interest in an IEEE standard hardware description lan-
guage was high at the time, and VHDL was eventually adapted
and adopted as IEEE standard 1076 in 1987 [31] and revised
in 1993 [27]. Verilog, meanwhile, remained proprietary un-

module bad_sr(o, i, clk);
output o;
input i, clk;
reg a, b, o;

always @(posedge clk) a = i;
always @(posedge clk) b = a;
always @(posedge clk) o = b;
endmodule (a)

module good_sr(o, i, clk);
output o;
input i, clk;
reg a, b, o;

always @(posedge clk) a <= i;
always @(posedge clk) b <= a;
always @(posedge clk) o <= b;

endmodule (b)

Figure 7: Verilog examples illustrating the difference between
blocking and non-blocking assignments. (a) An erroneous im-
plementation of a three-stage shift register that may or may not
work depending on the order in which the simulator chooses
to execute the three always blocks. (b) A correct implemen-
tation using non-blocking assignments, which make the vari-
ables take on their new values after all three blocks are done
for the instant.

til 1990. The standardization and growing popularity of VHDL
was certainly instrumental in Cadence’s decision to make Ver-
ilog public.

The original objectives of the VHDL language [17] were
to provide a means of documenting hardware (i.e., as an al-
ternative to imprecise English descriptions) and of verifying
it through simulation. As such, a VHDL simulator was devel-
oped along with the language.

The VHDL language is vast, complicated, and has a ver-
bose syntax obviously derived from Ada. While its popular-
ity as a means of formal documentation is questionable, it has
succeeded as a modeling language for hardware simulation,
and, like Verilog, more recently as a specification language for
register-transfer-level logic synthesis.

Although there are many features absent in Verilog that are
unique to VHDL (and vice versa), in practice most designers
use a nearly identical subset because this is what the synthesis
tools accept. Thus although the syntax of the two languages
differs greatly, and the semantics appear different, their usage
has converged to a common core.

Unlike Verilog, VHDL has spawned a plethora of books dis-
cussing its proper usage. Basic texts include Lipsett, Schaefer,
and Ussery [35] (one of the earliest), Dewey [19], Bhasker [8],
Perry [43], and Ashenden [3, 4]. More advanced is Cohen [15],
which suggests preferred idioms in VHDL, and Harr and Stan-
cluescu [26], which discusses using VHDL for a variety of
modeling tasks, not just RTL.

6



module bad_counter(o, clk);
output o;
input clk;
reg [3:0] o;

always @(posedge clk) begin
o <= o + 1;
if (o == 10)

o <= 0;
end

endmodule (a)

module good_counter(o, clk);
output o;
input clk;
reg [3:0] o;
reg [3:0] count;

always @(posedge clk) begin
count = count + 1;
if (count == 10)

count = 0;
o <= count;

end

endmodule (b)

Figure 8: Verilog examples illustrating a pitfall of non-
blocking assignments. (a) An erroneous implementation of a
counter, which counts to 10, not 9. (b) A correct implementa-
tion using a combination of blocking and non-blocking assign-
ments.

3.2.1 Coding in VHDL

Like Verilog, VHDL describes designs as a collection of hi-
erarchical modules. But unlike Verilog, VHDL splits them
into interfaces—called entities—and their implementations—
architectures. In addition to named input and output ports, en-
tities also define compile-time parameters (generics), types,
constants, attributes, use directives, and others.

Figure 9 shows code for the same two-input multiplexer
roughly equivalent to Verilog examples in Figure 1. Figure 9(a)
is the entity declaration for the multiplexer, which defines its
input and output ports. Figure 9(b) is a purely structural de-
scription of the multiplexer: it defines internal signals, the
interface to the Inverter, AndGate, and OrGate components,
and instantiates four of these gates. The name of the archi-
tecture, “structural” is arbitrary; it is used to distinguish
among different architectures. The Verilog equivalent in Fig-
ure 1(b) did not define the internal signals, relying instead on
Verilog’s rule of automatically considering undeclared signals
to be single-bit wires. Furthermore, the Verilog example used
the built-in gate-level primitives; VHDL itself does not know
about logic gates, but can be taught about them.

Figure 9(c) illustrates a dataflow model for the multiplexer
with each logic gate made explicit. VHDL does have built-
in logical operators. Figure 9(d) shows an even more succinct
implementation, which uses the multi-way when conditional
operator.

entity mux2 is
port (a, b, c : in Bit; d : out Bit);

end;
(a)

architecture structural of mux2 is

signal cbar, ai, bi : Bit;

component Inverter
port (a:in Bit; y: out Bit);

end component;
component AndGate

port (a1, a2:in Bit; y: out Bit);
end component;
component OrGate

port (a1, a2:in Bit; y: out Bit);
end component;

begin
-- connect by name

I1: Inverter port map(a => c, y => cbar);
-- connect by position

A1: AndGate port map(a, c, ai);
A2: AndGate port map(a1 => b, a2 => cbar,

y => bi);
O1: OrGate port map(a1 => ai, a2 => bi,

y => d);
end;

(b)

architecture dataflow1 of mux2 is
signal cbar, ai, bi : Bit;

begin
cbar <= not c;
ai <= a and c;
bi <= b and cbar;
d <= ai or bi;

end; (c)

architecture dataflow2 of mux2 is
begin

d <= a when c = ’1’ else b;
end; (d)

architecture behavioral of mux2 is
begin

process(a, b, c) -- sensitivity list
begin

if c = ’1’ then
d <= a;

else
d <= b;

end if;
end process;

end; (e)

Figure 9: VHDL code for a two-input multiplexer. (a) The en-
tity definition for the multiplexer. (b) A structural implemen-
tation instantiating primitive gates. (c) A dataflow implemen-
tation with an expression for each gate. (d) A direct dataflow
implementation. (e) A behavioral implementation.

7



Finally, Figure 9(e) shows a behavioral implementation of
the mux. It defines a concurrently-running process sensitive to
the three mux inputs (a, b, and c) and uses an if-then-else state-
ment (VHDL provides most of the usual control-flow state-
ments) to select between copying the a and the b signal to the
output d.

One of the design philosophies behind the VHDL language
was to maximize its flexibility by making most things user-
definable. As a result, unlike Verilog, it has only the most rudi-
mentary built-in types (e.g., Boolean variables, but nothing to
model four-valued logic), but has a much more powerful type
system that allows such types to be defined. The Bit used in
the examples in Figure 9 is actually a predefined part of the
standard environment, i.e.,

type BIT is (’0’, ’1’);

which is a character enumeration type whose two values are
the characters 0 and 1. (VHDL is case-insensitive; Bit and
BIT are equivalent.)

There are advantages and disadvantages to this approach.
While it allows more things to be added to the language later,
it also makes for a few infelicities. For example, the predicate
in the if statement in Figure 9(e) must be written “c = ’1’”
instead of just “c” because the argument must be of type
Boolean, not Bit. While not a serious issue, it is yet another
thing that contributes to VHDL’s verbosity.

