
DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Preliminary
e Language Reference Draft

4 December 2003
This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Table of Contents

1 About This Book . 1

1.1 Conventions in This Book . 1

1.2 Syntax Notation . 2

2 e Basics . 3

2.1 Lexical Conventions. 3

2.1.1 File Structure . 3

2.1.2 Code Segments . 4

2.1.3 Comments and White Space . 4

2.1.4 Literals and Constants . 4
2.1.4.1 Unsized Numbers . 5
2.1.4.2 Sized Numbers . 5
2.1.4.3 MVL Literals . 6
2.1.4.4 Predefined Constants . 8
2.1.4.5 Literal String . 8
2.1.4.6 Literal Character . 9

2.1.5 Names, Keywords, and Macros. 9
2.1.5.1 Legal e Names . 9
2.1.5.2 e Keywords . 10
2.1.5.3 Macros . 11

2.2 Syntactic Elements . 11

2.2.1 Statements . 12

2.2.2 Struct Members . 13

2.2.3 Actions. 14
2.2.3.1 Creating or Modifying Variables . 15
2.2.3.2 Executing Actions Conditionally . 15
2.2.3.3 Executing Actions Iteratively . 16
2.2.3.4 Controlling Program Flow . 16
2.2.3.5 Invoking Methods and Routines . 17
2.2.3.6 Performing Time-Consuming Actions . 17
2.2.3.7 Generating Data Items . 18
2.2.3.8 Detecting and Handling Errors . 18
2.2.3.9 Printing . 18

2.2.4 Expressions . 19
This is an unapproved IEEE Standards Draft, subject to change. i

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.3 Struct Hierarchy and Name Resolution . 19

2.3.1 Struct Hierarchy. 19
2.3.1.1 Global Struct . 20
2.3.1.2 Sys Struct . 20
2.3.1.3 Packing Struct . 20
2.3.1.4 Files Struct . 20
2.3.1.5 Scheduler Struct . 20
2.3.1.6 Simulator Struct . 21
2.3.1.7 Session Struct . 21

2.3.1.7.1 session.check_ok . 21
2.3.1.7.2 session.events . 21

2.3.2 Referencing e Entities . 21
2.3.2.1 Structs and Fields . 22
2.3.2.2 Method and Routine Names . 23
2.3.2.3 Enumerated Type Values . 23

2.3.3 Implicit Variables . 24
2.3.3.1 it . 24
2.3.3.2 me . 25
2.3.3.3 result . 26
2.3.3.4 index . 26

2.3.4 Name Resolution Rules . 26
2.3.4.1 Names that Include a Path . 26
2.3.4.2 Names that Do Not Include a Path . 27

2.4 Operator Precedence . 28

2.5 Evaluation Order of Expressions . 30

2.6 Bitwise Operators. 30

2.6.1 ~ . 31

2.6.2 & | ^ . 32

2.6.3 >> << . 33

2.7 Boolean Operators . 35

2.7.1 ! (not) . 35

2.7.2 && (and) . 36

2.7.3 || (or) . 37

2.7.4 => . 37

2.7.5 now . 38

2.8 Arithmetic Operators . 40

2.8.1 Unary + - . 40

2.8.2 + - * / % . 41

2.9 Comparison Operators . 42
ii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.9.1 < <= > >=. 42

2.9.2 == != . 43

2.9.3 === !== . 45

2.9.4 ~ !~ . 47

2.9.5 in . 49

2.10 String Matching . 51

2.10.1 Native e Elite String Matching . 51

2.10.2 AWK-Style String Matching. 52

2.11 Extraction and Concatenation Operators . 53

2.11.1 [] . 54

2.11.2 [:] . 55
2.11.2.1 Slice and Size of the Result . 56
2.11.2.2 Accessing Nonexistent Bits . 56

2.11.3 [..] . 58

2.11.4 {... ; ...} . 60

2.11.5 %{... , ...} . 62

2.12 Scalar Modifiers . 63

2.12.1 [range,...]. 64

2.12.2 (bits | bytes : width-exp) . 65

2.13 Parentheses . 65

2.14 list.method() . 66

2.15 Special-Purpose Operators . 67

2.15.1 is [not] a. 67

2.15.2 new . 69

2.15.3 . . 71

2.15.4 ' . 73

2.15.5 ? : . 73

3 Data Types . 75

3.1 Overview of e Data Types . 75

3.1.1 e Data Types . 75
3.1.1.1 Scalar Types . 75
3.1.1.2 Scalar Subtypes . 76

3.1.1.2.1 Scalar Modifiers . 76
3.1.1.2.2 Named Scalar Subtypes . 77
3.1.1.2.3 Unbounded Integers . 77

3.1.1.3 Enumerated Scalar Types . 77
3.1.1.4 Casting of Enumerated Types in Comparisons . 79
This is an unapproved IEEE Standards Draft, subject to change.
iii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
3.1.1.5 Struct Types . 80
3.1.1.6 Struct Subtypes . 80
3.1.1.7 Referencing Fields in When Constructs . 83
3.1.1.8 List Types . 84

3.1.1.8.1 Regular Lists . 85
3.1.1.8.2 Keyed Lists . 85

3.1.1.9 The string Type . 86
3.1.1.10 The external_pointer Type . 86

3.1.2 Memory Requirements for Data Types . 87

3.1.3 Untyped Expressions . 87

3.1.4 Assignment Rules . 89
3.1.4.1 What Is an Assignment? . 89
3.1.4.2 Assignments Create Identical References . 90
3.1.4.3 Assignment to Different but Compatible Types . 91

3.1.4.3.1 Assignment of Numeric Types . 91
3.1.4.3.2 Assignment of Boolean Types . 91
3.1.4.3.3 Assignment of Enumerated Types . 91
3.1.4.3.4 Assignment of Structs . 92
3.1.4.3.5 Assignment of Strings . 92
3.1.4.3.6 Assignment of Lists . 93

3.1.5 Precision Rules for Numeric Operations. 93
3.1.5.1 Determining the Context of an Expression . 94
3.1.5.2 Deciding Precision and Performing Data Conversion and Sign Extension 95
3.1.5.3 Example Application of Precision Rules . 95

3.1.6 Automatic Type Casting . 96

3.2 Defining and Extending Scalar Types . 98

3.2.1 type enumerated scalar . 98

3.2.2 type scalar subtype . 100

3.2.3 type sized scalar. 101

3.2.4 extend type . 103

3.3 Type Conversion Between Scalars and Strings . 104

3.3.1 as_a() . 104
3.3.1.1 Type Conversion Between Scalars and Lists of Scalars . 105
3.3.1.2 Type Conversion Between Strings and Scalars or Lists of Scalars 107
3.3.1.3 Type Conversion Between Structs, Struct Subtypes, and Lists of Structs 109
3.3.1.4 Type Conversion Between Simple Lists and Keyed Lists . 109

3.3.2 all_values() . 115

4 Structs, Fields, and Subtypes . 117

4.1 Structs Overview . 117
iv This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
4.2 Defining Structs: struct. 118

4.3 Extending Structs: extend type. 121

4.4 Extending Subtypes . 123

4.5 Defining Fields: field . 125

4.6 Defining List Fields . 127

4.6.1 list of . 127

4.6.2 list(key) of . 129

4.7 Creating Subtypes with When . 133

4.7.1 Overview . 133

4.7.2 when . 133

4.8 Extending When Subtypes . 136

4.8.1 Coverage and When Subtypes. 136

4.8.2 Extending Methods in When Subtypes . 136

4.9 Defining Attributes. 139

4.9.1 Overview . 139

4.9.2 attribute field . 139

4.10 Comparison of When and Like Inheritance . 142

4.10.1 Summary of When versus Like . 142

4.10.2 A Simple Example of When Inheritance. 143

4.10.3 A Simple Example of Like Inheritance . 144

4.10.4 Advantages of Using When Inheritance for Modeling . 145

4.10.5 Advantages of Using Like Inheritance . 148

4.10.6 Restrictions on Like Inheritance . 149
4.10.6.1 Restrictions Due to Inherent Differences . 149
4.10.6.2 Restrictions Due to Implementation . 150
4.10.6.3 Generation Restrictions on Like Inheritance . 150
4.10.6.4 Examples of Like Inheritance Restrictions . 152

4.10.7 A When Inheritance Example . 154

5 Units . 157

5.1 Units Overview . 157

5.1.1 Units vs. Structs. 158

5.1.2 HDL Paths and Units. 159

5.1.3 Methodology Recommendations and Limitations . 160

5.2 Defining Units and Fields of Type Unit. 160

5.2.1 unit. 161

5.2.2 field: unit-type is instance . 165
This is an unapproved IEEE Standards Draft, subject to change. v

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
5.2.3 field: unit-type . 166

5.2.4 field: list of unit instances . 167

5.2.5 field: list of unit-type . 169

5.3 Predefined Methods for Any Unit . 170

5.3.1 hdl_path() . 170

5.3.2 full_hdl_path(). 172

5.3.3 e_path() . 173

5.3.4 agent() . 174

5.3.5 get_parent_unit() . 176

5.4 Unit-Related Predefined Methods for Any Struct . 177

5.4.1 get_unit() . 177

5.4.2 get_enclosing_unit() . 180

5.4.3 try_enclosing_unit() . 182

5.4.4 set_unit() . 183

5.5 Unit-Related Predefined Routines . 184

5.5.1 set_config_max(). 184

5.5.2 get_all_units() . 186

6 e Ports . 189

6.1 Introduction to e Ports . 189

6.1.1 Advantages of Using Ports . 189

6.1.2 Creating Port Instances . 190

6.1.3 Using Ports . 190

6.1.4 Ports Example . 191

6.2 Using Simple Ports. 192

6.2.1 Accessing Simple Ports and Their Values. 193

6.2.2 Multi-Value Logic (MVL) on Simple Ports . 194

6.2.3 @sim Temporal Expressions with External Simple Ports . 196

6.2.4 An Internal Simple Ports Example . 197

6.2.5 An External Simple Ports Example. 198

6.3 Using Buffer Ports . 199

6.3.1 Rendezvous-Zero Size Buffer Queue . 200

6.3.2 An Internal Buffer Ports Example. 200

6.4 Using Event Ports. 201

6.4.1 Accessing Event Ports . 201

6.4.2 Defining and Referencing Ports . 202
6.4.2.1 simple_port . 202
vi This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.4.2.2 buffer_port . 204
6.4.2.3 event_port . 205
6.4.2.4 any_simple_port, any_buffer_port, any_event_port . 207
6.4.2.5 port$. 209

6.5 Port Attributes . 210

6.5.1 Generic Port Attributes . 210

6.5.2 Port Attributes for HDL Simulators . 212
6.5.2.1 bind() . 215
6.5.2.2 buffer_size() . 217
6.5.2.3 declared_range() . 219
6.5.2.4 delayed() . 219
6.5.2.5 driver() . 220
6.5.2.6 driver_delay() . 221
6.5.2.7 driver_initial_value() . 222
6.5.2.8 edge() . 222
6.5.2.9 hdl_path() . 223
6.5.2.10 pack_options() . 225
6.5.2.11 pass_by_pointer() . 225
6.5.2.12 verilog_drive() . 226
6.5.2.13 verilog_drive_hold() . 227
6.5.2.14 verilog_forcible() . 227
6.5.2.15 verilog_strobe() . 228
6.5.2.16 verilog_wire() . 229
6.5.2.17 vhdl_delay_mode() . 229
6.5.2.18 vhdl_disconnect_value() . 230

6.5.3 Using Port Values and Attributes in Constraints. 231

6.5.4 Buffer Port Methods . 232
6.5.4.1 get() . 232
6.5.4.2 put() . 233
6.5.4.3 is_empty() . 234
6.5.4.4 is_full() . 235

6.5.5 Multi-Value Logic (MVL) Methods for Simple Ports . 235
6.5.5.1 put_mvl() . 236
6.5.5.2 get_mvl() . 237
6.5.5.3 put_mvl_list() . 238
6.5.5.4 get_mvl_list() . 239
6.5.5.5 put_mvl_string() . 240
6.5.5.6 get_mvl_string() . 241
6.5.5.7 get_mvl4() . 241
6.5.5.8 get_mvl4_list() . 242
6.5.5.9 get_mvl4_string() . 243

6.5.6 Methods for Simple Ports . 244
This is an unapproved IEEE Standards Draft, subject to change.
vii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
6.5.6.1 has_x() . 245
6.5.6.2 has_z() . 245
6.5.6.3 has_unknown() . 246

6.5.7 Global MVL Routines . 247
6.5.7.1 string_to_mvl() . 247
6.5.7.2 mvl_to_string() . 248
6.5.7.3 mvl_to_int() . 249
6.5.7.4 int_to_mvl() . 250
6.5.7.5 mvl_to_bits() . 251
6.5.7.6 bits_to_mvl() . 252
6.5.7.7 mvl_to_mvl4() . 252
6.5.7.8 mvl_list_to_mvl4_list() . 253
6.5.7.9 string_to_mvl4() . 254

7 Generation Constraints . 257

7.1 Basic Concepts of Generation . 257

7.1.1 Generation Order . 257

7.1.2 Subtype Generation Optimization Constraints . 258

7.1.3 Unidirectional Constraints. 259

7.1.4 Enforceable Expressions . 261

7.1.5 Order of Evaluation of Soft Value Constraints . 262

7.1.6 Constraining Struct Instances . 263

7.1.7 Constraining Lists . 264
7.1.7.1 List Size . 264
7.1.7.2 List Item . 264
7.1.7.3 Item in List . 265
7.1.7.4 One List to Another List . 265
7.1.7.5 Multiple List Items . 265
7.1.7.6 List of Structs . 266
7.1.7.7 Multiple Lists . 266

7.1.8 Constraining Bit Slices . 266
7.1.8.1 Bit Slice Constraints and Generation Order . 267
7.1.8.2 Bit Slice Constraints and Signed Entities . 268
7.1.8.3 Bit Slice Constraints and Soft Constraints . 269
7.1.8.4 Limitations of Bit Slice Constraints . 269
7.1.8.5 Debugging Bit Slice Constraints . 269

7.2 Defining Constraints . 270

7.2.1 keep . 270

7.2.2 keep all of {...} . 272

7.2.3 keep struct-list.is_all_iterations() . 274
viii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
7.2.4 keep for each . 275

7.2.5 keep soft . 278

7.2.6 keep soft... select . 279

7.2.7 keep gen-item.reset_soft() . 283

7.2.8 keep gen ... before . 284

7.2.9 keep soft gen ... before. 285

7.2.10 keep gen_before_subtypes() . 287

7.2.11 keep reset_gen _before_subtypes() . 289

7.2.12 value() . 290

7.2.13 constraint-bool-exp . 292

7.2.14 gen-item. 294

7.3 Invoking Generation. 296

7.3.1 gen . 296

7.3.2 pre_generate() . 299

7.3.3 post_generate() . 300

8 Events . 303

8.1 Events Overview . 303

8.1.1 Causes of Events . 304

8.1.2 Scope of Events . 304

8.2 Defining and Emitting Named Events . 305

8.2.1 event . 305

8.2.2 emit . 307

8.3 Sampling Events Overview . 308

8.4 Predefined Events Overview . 309

8.4.1 General Predefined Events . 310

8.4.2 Events for Aiding Debugging . 312

8.4.3 Simulation Time and Ticks . 312

9 Temporal Expressions . 319

9.1 Temporal Expressions Overview . 319

9.1.1 Evaluating Temporal Expressions. 319

9.1.2 Using HDL Objects in Temporal Expressions . 322

9.1.3 Selected Applications of Temporal Expressions. 323
9.1.3.1 Handling Overlapping Transactions . 323
9.1.3.2 Restricting TE Matches . 323

9.1.4 Forms for Common Temporal Expressions . 324
9.1.4.1 Examples of Sequence Expressions . 324
This is an unapproved IEEE Standards Draft, subject to change.
ix

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
9.1.4.2 Examples of Behavioral Rule Checks . 325

9.1.5 Translation of Temporal Expressions . 326

9.2 Temporal Operators and Constructs. 327

9.2.1 Precedence of Temporal Operators . 328

9.2.2 not . 328

9.2.3 fail . 329

9.2.4 and . 331

9.2.5 or . 333

9.2.6 { exp ; exp }. 335

9.2.7 eventually . 336

9.2.8 [exp]. 337

9.2.9 [exp..exp]. 338

9.2.10 ~[exp..exp]. 340

9.2.11 =>. 342

9.2.12 detach. 343

9.2.13 delay . 345

9.2.14 @ unary event operator . 346

9.2.15 @ sampling operator . 347

9.2.16 cycle. 349

9.2.17 true(exp) . 350

9.2.18 change(exp), fall(exp), rise(exp) . 351

9.2.19 consume. 353

9.2.20 exec . 356

10 Temporal Struct Members . 359

10.1 on . 359

10.2 expect | assume . 360

11 Time-Consuming Actions . 365

11.1 Synchronization Actions . 365

11.1.1 sync . 365

11.1.2 wait . 367

11.2 Concurrency Actions . 368

11.2.1 all of. 369

11.2.2 first of . 370

12 Coverage Constructs . 373

12.1 Defining Coverage Groups: cover . 373
x This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
12.2 Defining Basic Coverage Items . 378

12.2.1 Overview . 378

12.2.2 item . 378

12.3 Defining Cross Coverage Items . 396

12.3.1 Overview . 396

12.3.2 cross. 396

12.4 Defining Transition Coverage Items . 403

12.4.1 Overview . 403

12.4.2 transition . 403

12.5 Defining External Coverage Groups . 407

12.5.1 Overview . 407

12.5.2 cover ... using external=surecov . 408

12.6 Extending Coverage Groups . 412

12.6.1 Overview . 412

12.6.2 cover ... using also ... is also . 412

12.7 Extending Coverage Items . 416

12.7.1 Overview . 416

12.7.2 item ... using also. 416

12.8 Coverage API Methods . 421

12.8.1 scan_cover() . 421

12.8.2 start_group() . 422

12.8.3 start_instance() . 423

12.8.4 start_item() . 424

12.8.5 scan_bucket(). 424

12.8.6 end_item() . 425

12.8.7 end_instance() . 426

12.8.8 end_group() . 427

13 Macros . 429

13.1 define as . 429

13.2 define as computed. 436

14 Checks and Error Handling . 441

14.1 Handling DUT Errors. 441

14.1.1 check that . 441

14.1.2 dut_error() . 443

14.1.3 dut_error_struct . 444
This is an unapproved IEEE Standards Draft, subject to change.
xi