Figure 10 is a more elaborate example showing an imple-
mentation of the classic traffic light controller from Mead and
Conway [36]. This is written in a synthesizeable dialect, using
the common practice of separating the output and next-state
logic from the state-holding element. Specifically, the first pro-
cess is sensitive only to the clock signal. The if statement in the
first process checks for an event on the clock (VHDL signals
have a variety of attributes; event is true whenever the value
has changed) and the clock being high, i.e., the rising edge of
the clock. The second process is sensitive only to the inputs
and present state of the machine, not the clock, and is meant
to model combinational logic. It illustrates the multi-way con-
ditional case statement, constants, and bit vectors. It employs
types (i.e., std_ulogic and std_ulogic_vector) and
operators from the ieee.std logic 1164 library, an IEEE stan-
dard library [32] for modeling logic that can represent un-
known values (“X”) as well as 0s and 1s.

3.2.2 VHDL Shortcomings

One shortcoming of VHDL is its obvious verbosity: the use
of begin/end pairs instead of braces, the need to separate
entities and their architectures, the need to spell out things
like ports, its lengthy names for standard logic types (e.g.,
std_ulogic_vector), and its requirement of enclosing
Boolean values and vectors in quotes. Many of these are ar-
tifacts of its roots in the Ada language, another fairly verbose
language commissioned by the U. S. Department of Defense,
but others are due to questionable design decisions. Consider
the separation of entity/architecture pairs. While separating
these concepts is a boon to abstraction and simplifies the con-
struction of simulations of the same system in different con-
figurations (e.g., to run a simulation using a gate-level archi-

library ieee;
use ieee.std_logic_1164.all;
entity tlc is
port (

clk, reset : in std_ulogic;
cars, short long : in std_ulogic;
highway_yellow : out std_ulogic;
highway_red : out std_ulogic;
farm_yellow : out std_ulogic;
farm_red : out std_ulogic;
start_timer : out std_ulogic);

end tlc;

architecture imp of tlc is
signal current_state, next_state :

std_ulogic_vector(1 downto 0);
constant HG : std_ulogic_vector := "00";
constant HY : std_ulogic_vector := "01";
constant FY : std_ulogic_vector := "10";
constant FG : std_ulogic_vector := "11";
begin

P1: process (clk) -- Sequential process
begin
if (clk’event and clk = ’1’) then

current_state <= next_state;
end if;

end process P1;

-- Combinational process: sensitive to input changes
P2: process (current_state, reset, cars, short, long)
begin
if (reset = ’1’) then

next_state <= HG;
start_timer <= ’1’;

else
case current_state is

when HG =>
highway_yellow <= ’0’; highway_red <= ’0’;
farm_yellow <= ’0’; farm_red <= ’1’;
if (cars = ’1’ and long = ’1’) then

next_state <= HY; start_timer <= ’1’;
else

next_state <= HG; start_timer <= ’0’;
end if;

when HY =>
highway_yellow <= ’1’; highway_red <= ’0’;
farm_yellow <= ’0’; farm_red <= ’1’;
if (short = ’1’) then

next_state <= FG; start_timer <= ’1’;
else

next_state <= HY; start_timer <= ’0’;
end if;

when FG =>
highway_yellow <= ’0’; highway_red <= ’1’;
farm_yellow <= ’0’; farm_red <= ’0’;
if (cars = ’0’ or long = ’1’) then

next_state <= FY; start_timer <= ’1’;
else

next_state <= FG; start_timer <= ’0’;
end if;

when FY =>
highway_yellow <= ’0’; highway_red <= ’1’;
farm_yellow <= ’1’; farm_red <= ’0’;
if (short = ’1’) then

next_state <= HG; start_timer <= ’1’;
else

next_state <= FY; start_timer <= ’0’;
end if;

when others =>
next_state <= "XX"; start_timer <= ’X’;
highway_yellow <= ’X’; highway_red <= ’X’;
farm_yellow <= ’X’; farm_red <= ’X’;

end case;
end if;

end process P2;
end imp;

Figure 10: The traffic-light controller from Mead and Con-
way [36] implemented in VHDL, illustrating the common
practice of separating combinational and state-holding pro-
cesses.

8



tecture in place of a behavioral one for more precise timing
estimation), in practice most designers only ever write a sin-
gle architecture for a given entity and such pairs are usually
written together.

The flexibility of VHDL also has advantages and disadvan-
tages. Its type system is much more flexible than Verilog’s,
providing things such as aggregate types and overloaded func-
tions and operators, but this flexibility also comes with a need
for standardization and also tends to increase the verbosity of
the language. Some of the need for standardization was recog-
nized early, resulting in libraries such as the widely-supported
IEEE 1164 library for multi-valued logic modeling. However,
a standard for signed and unsigned arithmetic on logic vec-
tors was slower in coming (it was eventually standardized in
1997 [33]), prompting both Synopsys and Mentor to each in-
troduce similar but incompatible and incomplete versions of a
similar library.

Fundamentally, many of the problems stem from a desire
to make the language too general. Aspects of the type system
suffer from this as well. While the ability to define new enu-
merated types for multi-valued logic modeling is powerful, it
seems a little odd to require virtually every VHDL program
(since its main use has long been specification for RTL synthe-
sis) to include one or more standard libraries. This also leads to
the need to be constantly comparing signals to the literal ’1’
instead of just using a signal’s value directly, and requires a
user to carefully watch the types of subexpressions.

3.3 SystemC

SystemC is a relative latecomer to the HDL wars. Developed at
Synopsys in the late 1990s, primarily by Stan Liao, SystemC
was originally called Scenic [34] and was intended to replace
Verilog and VHDL as the main system description language
for synthesis (see Arnout [2] for some of the arguments for
SystemC). SystemC is not so much a language as a C++ library
along with a set of coding rules, but this is exactly its strength.
It evolved from the common practice of first writing a high-
level simulation model in C or C++, refining it, and finally
recoding it in RTL Verilog or VHDL. SystemC was intended
to smooth the refinement process by removing the need for a
separate hardware description language.

SystemC can be thought of as a dialect of C++ for modeling
digital hardware. Like Verilog and VHDL, it supports hierar-
chical models whose blocks consist of input/output ports, in-
ternal signals, concurrently running imperative processes, and
instances of other blocks. The SystemC libraries make two
main contributions: an inexpensive mechanism for running
many processes concurrently (based on a lightweight thread
package; see Liao, Tjiang, and Gupta [34]), and an extensive
set of types for modeling hardware systems, including bit vec-
tors and fixed-point numbers. A SystemC model consists of a
series of class definitions, each of which define a block. Meth-
ods defined for such a class become concurrently-running pro-
cesses, and the constructor for each class starts these processes
running by passing them to the simulation kernel. Simulating a
SystemC model starts by calling the constructors for all blocks
in the design, then invoking the scheduler, which is responsible
for executing each of the concurrent processes as needed.

The computational model behind earlier versions of Sys-
temC was cycle-based instead of the event-driven model of
Verilog and VHDL. This meant that the simulation was driven
by a collection of potentially asynchronous, but periodic
clocks. Later versions (SystemC 2.0 and higher) adopted an
event-driven model much like VHDL’s.

SystemC books have only appeared recently. Grötker
et al. [24] provide a nice introduction to SystemC 2.0.
Bhasker [9] is also an introduction. The volume edited by
Muller et al. [38] surveys more advanced SystemC modeling
techniques.

3.3.1 Coding in SystemC

Figure 11 shows a small SystemC model for a 0–99 counter
driving a pair of seven segment displays. It defines two mod-
ules (the decoder and counter structs) and an sc_main
function that defines some internal signals, instantiates two de-
coders and a counter, and runs the simulation while printing
out what it does.

The two modules in Figure 11 illustrate two of the three
types of processes possible in SystemC. The decoder
module is the simpler one: it models a purely combi-
national process by defining a method (called, arbitrarily,
“compute”) that will be invoked by the scheduler ev-
ery time the number input changes, as indicated by the
sensitive << number;— statement beneath the defini-
tion of compute as an SC_METHOD.

The second module, counter is an SC_CTHREAD
process: a method (here called “tick”) that is in-
voked in response to a clock edge (here, the pos-
itive edge of the clk input, as defined by the
SC_CTHREAD(tick, clk.pos()); statement) and
can suspend itself with the wait() statement. Specifically,
the scheduler resumes the method when the clock edge occurs,
and the method runs until it encounters a wait() statement,
at which point its state is saved and control passes back to the
scheduler.

This example illustrates only a very small fraction of the
SystemC type libraries. It uses unsigned integers (sc_uint),
bit vectors (sc_bv), and a clock (sc_clock). The non-
clock types are wrapped in sc_signals, which behave like
VHDL signals. In particular, when an SC_CTHREAD method
assigns a value to a signal, the effect of this assignment is felt
only after all the processes triggered by the same clock edge
have been run. Thus, such assignments behave like blocking
assignments in Verilog to ensure that the nondeterministic or-
der in which such processes are invoked (the scheduler is al-
lowed to invoke them in any order) does not affect the ultimate
outcome of simulating the system.

3.3.2 SystemC Shortcomings

Like many languages, the most common use of SystemC has
diverged from its designers’ original intentions—an input for
hardware synthesis in the case of SystemC. A number of syn-
thesis tools for the language do exist, but SystemC is now used
primarily (and quite successfully) for system modeling. This
does mean, however, that it does not solve the “separate lan-
guage for synthesis problem.”

9



#include "systemc.h"
#include <stdio.h>

struct decoder : sc_module {
sc_in<sc_uint<4> > number;
sc_out<sc_bv<7> > segments;

void compute() {
static sc_bv<7> codes[10] = {

0x7e, 0x30, 0x6d, 0x79, 0x33,
0x5b, 0x5f, 0x70, 0x7f, 0x7b };

if (number.read() < 10)
segments = codes[number.read()];

}

SC_CTOR(decoder) {
SC_METHOD(compute);
sensitive << number;

}
};

struct counter : sc_module {
sc_out<sc_uint<4> > tens;
sc_out<sc_uint<4> > ones;
sc_in_clk clk;

void tick() {
int one = 0, ten = 0;
for (;;) {

if (++one == 10) {
one = 0;
if (++ten == 10) ten = 0;

}
ones = one;
tens = ten;
wait();

}
}

SC_CTOR(counter) {
SC_CTHREAD(tick, clk.pos());

}
};

int sc_main(int argc, char *argv[])
{

sc_signal<sc_uint<4> > ones, tens;
sc_signal<sc_bv<7> >

ones_segments, tens_segments;
sc_clock clk;

decoder decoder1("decoder1");
decoder1(ones, ones_segments);
decoder decoder2("decoder2");
decoder2(tens, tens_segments);

counter counter1("counter1");
counter1(tens, ones, clk);

for (int i = 0 ; i < 12 ; i++) {
sc_start(clk, 1);
printf("%d %d %x %x\n",

(int)tens.read(), (int)ones.read(),
(int)(sc_uint<7>)tens_segments.read(),
(int)(sc_uint<7>)ones_segments.read());

}

}

Figure 11: A SystemC model for a two-digit decimal counter
driving two seven-segment displays.

A big disadvantage of SystemC is that C++ was never in-
tended for modeling digital hardware and as a result is even
more lax about enforcing rules than Verilog. The syntax, sim-
ilarly, is somewhat awkward and relies on some very tricky
macro preprocessor definitions. On detailed models, the simu-
lation speed of a good compiled-code Verilog or VHDL sim-
ulator may be better, although SystemC is much faster for
higher-level models. For such systems, which consist of com-
plex processes, SystemC should be superior since the simu-
lation becomes nearly a normal C++ program. However, the
context-switching cost in SystemC is higher than that of a
good Verilog or VHDL simulator when running a more de-
tailed model, so a system with many small processes would
not simulate as quickly.

Another issue is the ease with which a SystemC model
can inadvertently be made nondeterministic. Although care-
fully following a discipline of only communicating among
processes through signals will ensure the simulation is nonde-
terministic, any slight deviation from this will cause problems.
For example, library functions that use a hidden global variable
may cause nondeterminism if called from different processes.
Accidentally holding state in an SC_METHOD process (easily
done if class variables are assigned) can also cause problems
since such method are invoked in an undefined order.

Many argue that nondeterministic behavior in a language
can be desirable for modeling nondeterministic systems,
which certainly exist and need to be modeled. However, the
sort of nondeterminism in a language such as SystemC or Ver-
ilog creeps in unexpectedly and is difficult to use as a model-
ing tool. For the simulation of a nondeterministic model to be
interesting, there needs to be some way of seeing the differ-
ent possible behaviors, yet a nondeterministic artifact such as
an SC_METHOD process that holds state provides no mecha-
nism for ensuring that it is not, in fact, predictable. As a result,
a designer has a hard time answering whether a model of a
nondeterministic system can exhibit undesired behavior, even
through a careful selection of test cases.

4 Verification Languages

Thanks to dramatic improvements in integrated circuit fabrica-
tion technology, it is now possible to build very large, complex
integrated circuits. Hardware description languages, logic syn-
thesis, and automated place-and-route technology have simi-
larly made it possible to design such complicated systems. Un-
fortunately, technology to validate these designs, i.e., to iden-
tify design errors, has had a hard time keeping pace with these
trends.

The time required to validate a design now greatly outstrips
the time required to design or fabricate it. Although many
novel techniques have been proposed to address the validation
problem, simulation remains the preferred method. So-called
formal verification techniques, which amount to efficient ex-
haustive simulation, have been gaining ground, but suffer from
capacity problems.

Simulation applies a stimulus to a model of a design to pre-
dict the behavior of the fabricated system. Naturally, there is
a trade-off between highly detailed models that can predict
many attributes, say, logical values, timing, and power con-

10



sumption, and simplified models that can only predict logical
behavior but execute much faster.

Because the size of the typical design has grown exponen-
tially over time, functional simulation, which only predicts the
logical behavior of a synchronous circuit at clock-cycle bound-
aries, has become the preferred form of simulation because
of its superior speed. Furthermore, designers have shied away
from more timing-sensitive circuitry such as gated clocks and
transparent latches because they require more detailed simula-
tion models and are therefore more costly to simulate.

Simulation-based validation raises three important ques-
tions: what the stimulus should be, whether it exposes any de-
sign errors, and whether the stimulus is long and varied enough
to have exposed “all” design errors. Historically, these three
questions have been answered manually, i.e., by having a test
engineer write test cases, check the results of simulation, and
make some informed guesses about how comprehensive the
test suite actually is.

A manual approach has many shortcomings. Writing test-
cases is tedious and the number necessary for “complete” ver-
ification grows faster than the size of the system description.
Manually checking the output of simulation is similarly te-
dious and subtle errors can be easily overlooked. Finally, it
is difficult to judge quantitatively how much of a design has
really been tested.