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
14.1.4 set_check(). 448

14.2 Handling User Errors . 450

14.2.1 warning() . 450

14.2.2 error(). 451

14.2.3 fatal() . 452

14.2.4 try. 454

14.3 Handling Programming Errors . 456

14.3.1 Overview . 456

14.3.2 assert . 456

15 Methods . 459

15.1 Rules for Defining and Extending Methods. 459

15.1.1 method is [inline] . 462

15.1.2 method @event is . 464

15.1.3 method [@event] is also | first | only | inline only. 467

15.1.4 method [@event] is undefined | empty . 472

15.2 Invoking Methods . 474

15.2.1 tcm() . 475

15.2.2 start tcm() . 477

15.2.3 method() . 478

15.2.4 compute method() . 480

15.2.5 return . 481

15.3 Parameter Passing . 484

15.3.1 Scalar Parameter Passing. 484

15.3.2 Compound Parameter Passing . 485

15.3.3 Notes on Passing by Reference . 486

16 Creating and Modifying e Variables . 487

16.1 About e Variables. 487

16.2 var . 487

16.3 = . 489

16.4 op= . 491

16.5 <= . 493

17 Packing and Unpacking . 497

17.1 Basic Packing . 497

17.1.1 A Simple Example of Packing . 498

17.1.2 A Simple Example of Unpacking . 500
xii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
17.1.3 Packing and Unpacking Scalar Expressions . 501

17.1.4 Packing and Unpacking Strings . 501

17.1.5 Packing and Unpacking Structs. 502

17.1.6 Packing and Unpacking Lists . 503

17.2 Advanced Packing . 505

17.2.1 Using the Predefined pack_options Instances . 506

17.2.2 packing.low . 506

17.2.3 packing.low_big_endian . 507

17.2.4 packing.high . 508

17.2.5 packing.high_big_endian . 508

17.2.6 packing.network . 509

17.2.7 packing.global_default . 510

17.2.8 Customizing Pack Options . 510

17.2.9 reverse_fields. 511

17.2.10 reverse_list_items . 512

17.2.11 scalar_reorder . 512

17.2.12 final_reorder . 513

17.2.13 Customizing Packing for a Particular Struct . 514

17.2.14 Bit Slice Operator and Packing . 514

17.2.15 Implicit Packing and Unpacking . 515

17.3 Constructs for Packing and Unpacking . 516

17.3.1 pack(). 516

17.3.2 unpack(). 521

17.3.3 swap() . 524

17.3.4 do_pack() . 526

17.3.5 do_unpack(). 529

18 Control Flow Actions . 533

18.1 Conditional Actions . 533

18.1.1 if then else . 533

18.1.2 case labeled-case-item. 534

18.1.3 case bool-case-item . 536

18.2 Iterative Actions . 537

18.2.1 while . 538

18.2.2 repeat until . 539

18.2.3 for each in . 540

18.2.4 for from to . 543
This is an unapproved IEEE Standards Draft, subject to change.
xiii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
18.2.5 for . 544

18.3 File Iteration Actions . 545

18.3.1 for each line in file . 545

18.3.2 for each file matching . 546

18.4 Actions for Controlling the Program Flow . 547

18.4.1 break . 547

18.4.2 continue . 548

19 List Pseudo-Methods Library . 551

19.1 Pseudo-Methods Overview . 551

19.2 Using List Pseudo-Methods . 551

19.3 Pseudo-Methods to Modify Lists . 552

19.3.1 add(item) . 552

19.3.2 add(list) . 554

19.3.3 add0(item) . 555

19.3.4 add0(list) . 556

19.3.5 clear(). 557

19.3.6 delete(). 558

19.3.7 fast_delete() . 560

19.3.8 insert(index, item) . 561

19.3.9 insert(index, list) . 562

19.3.10 pop() . 563

19.3.11 pop0() . 564

19.3.12 push(). 565

19.3.13 push0(). 565

19.3.14 resize() . 566

19.4 General List Pseudo-Methods . 570

19.4.1 apply() . 571

19.4.2 copy(). 572

19.4.3 count() . 573

19.4.4 exists() . 574

19.4.5 field . 575

19.4.6 first() . 576

19.4.7 first_index() . 577

19.4.8 get_indices() . 579

19.4.9 has() . 579

19.4.10 is_a_permutation(). 581
xiv This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
19.4.11 is_empty() . 582

19.4.12 last() . 583

19.4.13 last_index() . 584

19.4.14 max() . 585

19.4.15 max_index(). 587

19.4.16 max_value(). 588

19.4.17 min() . 589

19.4.18 min_index() . 590

19.4.19 min_value() . 591

19.4.20 reverse(). 593

19.4.21 size() . 594

19.4.22 sort() . 595

19.4.23 sort_by_field() . 596

19.4.24 split() . 597

19.4.25 top() . 600

19.4.26 top0() . 601

19.4.27 unique() . 602

19.5 Sublist Pseudo-Methods. 603

19.5.1 all() . 604

19.5.2 all_indices() . 605

19.6 Math and Logic Pseudo-Methods . 608

19.6.1 and_all(). 608

19.6.2 average() . 609

19.6.3 or_all() . 610

19.6.4 product() . 611

19.6.5 sum() . 612

19.7 List CRC Pseudo-Methods. 614

19.7.1 crc_8() . 614

19.7.2 crc_32() . 615

19.7.3 crc_32_flip() . 617

19.8 Keyed List Pseudo-Methods . 618

19.8.1 key(). 619

19.8.2 key_index() . 622

19.8.3 key_exists() . 623

19.9 Restrictions on Keyed Lists . 624
This is an unapproved IEEE Standards Draft, subject to change.
xv

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
20 Preprocessor Directives . 627

20.1 #ifdef, #ifndef. 627

20.2 #define . 630

20.3 #undef. 632

21 Importing e Files . 635

21.1 Overview . 635

21.2 import . 635

22 Encapsulation Constructs . 641

22.1 package package-name . 641

22.2 package type-declaration . 642

22.3 package | protected | private struct-member . 643

23 Predefined Methods Library . 645

23.1 Predefined Methods of sys . 645

23.1.1 The init() Method of sys . 645

23.1.2 The run() Method of sys . 646

23.2 Predefined Methods of Any Struct. 647

23.2.1 The copy() Method of any_struct . 647

23.2.2 do_pack() . 649

23.2.3 do_unpack(). 652

23.2.4 The do_print() Method of any_struct . 655

23.2.5 The init() Method of any_struct . 656

23.2.6 The print_line() Method of any_struct . 658

23.2.7 The quit() Method of any_struct. 659

23.2.8 The run() Method of any_struct . 661

23.3 Predefined Methods of Any Unit . 662

23.3.1 hdl_path() . 663

23.3.2 full_hdl_path(). 664

23.3.3 e_path() . 666

23.3.4 agent() . 667

23.3.5 get_parent_unit() . 669

23.4 Unit-Related Predefined Methods of Any Struct . 670

23.4.1 get_unit() . 670

23.4.2 get_enclosing_unit() . 672

23.4.3 try_enclosing_unit() . 674

23.4.4 set_unit() . 676
xvi This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
23.5 Pseudo-Methods . 676

23.5.1 declared_type() . 677

23.5.2 type() . 677

23.5.3 field() . 678

23.5.4 unsafe() . 678

23.5.5 source_location() . 679

23.5.6 source_method() . 680

23.6 Semaphore Methods . 680

23.7 How to Use the Semaphore Struct . 682

23.7.1 up() and down() . 682

23.7.2 try_up() and try_down() . 685

23.7.3 set_value() and get_value() . 687

23.7.4 set_max_value() and get_max_value() . 688

23.7.5 lock() and release() . 689

23.8 TCM Related Methods . 692

23.8.1 get_current_handle() . 692

23.8.2 get_handles_by_name(). 693

23.8.3 get_handles_by_type() . 695

23.8.4 kill() . 696

23.8.5 terminate_branch() . 698

23.8.6 terminate_thread() . 699

23.9 Coverage Methods . 700

23.9.1 include_tests() . 701

23.9.2 set_weight() . 702

23.9.3 set_at_least() . 702

23.9.4 set_cover() . 703

23.9.5 get_contributing_runs() . 705

23.9.6 get_unique_buckets() . 706

23.9.7 set_external_cover() . 707

23.9.8 write_cover_file() . 708

23.9.9 get_overall_grade() . 709

23.9.10 get_ecov_name() . 710

23.9.11 get_test_name() . 711

23.9.12 get_seed() . 711

24 Predefined Routines Library . 713

24.1 Deep Copy and Compare Routines . 713
This is an unapproved IEEE Standards Draft, subject to change.
xvii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
24.1.1 deep_copy() . 713

24.1.2 deep_compare() . 716

24.1.3 deep_compare_physical() . 720

24.2 Arithmetic Routines . 721

24.2.1 min() . 722

24.2.2 max() . 723

24.2.3 abs() . 724

24.2.4 odd() . 724

24.2.5 even(). 725

24.2.6 ilog2() . 726

24.2.7 ilog10() . 727

24.2.8 ipow() . 728

24.2.9 isqrt() . 729

24.2.10 div_round_up() . 729

24.3 Bitwise Routines . 730

24.3.1 Overview . 730

24.3.2 bitwise_op(). 730

24.4 Unit-Related Predefined Routines . 732

24.4.1 set_config_max(). 733

24.4.2 get_all_units() . 735

24.5 String Routines. 736

24.5.1 append(). 737

24.5.2 appendf() . 739

24.5.3 bin() . 740

24.5.4 dec(). 741

24.5.5 hex(). 742

24.5.6 quote() . 743

24.5.7 str_chop(). 744

24.5.8 str_empty() . 745

24.5.9 str_exactly(). 745

24.5.10 str_expand_dots() . 746

24.5.11 str_insensitive() . 747

24.5.12 str_join() . 748

24.5.13 str_len() . 749

24.5.14 str_lower() . 750

24.5.15 str_match(). 751
xviii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
24.5.16 str_pad(). 753

24.5.17 str_replace(). 754

24.5.18 str_split() . 756

24.5.19 str_split_all() . 758

24.5.20 str_sub(). 759

24.5.21 str_upper() . 760

24.5.22 to_string() . 761

24.6 Output Routines . 762

24.6.1 out() . 762

24.6.2 outf() . 764

24.6.3 Format String. 765

24.7 Configuration Routines . 766

24.7.1 set_config() . 766

24.7.2 get_config() . 781

24.7.3 write_config() . 782

24.7.4 read_config() . 784

24.8 OS Interface Routines . 785

24.8.1 spawn() . 786

24.8.2 spawn_check(). 786

24.8.3 system() . 787

24.8.4 output_from() . 788

24.8.5 output_from_check() . 789

24.8.6 get_symbol() . 790

24.8.7 date_time(). 791

24.8.8 getpid() . 792

24.9 On-the-Fly Garbage Collection Routine: do_otf_gc() . 792

24.10 Calling Predefined Routines: routine() . 793

25 Simulation-Related Constructs . 795

25.1 Verilog Statements or Unit Members. 795

25.1.1 verilog code . 795

25.1.2 verilog function . 797

25.1.3 verilog import . 799

25.1.4 verilog task . 801

25.1.5 verilog time . 803

25.1.6 verilog variable reg | wire . 804

25.1.7 verilog variable memory . 810
This is an unapproved IEEE Standards Draft, subject to change.
xix

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
25.2 VHDL Statements and Unit Members . 812

25.2.1 vhdl code . 813

25.2.2 vhdl driver . 815

25.2.3 vhdl function . 819

25.2.4 vhdl procedure . 822

25.2.5 vhdl time . 829

25.3 Simulation-Related Actions . 830

25.3.1 force. 830

25.3.2 release . 834

25.4 Simulation-Related Expressions . 838

25.4.1 'HDL-pathname'. 838

25.4.2 specman deferred. 839

25.5 Simulation-Related Routines . 840

25.5.1 simulator_command() . 840

25.5.2 stop_run() . 841

26 Predefined File Routines Library . 843

26.1 Overview . 843

26.2 File Names and Search Paths . 843

26.3 File Descriptors . 843

26.4 Low-Level File Routines . 843

26.4.1 add_file_type() . 844

26.4.2 close() . 846

26.4.3 flush() . 847

26.4.4 open(). 848

26.4.5 read() . 850

26.4.6 read_lob() . 851

26.4.7 write() . 852

26.4.8 write_lob() . 853

26.4.9 writef(). 855

26.5 General File Routines. 856

26.5.1 file_age() . 857

26.5.2 file_append() . 858

26.5.3 file_copy() . 859

26.5.4 file_delete() . 860

26.5.5 file_exists() . 861

26.5.6 file_extension() . 862
xx This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
26.5.7 file_is_dir() . 863

26.5.8 file_is_link() . 864

26.5.9 file_is_readable(). 865

26.5.10 file_is_regular() . 866

26.5.11 file_is_temp() . 868

26.5.12 file_is_text() . 869

26.5.13 file_rename() . 870

26.5.14 file_size(). 871

26.5.15 new_temp_file() . 872

26.5.16 write_string_list() . 873

26.6 Reading and Writing Structs . 874

26.6.1 read_ascii_struct() . 874

26.6.2 read_binary_struct() . 875

26.6.3 write_ascii_struct() . 877

26.6.4 write_binary_struct() . 880

27 State Machines Library . 883

27.1 State Machine Overview . 883

27.2 State Machine Constructs. 883

27.2.1 state machine . 883

27.2.2 state => state . 886

27.2.3 * => state . 887

27.2.4 state action . 887

27.3 Sample State Machine . 888

27.4 Using State Machines. 889

27.4.1 Initializing a State Machine. 889

27.4.2 Terminating a State Machine. 890

27.4.3 Rules for State Transitions . 891

27.4.4 Nested State Machines . 892

27.4.5 Parallel State Machines . 892

Index . 895
This is an unapproved IEEE Standards Draft, subject to change.
xxi

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
xxii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
1 About This Book

The e language is an object-oriented programming language. Although e can be used to create any general-
purpose software program, it has been designed to facilitate the verification of electronic designs. The verifi-
cation-specific constructs that distinguish e from other object-oriented languages such as C++ include:

� Constructs to define legal values for data items (constraints)
� Constructs to describe sequences over time (temporal constructs)
� Constructs to support concurrency (multi-threaded execution)
� Constructs to support connectivity (bit-level access)

The e language also is designed to reduce the effort required to write tests and to make the high-level intent
of the test readily apparent. In contrast to other object-oriented programming languages, e�s unique extensi-
bility lets you modify multiple data objects in a single, separate test file that is layered on top of the base ver-
ification environment. This extensibility feature allows you to address systemic, test-specific concerns that
are not localized to a single data object�s boundaries in a way that does not sacrifice modularity or readabil-
ity.

This manual provides detailed information on the e programming language.

1.1 Conventions in This Book

This manual uses visual cues to help you locate and interpret information easily. These cues are explained in
Table 1-1 on page 1.

Table 1-1�Document Conventions

Visual Cue Represents

courier The Courier font indicates e or HDL code. For example, the fol-
lowing line indicates e code:

keep opcode in [ADD, ADDI];

bold The bold font is used in descriptive text to indicate keywords. For
example, the following sentence contains the keyword �keep�:

Use the keep construct to define legal values for items.

The bold font is used in syntax descriptions to indicate text that
must be typed exactly as it appears. For example, in the following
sentence the keywords �keep� and �reset_soft�, as well as the
period and the parentheses must be typed as they appear:

keep item.reset_soft()

italic The italic font represents user-defined variables that you must pro-
vide. For example, the following line instructs you to type �keep�
as it appears, and then specify a boolean expression:

keep constraint-bool-exp
This is an unapproved IEEE Standards Draft, subject to change. 1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
1.2 Syntax Notation

Each construct section starts with the syntax for the construct. The syntax shows the construct, any argu-
ments it accepts with their types, and the construct�s return type if it has one.

When using the construct, terms in bold in the syntax are to be entered exactly as shown. Terms in italics are
to be replaced by terms of your own. The argument types and the construct return type are for information
only and are not entered.

For example, the syntax notation for the predefined pseudo-method named �first()� on page 576 is

list.first(exp: bool): list-type

This is what the notation means:

� The bold �.first� and the parentheses must be entered exactly.
� The parts in italics, �list� and �exp�, must be replaced by a list name and an expression.
� �: bool� indicates that the expression must be a boolean expression.
� �: list-type� means that the pseudo-method returns an item of the list element type.

An example of a call to the list.first() pseudo-method is shown below, where �numbers� is a list of integer
items and �my_number� is an integer. The pseudo-method returns the first integer in the list greater than 5:

my_number = numbers.first(it > 5)

[] square brack-
ets

Square brackets indicate optional parameters. For example, in the
following construct the keywords �list of� are optional:

 var name: [list of] type

[] bold brackets Bold square brackets are required. For example, in the following
construct you must type the bold square brackets as they appear:

extend enum-type-name: [name,...]

construct, ... An item, followed by a separator (usually a comma or a semicolon)
and an ellipsis is an abbreviation for a list of elements of the speci-
fied type. For example, the following line means you can type a list
of zero or more names separated by commas.

extend enum-type-name: [name,...]

| The | character indicates alternative syntax or parameters. For
example, the following line indicates that either the bits or bytes
keyword should be used:

type scalar-type (bits | bytes: num)

Table 1-1�Document Conventions (continued)

Visual Cue Represents
2 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2 e Basics

This chapter describes the structure of an e program, starting with the organization of e code into one or
more files and the four categories of e constructs, and ending with a description of the struct hierarchy. This
chapter also describes the e operators. It contains the following sections:

� �Lexical Conventions� on page 3
� �Syntactic Elements� on page 11
� �Struct Hierarchy and Name Resolution� on page 19
� �Operator Precedence� on page 28
� �Evaluation Order of Expressions� on page 30
� �Bitwise Operators� on page 30
� �Boolean Operators� on page 35
� �Arithmetic Operators� on page 40
� �Comparison Operators� on page 42
� �String Matching� on page 51
� �Extraction and Concatenation Operators� on page 53
� �Scalar Modifiers� on page 63
� �Parentheses� on page 65
� �Special-Purpose Operators� on page 67

See Also

� Chapter 9, �Temporal Expressions�
� Chapter 3, �Data Types�
� Chapter 24, �Predefined Routines Library�

2.1 Lexical Conventions

The following sections describe the lexical conventions of e:

� �File Structure� on page 3
� �Code Segments� on page 4
� �Comments and White Space� on page 4
� �Literals and Constants� on page 4
� �Names, Keywords, and Macros� on page 9

2.1.1 File Structure

e code can be organized in multiple files. File names must be legal e names. The default file extension is
�.e�. e code files are sometimes referred to as �modules� Each module contains at least one code segment
and can also contain comments.

See Also

� �Names, Keywords, and Macros� on page 9
� �Code Segments� on page 4
� �Comments and White Space� on page 4
This is an unapproved IEEE Standards Draft, subject to change. 3

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.1.2 Code Segments

A code segment is enclosed with a begin-code marker <' and an end-code marker '>. Both the begin-code
and the end-code markers must be placed at the beginning of a line (left most), with no other text on that
same line (no code and no comments). For example, the following three lines of code form a code segment:

<'
import cpu_test_env;

'>

Several code segments can appear in one file. Each code segment consists of one or more statements.

See Also

� �Comments and White Space� on page 4
� �Statements� on page 12

2.1.3 Comments and White Space

e files begin as a comment which ends when the first begin-code marker <' is encountered.

Comments within code segments can be marked with double dashes (--) or double slashes (//):

a = 5; -- This is an inline comment
b = 7; // This is also an inline comment

The end-code '> and the begin-code <' markers can be used in the middle of code sections, to write several
consecutive lines of comment:

Import the basic test environment for the CPU...

<'
import cpu_test_env;

'>

This particular test requires the code that bypasses bug#72 as
well as the constraints that focus on the immediate instructions.

<'
import bypass_bug72;
import cpu_test0012;

'>

See Also

� �Code Segments� on page 4

2.1.4 Literals and Constants

Literals are numeric, character and string values specified literally in e. Operators can be applied to literals
to create compound expressions. The following categories of literals and constants are supported in e:

� �Unsized Numbers� on page 5
� �Sized Numbers� on page 5
� �MVL Literals� on page 6
4 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �Predefined Constants� on page 8
� �Literal String� on page 8
� �Literal Character� on page 9

2.1.4.1 Unsized Numbers

Unsized numbers are always positive and zero-extended unless preceded by a hyphen. Decimal constants are
treated as signed integers and have a default size of 32 bits. Binary, hex, and octal constants are treated as
unsigned integers, unless preceded by a hyphen to indicate a negative number, and have a default size of 32
bits. If the number cannot be represented in 32 bits then it is represented as an unbounded integer. See
�Unbounded Integers� on page 77 for more information.

The notations shown in Table 2-1 can be used to represent unsized numbers.

See Also

� �Literals and Constants� on page 4

2.1.4.2 Sized Numbers

A sized number is a notation that defines a literal with a specific size in bits. The syntax is as follows:

width-number ' (b|o|d|h|x) value-number

The width number is a decimal integer specifying the width of the literal in bits. The value number is the
value of the literal and can be specified in one of four radixes, as shown in Table 2-2.

Table 2-1�Representing Unsized Numbers in Expressions

Notation Legal Characters Examples

Decimal integer Any combination of 0-9 possibly pre-
ceded by a hyphen - for negative num-
bers. An underscore (_) can be added
anywhere in the number for readability.

12, 55_32, -764

Binary integer Any combination of 0-1 preceded by 0b.
An underscore (_) can be added anywhere
in the number for readability.

0b100111,
0b1100_0101

Hexadecimal integer Any combination of 0-9 and a-f preceded
by 0x. An underscore (_) can be added
anywhere in the number for readability.

0xff,
0x99_aa_bb_cc

Octal integer Any combination of 0-7 preceded by 0o.
An underscore (_) can be added anywhere
in the number for readability.

0o66_123

K (kilo: multiply by
1024)

A decimal integer followed by a K or k.
For example, 32K = 32768.

32K, 32k, 128k

M (mega: multiply by
1024*1024)

A decimal integer followed by an M or m.
For example, 2m = 2097152.

1m, 4m, 4M
This is an unapproved IEEE Standards Draft, subject to change. 5

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� If the value number is more than the specified size in bits, its most significant bits are
ignored. If the value number is less that the specified size, it is padded by zeros.

See Also

� �Literals and Constants� on page 4

2.1.4.3 MVL Literals

An MVL literal is based on the mvl type, which is a predefined enumerated scalar type in e. The mvl type is
defined as follows:

type mvl: [MVL_U,MVL_X,MVL_0,MVL_1,MVL_Z,MVL_W,MVL_L,MVL_H,MVL_N];

NOTE� MVL_N represents �don�t care�.

The mvl type is a superset of the capabilities provided by the @x and @z syntax allowed in HDL tick nota-
tion. For example, if a port is defined as type list of mvl, you can assign values with the $ access operator:

sig$ = {MVL_X;MVL_X;MVL_X} ; -- HDL tick notation is 'sig@x' = 0x3

If the port is a numeric type (uint, int, and so on), you can assign mvl values using the predefined MVL
methods for ports. For example:

sig.put_mvl_list({MVL_X;MVL_X;MVL_X});

An MVL literal, which is a literal of type list of mvl, provides a more convenient syntax for assigning MVL
values. The syntax of an MVL literal is as follows:

width-number ' (b|o|h) value-number

The width number is an unsigned decimal integer specifying the size of the list. The value number is any
sequence of digits that are legal for the base, plus x, z, u, l, h, w, n.

Syntax rules:

� A single digit represents 4 bits in hexadecimal base, 3 bits in octal base and 1 bit in binary base. Sim-
ilarly, the letters x, z, u, l, h, w, n represent 4 identical bits (for hexadecimal), 3 identical bits (for
octal), or 1 bit (for binary). For example, 8�h1x is equivalent to 8�b0001xxxx.

� If the size of the value is smaller than the width, the value is padded to the left. A most significant bit
(MSB) of 0 or 1 causes zero padding. If the MSB of the literal is x, z, u, l, h, w or n, then that mvl
value is used for padding.

Table 2-2�Radix Specification Characters

Radix Represented By Example

Binary A leading 'b or 'B 8'b11001010

Octal A leading 'o or 'O 6'o45

Decimal A leading 'd or 'D 16'd63453

Hexadecimal A leading 'h or 'H or 'x or 'X 32'h12ffab04
6 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� If the size of the value is larger than the size specified for the list, the value is truncated leaving the
LSB of the literal.

� An underscore can be used for breaking up long numbers to enhance readability. It is legal inside the
size and inside the value. It is illegal at the beginning of the literal, between the base and the value,
and between the single quote (') and the base.

Examples

32'hffffxxxx
32'HFFFFXXXX
//16'_b1100uuuuu --illegal because (_) is between (‘) and base
19'oL0001
14'D123
64'bz_1111_0000_1111_0000

Notes

� Decimal literals are not supported.
� White space is not allowed as a separator between the width number and base or between the base

and the value.
� The base and the value are not case sensitive.
� Size and base have to be specified.
� In the context of a Verilog comparison operator (!== or ===) or HDL tick access ('data' = 32'bx),

only the 4-value subset is supported (0, 1, u, x).
� Verilog simulators support only the 4-value logic subset.
� An MVL literal of size 1 is of type list of mvl that has one element. It is not of type mvl. Thus, you

cannot assign an MVL literal to a variable or field of type mvl:

var m: mvl = 1'bz; -- illegal; MVL_Z must be assigned

Syntactically, the same expression may be of a numeric type or MVL literal. For example, 1�b1 may repre-
sent either the number 1 or a list of MVL with the value {MVL_1}. A literal is considered to be an MVL lit-
eral when:

� The literal is assigned to a list of mvl, for example:

var v2: list of mvl = 16'b1;

� When the literal is passed to a method that receives a list of mvl
� When the literal is assigned to a port of type list of mvl using the $ operator
� When the literal is compared to list of mvl, for example:

check that v == 4'buuuu;

� When the literal is compared using the === and !== operators, for example:

check that 's' === 4'bz; -- limited to the 4-value subset

� When the literal is used in an HDL tick access assignment, for example:

's' = 8'bx1z; -- limited to the 4-value subset

� When the literal is an argument for a Verilog task, for example:

'task1'(8'h1x);)

� When the literal is used in a list operation, for example

l.add(32'b0)

If the type of the expression, according to the context, is numeric, or if the type cannot be extracted from the
context, the default type remains uint, for example:
This is an unapproved IEEE Standards Draft, subject to change. 7

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
print 2'b11; -- prints unsigned integer value 3
print 2'bxx; -- syntax error
pack(NULL, 32'z) -- error

NOTE� The type-casting operations as_a() and is a do not propagate the context.

See Also

� �Scalar Types� on page 75

2.1.4.4 Predefined Constants

A set of constants is predefined in e, as shown in Table 2-3.

See Also

� �Literals and Constants� on page 4

2.1.4.5 Literal String

A literal string is a sequence of zero or more ASCII characters enclosed by double quotes (� �).

The special escape sequences shown in Table 2-4 are allowed.

Table 2-3�Predefined Constants

Constant Description

TRUE For boolean variables and expressions.

FALSE For boolean variables and expressions.

NULL For structs, specifies a NULL pointer. For character strings, specifies
an empty string.

UNDEF UNDEF indicates NONE where an index is expected.

MAX_INT Represents the largest 32-bit int (231 -1)

MIN_INT Represents the smallest 32-bit int (-231).

MAX_UINT Represents the largest 32-bit uint (232-1).

Table 2-4�Escape Sequences in Strings

Escape Sequence Meaning

\n New-line

\t Tab

\f Form-feed

\� Quote

\\ Backslash

\r Carriage-return
8 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

This example shows escape sequences used in strings.

extend sys {

m() is {
var header: string =

"Name\tSize in Bytes\n----\t-------------\n";
var p: packet = new;
var pn: string = p.type().name;
var ps: uint = p.type().size_in_bytes;
outf("%s%s\t%d", header, pn, ps);

};
};

Result

Name Size in Bytes
---- -------------
packet 20

See Also

� �Literals and Constants� on page 4

2.1.4.6 Literal Character

A literal character is a single ASCII character, enclosed in quotation marks and preceded by 0c. This expres-
sion evaluates to the integer value that represents this character. For example, the literal character shown
below is the single ASCII character �a� and evaluates to 0x0061.

var u: uint(bytes:2) = 0c"a"

NOTE� Literal characters can only be assigned to integers or unsigned integers without explicit
casting.

See Also

� �Literals and Constants� on page 4

2.1.5 Names, Keywords, and Macros

The following sections describe the legal syntax for names and macros:

� �Legal e Names� on page 9
� �e Keywords� on page 10
� �Macros� on page 11

2.1.5.1 Legal e Names

User-defined names in e code consist of a case-sensitive combination of any length of the characters A-Z, a-
z, 0-9, and underscore. They must begin with a letter. Names beginning with an underscore have a special
meaning in e and are not recommended for general use. Names beginning with a number are not allowed.
This is an unapproved IEEE Standards Draft, subject to change. 9

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The syntax of an e module name (a file name) is the same as the syntax of UNIX file names, with the follow-
ing exceptions:

� �@� and �~� are not allowed as the first character of a file name.
� �[�, �]�, �{�, �}� are not allowed in file names.
� Only one �.� is allowed in a file name.

NOTE� Many ASCII characters are not handled correctly by some UNIX commands when used
in file names. These characters include control characters, spaces, and characters reserved for
command line parsing, such as �-�, �|�, and �<�.

NOTE� Naming an e module �patch.e� or �test.e� can cause problems when you try to load the
compiled file. If the module is to be compiled, do not name it patch.e or test.e.

2.1.5.2 e Keywords

The keywords listed below are the components of the e language. Some of the terms are keywords only
when used together with other terms, such as �key� in �list(key:key)�, �before� in �keep gen x before y�, or
�computed� in �define def as computed�.

all of all_values and as a as_a
assert assume async attribute before
bit bits bool break byte
bytes c export case change check that
compute computed consume continue cover
cross cvl call cvl callback cvl method cycle
default define delay detach do
down to dut_error each edges else
emit event exec expect extend
fail fall file first of for
force from gen global hdl pathname
if #ifdef #ifndef in index
int is is a is also is c routine
is empty is first is inline is instance is not a
is not empty is only is undefined item keep
keeping key like line list of
matching me nand new nor
not not in now on only
or others pass prev print
range ranges release repeat return
reverse rise routine select session
soft start state machine step struct
string sync sys that then
time to transition true try
type uint unit until using
10 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.1.5.3 Macros

e macros (created with the define statement) can be defined with or without an initial ` character. There are
two important characteristics of e macros defined with an initial ` character:

� They share the same name space as Verilog macros.
� You must always include the ` character when you reference the name.

Thus, if you import a file of Verilog macros containing the following macro:

`define WORD_WIDTH 8

defining the following e macro results in a name conflict:

define `WORD_WIDTH 16;

With either macro defined, the correct way to reference it is as follows:

struct t {
f: uint (bits: `WORD_WIDTH);

};

See Also

� Chapter 20, �Preprocessor Directives�

2.2 Syntactic Elements

Every e construct belongs to a construct category that determines how the construct can be used. There are
four categories of e constructs:

var verilog code verilog function verilog import verilog simulator
verilog task verilog time verilog timescale verilog trace verilog variable
vhdl code vhdl driver vhdl function vhdl procedure vhdl driver
vhdl simulator vhdl time when while with
within

Statements Statements are top-level constructs and are valid within the begin-code <'
and end-code '> markers. See �Statements� on page 12 for a list and brief
description of e statements.

Struct members Struct members are second-level constructs and are valid only within a
struct definition. See �Struct Members� on page 13 for a list and brief
description of e struct members.

Actions Actions are third-level constructs and are valid only when associated with
a struct member, such as a method or an event. See �Actions� on page 14
for a list and brief description of e actions.

Expressions Expressions are lower-level constructs that can be used only within
another e construct. See �Expressions� on page 19 for a list and brief
description of e expressions.
This is an unapproved IEEE Standards Draft, subject to change.
11

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The syntax hierarchy roughly corresponds to the level of indentation shown below:

statements
struct members

actions
expressions

See Also

� �Statements� on page 12
� �Struct Members� on page 13
� �Actions� on page 14
� �Expressions� on page 19

2.2.1 Statements

Statements are the top-level syntactic constructs of the e language and perform the functions related to
extending the e language and interface with the simulator.

Statements are valid within the begin-code <' and end-code '> markers. They can extend over several lines
and are separated by semicolons. For example, the following code segment has two statements:

<'
import bypass_bug72;
import cpu_test0012;

'>

In general, within a given e module, statements can appear in any order except that import statements must
appear before any other statements. No statements other than verilog import, preprocessor directives or
defines (#ifdef, #ifndef, define, define as, define as computed) can precede import statements. See
�import� on page 635 for an example of a special case where this restriction also applies to import state-
ments in different e modules.

Here is the complete list of e statements:

struct Defines a new data structure. See �Defining Structs:
struct� on page 118.

type Defines an enumerated data type or scalar subtype.
See �type enumerated scalar� on page 98, �type sca-
lar subtype� on page 100, or �type sized scalar� on
page 101

extend Modifies a previously defined struct or type. See
�Extending Structs: extend type� on page 121 or
�extend type� on page 103

define Extends the e language by defining new commands,
actions, expressions, or any other syntactic element.
See Chapter 13, �Macros�, �define as� on page 429,
or �define as computed� on page 436.

#ifdef, #ifndef Used together with define statements to place condi-
tions on the e parser. See �#ifdef, #ifndef� on
page 627.

import Reads in an e file. See �import� on page 635.
12 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Struct Members� on page 13
� �Actions� on page 14
� �Expressions� on page 19

2.2.2 Struct Members

Struct member declarations are second-level syntactic constructs of the e language that associate the entities
of various kinds with the enclosing struct.

Struct members can only appear inside a struct type definition statement (see �Defining Structs: struct� on
page 118). They can extend over several lines and are separated by semicolons. For example, the following
struct �packet� has two struct members, len and data:

<'
struct packet{

%len: int;
%data[len]: list of byte;

};
'>

verilog import Reads in Verilog macro definitions from a file.
See�verilog import� on page 799 .

verilog code Writes Verilog code to the stubs file, which is used to
interface e programs with a Verilog simulator. See
�verilog code� on page 795.

verilog time Specifies Verilog simulator time resolution. See�ver-
ilog time� on page 803 .

verilog variable reg | wire Specifies a Verilog register or wire that you want to
drive from e. See �verilog variable reg | wire� on
page 804.

verilog variable memory Specifies a Verilog memory that you want to access
from e. See �verilog variable memory� on page 810.

verilog function Specifies a Verilog function that you want to call
from e. See �verilog function� on page 797.

verilog task Specifies a Verilog task that you want to call from e.
See �verilog task� on page 801.

vhdl code Writes VHDL code to the stubs file, which is used to
interface e programs with a VHDL simulator. See
�vhdl code� on page 813.

vhdl driver Used to drive a VHDL signal continuously via the
resolution function. See �vhdl driver� on page 815.

vhdl function Declares a VHDL function defined in a VHDL pack-
age. See �vhdl function� on page 819.

vhdl procedure Declares a VHDL procedure defined in a VHDL
package. See �vhdl procedure� on page 822.

vhdl time Specifies VHDL simulator time resolution. See �vhdl
time� on page 829.
This is an unapproved IEEE Standards Draft, subject to change.
13

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
A struct can contain multiple struct members of any type in any order. Here is a brief description of e struct
members:

See Also

� �Defining Fields: field� on page 125
� �Rules for Defining and Extending Methods� on page 459
� �Creating Subtypes with When� on page 133
� �Defining Constraints� on page 270
� �Defining Coverage Groups: cover� on page 373
� Chapter 10, �Temporal Struct Members�

2.2.3 Actions

e actions are lower-level procedural constructs that can be used in combination to manipulate the fields of a
struct or exchange data with the DUT.