More automated methodologies, and ultimately languages,
have evolved to address some of these challenges, although
the verification problem remains one of the most difficult. Bi-
ased random test case generation has become standard prac-
tice, although it has only supplemented manual test case gen-
eration, not completely supplanted it. Designer-inserted asser-
tions, long standard practice for software development, have
also become standard for hardware, although the sort of asser-
tions needed in hardware are more complicated than the typ-
ical “the argument must be non-zero” sort of checking that
works well in software. Finally, automated “coverage” check-
ing, which attempts to quantify how much of a design’s behav-
ior has been exercised in simulation, has also become standard.

All of these techniques are improvements, not a panacea.
While biased random test case generation can quickly gener-
ate many interesting tests, it provides no guarantee of com-
pleteness; bugs may go unnoticed. Because they must often
check temporal properties (e.g., “acknowledge arrives within
three cycles of every request”), assertions in hardware systems
are more difficult to write than those for software (which most
often check data structure consistency) and again, there is no
way to know when enough assertions have been added, and it
is possible that the assertions themselves have flaws (e.g., they
let bugs by). Finally, test cases that achieve 100% coverage
can also let bugs by because the criteria for coverage is neces-
sarily weak. Coverage typically checks what states particular
variables have been in, but it cannot consider all combinations
because they grow exponentially quickly with design size. As
a result, certain important combinations may not be checked
even though coverage checks report “complete coverage.”

While the utility of biased random test generation and cov-
erage metrics is mostly limited to simulation, assertion spec-

ification techniques are useful for, and have been heavily in-
fluenced by, formal verification. Pure formal techniques con-
sider all possible behaviors by definition and therefore do not
require explicit test cases (implicitly, they consider all possi-
ble test cases) and also do not need to consider coverage. But
knowing what behavior is unwanted is crucial for formal tech-
niques, whose purpose is to either expose unwanted behavior
or formally prove it cannot occur.

Recently, a sort of renaissance has occurred in verifica-
tion languages. Temporal logics, specifically Linear Tempo-
ral Logic (LTL) and Computation Tree Logic (CTL), form
the mathematical basis for most assertion checking, but their
mathematical syntax is awkward for hardware designers. In-
stead, a number of more traditional computer languages, which
combine a more human-readable syntax for the bare logic with
a lot of “syntactic sugar” for more naturally expressing com-
mon properties, have been proposed for expressing properties
in these logics. Two industrial efforts from Intel (ForSpec) and
IBM (Sugar) have emerged as the most complete.

Meanwhile, some EDA companies have produced lan-
guages designed for writing testbenches and checking sim-
ulation coverage. Vera, originally designed by Systems Sci-
ence and since acquired by Synopsys, and e, designed and sold
by Verisity, have been the two most commercially successful.
Bergeron [7] discusses how to use the two languages.

All four of these languages have recently undergone exten-
sive cross-breeding. Vera has been made public, rechristened
OpenVera, had Intel’s ForSpec assertions grafted onto it, and
added almost in its entirety to SystemVerilog. Sugar, mean-
while, has been adopted by the Accelera standards committee,
rechristened the Property Specification Language (PSL), and
also added in part to SystemVerilog. Verisity’s e has changed
the least, only having recently been made public.

There are obvious advantages in having a single industry-
standard language for assertions, so it seems likely that most of
these languages will eventually disappear, but as of this writing
(2004), there is no obvious winner.

The sections that follow describe languages that are cur-
rently public. As mentioned above, most started as proprietary
in-house or commercial.

4.1 OpenVera

OpenVera began life around 1995 as Vera, a proprietary lan-
guage implemented by Systems Science, Inc. mainly for cre-
ating testbenches for Verilog simulations. As such, its syntax
was heavily influenced by Verilog. VHDL support was added
later. Synopsys bought the company in 1998, released the lan-
guage to the public in 2001, and rechristened it OpenVera.

OpenVera is a concurrent, imperative language designed for
writing testbenches. It executes in concert with a Verilog or
VHDL simulator and can both provide stimulus to the simula-
tor and observe the results. In addition to the usual high-level
imperative language constructs, such as conditionals, loops,
functions, strings, and associative arrays, it provides extensive
facilities for generating biased random patterns (designed to
be applied to the hardware design under test) and monitoring
what values particular variables take on during the simulation
(for checking coverage).

11



class Bus {
rand bit[15:0] addr;
rand bit[31:0] data;

constraint world_align { addr[1:0] == ’2b0; }
}

program demo {
Bus bus = new();
repeat (50) {
integer result = bus.randomize();
if (result == OK)

printf("addr = %16h data = %32h\n",
bus.addr, bus.data);

else
printf("randomization failed\n");

}
}

Figure 12: A simple Vera program illustrating its ability to gen-
erate biased random variables and its mix of imperative and
object-oriented styles. From the OpenVera 1.3 LRM.

In the process of making OpenVera public, Synopsys added
the assertion specification capabilities of Intel’s ForSpec lan-
guage, making it easy to check whether certain behaviors ever
appear during the simulation.

In a further nod to cross-breeding, much of Vera was incor-
porated into SystemVerilog 3.1 around 2003. In particular, its
style of generating biased random variables and checking for
behavior coverage have been adopted more-or-less verbatim.

The following is a quick overview of OpenVera 1.3, cur-
rently the latest version (September 2004). References for the
language include the OpenVera language reference manual,
available from the OpenVera website, and Haque et al. [25].

OpenVera has three main facilities that separate it from
more traditional programming languages: biased random vari-
able generation subject to constraints, monitoring facilities for
reporting coverage of state variables, and the ability to specify
and check temporal assertions.

Figure 12 shows a simple OpenVera program that demon-
strates the language’s ability to generate biased random vari-
ables. First, a Java/C++-like class is defined containing the
sixteen-bit field addr and the thirty-two bit field data. These
are marked rand, meaning their values will be set by a call to
the randomize()method implicitly defined for every class.

Following the definition of the fields, a constraint (named
arbitrarily word align) is defined for objects of this
class. Such constraints restrict the possible values the
randomize() method may assign to various fields. This
particular constraint simply restricts the two lowest bits of
addr to be zero, i.e., aligned on a four-byte boundary.

The “demo” program creates a new Bus object then, for
fifty times, invokes randomize() to generate a new set of
“random” values (in fact, they are taken from a pseudorandom
sequence guaranteed to be the same each time the program
runs) for the two fields in the bus object that conform to the
given constraint.

Overly constrained or inconsistent constraints may lead
randomize() to fail. It signals this with a non-OK return

bit clk;
bit [15:0] addr;
bit [7:0] data;

coverage_group MyChecker {
sample_event = @(posedge clk);
sample addr, data;

}

program demo_coverage {
MyChecker checker = new();
...

}

Figure 13: A simple Vera program containing a single cover-
age group that monitors which values appear on the addr and
data state variables. From the OpenVera 1.3 LRM.

value (OK and FAIL are reserved words in Vera), here as-
signed to the local integer variable result. For this simple
example, randomization will always succeed. The constraint
solver guarantees that it will only fail if there is no consistent
solution to the supplied constraints.

This example, of course, only illustrates a fraction of Open-
Vera’s facilities for biased random variable generation. It can
also add constraints on-the fly, impose set membership con-
straints, follow user-defined distributions, impose conditional
constraints, impose constraints between variables, selectively
randomize and disable randomization of user-specified vari-
ables, and generate random sequences from a language speci-
fied by a grammar.

OpenVera supports so-called functional coverage checking,
which can monitor state variables and state transitions (unlike
software coverage, which usually monitors which statements
and branches have been executed). It uses a bin model: each
bin represents a particular state or transition and when a match-
ing activity occurs, the counter for that bin is incremented. The
number of bins that remain empty after simulation therefore
give a rough idea of what behavior has yet to be exercised.

The coverage_group construct defines a type of moni-
tor. Each specifies a set of variables to monitor and an event
that triggers a check of the variables, typically the positive
edge of a clock. Like a class, these constructs must be ex-
plicitly instantiated and there may be multiple copies of each,
especially useful when a coverage group has parameters. Fig-
ure 13 illustrates a simple coverage group.

Like the earlier example, Figure 13 shows only the most
basic coverage functionality. OpenVera can also monitor cross
coverage, i.e., the combinations of values taken by two or more
variables; selectively disable coverage checking, e.g., during
system reset; allow the user to explicitly specify bins and the
values mapped to them; and monitor transition coverage, i.e.,
combinations of values taken by the same variable in succes-
sive cycles;.

OpenVera’s assertions, which were adapted from Intel’s
ForSpec language, provides a way to check temporal proper-
ties such as “an acknowledge signal must occur within three
clock cycles after any request.” Because of its source, the syn-
tax for assertions is a little unusual.

12



/* Checks for the sequence p, 6, 9, 3 */
unit mychecker

#(parameter integer p = 0)
(logic en, logic clk, logic [7:0] result);

clock posedge (clk) {
event e0: (result == p);
event e1: (result == 6);
event e2: (result == 9);
event e3: (result == 3);
event myseq:

if (en) then (e0 #1 e1 #1 e2 #1 e3);
}

assert myassert: check(myseq, "Missed a step.");
endunit

/* Watch for the sequence 4, 6, 9, 3 on outp */
bind instances cnt_top.dut:

mychecker myinst #(4) (enable, clk, outp);

Figure 14: A sample of OpenVera’s assertion language. It de-
fines a checker that watches for the sequence p, 6, 9, 3 and
creates an instance of it that checks for the sequence 4, 6, 9, 3
on the outp bus. From the OpenVera 1.3 LRM.

Figure 14 shows the assertion language. It defines a checker
(“mychecker”) that takes a single integer parameter p, an en-
able signal, a clock, and an eight-bit bus and looks for the
sequence p, 4, 6, 9, 3 on the bus. The clock construct de-
fines a collection of events (patterns) synchronized to the pos-
itive edge of the clock signal. Events e0 through e3 are sim-
ple properties: they look for patterns on the result signal. The
myseq pattern is the interesting one: it looks for the appear-
ance of the four events separated by a single clock cycle (a
one-cycle delay is written #1). The assert directive means
to check for the myseq event and report and error otherwise.

Finally, bind indicates where to instantiate the checker,
gives it the name myinst, passes the parameter 4, and con-
nects the checker to the enable, clock, and result signals.

Once more, the example in Figure 14 barely scratches the
surface. Sequences can also contain consecutive and non-
consecutive repetition, explicit delays, simultaneous and dis-
joint sequences, and sequence containment.

4.2 The e Language

The e language was developed by Verisity as part of its Spec-
man product as a tool for efficiently writing testbenches. Like
Vera, it is an imperative object-oriented language with con-
currency, the ability to generate constrained random values,
mechanisms for checking functional (variable value) coverage,
and a way to check temporal properties (assertions). Books on
e include Palnitkar [41] and Iman and Joshi [30].

The syntax of e is unusual. First, all code must be enclosed
in <’ and ’>’ symbols, otherwise it is considered a comment.
Unlike C, e declarations are written “name : type.” The syntax
for fields in compound types (e.g., structs) includes particles
such as % and !, which indicate when a field is to be driven on
the device-under-test and not randomly computed respectively.

Figure 15 shows a fragment of an e program that defines an
abstract test strategy for a very simple microprocessor, specif-

Instruction encoding for a very simple processor
<’
type opcode: [ADD, SUB, ADDI, JMP, CALL] (bits: 4);
type reg: [REG0, REG1, REG2, REG3] (bits: 2);

struct instr {
%op : opcode; // Four-bit opcode
%op1 : reg; // Two-bit operand

kind : [imm, reg]; // Second operand type
when reg instr { %op2 : reg; } // reg operand
when imm instr { %op2 : byte; } // imm operand

// Constrain certain instructions to reg or imm
keep op in [ ADD, SUB ] => kind == reg;
keep op in [ ADDI, JMP, CALL ] => kind == imm;

// Constrain JMP, CALL second operand
when imm instr {

keep opcode in [JMP, CALL] => op2 < 16;
}

};

extend sys {
// Add a non-generated field called instrs
!instrs : list of instr;

};
’>

Figure 15: e code defining instruction encoding for a simple 8-
bit microprocessor. After an example in the Specman tutorial.

ically how to generate instructions for it. It illustrates the type
system of the language as well as the utility of constraints. It
defines two enumerated scalar types, opcode and reg, and
defines the width of each. The struct instr defines a new
compound type (instr) that represents a single instructions.
First is the op field, which is one of the opcodes defined ear-
lier. It, the op1, and the op2 fields are marked with %, in-
dicating that they should be considered by the pack built-in
procedure, which marshals data to send to the simulation.

The kind field is also a enumerated scalar, but is used here
as a type tag. It is not marked with %, which means that its
value will not be included when the structure is packed and
sent to the simulation. The two when directives define two
subtypes, i.e., “reg instr” and “imm instr.” Such sub-
types are similar to derived classes in object-oriented program-
ming languages. Here, the value of the kind field, which can
be either imm or reg, determines the subtype.

The two keep directives impose constraints between the
kind field and the opcode, ensuring, e.g., that ADD and SUB
instructions are of the reg type. Although these constraints
are simple, e is able to impose much more complicated con-
straints on the values of fields in a struct.

The final when directive further constrains the JMP and
CALL instructions, i.e., by restricting what values the op2
field may take for these instructions.

The extend sys directive adds a field named instrs to
the sys built-in structure, which is the basic environment. The
leading!makes the system create an empty list of instructions,
which will be filled in later.

Figure 16 illustrates how the definition of Figure 15 can be
used to generate tests that exercise the ADD and ADDI instruc-

13



<’
extend instr {

keep opcode in [ADD, ADDI];
keep op1 == REG0;
when reg instr { keep op2 == REG1; }
when imm instr { keep op2 == 0x3; }

};

extend sys {
keep instrs.size() == 10;

};
’>

Figure 16: e code that uses the instruction encoding of Fig-
ure 15 to randomly generate ten instructions. After an example
in the Specman tutorial.

tions. It first adds constraints to the instr class (the template for
instructions defined in Figure 15) that restrict the opcodes to
either ADD or ADDI, then imposes a constraint on the top
level (sys) that makes it generate exactly ten instructions.
Running the source code of Figure 15 and Figure 16 together
makes the system generate a sequence of ten pseudorandom
instructions.

4.3 PSL

The Property Specification Language, PSL, evolved from the
proprietary Sugar language developed at IBM. Its focus is nar-
rower than either OpenVera or e, since its goal is purely to
specify temporal properties to be checked in hardware designs,
but is more disciplined and has more formal semantics.