Actions can extend over several lines and are separated by semicolons. An action block is a list of actions
separated by semicolons and enclosed in curly brackets, { }.

Actions must be associated with a struct member, specifically a method or an event, or issued interactively
as commands at the command line. Here is an example of an action (an invocation of a method, �transmit()�)
associated with an event, xmit_ready. Another action, out() is associated with the transmit() method.

<'
struct packet{

event xmit_ready is rise('top.ready');
on xmit_ready {transmit();};
transmit() is {

out("transmitting packet...");
};

};
'>

The following sections describe the e actions:

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16

field declaration Defines a data entity that is a member of the enclosing
struct and has an explicit data type.

method declaration Defines an operational procedure that can manipulate the
fields of the enclosing struct and access runtime values in
the DUT.

subtype declaration Defines an instance of the parent struct in which specific
struct members have particular values or behavior.

constraint declaration Influences the distribution of values generated for data enti-
ties and the order in which values are generated.

coverage declaration Defines functional test goals and collects data on how well
the testing is meeting those goals.

temporal declaration Defines e events and their associated actions.
14 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

2.2.3.1 Creating or Modifying Variables

See Also

� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

2.2.3.2 Executing Actions Conditionally

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

�var� on page 487 Defines a local variable.
�=� on page 489 Assigns or samples values of fields, local variables, or HDL objects.
�op=� on page 491 Performs a complex assignment (such as add and assign, or shift and

assign) of a field, local variable, or HDL object.
�force� on page 830 Forces a Verilog net or wire to a specified value, over-riding the value

from driven from the DUT.
�release� on page 834 Releases the Verilog net or wire that was previously forced.

�if then else� on page 533 Executes an action block if a condition is met and a different action
block if it is not.

�case labeled-case-item� on
page 534

Executes one action block out of multiple action blocks depending
on the value of a single expression.

�case bool-case-item� on
page 536

Evaluates a list of boolean expressions and executes the action block
associated with the first expression that is true.
This is an unapproved IEEE Standards Draft, subject to change.
15

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.2.3.3 Executing Actions Iteratively

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

2.2.3.4 Controlling Program Flow

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

�while� on page 538 Executes an action block repeatedly until a boolean expression
becomes FALSE.

�repeat until� on page 539 Executes an action block repeatedly until a boolean expression
becomes TRUE.

�for each in� on page 540 For each item in a list that is a specified type, executes an action
block.

�for from to� on page 543 Executes an action block for a specified number of times.
�for� on page 544 Executes an action block for a specified number of times.
�for each line in file� on
page 545

Executes an action block for each line in a file.

�for each file matching� on
page 546

Executes an action block for each file in the search path.

�break� on page 547 Breaks the execution of the enclosing loop.
�continue� on page 548 Stops execution of the enclosing loop and continues with the next itera-

tion of the same loop.
16 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.2.3.5 Invoking Methods and Routines

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

2.2.3.6 Performing Time-Consuming Actions

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

�method()� on page 478 Calls a regular method.
�tcm()� on page 475 Calls a TCM.
�start tcm()� on page 477 Launches a TCM as a new thread (a parallel process).
�Calling Predefined Routines: rou-
tine()� on page 793

Calls an e predefined routine.

�compute method()� on page 480 Calls a value-returning method without using the value
returned.

�return� on page 481 Returns immediately from the current method to the
method that called it.

�emit� on page 307 Causes a named event to occur.
�sync� on page 365 Suspends execution of the current TCM until the temporal expression

succeeds.
�wait� on page 367 Suspends execution of the current time-consuming method until a given

temporal expression succeeds.
�all of� on page 369 Executes multiple action blocks concurrently, as separate branches of a

fork. The action following the all of action is reached only when all
branches of the all of have been fully executed.

�first of� on page 370 Executes multiple action blocks concurrently, as separate branches of a
fork. The action following the first of action is reached when any of the
branches in the first of has been fully executed.

�state machine� on
page 883

Defines a state machine.
This is an unapproved IEEE Standards Draft, subject to change.
17

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.2.3.7 Generating Data Items

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Detecting and Handling Errors� on page 18
� �Printing� on page 18

2.2.3.8 Detecting and Handling Errors

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Printing� on page 18

2.2.3.9 Printing

See Also

� �Creating or Modifying Variables� on page 15
� �Executing Actions Conditionally� on page 15
� �Executing Actions Iteratively� on page 16
� �Controlling Program Flow� on page 16
� �Invoking Methods and Routines� on page 17
� �Performing Time-Consuming Actions� on page 17
� �Generating Data Items� on page 18
� �Detecting and Handling Errors� on page 18

�gen� on page 296 Generates a value for an item, while considering all relevant constraints.

�check that� on page 441 Checks the DUT for correct data values.
�dut_error()� on page 443 Defines a DUT error message string.
�assert� on page 456 Issues an error message if a specified boolean expression is not true.
�warning()� on page 450 Issues a warning message.
�error()� on page 451 Issues an error message when a user error is detected.
�fatal()� on page 452 Issues an error message, halts all activities, and exits immediately.
�try� on page 454 Catches errors and exceptions.

�set_config()� on page 766 Sets options for various categories, including printing.
18 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.2.4 Expressions

Expressions are constructs that combine operands and operators to represent a value. The resulting value is a
function of the values of the operands and the semantic meaning of the operators.

A few e expressions, such as expressions that restrict the range of valid values of a variable, must evaluate to
constants at compile time. More typically, expressions are evaluated at run time, resolved to a value of some
type, and assigned to a variable or field of that type. Strict type checking in e is enforced.

Each expression must contain at least one operand, which can be:

� A literal value
� A constant
� An e entity, such as a method, field, list, or struct
� An HDL entity, such as a signal

A compound expression applies one or more operators to one or more operands.

See Also

� Chapter 3, �Data Types�

2.3 Struct Hierarchy and Name Resolution

The following sections explain the struct hierarchy of an e program and how to reference entities within the
program:

� �Struct Hierarchy� on page 19
� �Referencing e Entities� on page 21
� �Implicit Variables� on page 24
� �Name Resolution Rules� on page 26

2.3.1 Struct Hierarchy

Because structs can be instantiated as the fields of other structs, a typical e program has many levels of hier-
archy. Every e program contains several predefined structs as well as user-defined structs. Figure 2-1 on
page 20 shows the partial hierarchy of a typical e program. The predefined structs are shown in bold.
This is an unapproved IEEE Standards Draft, subject to change.
19

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 2-1�Diagram of Struct Hierarchy

2.3.1.1 Global Struct

The predefined struct global is the root of all e structs. All predefined structs and most predefined methods
are part of the global struct.

It is highly recommended that you do not extend the global struct.

2.3.1.2 Sys Struct

The system struct is instantiated under global as sys.

All fields and structs in sys not marked by an exclamation point (!) are generated automatically during the
generate_test phase. Any structs or fields outside of sys that need generation must be generated explicitly.

Time is stored in a 64-bit integer field named sys.time. When e is linked with an event-driven simulator,
sys.time shows the current simulator time. When e is linked with a cycle-based simulator, sys.time shows
the current simulator cycle. sys.time is influenced by the current timescale. See �verilog time� on page 803
and �vhdl time� on page 829 for information on how the timescale is determined.

2.3.1.3 Packing Struct

Packing and unpacking are controlled by a predefined struct under global named packing. Packing and
unpacking prepare e data sent to or received from the DUT. Under the packing struct are five predefined
structs. You can create your own packing order by copying one of these structs and modifying one or more
of its parameters.

2.3.1.4 Files Struct

The files struct provides predefined methods for manipulating files.

2.3.1.5 Scheduler Struct

The scheduler struct contains predefined methods that allow you to access active TCMs and terminate
them.

global

syspackingfiles scheduler simulator session

switch

ctrl_stub port_stub1 port_stub2 port_stub3 port_stub4

sender listener
20 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.3.1.6 Simulator Struct

The simulator struct controls the HDL simulator and has a predefined method that allows access to Verilog
macros at run time.

2.3.1.7 Session Struct

The session struct holds the status of the current simulator session, related information, and events. Fields
available in the session struct that are of general interest include:

� session.user_time
� session.system_time
� session.check_ok
� session.events

The first three fields listed above help you determine the time and memory used in a particular session. The
following sections describe the check_ok field and the events field.

2.3.1.7.1 session.check_ok

This field is of boolean type, and is set TRUE after every check, if the check succeeds. Otherwise, it is set to
FALSE. This field allows you to extend checking of a behavior without the need to duplicate the if clause.

The following example show how this is accomplished.

post_generate() is also {
check that mlist.size() > 0 else dut_error("Empty list");
if session.check_ok then {
check that mlist[0] == 0xa else dut_error("Error at index 0");
};

};

2.3.1.7.2 session.events

This field contains the names of all user-defined events that occurred during the test, and how many times
each user-defined event occurred. The name of the event is preceded by the struct type and a double under-
score:

struct_type__event_name

If an event is defined in a when subtype, the name of the event in the session.events field is prefixed by the
subtype and a double underscore:

subtype__struct_type__event_name

2.3.2 Referencing e Entities

The following sections describe how to reference e entities:

� �Structs and Fields� on page 22
� �Method and Routine Names� on page 23
� �Enumerated Type Values� on page 23
This is an unapproved IEEE Standards Draft, subject to change.
21

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.3.2.1 Structs and Fields

Any user-defined struct can be instantiated as a field of the sys struct or of another struct. Thus every instan-
tiated struct and its fields have a place in the struct hierarchy and their names include a path reflecting that
place.

The keep constraints in the following example show the use of paths to identify the fields u and kind:

<'
struct switch {

ctrl: ctrl_stub;
port: port_stub;

keep soft port.sender.cell.u == 0xff;
keep ctrl.init_command.kind == RD;

};
struct ctrl_stub {

init_command: ctrl_cmd;
};
struct simplex {

kind: [TX, RX];
cell: cell;

};
struct port_stub {

sender: TX simplex;
listener: RX simplex;

};
struct cell {

u: uint;
};
struct ctrl_cmd {

kind: [RD, WR];
addr: int;

};
extend sys {

switch : switch;
};
'>

Notes

� The name of the global struct can be omitted from the path to a field or a struct.
� The name of the enclosing struct is not included in the path if the current struct is the enclosing

struct. For example, prefixing the name port.sender.cell.u in the example above with the name of the
enclosing struct, switch, is an error.

� In certain contexts, you can use the implicit variables me or it in the path to refer to the enclosing
struct. For example, prefixing the name port.sender.cell.u in the example above with me is legal. See
�Implicit Variables� on page 24 for more information.

� A special syntax is required to reference struct subtypes and fields under struct subtypes. This syntax
is described in �Struct Subtypes� on page 80.

See Also

� �Struct Subtypes� on page 80
� �Implicit Variables� on page 24
� �.� on page 71
22 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.3.2.2 Method and Routine Names

The names of all methods and routines must be followed immediately by parentheses, both when you define
the method and when you call it.

The predefined methods of any struct, such as pre_generate() or init(), and all user-defined methods, are
associated with a particular struct. Thus, like structs and fields, every user-defined method has a place in the
struct hierarchy and its name includes a path reflecting that place.

The example below illustrates the names used to call user-defined and predefined methods.

<'
struct meth {

%size: int;
%taken: int;

get_free(size: int, taken: int): int is inline {
result = size - taken;};

};
extend sys {

!area: int;
mi: meth;

post_generate() is also {
sys.area = sys.mi.get_free(sys.mi.size, sys.mi.taken);
print sys.area;

};
};
'>

Some predefined methods, such as the methods used to manipulate lists, are pseudo-methods. They are not
associated with a particular struct. These methods are called by appending their name to the expression that
you want to manipulate. Here is an example of how to call the list pseudo-method .size():

<'
struct meth {

%data: list of int;

keep data.size() <= 10;
};
'>

User-defined routines, like predefined routines, are associated with the global struct. You can omit global
from the path when the context is unambiguous. See �Name Resolution Rules� on page 26 for more infor-
mation.

See Also

� �Invoking Methods and Routines� on page 17

2.3.2.3 Enumerated Type Values

Names for enumerated type values must be unique within each type. For example, defining a type as
�my_type: [a, a, b]� results in an error because the name �a� is not unique.
This is an unapproved IEEE Standards Draft, subject to change.
23

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
However, the same name can be used in more than one enumerated type. For example, the following two
enumerated types define the same value names:

type destination: [a, b, c, d];
type source: [a, b, c, d];

To refer to an enumerated type value in a struct where no values are shared between the enumerated types,
you can use just the value name. In structs where more than one enumerated field can have the same value,
you must use the following syntax to refer to the value when the type is not clear from the context:

type_name'value

In the following keep constraint, it is clear that the type of �dest� is �destination�, so you can use just the
value name �b�:

type destination: [a, b, c, d];
type source: [a, b, c, d];
struct packet {

dest: destination;
keep me.dest == b;

However, because the type of the variable �tmp� below is not specified, it is necessary to use the full name
for the enumerated type value �destination'b�:

m() is {
var tmp := destination'b;

};

See Also

� �Enumerated Scalar Types� on page 77

2.3.3 Implicit Variables

Many e constructs create implicit variables. The scope of these implicit variables is the construct that creates
them. Two of these implicit variables, me and it, are used in pathnames when referencing e entities.

This section describes the implicit variables:

� �it� on page 24
� �me� on page 25
� �result� on page 26
� �index� on page 26

NOTE� With the exception of result, you cannot assign values to implicit variables. An
assignment such as �me = packet� generates an error.

2.3.3.1 it

The constructs that create the implicit variable it are:

� list pseudo-methods
� for each
� gen...keeping
24 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� keep for each
� keep .is_all_iterations()
� new with
� list with key declaration

The implicit variable it always refers to the current item.

Wherever it.field can be used, the shorthand notation .field can be used in its place. For example, it.len can
be abbreviated to .len, with a leading dot. A typical use of it is to refer to each item in a list within a loop.

for each in sys.packets{
it.len = 5;
.good = TRUE;

};

In the code above, .good is shorthand for it.good. The scope of the it variable is restricted to the for loop.

In many places it is legal to designate and use a name other than the implicit it. In the following example, it
is replaced with a variable name, �p�, that is declared in the iterating action.

for each (p) in sys.packets do {
print p.len;

};

See Also

� �Implicit Variables� on page 24

2.3.3.2 me

The implicit variable me refers to the current struct and can be used anywhere in the struct. In the following
example, me refers to the current instance of the packet struct, and it refers to the current value of tmp.

struct packet {
data: uint;
stm() is {

var tmp: uint;
gen tmp keeping {it < me.data};
print data, tmp using hex;

};
};

When referring to a field from another member of the same struct, the me. can be omitted. In the keep con-
straint shown below, the name �me.header.dest� is equivalent to the name �header.dest�.

struct packet {
%header : header;

keep header.dest == 0x55;
};
struct header {

%dest : int (bits : 8);
};
This is an unapproved IEEE Standards Draft, subject to change.
25

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �Implicit Variables� on page 24

2.3.3.3 result

The result variable returns a value of the method�s return type. If no return action is encountered, result is
returned by default. The following method returns the sum of �a� and �b�:

sum(a: int, b: int): int is {
result = a + b;

};

See Also

� �Implicit Variables� on page 24

2.3.3.4 index

The constructs that create the implicit variable index are:

� list pseudo-methods
� for each
� keep for each

The index variable is a non-negative integer that holds the current index of the item referred to by it. The
scope of the index variable is limited to the action block.

The following loop assigns 5 to the len field of every item in the packets list and also assigns the index value
of each item to its id field.

for each in packets do {
packets[index].len = 5;
.id = index;

};

See Also

� �Implicit Variables� on page 24

2.3.4 Name Resolution Rules

The following sections describe how names are resolved, depending on whether the names include a path or
not.

� �Names that Include a Path� on page 26
� �Names that Do Not Include a Path� on page 27

2.3.4.1 Names that Include a Path

To resolve names that include a path, an entity of that name is searched for at the specified scope and an
error message is issued if it is not found. In the following example, the names �sys.b.u� and �.u� in the keep
constraints cannot be resolved, and an error is issued an error if those names are not commented out.
26 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
<'
struct b {

u:uint;

m() is {
print u;

};
};
struct c {

u:uint;

keep u > sys.bi.u;
keep me.u > 5;
-- keep u < sys.b.u; // ’sys’ does not have a field ’b’
-- keep .u < sys.bi.u; // no such variable ’it’

m() is {
print u;

};
};

extend sys {
bi: b;
ci: c;

post_generate() is also {
sys.bi.m();
ci.m();

};
};
'>

NOTE� If the path begins with a period (.), the path is assumed to begin with the implicit variable
it.

See Also

� �Names that Do Not Include a Path� on page 27

2.3.4.2 Names that Do Not Include a Path

To resolve names that do not include a path, the following checks are performed, in order. The program stops
after the first check that identifies the named object.

1) Check whether the name is a macro. If there are two macro definitions, choose the most recent
one.

2) Check whether the name is one of the predefined constants. There cannot be two identical pre-
defined constants.

3) Check whether the name is an enumerated type. There cannot be two identical enumerated
types.

4) Check whether the name identifies a variable used in the current action block. If not, and if the
action is nested, check whether the name identifies a variable in the enclosing action block. If
not, this search continues from the immediately enclosing action block outwards to the bound-
ary of the method.

5) Check whether the name identifies a member of the current struct:
If the expression is inside a struct definition, the current struct is the enclosing struct.
This is an unapproved IEEE Standards Draft, subject to change.
27

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
If the expression is inside a method, the current struct is the struct to which the method
belongs.