Beer et al. [5] provide a nice introduction to an earlier ver-
sion of the language, which they explain evolved over many
years. It has been used within IBM in the RuleBase formal
verification system since 1994 and was also pressed into ser-
vice as a checker generator for simulators in 1997. Accelera,
an EDA standards group, adopted it as their formal property
language in 2002. Cohen [16] provides a tutorial.

PSL is based on Computation Tree Logic (CTL) [14], a
powerful but rather cryptic temporal logic for specifying prop-
erties of finite-state systems. It is able to specify both safety
properties (“this bad thing will never happen”) as well as live-
ness properties (“this good thing will eventually happen”).
Liveness properties can only be checked formally because it
makes a statement about all the possible behaviors of a system
while safety properties can also be tested in simulation. Lin-
ear Temporal Logic (LTL), a subset of CTL, expresses only
safety properties, can therefore be turned into checking au-
tomata meant to be run in concert with a simulation to look
for unwanted behavior. PSL carefully defines which subset of
its properties are purely LTL and are therefore candidates for
use in simulation-based checking.

PSL is divided into four layers. The lowest, Boolean,
consists of instantaneous Boolean expressions on signals
in the design under test. The syntax of this layer follows
that of the HDL to which PSL is being applied, and can
be Verilog, SystemVerilog, VHDL, or GDL. For example,
a[0:3] & b[0:3] and a(0 to 3) and b(0 to 3)
represent the bit-wise and of the four most significant bits of
vectors a and b in the Verilog and VHDL flavors respectively.

The second layer, temporal, is where PSL gets interesting.
It allows a designer to state properties that hold across mul-
tiple clock cycles. The always operator, which states that a
Boolean expression holds in every clock cycle, is one of the
most basic. For example, always !(ena & enb) states
that the signals ena and enb will never be true simultane-
ously in any clock cycle.

More interesting are operators that specify delays.
The next operator is the simplest. The property
always (req -> next ack) states that in every
cycle that the req signal is true, the ack signal is true in the
next cycle. The -> symbol denotes implication, i.e., if the
expression to the left left is true, that on the right must also
be true. The next operator can also take an argument, e.g.,
always req -> next[2] ack means that ack must
be true two cycles after each cycle in which req is true.

PSL provides an extended form of regular ex-
pressions convenient for specifying complex be-
haviors. Although it would be possible to write
always (req -> next (ack-> next !cancel))
to indicate that ack must be true after any cycle in which
req is true, and cancel must be false in the cycle after that,
it is easier to write always {req ; ack ; !cancel}.
This illustrates a basic principle of PSL: most operators
are actually just “syntactic sugar;” the set of fundamental
operators is quite small.

PSL draws a clear distinction between “weak” operators,
which can be checked in simulation (i.e., safety properties) and
“strong” operators, which express liveness properties and can
only be checked formally. Strong operators are marked with
a trailing exclamation point (!), and some operators come in
both strong and weak varieties.

The eventually! operator illustrates the
meaning of strong operators. The property
always (req -> eventually! ack) states that
after req is asserted, ack will always be asserted eventually.
This is not something that can be checked in simulation: if a
particular simulation saw req but did not see ack, it would
be incorrect to report that this property failed because running
that particular simulation longer might have produced ack.
The is the fundamental difference between safety and live-
ness properties: safety states something bad never happens;
liveness states something good eventually happens.

Another subtlety is that it is possible to express properties in
which times moves backward through a property. A simple ex-
ample is always ((a && next[3](b)) -> c, which
states that when a is true and b is true three clock cycles later,
c is true in the first cycle, i.e., when awas true. While it is pos-
sible to check this in simulation (for each cycle in which a is
true, remember whether c is true and look three clock cycles
later for b), it is more difficult to build automata that check
such properties in simulation.

The third layer of PSL, the verification layer, instructs a ver-
ification tool what tests to perform on a particular design. It
amounts to a binding between properties defined with expres-
sions from the Boolean and temporal layer, and modules in the
design under test. The following simple example

14



vunit ex1a(top_block.i1.i2) {
A1: assert never (ena && enb);

}

declares a “verification unit” called ex1a, binds it to the in-
stance named top\_block.i1.i2 in the design under test,
and declares (the assertion named A1) that the signals ena and
enb in that instance are never true simultaneously.

In addition to assert, verification units may also include
assume directives, which allow the tool to assume a prop-
erty; assume_guarantee, which both assumes and tests a
property; restrict, which constrains the tool to only con-
sider those behaviors that have a property; cover, which asks
the tool to check whether a certain property was ever ob-
served; and fairness, which instructs the tool to only con-
sider paths in which the given property occurs infinitely often,
e.g., only when the system does not wait indefinitely.

The fourth (modeling) layer of PSL allows Verilog, Sys-
temVerilog, VHDL, or GDL code to be included inline in a
PSL specification. The intention here is to include additional
details about the system under test in the PSL source file.

4.4 SystemVerilog

Recently, many aspects of the Vera, Sugar, and ForSpec verifi-
cation languages have been merged into Verilog along with the
higher-level programming constructs of Superlog [20] (which
were taken nearly verbatim from C and C++) to produce Sys-
temVerilog [1]. As a result, Verilog has become the English
of the HDL world: voraciously assimilating parts of other lan-
guages and making them its own.

The C- and C++-like features added to SystemVerilog read
like the list of features in those languages. SystemVerilog adds
enumerated types, record types (structs), typedef s, type cast-
ing, a variety of operators such as +=, operator overload-
ing, control-flow statements such as break and continue,
as well as object-oriented programming constructs such as
classes, inheritance, and dynamic object creation and deletion.
At the very highest level, it also adds strings, associative ar-
rays, concurrent process control (e.g., fork/join), semaphores,
and mailboxes, giving it features only found in concurrent pro-
gramming languages such as Java.

Perhaps the most interesting features added to SystemVer-
ilog are those directly related to verification. Specifically, Sys-
temVerilog includes constrained, biased random variable gen-
eration, user-defined functional coverage checking, and tem-
poral assertions, much like those in Vera, e, PSL, and ForSpec.

Figure 17 illustrates some of the random test-generation
constructs in SystemVerilog, which were largely taken from
Vera. Compare this with Figure 12.

Figure 18 illustrates some of the coverage constructs in Sys-
temVerilog. In general, one defines “covergroups,” which are
collections of bins that sample values on a given event, typi-
cally a clock edge. Each covergroup defines the sorts of values
it will be observing (e.g., values of a single variable, combina-
tions of multiple variables, and sequences of values on a single
variable) and rules that define the “bins” each of these values
will be placed in. In the end, the simulator reports which bins
were empty, indicating that none of the matching behavior was

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint world_align { addr[1:0] = 2’b0; }
endclass

initial begin
Bus bus = new;

repeat (50) begin
if (bus.randomize() == 1)

$display("addr = %16h data = %h\n",
bus.addr, bus.data);

else
$display("overconstrained\n");

end
end

typdef enum { low, mid, high } AddrType;

class MyBus extends Bus;
rand AddrType atype; // Random variable

// Additional address constraint
constraint addr_range {

(atype == low ) -> addr inside { [0:15] };
(atype == mid ) -> addr inside { [16:127] };
(atype == high) -> addr inside { [128:255] };

}
endclass

task exercise_bus;
int res;

// Restrict to low addresses
res = bus.randomize() with { atype == low; };

// Restrict to particular address range
res = bus.randomize()

with { 10 <= addr && addr <= 20 };

// Restrict data to powers of two
res = bus.randomize() with

{ data & (data - 1) == 0 };

// Disable word alignment
bus.word_align.constraint_mode(0);

res = bus.randomize with { addr[0] || addr[1] };

// Re-enable word alignment
bus.word_align.constraint_mode(1);

endtask

Figure 17: Constrained random variable constructs in Sys-
temVerilog. The example starts with a simple definition of a
Bus class that constraints the two least-significant bits of the
address to be zero, then invokes the randomize method to
randomly generate address/data pairs and print the result. Next
is a refined version of the Bus class that adds a field taken from
an enumerated type that further constrains the address depend-
ing on its value. The example ends with a task that illustrates
various ways to control the constraints. After examples in the
SystemVerilog LRM [1]

15



enum { red, green, blue } color;

bit [3:0] adr, offset;

covergroup g2 @(posedge clk);
Hue: coverpoint color;
Offset: coverpoint offset;

// Consider (color, adr) pairs, e.g.,
// (red, 3’b000), (red, 3’b001), (blue, 3’b111)
AxC: cross color, adr;

// Consider (color, adr, offset) triplets
// Creates 3 * 16 * 16 = 768 bins
all: cross color, adr, Offset;

endgroup

g2 g2_inst = new; // Create a watcher

bit [9:0] a; // Takes values 0--1023

covergroup cg @(posedge clk);

coverpoint a {
// place values 0--63 and 65 in bin a
bins a = { [0:63], 65 };

// create 65 bins, one for 127, 128, ..., 191
bins b[] = { [127:150], [148:191] };

// create three bins: 200, 201, and 202
bins c[] = { 200, 201, 202 };

// place values 1000--1023 in bin d
bins d = { [1000:$] };

// place all other values
// (e.g., 64, 66, .., 126, 192, ...)
// in their own bin
bins others[] = default;

}

endgroup

bit [3:0] a;

covergroup cg @(posedge clk);
coverpoint a {
// Place the sequences 4 -> 5 -> 6, 7 -> 11,
// 8 -> 11, 9 -> 11, 10 ->11, 7 -> 12, 8 -> 12,
// 9 -> 12, and 10 -> 12 into bin sa.
bins sa = (4 => 5 => 6), ([7:9],10 => 11,12);

// Create separate bins for 4 -> 5 -> 6,
// 7 -> 10, 8 -> 10, and 9 -> 10
bins sb[] = (4 => 5 => 6), ([7:9] => 10);

// Look for the sequence 3 -> 3 -> 3 -> 3
bins sc = 3 [* 4];

// Look for any of the sequences
// 5 -> 5, 5 -> 5 -> 5, or 5 -> 5 -> 5 -> 5
bins sd = 5 [* 2:4];

// Look for any sequence of the form
// 6 -> ... -> 6 -> ... -> , where "..."
// represents any sequence excluding 6
bins se = 6 [-> 3];

}
endgroup

Figure 18: SystemVerilog coverage constructs. The example
begins with a definition of a “covergroup” that considers the
values taken by the color and offset variables as well as com-
binations. Next is a covergroup illustrating the variety of ways
“bins” may be defined to classify values for coverage. The fi-
nal covergroup illustrates SystemVerilog’s ability to look for
and classify sequences of values, not just simple values. After
examples in the SystemVerilog LRM [1]

// Make sure req1 or req2 is true
// if we are in the REQ state
always @(posedge clk)
if (state == REQ)

assert (req1 || req2);

// Same, but report the error ourselves
always @(posedge clk)
if (state == REQ)

assert (req1 || req2)
else

$error("In REQ; req1 || req2 failed (\%0t)",
$time);

property req_ack;
@(posedge clk) // Sample req, ack at rising edge

// After req is true, between one and three
// cycles later, ack must have risen.
req ##[1:3] $rose(ack);

endproperty

// Assert that this property holds,
// i.e., create a checker
as_req_ack: assert property (req_ack);

// The own_bus signal goes high in 1 to 5 cycles,
// then the breq signal goes low one cycle later.
sequence own_then_release_breq;
##[1:5] own_bus ##1 !breq

endsequence

property legal_breq_handshake;
@(posedge clk) // On every clock,
disable iff (reset) // unless reset is true,
// once breq has risen, own_bus should rise
// and breq should fall.
$rose(breq) |-> own_then_release_breq;

endproperty

assert property (legal_breq_handshake);

Figure 19: SystemVerilog assertions. The first two always
blocks check simple safety properties, i.e., that req1 and
req2 are never true at the positive edge of the clock. The next
property checks a temporal property: that ack must rise be-
tween one and three cycles after each time req is true. The
final example shows a more complex property: when reset is
not true, a rising breq signal must be followed by own bus
rising between one and five cycles later and breq falling.

16



observed. Again, much of this machinery was taken from Vera
(cf. Figure 13).

Figure 19 shows some of SystemVerilog’s assertion con-
structs. In addition to signaling an error when an “instanta-
neous” condition does not hold (e.g., a set of variables are
taking on mutually-incompatible values), SystemVerilog has
the ability to describe temporal sequences such as “ack must
rise between one and five cycles after req rises” and check
whether they appear during simulation. Much of the syntax
comes from PSL/Sugar.

5 Conclusions

VHDL and Verilog remain the dominant hardware description
languages and will likely be with us for a long time, although
perhaps they will become like assembly language has become
to programming: a part of the compilation chain, but not gen-
erally written manually. Both have deep flaws, but these can
be largely avoided by adhering to coding conventions, and in
practice are quite practical design entry vehicles.

The future of the verification languages discussed in this
report is less certain. Clearly, there is a need to automate
the validation process as much as possible, and these lan-
guages do provide useful assistance in the form of biased con-
strained pseudorandom test case generation, temporal property
assertions, and coverage estimates. However, none has clearly
proven itself essential to modern IC design, and the plethora
of variants and derivatives suggests that their evolution is not
complete. An even more serious question is whether the com-
plexity of these languages, especially in their specification of
temporal properties, creates more problems than they solve.

The fundamental burdens of specifying digital hardware and
verifying its correctness will continue to fall on design and
verification languages. Even if those in the future bear little
resemblance to those described here, the current crop forms a
strong foundation on which to build.

References

[1] Accelera, 1370 Trancas Street #163, Napa, CA 94558.
SystemVerilog 3.1a Language Reference Manual: Ac-
cellera’s Extensions to Verilog, May 2004.

[2] Guido Arnout. SystemC standard. In Proceedings of the
Asia South Pacific Design Automation Conference (ASP-
DAC), pages 573–578, Yokohama, Japan, January 2000.

[3] Peter J. Ashenden. The Designer’s Guide to VHDL. Mor-
gan Kaufmann, San Francisco, California, 1996.

[4] Peter J. Ashenden. The Student’s Guide to VHDL. Mor-
gan Kaufmann, San Francisco, California, 1998.

[5] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fis-
man, Anna Gringauze, and Yoav Rodeh. The temporal
logic Sugar. In Proceedings of the 13th International
Conference on Computer-Aided Verification (CAV), vol-
ume 2102 of Lecture Notes in Computer Science, pages
363–367, Paris, France, 2001. Springer-Verlag.

[6] C. Gordon Bell and Allen Newell. Computer Structures:
Readings and Examples. McGraw-Hill, 1971.

[7] Janick Bergeron. Writing Testbenches: Function Verifi-
cation of HDL Models. Kluwer, Boston, Massachusetts,
second edition, 2003.