6) Check whether the name identifies a member of the global struct.
7) If the name is still unresolved, an error message is issued.

Example

The following example illustrates how variables in the inner scopes hide those in the outer scopes:

m() is {
var x: int = 6;
if x > 4 then {

var x: bool = TRUE;
print x;

};
print x;

};

Result

x = TRUE
x = 6

NOTE� Macros, predefined constants, and enumerated types have �global scope�, Which means
they can be seen from anywhere within an e program. For that reason, their names must be unique:

� No two name macros can have the same name, and no two replacement macros can have the same
macro-name�nonterminal-type (Chapter 13, �Macros�).

� No user-defined constant can have the same name as a predefined constant (�Predefined Constants�
on page 8).

� No two enumerated types can have the same enum-type-name (�Defining and Extending Scalar
Types� on page 98).

See Also

� �Names that Include a Path� on page 26

2.4 Operator Precedence

The following table summarizes all e operators in order of precedence. The precedence is the same as in the
C language, with the exception of operators that do not exist in C. To change the order of computation, place
parentheses around the expression that should be computed first.

Table 2-5�Operators in Order of Precedence

Operator Operation Type

�[]� on page 54 List indexing (subscripting)

�[..]� on
page 58

List slicing

�[:]� on page 55 Bit slicing (selection)
28 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
f(...) Method and routine calls (see �Invoking Methods and Routines�
on page 17)

�.� on page 71 Field selection

�~� on page 31,
�! (not)� on
page 35

Bitwise not, boolean not

�{... ; ...}� on
page 60

List concatenation

�%{... , ...}� on
page 62

Bit concatenation

�Unary + -� on
page 40

Unary plus, minus

*, /, % Binary multiply, divide, modulus (see �+ - * / %� on page 41)

+, - Binary add and subtract (see �+ - * / %� on page 41)

�>> <<� on
page 33

Shift right, shift left

�< <= > >=� on
page 42

Comparison

�is [not] a� on
page 67

Subtype identification

�== !=� on
page 43

Equality, inequality

�=== !==� on
page 45

Verilog four-state comparison

�~ !~� on
page 47

String matching

�in� on page 49 Range list operator

& Bitwise and (see �& | ^� on page 32)

| Bitwise or (see �& | ^� on page 32)

^ Bitwise xor (see �& | ^� on page 32)

�&& (and)� on
page 36

boolean and

�|| (or)� on
page 37

boolean or

�=>� on page 37 boolean implication

�? :� on page 73 Conditional operator (�a ? b : c� means �if a then b else c�)

Table 2-5�Operators in Order of Precedence (continued)

Operator Operation Type
This is an unapproved IEEE Standards Draft, subject to change.
29

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� Every operation in e is performed within the context of types and is carried out either with
32-bit precision or unbounded precision.

See Also

� Chapter 3, �Data Types� for information on the precision of operations and assignment rules
� �Evaluation Order of Expressions� on page 30

2.5 Evaluation Order of Expressions

In e it is defined that �and� (&&) and �or� (||) use left-to-right lazy evaluation. Consider the following state-
ment:

bool_1 = foo(x) && bar(x)

If foo(x) returns TRUE, then bar(x) will be evaluated as well, to determine whether bool_1 gets TRUE. If,
however, foo(x) returns FALSE, then bool_1 gets FALSE immediately, and bar(x) is not executed. The argu-
ment to bar(x) is not even evaluated.

Expressions containing || are likewise evaluated in a lazy fashion: If the subexpression on the left of the �or�
operator is TRUE, then the subexpression on the right is ignored.

Although e was implemented to use left-to-right evaluation for both compiled e code and interpreted e code,
that evaluation order is not required by the language definition for operators other than && or ||.

Take for example the following statement:

bool_2 = foo(x) + bar(x)

If foo(x) or bar(x) has side effects (that is, if foo(x) changes the value of x or bar(x) changes the value of x),
then the results of foo(x) + bar(x) might depend on which of the two subexpressions, foo(x) or bar(x), is
evaluated first, so the results are not predictable according to the e language definition. Practically, the left-
to-right evaluation implemented in e assures predictable results, but that order is not guaranteed for other
compilers. Writing code that depends on evaluation order should be avoided.

See Also

� �Operator Precedence� on page 28

2.6 Bitwise Operators

The following sections describe the e bitwise operators:

�~� on page 31 The bitwise unary negation operator changes each 0 bit to 1 and each 1 bit
to 0 in a single expression.

�& | ^� on page 32 The binary bitwise AND, OR, and XOR operators compare each bit in
one expression with the corresponding bit in a second expression to cal-
culate the result.

�>> <<� on page 33 The shift-right and shift-left operators shift the bits in an expression to the
left or right a specified number of bits.
30 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �bitwise_op()� on page 730

2.6.1 ~

Purpose

Unary bitwise negation

Category

Expression

Syntax

~exp

Syntax example:

print ~x using hex;

Parameter

Description

Sets each 1 bit of an expression to 0 and each 0 bits to 1. Each bit of the result expression is the opposite of
the same bit in the original expression.

Example 1

This example shows the effect of the ~ operator on a 32-bit integer.

m() is {
var x : int = 0xff;
print ~x using hex;

};

Result

~x = 0xffffff00

Example 2

This example shows the effect of the ~ operator on a 2-bit integer.

m() is {
var x : uint (bits:2) = 2;
print ~x using bin;

};

Result

~x = 0b01

exp A numeric expression or an HDL pathname.
This is an unapproved IEEE Standards Draft, subject to change.
31

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 3

This example shows the effect of the ~ operator on an untyped expression.

When the type and bit size of an HDL signal cannot be determined from the context, the expression is auto-
maticallly cast as an unsigned 32-bit integer.

m() is {
print 'top.clk';
print ~'top.clk';
print (~'top.clk')[0:0];

};

Result

'top.clk' = 0x0
~'top.clk' = 0xffffffff
(~'top.clk')[0:0] = 0x1

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75
� �Untyped Expressions� on page 87

2.6.2 & | ^

Purpose

Binary bitwise operations

Category

Expression

Syntax

exp1 operator exp2

Syntax example:

print (x & y);

Parameters

Description

Performs an AND, OR, or XOR of both operands, bit by bit.

exp1, exp2 A numeric expression or an HDL pathname.
operator is one of the following:
& Performs an AND operation.
| Performs an OR operation.
^ Performs an XOR operation.
32 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

m() is {
var x: uint = 0xff03;
var y: uint = 0x70f6;
print (x & y);

};

Result

(x & y) = 0x7002

Example 2

m() is {
var x: uint = 0xff03;
'top.a' = 0x70f6;
print (x | 'top.a');

};

Result

(x | 'top.a') = 0xfff7

Example 3

extend sys {
m() is {

var x: uint = 0xff03;
var y: uint = 0x70f6;
print (x ^ y);

};
};

Result

(x ^ y) = 0x8ff5

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.6.3 >> <<

Purpose

Shift bits left or right

Category

Expression

Syntax

exp1 operator exp2

Syntax example:
This is an unapproved IEEE Standards Draft, subject to change.
33

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
outf("%x\n", x >> 4);

Parameters

Description

Shifts each bit of the first expression to the right or to the left the number of bits specified by the second
expression.

In a shift-right operation, the shifted bits on the right are lost, while on the left they are filled with 1, if the
first expression is a negative integer, or 0, in all other cases.

In a shift-left operation, the shifted bits on the left are lost, while on the right they are filled with 0.

If the bit size of the second expression is greater than 32 bits, it is first truncated to 32 bits, and then the shift
is performed. Truncation removes the most significant bits.

NOTE� The result of a shift by more than 31 bits is undefined.

Example 1

m() is {
var x: int = 0x8fff0011;
outf("%x\n", x >> 4);
var y: uint = 0x8fff0011;
outf("%b\n", y >> 4);

};

Result

f8fff001
1000111111111111000000000001

Example 2

m() is {
'top.a' = 0x8fff0011;
outf("%x\n", 'top.a' << 4);

};

Result

fff00110

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

exp1 A numeric expression or an HDL pathname.
operator is one of the following:
<< Performs a shift-left operation.
>> Performs a shift-right operation.
exp2 A numeric expression.
34 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.7 Boolean Operators

The following sections describe the e boolean operators:

2.7.1 ! (not)

Purpose

Boolean not operation

Category

Expression

Syntax

!exp

not exp

Syntax example:

out(!(3 > 2));

Parameters

Description

Returns FALSE when the expression evaluates to TRUE and returns TRUE when the expression evaluates
to FALSE.

Example

m() is {
'top.a' = 3;
out(!('top.a' > 2));
out(not FALSE);

};

Result

FALSE

�! (not)� on page 35 Returns TRUE when an expression evaluates to
FALSE, and vice versa.

�&& (and)� on page 36 Returns TRUE if two expressions are both TRUE.
�|| (or)� on page 37 Returns TRUE if one of two expressions is TRUE.
�=>� on page 37 Returns TRUE when the first expression of two expres-

sions is FALSE, or when both expressions are TRUE.
�now� on page 38 Returns TRUE if an event has occurred in the current

cycle.

exp A boolean expression or an HDL pathname.
This is an unapproved IEEE Standards Draft, subject to change.
35

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
TRUE

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.7.2 && (and)

Purpose

Boolean and

Category

Expression

Syntax

exp1 && exp2

exp1 and exp2

Syntax example:

if (2 > 1) and (3 > 2) then {
out("3 > 2 > 1");

};

Parameters

Description

Returns TRUE if both expressions evaluate to TRUE; otherwise, returns FALSE.

Example

m() is {
'top.a' = 3;
'top.b' = 2;
if ('top.b' > 1) and ('top.a' > 2) then {

out("'top.a' > 'top.b' > 1");
};

};

Result

'top.a' > 'top.b' > 1

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

exp1, exp2 A boolean expression or an HDL pathname.
36 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.7.3 || (or)

Purpose

Boolean or

Category

Expression

Syntax

exp1 || exp2

exp1 or exp2

Syntax example:

if FALSE || ('top.a' > 1) then {
out("'top.a' > 1");

};

Parameters

Description

Returns TRUE if one or both expressions evaluate to TRUE; otherwise, returns FALSE.

Example

m() is {
'top.a' = 3;
if FALSE || ('top.a' > 1) then {

out("'top.a' > 1");
};

};

Result

'top.a' > 1

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.7.4 =>

Purpose

Boolean implication

exp1, exp2 A boolean expression or an HDL pathname.
This is an unapproved IEEE Standards Draft, subject to change.
37

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Expression

Syntax

exp1 => exp2

Syntax example:

out((2 > 1) => (3 > 2));

Parameters

Description

The expression returns TRUE when the first expression is FALSE, or when the second expression is TRUE.
This construct is the same as:

(not exp1) or (exp2)

Example

m() is {
out((2 > 1) => (3 > 2));
out((1 > 2) => (3 > 2));
out((2 > 1) => (2 > 3));

};

Result

TRUE
TRUE
FALSE

See Also

� �constraint-bool-exp� on page 292
� �Scalar Types� on page 75

2.7.5 now

Purpose

Boolean event check

Category

Boolean expression

Syntax

now @event-name

exp1, exp2 A boolean expression.
38 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

if now @sys.tx_set then {out("sys.tx_set occurred");};

Parameter

Description

Evaluates to TRUE if the event occurs before the now expression is encountered, in the same cycle in which
the now expression is encountered.

However, if the event is consumed later during the same cycle, the now expression changes to FALSE. This
means that the event can be missed, if it succeeds after the expression is encountered.

Example 1

In the following, the sys.tx_set event is checked when the if action is encountered. If the sys.tx_set event has
already occurred, in the same sys.clk cycle, the out() routine is called.

struct pkt {
event clk is @sys.any;
tcm_exa()@clk is {

if now @sys.tx_set then {out("sys.tx_set occurred");};
};
run() is also {

start tcm_exa();
};

};

Example 2

In this example, the now expression is FALSE until the tx_set event is emitted, which changes the expres-
sion to TRUE. When the event is consumed by �sync consume (@tx_set)�, the now expression changes
back to FALSE.

struct pkt {
event tx_set;
tcm_exa()@sys.any is {

print now @tx_set;
emit tx_set;
print now @tx_set;
sync consume (@tx_set);
print now @tx_set;

};
run() is also {

start tcm_exa();
};

};
extend sys {

p_i: pkt;
};

event-name The event to be checked.
This is an unapproved IEEE Standards Draft, subject to change.
39

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� Chapter 8, �Events�
� �Scalar Types� on page 75

2.8 Arithmetic Operators

The following sections describe the e arithmetic operators:

2.8.1 Unary + -

Purpose

Unary plus and minus

Category

Expression

Syntax

-exp

+exp

Syntax example:

out(5," == ", +5);

Parameter

Description

Performs a unary plus or minus of the expression. The minus operation changes a positive integer to a nega-
tive one, and a negative integer to a positive one. The plus operation leaves the expression unchanged.

Example 1

m() is {
out(5," == ", +5);

};

Result

0x5 == 0x5

Example 2

m() is {

�Unary + -� on page 40 Perform arithmetic operations on a single operand.
�+ - * / %� on page 41 Perform arithmetic operations on two operands.

exp A numeric expression or an HDL pathname.
40 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var x: int = 3;
print -x;
print -(-x);

};

Result

-x = -3
-(-x) = 3

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.8.2 + - * / %

Purpose

Binary arithmetic

Category

Expression

Syntax

exp1 operator exp2

Syntax example:

out(10 + 5);

Parameters

Description

Performs binary arithmetic operations.

Example 1

m() is {
out(4 * -5);

};

exp1, exp2 A numeric expression or an HDL pathname.
operator is one of the following:
+ Performs addition.
- Performs subtraction.
* Performs multiplication.
/ Performs division and returns the quotient, rounded down.
% Performs division and returns the remainder.
This is an unapproved IEEE Standards Draft, subject to change.
41

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Result

0xffffffec

Example 2

m() is {
out(21 / 7);
out(27 / 7);

};

Result

0x3
0x3

Example 3

m() is {
out(23 % 7);

};

Result

0x2

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75
� �Arithmetic Routines� on page 721

2.9 Comparison Operators

The following sections describe the e comparison operators:

2.9.1 < <= > >=

Purpose

Comparison of values

Category

Expression

�< <= > >=� on page 42 Compares two numeric expressions or HDL pathnames.
�== !=� on page 43 Determines whether two expressions are equal or not.
�=== !==� on page 45 Performs a 4-state, Verilog-style comparison of HDL objects.
�~ !~� on page 47 Determines whether two string expressions are equal or not.
�in� on page 49 Determines whether an expression is in a list or a range.
42 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

exp1 operator exp2

Syntax example:

print 'top.a' >= 2;

Parameters

Description

Compares two expressions.

Example

m() is {
'top.a' = 3;
print 'top.a' >= 2;

};

Result

'top.a' >= 2 = TRUE

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.9.2 == !=

Purpose

Equality of values

Category

Expression

Syntax

exp1 operator exp2

exp1, exp2 A numeric expression, or an HDL pathname.
operator is one of the following:
< Returns TRUE if the first expression is smaller than the second

expression.
<= Returns TRUE if the first expression is not larger than the second

expression.
> Returns TRUE if the first expression is larger than the second

expression.
>= Returns TRUE if the first expression is not smaller than the second

expression.
This is an unapproved IEEE Standards Draft, subject to change.
43

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

print lob1 == lob2;
print p1 != p2;

Parameters

Description

The equality operators compare the items and return a boolean result. All types of items are compared by
value, except for structs which are compared by address. Comparison methods for the various data types are
listed in Table 2-6.

Notes

� Enumerated type values can be compared as long as they are of the same type.
� Do not use these operators to compare a string to a regular expression. Use the ~ or the !~ operator

instead.
� See �=== !==� on page 45 for a description of using this operator with HDL pathnames.

Example

extend sys {
p1: packet;
p2: packet;

m() is {
var s: string = "/rtests/tmp";
var b: bool = TRUE;
var lob1: list of byte = {0xaa; 0xbb; 0xcc; 0xdd};
var lob2: list of byte = lob1;

print s == "/rtests/tmp";
print b != FALSE;
print lob1 == lob2;
print p1 != p2;

exp1, exp2 A numeric, boolean, string, list, or struct expression.
operator is one of the following
== Returns TRUE if the first expression evaluates to the same value as

the second expression.
!= Returns TRUE if the first expression does not evaluate to the same

value as the second expression.

Table 2-6�Equality Comparisons for Various Data Types

Type Comparison Method

integers, unsigned integers, bool-
eans, HDL pathnames

Values are compared.

strings The strings are compared character by character.

lists The lists are compared item by item.

structs The structs addresses are compared
44 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

Result

s == "/rtests/tmp" = TRUE
b != FALSE = TRUE
lob1 == lob2 = TRUE
p1 != p2 = TRUE

See Also

� �=== !==� on page 45
� �~ !~� on page 47
� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.9.3 === !==

Purpose

Verilog-style four-state comparison operators

Category

Expression

Syntax

'HDL-pathname' [!== | ===] exp

exp [!== | ===] 'HDL-pathname'

Syntax example:

print 'TOP.reg_a' === 4'b1100;
This is an unapproved IEEE Standards Draft, subject to change.
45

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Compares four-state values (0, 1, x and z) with the identity and non-identity operators (Verilog style opera-
tors). Alternatively, you can use the regular equal and non-equal operators. (A description of the regular
identity and non-identity operators is included in �Parameters� on page 46, for clarity.)

There are three ways to use the identity (===) and non-identity (!==) operators:

� 'HDL-pathname' = = = literal-number-with-x-and-z values
This expression compares a HDL object to a literal number (for example 'top.reg' === 4'b11z0). It
checks that the bits of the HDL object match the literal number, bit by bit (considering all four val-
ues 0, 1, x, z).

� 'HDL-pathname' = = = number-exp
This expression evaluates to TRUE if the HDL object is identical in each bit value to the integer
expression number-exp. Integer expressions in e cannot hold x and z values; thus the whole expres-
sion can be true only if the HDL object has no x or z bits and is otherwise equal to the integer
expression.

� 'HDL-pathname' = = = 'second-HDL-pathname'
This expression evaluates to TRUE if the two HDL objects are identical in all their bits (considering
all four values 0, 1, x, z).

Example 1

As in Verilog, if the radix is not binary, the z and x values in a literal number are interpreted as more than one
bit wide and are left-extended when they are the left-most literal. The width they assume depends on the
radix. For example, in hexadecimal radix, each literal z counts as four z bits.

Thus the value assigned in the following statement is 20'bxxxx_xxxx_zzzz_0000_0001.

'x.signal[19:0]' = 20'hxz01;

Because z is evaluated as 1 and x as 0 in ordinary expressions, the value printed by the following statement
is 0000_0000_1111_0000_0001.

print 'x.signal';

HDL-pathname The full path name of an HDL object, optionally including expressions and
composite data. See �'HDL-pathname'� on page 838 for more information.

=== Determines identity, as in Verilog. Returns TRUE if the left and right operands
have identical values, considering also the x and z values.

!== Determines non-identity, as in Verilog. TRUE if the left and right operands dif-
fer in at least 1 bit, considering also the x and z values.

== Returns TRUE if after translating all x values to 0 and all z values to 1, the left
and right operands are equal.

!= Returns TRUE if after translating all x values to 0 and all z values to 1, the left
and right operands are non-equal.

exp Either a literal with four-state values, a numeric expression, or another HDL
pathname.
46 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Because x is evaluated as 1 and other values as 0 in expressions with @x, the value printed by the following
statement is 1111_1111_0000_0000_0000.

print 'x.signal@x';

Because z is evaluated as 1 and other values as 0 in expressions with @z, the value printed by the following
statement is 0000_0000_1111_0000_0000.

print 'x.signal@z';

Example 2

In the following example, both comparisons evaluate to TRUE.

'TOP.reg_a' = 4'b1100;
wait cycle;
print 'TOP.reg_a' === 4'b1100;
print 'TOP.reg_a' === 0xC;

Example 3

This example shows how to test a single bit to determine its current state.

case {
'TOP.write_en' === 1'b0: {out("write_en is 0");};
'TOP.write_en' === 1'b1: {out("write_en is 1");};
'TOP.write_en' === 1'bx: {out("write_en is x");};
'TOP.write_en' === 1'bz: {out("write_en is z");};

};

See Also

� �'HDL-pathname'� on page 838
� �Scalar Types� on page 75

2.9.4 ~ !~

Purpose

String matching

Category

Expression

Syntax

�string� operator �pattern-string�

Syntax example:

print s ~ "blue*";
print s !~ "/^Bl.*d$/";
This is an unapproved IEEE Standards Draft, subject to change.
47

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Matches a string against a pattern. There are two styles of string matching: native e style, which is the
default, and AWK-style.

After a match using either of the two styles, a local pseudo-variable $0 holds the whole matched string, and
the pseudo-variables $1, $2,...$27 hold the sub strings matched. The pseudo-variables are set only by the ~
operator and are local to the function that does the string match. If the ~ operator produces fewer than 28
substrings, then the unneeded variables are left empty.

Example 1

The first two patterns use e style; the next two use AWK.

m() is {
var s: string = "BlueBird";

print s ~ "Blue*";
print s ~ "blue*";
print s ~ "/^Bl.*d$/";
print s ~ "/^bl.*d$/";

};

Result

s ~ "Blue*" = TRUE
s ~ "blue*" = TRUE
s ~ "/^Bl.*d$/" = TRUE
s ~ "/^bl.*d$/" = FALSE

Example 2

The first pattern uses e style; the next uses AWK.

m() is {
var s: string = "BlueBird";

print s !~ "blue*";
print s !~ "/^Bl.*d$/";

};

Result

s !~ "blue*" = FALSE

string A legal e string.
operator is one of the following:
~ Returns TRUE if the pattern string can be matched to the whole string.
!~ Returns TRUE if the pattern string cannot be matched to the whole string.
pattern-string Either an AWK-style regular expression or a native e regular expression. If the

pattern string starts and ends with slashes, then everything inside the slashes is
treated as an AWK-style regular expression. See �String Matching� on page 51
for more information.
48 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
s !~ "/^Bl.*d$/" = FALSE

See Also

� �The string Type� on page 86

2.9.5 in

Purpose

Check for value in a list or specify a range for a constraint.

Category

Expression

Syntax

exp1 in exp2

Syntax example:

keep x in [1..5];
check that x in {1;2;3;4;5};

Parameters

Description

For a check evaluates TRUE if the first expression is included or contained in the second expression. For a
constraint, designates the range for the first expression.

Example 1

This example checks to make sure that a variable is generated correctly by confirming that its value is in a
list of values.

extend sys {
x: int (bits: 64);
keep x in [1..5];

exp1 When the second expression is a range list, in a keep constraint, for example, then the
type of the first expression has to be of a type comparable to the type of the range list.
For a range list, square brackets are used.
When the second expression is a list, in a check, for example, then the type of the first
expression can be one of the following:

� A type that is comparable to the element type of the second expression.
� A list of type that is comparable to the element type of the second expression.

For a list, curly braces are used.
exp2 Either a list or a range list. A range list is a list of constants or expressions that evaluate

to constants. Expressions that use variables or struct fields cannot appear in range lists.
This is an unapproved IEEE Standards Draft, subject to change.
49

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
run() is also {
check that x in {1;2;3;4;5};

};
};

Example 2

This example illustrates the use of in with square brackets, [], to designate a range of values for a constraint.

type pm_type: [PC_A, PC_B, PC_C, MM_A, MM_B];
extend sys {

pm: pm_type;
keep pm in [PC_A, PC_B, PC_C];

};

Example 3

When two lists are compared and the first one has more than one repetition of the same value (for example,
in {1;2;1}, 1 is repeated twice), then at least the same number of repetitions has to exist in the second list for
the operator to succeed.

In this example, the list y is constrained to have 0 or 2 elements. The first check makes sure that y contains 0
to 2 instances of the numbers 0, 1, 2, and 3. An error is issued for the second check.

<'
extend sys {

y: list of uint (bits: 2);
keep y.size() in {0;2};

run() is also {
check that y in {0;0;1;1;2;2;3;3};
check that {1;1;2} in {1;2;3;4};

};
};
'>

Result

*** Error: Dut error at time 0
Checked at line 12 in basics66.e (sys.run):
check that {1;1;2} in {1;2;3;4}

Example 4

This example illustrates that the order of the list items does not influence the result of the comparison. No
error is issued.

<'
extend sys {

run() is also {
check that {1;2;3} in {3;2;1};
check that {1;1;2} in {1;2;1;2};

};
};
'>
50 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �List Types� on page 84
� �[range,...]� on page 64

2.10 String Matching

There are two styles of string matching: native e style, which is the default, and an AWK-like style. If the
pattern starts and ends with slashes, then everything inside the slashes is treated as an AWK-style regular
expression.

The following sections describe these two styles of string matching:

� �Native e Elite String Matching� on page 51
� �AWK-Style String Matching� on page 52

See Also

� �List Types� on page 84
� �Arithmetic Routines� on page 721

2.10.1 Native e Elite String Matching

Native e string matching is attempted on all patterns that are not enclosed in slashes. e style is similar to
UNIX filename matching.

Native string matching uses the meta-characters shown in the following table.

Native style string matching always matches the full string to the pattern. For example: r does not match
Bluebird, but *r* does.

A successful match results in assigning the local pseudo-variables $1 to $27 with the substrings correspond-
ing to the non-blank meta-characters present in the pattern.

Native style string matching is case-insensitive.

Example

m() is {
var x := "pp kkk";
print x ~ "* *";
print $1; print $2;
print x ~ "...";
print $1;

Table 2-7�Meta-Characters in Native String Matching

Character String Meaning

" " (blank) Any sequence of white space (blanks and tabs)

* Any sequence of non-white space characters, possibly empty
(""). "a*" matches "a", "ab", and "abc", but not "ab c".

... Any sequence of characters
This is an unapproved IEEE Standards Draft, subject to change.
51

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

Result

x ~ "* *" = TRUE
$1 = "pp"
$2 = "kkk"
x ~ "..." = TRUE
$1 = "pp kkk"

See Also

� �AWK-Style String Matching� on page 52
� �The string Type� on page 86
� �String Routines� on page 736

2.10.2 AWK-Style String Matching

In an AWK-style string matching you can use the standard AWK regular expression notation to write com-
plex patterns. This notation uses the �/.../� format for the pattern to specify AWK-style regular expression
syntax.

AWK style supports special characters such as . * [\ ^ $ +? <>, when those characters are used in the same
ways as in UNIX regular expressions (regexp).

The + and ? characters can be used in the same ways as in UNIX extended regular expression (egrep).

In AWK-style regular expressions, you can also use the following Perl shorthand notations, each represent-
ing a single character.

After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthe-
sized pieces of the match. $0 stores the whole matched piece of the string.

Example 1

m() is {
var x := "pp--kkk";
print (x ~ "/--/");
print (x ~ "/^pp--kkk$/");

Table 2-8�Perl-Style Regular Expressions Supported

Shorthand Notation Meaning

` A shortest match operator: ` (back tick).

\d Digit: [0-9]

\D Non-digit

\s Any white-space single char

\S Any non-white-space single

\w Word char: [a-zA-Z0-9_]

\W Non-word char
52 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};

Result

x ~ "/--/" = TRUE
x ~ "/^pp--kkk$/" = TRUE

Example 2

AWK-style matching is longest match. A shortest match operator is also supported: ` (back tick). The pat-
tern �/x.`y/� matches the minimal such substring.

m() is {
var s := "x x y y";
print s ~ "/x(.‘)y/"; // Prints TRUE
print $1; // Prints " x " Matches x x y
print s ~ "/x(.*)y/"; // Prints TRUE
print $1; // Prints " x y "Matches x x y y

};

Result

s ~ "/x(.‘)y/" = TRUE
$1 = " x "
s ~ "/x(.*)y/" = TRUE
$1 = " x y "

Example 3

After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthe-
sized pieces of the match. For instance:

m() is {
var x := "pp--kkk";
if x ~ "/^(p*)--(k*)$/" then {print $1, $2;};

};

Result

$1 = "pp"
$2 = "kkk"

See Also

� �Native e Elite String Matching� on page 51
� �The string Type� on page 86
� �String Routines� on page 736

2.11 Extraction and Concatenation Operators

The following sections describe the e extraction and concatenation operators:

�[]� on page 54 Extracts or sets a single item from a list.
�[:]� on page 55 Extracts or sets consecutive bits or slices of a scalar, a list of bits, or

a list of bytes.
This is an unapproved IEEE Standards Draft, subject to change.
53

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.11.1 []

Purpose

List index operator

Category

Expression

Syntax

list-exp[exp]

Syntax example:

ints[size] = 8;

Parameters

Description

Extracts or sets a single item from a list.

Notes

� Indexing is only allowed for lists. To get a single bit from a scalar, use bit extraction. See �[:]� on
page 55.

� Checking list boundaries to see if the specified element exists is done only in interpretive mode.

Example

<'
extend sys {

packets[7]: list of packet;
ints[15]: list of int;
size: int [0..15];
m() is {

print packets[5];
ints[size] = 8;
print ints[size];

};
};
'>

�[..]� on page 58 List slicing operator
�[range,...]� on page 64 Range list operator
�{... ; ...}� on page 60 List concatenation
�%{... , ...}� on page 62 Bit concatenation

list-exp An expression that returns a list.
exp A numeric expression.
54 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

packets[5] = packet-@0: packet
-- @basics69

0 protocol: atm
1 len: 1
2 data: (1 items)
 ints[size] = 8

See Also

� �List Types� on page 84
� Chapter 19, �List Pseudo-Methods Library�

2.11.2 [:]

Purpose

Select bits or bit slices of an expression

Category

Expression

Syntax

exp[[high-exp]:[low-exp][:slice]]

Syntax example:

print u[15:0] using hex;

Parameters

Description

Extracts or sets consecutive bits or slices of a scalar, a list of bits, or a list of bytes.

When used on the left-hand-side of an assignment operator, the bit extract operator sets the specified bits of
a scalar, a list of bits, or a list of bytes to the value on the right-hand-side (RHS) of the operator. The RHS
value is chopped or zero/sign extended, if needed.

When used in any context except the left-hand-side of an assignment operator, the bit extract operator
extracts the specified bits of a scalar, a list of bits, or a list of bytes.

exp A numeric expression, an HDL pathname, or an expression returning a list of bit or a
list of byte.

high-exp A non-negative numeric expression. The high expression has to be greater than or
equal to the low expression. To extract a single slice, use the same expression for both
the high expression and the low expression.

low-exp A non-negative numeric expression, less than or equal to the high expression.
slice A numeric expression. The default is bit.
This is an unapproved IEEE Standards Draft, subject to change.
55

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.11.2.1 Slice and Size of the Result

The slice parameter affects the size of the slice that is set or extracted. With the default slice (bit), the bit
extract operator always operates on a 1-bit slice of the expression. When extracting from a scalar expression,
by default the bit extract operator returns an expression that is the same type and size as the scalar expres-
sion. When extracting from a list of bit or a list of byte, by default the result is a positive unbounded integer.

By specifying a different slice (byte, int, or uint), you can cause the bit operator to operate on a larger num-
ber of bits.

For example, the first print statement displays the lower two bytes of big_i, 4096. The second print state-
ment displays the higher 32-bit slice of big_i, -61440.

var big_i: int (bits: 64) = 0xffff1000ffff1000;
print big_i[1:0:byte];
print big_i[1:1:int];

Result

big_i[1:0:byte] = 0x0000000000001000
big_i[1:1:int] = 0xffffffffffff1000

2.11.2.2 Accessing Nonexistent Bits

If the expression is a numeric expression or an HDL pathname, any reference to a non-existent bit is an error.
However, for unbounded integers, all bits logically exist and will be 0 for positive numbers, 1 for negative
numbers. It is an error to extract nonexisting bits from list items. When setting non-existing bits in list items,
new zero items are added.

Notes

� The [high : low] order of the bit extract operator is the opposite of [low.. high] order of the list
extract operator.

� The bit extract operator has a special behavior in packing. Packing the result of a bit extraction uses
the exact size in bits (high - low + 1). The size of this pack expression is (5 - 3 + 1) + (i - 3 + 1).
pack(packing.low, A[5:3], B[i:3]);

Example 1

This is a simple example showing how to extract and set the bits in an unsigned integer.

var x : uint = 0x8000_0a60;
print x[11:4];
print x[31:31];
x[3:0] = 0x7;
print x;
x[2:1:byte] = 0x1234;
print x;

Result

x[11:4] = 0xa6
x[31:31] = 0x1
x = 0x80000a67
x = 0x80123467
56 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

This example shows how to extract and set the bits in a list of bit.

var y : list of bit = {0;1;0;1;1;0;1;0;0;0;0};
print y using bin;
print y[6:1] using bin;
y[6:1] = 0xff;
print y using bin;
var x : uint = y[:];
print x using hex;

Result

y = (11 items, bin):
 0 0 0 0 1 0 1 1 0 1 0 .0

y[6:1] = 0b101101
y = (11 items, bin):
 0 0 0 0 1 1 1 1 1 1 0 .0

x = 0x7e

Example 3

This example shows how to extract and set the bits in a list of byte.

var z : list of byte = {0x12;0x34;0x56};
print z;
print z[1:0];
print z[1:0:byte];
z[2:2:byte] = 0x48;
print z;

Result

z = (3 items, hex):
 56 34 12 .0

z[1:0] = 0x2
z[1:0:byte] = 0x3412
z = (3 items, hex):
 48 34 12 .0

Example 4

This example shows how to use variables in the bit extract operator.

var x : uint = 0x80065000;
var i : uint = 16;
var j : uint = 4;
print x[i+j:i-j] using hex;

Result

x[i+j:i-j] = 0x65
This is an unapproved IEEE Standards Draft, subject to change.
57

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 5

This example shows how to use variables in the bit extract operator. �r� will be an unbounded integer con-
taining 32 bits, extracted starting from byte 1 of the list of bit.

var lob : list of bit;
gen lob keeping {.size() < 128};
print lob;
var i : uint = 1;
var r:= lob[i+3:i:byte];
print r using bin;

Result

lob = (40 items, hex):
1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 .0

1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 .24

r = 0b0000000010100101100111001011100101111011

See Also

� �Bit Slice Operator and Packing� on page 514
� �'HDL-pathname'� on page 838
� �List Types� on page 84
� �Scalar Types� on page 75

2.11.3 [..]

Purpose

List slicing operator

Category

Expression

Syntax

exp[[low-exp]..[high-exp]]

Syntax example:

size: int [0..14];
58 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Accesses the specified list items and returns a list of the same type as the expression. If the expression is a
list of bit it returns a list of bit. If the expression is a scalar, it is implicitly converted to a list of bit.

The rules for the list slicing operator are as follows:

� A list slice of the form a[m..n] requires that n>=m>=0 and n<a.size(). The size of the slice in this
case is always n-m+1.

� A list slice of the form a[m..] requires that m>=0 and m<=a.size(). The size of the slice in this case is
always a.size()-m.

� When assigning to a slice the size of the rhs must be the same as the size of the slice, specfically
when the slice is of form a[m..] and m==a.size() then the rhs must be an empty list.

These rules are also true for the case of list slicing a numeric value, for example

var i:int;
print i[m..n];
print i[m..];

This operator interprets the numeric value as a list of bits and returns the slice of that list. In the above exam-
ple, the first print is legal if n>=m>=0 and n<32 and the second is legal if m>=0 and m<=32.

Notes

� This operator is not supported for unbounded integers.
� The only case where a list slice operation returns an empty list is in the case of a[m..] where

m==a.size().

Example 1

This example shows the use of the list slicing operator on a list of integers and a list of structs.