[8] J. Bhasker. A VHDL Synthesis Primer. Star Galaxy Pub-
lishing, Allentown, Pennsylvania, second edition, 1998.

[9] J. Bhasker. A SystemC Primer. Star Galaxy Publishing,
Allentown, Pennsylvania, second edition, 2004.

[10] Dominique Borrione, Robert Piloty, Dwight Hill, Karl J.
Lieberherr, and Philip Moorby. Three decades of HDLs:
Part ii, Colan through Verilog. IEEE Design & Test of
Computers, 9(3):54–63, September 1992.

[11] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of
the IEEE, 78(2):264–300, February 1990.

[12] Yaohan Chu, Donald L. Dietmeyer, James R. Duley,
Fredrick J. Hill, Mario R. Barbacci, Charles W. Rose,
Greg Ordy, Bill Johnson, and Martin Roberts. Three
decades of HDLs: Part i, CDL through TI-HDL. ieeedtc,
9(2):69–81, June 1992.

[13] Youhan Chu. An ALGOL-like computer design lan-
guage. Communications of the ACM, 8(10):607–615, Oc-
tober 1965.

[14] Edmund M. Clarke and E. A. Emerson. Design and
synthesis of synchronization skeletons using branching
time temporal logic. In Proceedings of the Workshop
on Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71, Yorktown Heights, New
York, May 1981. Springer-Verlag.

[15] Ben Cohen. VHDL Coding Styles and Methodologies.
Kluwer, Boston, Massachusetts, second edition, 1999.

[16] Ben Cohen, Srinivasan Venkataramanan, and Ajeetha
Kumari. Using PSL/Sugar for Formal Verification. Vhdl-
Cohen Publishing, PO Box 2362, Palos Verdes Penin-
sula, California, 2004.

[17] Al Dewey. VHSIC hardware description (VHDL) de-
velopment program. In Proceedings of the 20th Design
Automation Conference, pages 625–628, Miami Beach,
Florida, June 1983.

[18] Allen Dewey and Aart J. de Geus. VHDL: Toward a uni-
fied view of design. IEEE Design & Test of Computers,
9(2):8–17, April 1992.

[19] Allen M. Dewey. Analysis and Design of Digital Systems
with VHDL. Brooks/Cole Publishing (Formerly PWS),
Pacific Grove, California, 1997.

[20] Peter L. Flake and Simon J. Davidmann. Superlog, a uni-
fied design language for system-on-chip. In Proceedings
of the Asia South Pacific Design Automation Conference
(ASP-DAC), pages 583–586, Yokohama, Japan, January
2000.

17



[21] Peter L. Flake, Philip R. Moorby, and G. Musgrave. An
algebra for logic strength simulation. In Proceedings of
the 20th Design Automation Conference, pages 615–618,
Miami Beach, Florida, June 1983.

[22] Robert S. French, Monica S. Lam, Jeremy R. Levitt, and
Kunle Olukotun. A general method for compiling event-
driven simulations. In Proceedings of the 32nd Design
Automation Conference, pages 151–156, San Francisco,
California, June 1995.

[23] Michael J. C. Gordon. The semantic challenge of Verilog
HDL. In Proceedings of the Tenth Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), San Diego,
California, June 1995.

[24] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart
Swan. System Design with SystemC. Kluwer, Boston,
Massachusetts, 2002.

[25] Faisal Haque, Jonathan Michelson, and Khizar Khan.
The Art of Verification with Vera. Verification Central,
www.verificationcentral.com, 2001.

[26] Randolph E. Harr and Alec G. Stanculescu, editors. Ap-
plications of VHDL to Circuit Design. Kluwer, Boston,
Massachusetts, 1991.

[27] IEEE Computer Society, 345 East 47th Street, New York,
New York. IEEE Standard VHDL Language Reference
Manual (1076–1993), 1994.

[28] IEEE Computer Society, 345 East 47th Street, New York,
New York. IEEE Standard Hardware Description Lan-
guage Based on the Verilog Hardware Description Lan-
guage (1364–1995), 1996.

[29] IEEE Computer Society, 345 East 47th Street, New York,
New York. IEEE Standard Verilog Hardware Descrip-
tion Language (1364–2001), September 2001.

[30] Sasan Iman and Sunita Joshi. The e Hardware Verifica-
tion Langauge. Kluwer, Boston, Massachusetts, 2004.

[31] The Institute of Electrical and Electronics Engineers
(IEEE), 345 East 47th Street, New York, New York.
IEEE Standard VHDL Reference Manual (1076–1987),
1988.

[32] The Institute of Electrical and Electronics Engineers
(IEEE), 345 East 47th Street, New York, New York.
IEEE Standard Multivalue Logic System for VHDL
Model Interoperability (Std logic 1164), 1993.

[33] The Institute of Electrical and Electronics Engineers
(IEEE), 345 East 47th Street, New York, New York.
IEEE Standard VHDL Synthesis Packages (1076.3–
1997), 1997.

[34] Stan Liao, Steve Tjiang, and Rajesh Gupta. An efficient
implementation of reactivity for modeling hardware in
the Scenic design environment. In Proceedings of the
34th Design Automation Conference, Anaheim, Califor-
nia, June 1997.

[35] Roger Lipsett, Carl F. Schaefer, and Cary Ussery. VHDL:
Hardware Description and Design. Kluwer, Boston,
Massachusetts, 1989.

[36] Carver Mead and Lynn Conway. Introduction to VLSI
Systems. Addison-Wesley, Reading, Massachusetts,
1980.

[37] Swapnajit Mittra. Principles of Verilog PLI. Kluwer,
Boston, Massachusetts, 1999.

[38] Wolfgang Muller, Wolfgang Rosenstiel, and Jurgen Ruf,
editors. SystemC: Methodologies and Applications.
Kluwer, Boston, Massachusetts, 2003.

[39] Wayne E. Omohundro and James H. Tracey. Flowware—
a flow charting procedure to describe digital net-
works. In Proceedings of the First International Con-
ference on Computer Architecture (ISCA), pages 91–97,
Gainesville, Florida, December 1973.

[40] Samir Palnitkar. Verilog HDL: A Guide to Digital Design
and Synthesis. Prentice Hall, Upper Saddle River, New
Jersey, 1996.

[41] Samir Palnitkar. Design Verification with e. Prentice
Hall, Upper Saddle River, New Jersey, 2003.

[42] Federic I. Parke. An introduction to the N.mPc design
environment. In Proceedings of the 16th Design Automa-
tion Conference, pages 513–519, San Diego, California,
June 1979.

[43] Douglas L. Perry. VHDL. McGraw-Hill, New York, third
edition, 1998.

[44] Irving S. Reed. Symbolic synthesis of digital computers.
In Proceedings of the ACM National Meeting, pages 90–
94, Toronto, Canada, September 1952.

[45] Douglas J. Smith. VHDL & Verilog compared & con-
strasted — plus modeled examples written in VHDL,
Verilog, and C. In Proceedings of the 33rd Design
Automation Conference, pages 771–776, Las Vegas,
Nevada, June 1996.

[46] Stuart Sutherland. The Verilog PLI Handbook. Kluwer,
Boston, Massachusetts, 1999.

[47] Donald E. Thomas and Philip R. Moorby. The Verilog
Hardware Description Language. Kluwer, Boston, Mas-
sachusetts, fifth edition, 2002.

18