<'
struct packet {

protocol:[atm, eth];
len : int [0..10];
data[len]: list of byte;

};
extend sys {

packets[7]: list of packet;
ints[15]: list of int;
size: int [0..15];
m() is {

print packets[5..];
print ints[0..size];

};
};

exp An expression returning a list or a scalar.
low-exp An expression evaluating to a positive integer. The default is 0.
high-exp An expression evaluating to a positive integer. The default is the expression size on

bits - 1.
This is an unapproved IEEE Standards Draft, subject to change.
59

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
'>

Result

packets[5..] =
item type protocol len data

0. packet atm 1 (1 items)
1. packet eth 5 (5 items)
 ints[0..size] =
0. 2030699911
1. -419930323
2. -1597130501
3. -494877665
4. -17370926
5. -1450077749
6. 1428017017
7. 2036356410
8. -1952412155
9. -259249691

Example 2

This example shows the use of the list slicing operator on a scalar expression and an HDL pathname.

<'
extend sys {

m() is {
var u : uint = 0xffffaaaa;
print u[..15];
'top.a' = 0xbbbbcccc;
print 'top.a'[..15];

};
};
'>

Result

u[..15] = (16 items, hex):
a a a a .0

'top.a'[..15] = (16 items, hex):
c c c c .0

See Also

� �'HDL-pathname'� on page 838
� �List Types� on page 84
� �Scalar Types� on page 75

2.11.4 {... ; ...}

Purpose

List concatenation
60 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

{exp; ...}

Syntax example:

var x: list of uint = {1;2;3};

Category

Expression

Parameters

Description

Returns a list built out of one or more elements or other lists. The result type is determined by the following
rules:

� The type is derived from the context. In the following example, the result type is a list of uint:
var x: list of uint = {1;2;3};

� The type is derived from the first element type of the list. In the following example, the result type is
a list of int 50 bits wide:

var y := {50'1; 2; 3};

Example

<'
type color:[red, orange, yellow, green, blue, purple];
extend sys {

m() is {
var los: list of string = {"abc";"def"};
var loc1: list of color = {red;green;blue};
var loc2:={color'purple;loc1};
print los;
print loc1;
print loc2;

};
};
'>

Result

los =
0. "abc"
1. "def"

loc1 =
0. red
1. green
2. blue

loc2 =
0. purple
1. red
2. green

exp Any legal e expression, including a list. All expressions need to be compati-
ble with the result type.
This is an unapproved IEEE Standards Draft, subject to change.
61

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
3. blue

See Also

� �List Types� on page 84

2.11.5 %{... , ...}

Purpose

Bit concatenation operator

Category

Expression

Syntax

%{exp1, exp2, ...}

Syntax example:

num1 = %{num2, num3};
%{num2, num3} = num1;

Parameters

Description

Creates a list of bits from two or more expressions, or creates two or more smaller lists of bits from a given
expression.

You can use the bit concatenation operator %{} for packing or unpacking operations that require the pack-
ing.high order.

� value-exp = %{exp1, exp2,...} is equivalent to value-exp = pack(packing.high, exp1, exp2, ...).

� %{exp1, exp2,...} = value-exp is equivalent to unpack(packing.high, value-exp, exp1, exp2, ...).

Bit concatenations are untyped expressions. In many cases, the required type can be deduced from the con-
text of the expression. See �Untyped Expressions� on page 87 for more information.

Example

This example shows several uses of the bit concatenation operator.

extend sys {
post_generate() is also {

var num1 : uint (bits : 32);
var num2 : uint (bits : 16);
var num3 : uint (bits : 16);

exp1, exp2 Expressions that receive lists of bits (when on the left-hand side of
an assignment operator), or supply lists of bits (when on the right-
hand side of an assignment operator).
62 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var bilist : list of bit;
var bylist : list of byte;

num2 = 0x1234;
num3 = 0xabcd;
num1 = %{num2, num3};
print num1;

num1 = 0x98765432;
%{num2, num3} = num1;
print num2, num3;
print %{num2, num3};

bilist = %{num2, num3};
print bilist;
bylist = %{num2, num3};
print bylist;

};
};

Result

num1 = 0x1234abcd
num2 = 0x9876
num3 = 0x5432
% {num2, num3} = (32 items, hex):

9 8 7 6 5 4 3 2 .0

bilist = (32 items, hex):
9 8 7 6 5 4 3 2 .0

bylist = (4 items, hex):
98 76 54 32 .0

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �swap()� on page 524
� �do_pack()� on page 526
� �do_unpack()� on page 529

2.12 Scalar Modifiers

You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type.
The following sections describe the scalar modifiers:

� �[range,...]� on page 64
� �(bits | bytes : width-exp)� on page 65

See Also

� �Scalar Types� on page 75
� �type sized scalar� on page 101
� �type scalar subtype� on page 100
This is an unapproved IEEE Standards Draft, subject to change.
63

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2.12.1 [range,...]

Purpose

Range modifier

Category

Expression

Syntax

[range, ...]

Syntax example:

u: uint[5..7, 15];

Parameter

Description

Creates a scalar subtype by restricting the range of valid values.

Example 1

The following example shows how to limit the values of an enumerated type and a numeric type.

<'
type color:[red, orange, yellow, green, blue, purple];
extend sys {

bright: color[red..yellow];
u: uint[5..7, 15];

};
'>

Example 2

The following example shows how to specify a list of possible values in a keep constraint.

<'
type color:[red, orange, yellow, green, blue, purple];
extend sys {

bright: color;
keep bright in [red, orange, yellow];

};
'>

range Either a constant expression, or a range of constant expressions in the
form

low-value..high-value

If the scalar type is an enumerated type, it is ordered by the value associ-
ated with the integer value of each type item.
64 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Scalar Subtypes� on page 76
� �type scalar subtype� on page 100

2.12.2 (bits | bytes : width-exp)

Purpose

Define a sized scalar

Category

Expression

Syntax

(bits|bytes: width-exp)

Syntax example:

type word :uint(bits:16);
type address :uint(bytes:2);

Parameter

Description

Defines a bit width for a scalar type. The actual bit width is exp * 1 for bits and exp * 8 for bytes. In the syn-
tax example shown above, both types �word� and �address� have a bit width of 16.

Example

type word :uint(bits:16);
type address :uint(bytes:2);

See Also

� �Scalar Types� on page 75
� �type sized scalar� on page 101

2.13 Parentheses

You can use parentheses freely to group terms in expressions, to improve the readability of the code. Paren-
theses are used in this way in some examples in this manual, although they are not syntactically required.

Parentheses are required in a few places in e code, such as at the end of the method or routine name in all
method definitions, method calls, or routine calls. Required parentheses are shown in boldface in the syntax
listings in this manual.

width-exp A positive constant expression. The valid range of values for sized scalars is limited
to the range 1 to 2n - 1, where n is the number of bits or bytes.
This is an unapproved IEEE Standards Draft, subject to change.
65

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The following sections describe the contexts in which the parentheses are required to invoke a method,
pseudo-method, or routine:

� �list.method()� on page 66
� �Calling Predefined Routines: routine()� on page 793
� �Invoking Methods� on page 474

2.14 list.method()

Purpose

Execute list pseudo-method

Category

Expression

Syntax

list-exp. list-method([param,]...)[.list-method([param,]...). ...]

Syntax example:

print me.my_list.is_empty();

Parameters

Description

Executes a list pseudo-method on the specified list expression, item by item. When an item is evaluated, it
stands for the item and index stands for its index in the list.

When a parameter is passed, that expression is evaluated for each item in the list.

Example 1

This example shows how to call two simple list pseudo-methods. The is_empty() list method returns a bool-
ean, while size() returns an int.

<'
extend sys {

my_list: list of int;

post_generate() is also {
print me.my_list.is_empty();
check that (me.my_list.size() > 5)

};
};
'>

list-exp An expression that returns a list.
list-method One of the list pseudo-methods described in Chapter 19, �List Pseudo-Methods

Library�
66 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

me.my_list.is_empty() = FALSE

Example 2

List method calls can be nested within any expression as long as the returned type matches the context. The
following example filters the list my_packets to include only the ethernet kind, sorts the result in ascending
order, and prints.

<'
struct packet {

kind: [ethernet, atm, other];
size: uint;

};

extend sys {
packets[10]: list of packet;

post_generate() is also {
print packets.all(.kind==ethernet).sort(.size);

};
};
'>

Result

packets.all(.kind==ethernet).sort(.size) =
item type kind size

0. packet ethernet 895996206
1. packet ethernet 960947360
2. packet ethernet 3889995846

See Also

� Chapter 19, �List Pseudo-Methods Library�
� �Implicit Variables� on page 24

2.15 Special-Purpose Operators

The following special purpose operators are supported:

2.15.1 is [not] a

Purpose

Identify the subtype of a struct instance

�is [not] a� on page 67 Identify the subtype of a struct instance
�new� on page 69 Allocate a new struct
�.� on page 71 Refer to fields in structs
�'� on page 73 Used in names of e entities
�? :� on page 73 Conditional operator
This is an unapproved IEEE Standards Draft, subject to change.
67

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Boolean expression

Syntax

struct-exp is a subtype [(name)]

struct-exp is not a subtype

Syntax example:

if me is a long packet (l) {
print l;

};
if me is not a long packet {

print kind;
};

Parameters

Description

Identifies whether a struct instance is a particular subtype or not at run time.

If a name is specified, then a local temporary variable of that name is created in the scope of the action con-
taining the is a expression. This local variable contains the result of struct-exp.as_a(type) when the is a
expression returns TRUE.

Notes

� A compile time error results if there is no chance that the struct instance is of the specified type.
� Unlike other constructs with optional name variables, the implicit it variable is not created when the

optional name is not used in the is a expression.
� The name parameter cannot be used with is not a expressions.

Example

<'
type pack_kind :[long, short];
struct packet {

kind: pack_kind;
when long packet {

a: int;
};
check_my_type() is {

if me is a long packet (l) {
print l;

};
if me is not a long packet {

print kind;

struct-exp An expression that returns a struct.
subtype A subtype of the specified struct type.
name The name of the local variable you want to create. This parameter cannot be used

with is not a expressions.
68 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

};

extend sys {
p:packet;

};
'>

Result

l = packet-@0: packet
-- @expressions67
0 kind: long
1 long'a: -1786485835

See Also

� �as_a()� on page 104

2.15.2 new

Purpose

Allocate a new initialized struct

Category

Expression

Syntax

new [struct-type [[(name)] with {action;...}]]

Syntax example:

var q : packet = new good large packet;

Parameters

Description

Creates a new struct:

1) Allocates space for the struct.
2) Assigns default values to struct fields.
3) Invokes the init() method for the struct, which by default initializes all fields of scalar type,

including enumerated scalar type, to zero. The initial value of a struct or list is NULL, unless
the list is a sized list of scalars, in which case it is initialized to the proper size with each item
set to the default value.

struct-type Either a struct type or a struct subtype.
name An optional name, valid within the action block, for the new struct. If no name is

specified, you can use the implicit variable it to refer to the new struct.
action A list of one or more actions.
This is an unapproved IEEE Standards Draft, subject to change.
69

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
4) Invokes the run() method for the struct, unless the new expression is in a construct that is exe-
cuted before the run phase. For example, if you use new in an extension to sys.init(), then the
run() method is not invoked.

5) Executes the action-block, if one is specified.

If no subtype is specified, the type is derived from the context. For example, if the new struct is assigned to
a variable of type packet, the new struct will be of type packet.

If the optional with clause is used, you can refer to the newly created struct either with the implicit variable
it, or with an optional name.

NOTE� The new struct is a shallow struct. The fields of the struct that are of type struct are not
allocated.

Example

<'
struct packet {

good : bool;
size : [small, medium, large];

length : int;
};
extend sys {

post_generate() is also {
var p : packet = new;
print p;
var q : packet = new good large packet;
print q;
var x := new packet (p) with {

p.length = 5;
print p;

};
};

};
'>

Result

p = packet-@0: packet
-- @expressions69
0 good: FALSE
1 size: small
2 length: 0

q = good large packet-@1: good large packet
-- @expressions69
0 good: TRUE
1 size: large
2 length: 0

p = packet-@2: packet
-- @expressions69
0 good: FALSE
1 size: small
2 length: 5

See Also

� �The init() Method of sys� on page 645
� �The run() Method of sys� on page 646
70 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �Struct Subtypes� on page 80

2.15.3 .

Purpose

Refer to fields in structs

Category

Expression

Syntax

[[struct-exp].] field-name

Syntax example:

keep soft port.sender.cell.u == 0xff;

Parameters

Description

Refers to a field in the specified struct. If the struct expression is missing, but the period exists, the implicit
variable it is assumed. If both the struct expression and the period (.) are missing, the field name is resolved
according to the name resolution rules.

Notes

� When the struct expression is a list of structs, the expression cannot appear on the left-hand side of
an assignment operator.

� When the field name is a list item, the expression returns a concatenation of the lists in the field.

Example 1

The following example shows the use of the �.� to identify the fields u and kind in the keep constraints:

<'
struct switch {

ctrl: ctrl_stub;
port: port_stub;

keep soft port.sender.cell.u == 0xff;
keep ctrl.init_command.kind == RD;

};
struct ctrl_stub {

init_command: ctrl_cmd;
};
struct simplex {

kind: [TX, RX];
cell: cell;

struct-exp An expression that returns a struct.
field-name The name of the scalar field or list field to reference.
This is an unapproved IEEE Standards Draft, subject to change.
71

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
struct port_stub {

sender: TX simplex;
listener: RX simplex;

};
struct cell {

u: uint;
};
struct ctrl_cmd {

kind: [RD, WR];
addr: int;

};
extend sys {

switch : switch;
};
'>

Example 2

This example shows the effect of using the �.� to access the fields in a list (switch.port) and to access a field
that is a list (switch.port.data):

<'
struct switch {

port: list of port_stub;

keep soft port.size() == 4;
};

struct port_stub {
data[5]: list of byte;

};

extend sys {
switch : switch;

post_generate() is also {
print switch.port;
print switch.port.data;

};
};
'>

Result

switch.port =
item type data

0. port_stub (5 items)
1. port_stub (5 items)
2. port_stub (5 items)
3. port_stub (5 items)
 switch.port.data = (20 items, dec):
 185 24 137 186 202 3 186 107 108 119 84 212 .0
 129 224 56 145 3 252 61 58 .12

See Also

� �Struct Hierarchy and Name Resolution� on page 19
72 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
2.15.4 '

Apostrophes

The apostrophe (') is an important syntax element used in multiple ways in e source code. The actual context
of where it is used in the syntax defines its purpose. A single apostrophe is used in the following places:

� When accessing HDL objects (for example: 'top.a')
� When defining the name of a syntactic construct in a macro definition (for example: show_time'com-

mand)
� When referring to struct subtypes (for example: b'dest Ethernet packet)
� When referring to an enumerated value not in context of an enumerated variable (for example:

color'green)
� In the begin-code marker <' and in the end-code marker '>

See Also

� Chapter 13, �Macros�
� �Struct Subtypes� on page 80
� �Enumerated Type Values� on page 23
� �Code Segments� on page 4

2.15.5 ? :

Purpose

Conditional operator

Category

Expression

Syntax

bool-exp ? exp1 : exp2

Syntax example:

z = (flag ? 7 : 15);

Parameters

Description

Evaluates one of two possible expressions, depending on whether a boolean expression evaluates to TRUE
or FALSE. If the boolean expression is TRUE, then the first expression is evaluated. If it is FALSE, then the
second expression is evaluated.

Example

<'

bool-exp A legal e expression that evaluates to TRUE or FALSE.
exp1, exp2 A legal e expression.
This is an unapproved IEEE Standards Draft, subject to change.
73

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
extend sys {
m() is {

var z: int;
var flag: bool;

z = (flag ? 7 : 15);
print flag, z;

};
};
'>

Result

flag = FALSE
z = 15

See Also

� �Conditional Actions� on page 533
74 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3 Data Types

The e language has a number of predefined data types including the integer and boolean scalar types com-
mon to most programming languages. In addition, you can create new scalar data types (enumerated types)
that are appropriate for programming, modeling hardware, and interfacing with hardware simulators. The
e language also provides a powerful mechanism for defining object-oriented hierarchical data structures
(structs) and ordered collections of elements of the same type (lists).

This chapter contains the following topics:

� �Overview of e Data Types� on page 75
� �Defining and Extending Scalar Types� on page 98
� �Type Conversion Between Scalars and Strings� on page 104

See Also

� Chapter 4, �Structs, Fields, and Subtypes�
� Chapter 2, �e Basics�

3.1 Overview of e Data Types

The following sections provide a basic explanation of e data types:

� �e Data Types� on page 75
� �Memory Requirements for Data Types� on page 87
� �Untyped Expressions� on page 87
� �Assignment Rules� on page 89
� �Precision Rules for Numeric Operations� on page 93
� �Automatic Type Casting� on page 96

3.1.1 e Data Types

Most e expressions have an explicit data type. These data types are described in the following sections:

� �Scalar Types� on page 75
� �Scalar Subtypes� on page 76
� �Enumerated Scalar Types� on page 77
� �Struct Types� on page 80
� �Struct Subtypes� on page 80
� �List Types� on page 84
� �The string Type� on page 86
� �The external_pointer Type� on page 86

Certain expressions, such as HDL objects, have no explicit data type. See �Untyped Expressions� on
page 87 for information on how these expressions are handled.

3.1.1.1 Scalar Types

Scalar types in e are one of the following:

� Numeric
� Boolean
This is an unapproved IEEE Standards Draft, subject to change.
75

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� Enumerated

 Table 3-1, �Predefined Scalar Types�, on page 76 shows the predefined numeric and boolean types. See the
notes below the table for important information about these predefined types.

NOTE� Both signed and unsigned integers can be of any size and, thus, of any range. See �Scalar
Subtypes� on page 76 for information on how to specify the size and range of a scalar field or
variable explicitly.

Result

� Predefined constants, described in Chapter 2, �e Basics�
� Constraint boolean expressions, described in Chapter 2, �e Basics�

3.1.1.2 Scalar Subtypes

You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type.
You can also specify a name for the scalar subtype if you plan to use it repeatedly in your program.
Unbounded integers are a predefined scalar subtype.

The following sections describe scalar modifiers, named scalar subtypes, and unbounded integers in more
detail.

3.1.1.2.1 Scalar Modifiers

There are two types of scalar modifiers that you can use together or separately to modify predefined scalar
types:

1) Range modifiers
2) Width modifiers

Range modifiers define the range of values that are valid. For example, the range modifier in the expression
below restricts valid values to those between zero and 100 inclusive.

int [0..100]

Table 3-1�Predefined Scalar Types

Type Name Function Default Size for
Packing Default Value

int Represents numeric data, both negative
and non-negative integers.

32 bits 0

uint Represents unsigned numeric data, non-
negative integers only.

32 bits 0

bit An unsigned integer in the range 0�1. 1 bit 0

byte An unsigned integer in the range 0�255. 8 bits 0

time An integer in the range 0�263-1. 64 bits 0

bool Represents truth (logical) values,
TRUE(1) and FALSE (0).

1 bit FALSE (0)
76 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Width modifiers define the width in bits or bytes. The width modifiers in the expressions below restrict the
bit width to 8.

int (bits: 8)
int (bytes: 1)

You can use width and range modifiers in combination.

int [0..100] (bits: 7)

3.1.1.2.2 Named Scalar Subtypes

When you use a scalar modifier to limit the range or bit width of a scalar type, you can also specify a name.

Named scalar subtypes are useful in a context where, for example, you need to declare a counter variable
like the variable �count� several places in the program.

var count : int [0..100] (bits:7);

By creating a named scalar type, you can use the type name when introducing new variables with this type.

type int_count : int [0..99] (bits:7);
var count : int_count;

See �type enumerated scalar� on page 98 for more information on named scalar subtypes.

3.1.1.2.3 Unbounded Integers

Unbounded integers represent arbitrarily large positive or negative numbers. Unbounded integers are speci-
fied as:

int (bits: *)

You can use an unbounded integer variable when you do not know the exact size of the data. You can use
unbounded integers in expressions just as you use signed or unsigned integers.

Notes

� Fields or variables declared as unbounded integers cannot be generated, packed, or unpacked.
� Unbounded unsigned integers are not allowed, so a declaration of a type such as �uint (bits:*)� gen-

erates a compile-time error.

See Also

� �type scalar subtype� on page 100
� �type sized scalar� on page 101
� �extend type� on page 103

3.1.1.3 Enumerated Scalar Types

You can define the valid values for a variable or field as a list of symbolic constants. For example, the fol-
lowing declaration defines the variable �kind� as having two legal values.

var kind: [immediate, register];
This is an unapproved IEEE Standards Draft, subject to change.
77

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
These symbolic constants have associated unsigned integer values. By default, the first name in the list is
assigned the value zero. Subsequent names are assigned values based upon the maximum value of the previ-
ously defined enumerated items + 1. You can also assign explicit unsigned integer values to the symbolic
constants.

var kind: [immediate = 1, register = 2];

The associated unsigned integer value of a symbolic constant in an enumerated type can be obtained using
the .as_a() type casting operator. Similarly, an unsigned integer value that is within the range of the values of
the symbolic constants can be cast as the corresponding symbolic constant.

Casting an unsigned integer to a symbolic constant:

type signal_number: [signal_0, signal_1, signal_2, signal_3];
struct signal {

cast_1() is {
var temp_val: uint = 2;
var signal_name: signal_number = temp_val.as_a(signal_number);
print signal_name;

};
};

Casting a symbolic constant to an unsigned integer:

type signal_number: [signal_0, signal_1, signal_2, signal_3];
struct signal {

cast_2() is {
var temp_enum: signal_number = signal_3;
var signal_value: uint = temp_enum.as_a(uint);
print signal_value;

};
};

You can explicitly assign values to some symbolic constants and allow others to be automatically assigned.
The following declaration assigns the value 3 to �immediate�; the value 4 is assigned to �register� automati-
cally.

var kind: [immediate = 3, register];

You can name an enumerated type to facilitate its reuse throughout your program. For example, the first
statement below defines a new enumerated type named �instr_kind�. The variable �i_kind� has the two legal
values defined by the �instr_kind� type.

type instr_kind: [immediate, register];
var i_kind: instr_kind;

It is sometimes convenient to introduce a named enumerated type as an empty type.

type packet_protocol: [];

Once the protocols that are meaningful in the program are identified you can extend the definition of the
type with a statement like:

extend packet_protocol : [Ethernet, IEEE, foreign];

Enumerated types can be sized.
78 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
type instr_kind: [immediate, register] (bits: 2);

Variables or fields with an enumerated type can also be restricted to a range. This variable declaration
excludes �foreign� from its legal values:

var p :packet_protocol [Ethernet..IEEE];

The default value for an enumerated type is zero, even if zero is not a legal value for that type. For example,
the variable �i_kind� has the value zero until it is explicitly initialized or generated.

type instr_kind: [immediate = 1, register = 2];
var i_kind: instr_kind;

3.1.1.4 Casting of Enumerated Types in Comparisons

Enumerated scalar types, like boolean types, are not automatically converted to or from integers or unsigned
integers in comparison operations (that is, comparisons using <, <=, >, >=, ==, or != operators). This is con-
sistent with the strong typing in e, and helps avoid introduction of bugs if the order of symbolic names in an
enumerated type declaration is changed, for example, while operations which are affected by the order of
those names in the declaration remain unchanged (because they are in a different part of the code and there-
fore go unnoticed, perhaps).

Assume that I is an int, B is a bool, and E is an enumerated type. Since enumerated and boolean types are not
automatically converted to or from integers or unsigned integers, you cannot use syntax such as �if (I) {...}�,
or �if (B==1) {...}�, or �if (E<6) {...}�. In order to perform such comparisons, you must use explicit casting,
or tick notation to specify the type. Examples of correct and incorrect syntax are shown in the sample code
below.

type my_enum: [A, B, C];
struct etypes {

x: my_enum;
my_method() is {

if (A.as_a(int) < B.as_a(int)) then { // Load-time error:
out("A is less than B"); // No such variable 'A'

};

if (A.as_a(int) == B.as_a(int)) then { // Load-time error:
out("A equals B"); // No such variable 'B'

};

if (my_enum'A.as_a(int) < my_enum'B.as_a(int)) then { // No error
out ("A less than B");

};

if (my_enum'A < my_enum'B) then { // Load-time error:
out ("A less than B"); // The type of 'x' is 'my_enum'

}; // while expecting a numeric type

if (x < A) then { // Load-time error:
out("x less than A"); // The type of 'x' is 'my_enum'

}; // while expecting a numeric type

if (x == A) then { // No error
out ("x equals A");
This is an unapproved IEEE Standards Draft, subject to change.
79

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
};

};

The first two if statements above cause load errors because it is possible for A or B or both to be used in
more than one enumerated type declaration, and it is not possible to tell from the context which type they
are, or their values. In the third if statement, the enumerated type is specified using the tick notation, so that
statement is legal. Note that it is still necessary to cast A and B as ints in order to do the comparison, A < B,
otherwise the error in the fourth case, my_enum�A < my_enum�B, occurs.

In the fifth case, x < A, the context of A is not clear at load time, so a loading error occurs. The context of A
is clear in the last case, x == A, however, so this code loads with no problem.

See Also

� �type enumerated scalar� on page 98
� �extend type� on page 103

3.1.1.5 Struct Types

Structs are the basis for constructing compound data structures.

The following statement creates a struct type called �packet� with a field �protocol� of type
�packet_protocol�.

struct packet {
protocol: packet_protocol;

};

You can then use the struct type �packet� in any context where a type is required. For example in this state-
ment, �packet� defines the type of a field in another struct.

struct port {
data_in : packet;

};

You can also define a variable using a struct type.

var data_in : packet;

The default value for a struct is NULL.

See Also

� Chapter 4, �Structs, Fields, and Subtypes�
� �var� on page 487

3.1.1.6 Struct Subtypes

When a struct field has a boolean type or an enumerated type, you can define a struct subtype for one or
more of the possible values for that field. For example, the struct �packet� defined below has three possible
subtypes based on its �protocol� field. The �gen_eth_packet� method below generates an instance of the
�legal Ethernet packet� subtype, where legal == TRUE and protocol == Ethernet.

type packet_protocol: [Ethernet, IEEE, foreign];
80 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
legal: bool;

};
extend sys {

gen_eth_packet () is {
var packet: legal Ethernet packet;
gen packet keeping {it.size < 10;};
print packet;

};
};

To refer to a boolean struct subtype, for example �legal packet�, use this syntax:

field_name struct_type

To refer to an enumerated struct subtype in a struct where no values are shared between the enumerated
types, you can use this syntax:

value_name struct_type

In structs where more than one enumerated field can have the same value, you must use the following syntax
to refer to the struct subtype:

value'field_name struct_type

For example, if we define two enumerated types:

type destination: [a, b, c, d];
type source: [a, b, c, d];

And add two fields to the �packet� struct:

dest: destination;
src: source;

The syntax for referring to the type of an Ethernet packet with the destination �b� is:

b'dest Ethernet packet

because the name �b Ethernet packet� is ambiguous.

type packet_protocol: [Ethernet, IEEE, foreign];
type destination: [a, b, c, d];
type source: [a, b, c, d];

struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
legal: bool;
dest: destination;
src: source;

};
This is an unapproved IEEE Standards Draft, subject to change.
81

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
extend sys {
gen_eth_packet () is {

var packet: b'dest Ethernet packet;
gen packet keeping {it.size > 511 and it.size < 1k};
print packet;

};
};

The example below shows another context where a struct subtype can be used.

type packet_protocol: [Ethernet, IEEE, foreign];
type destination: [a, b, c, d];
type source: [a, b, c, d];

struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
legal: bool;
dest: destination;
src: source;

};
extend sys {
plist: list of packet;

print_Epackets() is {
for each Ethernet packet (ep) in plist {

print ep;
};

};
};

You can also use the extend, when, or like constructs to add fields, methods, or method extensions that are
required for a particular subtype.

For example, the extend construct shown below adds a field and a method to the �Ethernet packet� subtype.
The �Ethernet packet� subtype also inherits all the characteristics of the struct �packet�.

type packet_protocol: [Ethernet, IEEE, foreign];

struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;

};

extend Ethernet packet {
e_field: int;

show() is {out("I am an Ethernet packet")};
};

The �Ethernet packet� subtype could also be defined with the when construct. The following �Ethernet
packet� subtype is exactly equivalent to the Ethernet packet subtype defined by extend.

type packet_protocol: [Ethernet, IEEE, foreign];
82 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;

when Ethernet packet {
e_field: int;

show() is {out("I am an Ethernet packet")};
};

};

You can use either the when or the extend construct to define struct subtypes with very similar results.
These constructs are appropriate for most modeling purposes. Under certain circumstances, you may prefer
to use the like construct to create struct subtypes. See Chapter 4, �Structs, Fields, and Subtypes� for a
detailed discussion of the use of these constructs to create struct subtypes.

3.1.1.7 Referencing Fields in When Constructs

The example below shows how to refer to a field of a struct subtype outside of a when, like, or extend con-
struct by assigning a temporary name to the struct subtype.

type packet_protocol: [Ethernet, IEEE, foreign];

struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;

keep me is a Ethernet packet (ep) => ep.e_field == 1;

when Ethernet packet {
e_field: int;

show() is {out("I am an Ethernet packet")};
};

};

In order to reference a field in a when construct, you must specify the appropriate value for the when deter-
minant. For example, consider the following struct and subtype:

type packet_protocol: [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
when IEEE packet {

i_val: int;
};

};

For any instance �pk_inst� of the packet struct, references to the �i_val� field are only valid if the when
determinant is �IEEE�. The following are three ways to ensure that �pk_inst� is in fact an �IEEE packet�
before referencing �i_val�.

� Test �pk_inst� to see if it is �IEEE packet�:

if pk_inst is a IEEE packet (ip) {ip.i_val = 1; };
This is an unapproved IEEE Standards Draft, subject to change.
83

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
or

pk_list.first(it is a IEEE packet (ip) and ip.i_val == 1);

Use this method if �pk_inst� is a packet that may or may not be �IEEE�. For example, �pk_inst�
may be an element of a list of packets or may be a generated packet with no constraint on �protocol�.

� Define �pk_inst� as an �IEEE packet�:

var pk_inst: IEEE packet;

pk_inst.i_val = 1;

or

var pk_inst: IEEE packet;

gen pk_inst keeping {

it is a IEEE packet (ip) and ip.i_val == 1

};

Use this method if you want �pk_inst� to always be �IEEE�. Note that you must either declare the
variable or field to be type �IEEE packet� or use the is a syntax. It is not sufficient to say gen pk_inst
keeping (.kind == IEEE; .i_val == 1}.

� Cast �pk_inst� as �IEEE packet�:

pk_inst.as_a(IEEE packet).i_val = 1;

This is shorthand for method 1 above. You can do it this way if you know that �pk_inst� is an �IEEE
packet� but for some reason it is defined just as a packet. For example:

var pk_inst: packet;

gen pk_inst keeping {it is a IEEE packet};

pk_inst.as_a(IEEE packet).i_val = 1;

Note that if �pk_inst� is not an �IEEE packet� you will get an error stating that �struct is NULL�.

See Also

� Chapter 4, �Structs, Fields, and Subtypes�
� �var� on page 487
� �Struct Hierarchy and Name Resolution� on page 19
� �Comparison of When and Like Inheritance� on page 142
� �when� on page 133
� �Extending Structs: extend type� on page 121
� �is [not] a� on page 67

3.1.1.8 List Types

List types hold ordered collections of data elements where each data element conforms to the same type.
Items in a list can be indexed with the subscript operator [], by placing a non-negative integer expression in
the brackets. List indexes start at zero. You can select an item from a list by specifying its index. For exam-
ple, my_list[0] refers to the first item in the list named my_list.
84 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Lists are defined by using the list of keyword in a variable or a field definition. The example below defines
a list of bytes named �lob� and explicitly assigns five literal values to it. The print statement displays the
first three elements of �lob�, 15, 31, and 63.

var lob: list of byte = {15;31;63;127;255};
print lob[0..2];

NOTE� Multi-dimensional lists (lists of lists) are not supported. To create a list with sublists in it,
you can create a struct to contain the sublists, and then create a list of such structs as the main list.

The default value of a list is an empty list.

3.1.1.8.1 Regular Lists

The following example shows two lists, �packets� and �all_lengths�.

type packet_protocol : [Ethernet, IEEE, foreign];
type length: int [0..10];
struct packet {

protocol: packet_protocol;
len: length;

};
extend sys {

packets[10] : list of packet;
do_print() is {

var all_lengths: list of length;
all_lengths = packets.len;
print packets;
print all_lengths;

};
};

Each element of �packets� is a struct of type �packet�. Each element of �all_lengths� is a scalar value of
type �length�.

Both �packets� and �all_lengths� have 10 elements because of the explicit size �[10]� specified in the �pack-
ets� declaration. You can only specify a list size in this manner for fields. To size lists that are variables, you
have to use a keep constraint.

3.1.1.8.2 Keyed Lists

A keyed list data type is similar to hash tables or association lists found in other programming languages.
The declaration below specifies that �packets� is a list of packets, and that the �protocol� field in the packet
type is used as the hash key.

type packet_protocol : [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
};
var packets : list (key: protocol) of packet;

If the element type of the list is a scalar type or a string type, then the hash key must be the predefined
implicit variable it.

struct person {
name: string;
This is an unapproved IEEE Standards Draft, subject to change.
85

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
id: int;
};
struct city {

!persons: list(key: name) of person;
!street_names: list(key: it) of string;

};

Notes

� Keyed lists cannot be generated. Trying to generate a keyed list results in an error. Therefore, keyed
lists must be defined with the do-not-generate sign (an exclamation mark), as in the above example.

� The only restriction on the type of the list elements is that they cannot themselves be lists. However,
they can be struct types containing fields that are lists.

See Also

� Chapter 4, �Structs, Fields, and Subtypes�
� �var� on page 487
� �Packing and Unpacking Lists� on page 503
� Chapter 19, �List Pseudo-Methods Library�

3.1.1.9 The string Type

The predefined type string is the same as the C NULL terminated (zero terminated) string type. You can
assign a series of ASCII characters enclosed by quotes (��) to a variable or field of type string, for example:

var message: string;
message = "Beginning initialization sequence...";

You cannot access bits or bit ranges of a string, but you can convert a string to a list of bytes and then access
a portion of the string. The print statement shown below displays �/test1�.

var dir: string = "/tmp/test1";
var tmp := dir.as_a(list of byte);
tmp = tmp[4..9];
print tmp.as_a(string);

The default value of a variable of type string is NULL.

See Also

� Chapter 24, �Predefined Routines Library�
� �Packing and Unpacking Strings� on page 501

3.1.1.10 The external_pointer Type

The external_pointer type is used to hold a pointer into an external (non-e) entity, such as a C struct. Unlike
pointers to structs in e, external pointers are not changed during garbage collection.
86 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.1.2 Memory Requirements for Data Types

The amount of memory needed to store data types is listed in Table 3-3.

3.1.3 Untyped Expressions

All e expressions have an explicit type, except for the following types of expressions:

� HDL objects, such as 'top.w_en'
� pack() expressions, such as �pack(packing.low, 5)�
� bit concatenations, such as �%{slb1, slb2};�

The default type of HDL objects is 32-bit uint, while pack() expressions and bit concatenations have a
default type of list of bit. However, because of implicit packing and unpacking, these expressions can be
converted to the required data type and bit size in certain contexts.

� When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked and
converted to the same type and bit size as the expression on the left-hand side.
The pack expression shown below, for example, is evaluated as 0x04, taking the type and bit size of
�j�.

var j:int(bits:8);

j = pack(packing.low, 4);

NOTE� Implicit unpacking is not supported for strings, structs, or lists of non-scalar types.
As a result, the following causes a load-time error if �i� is a string, a struct, or a list of a non-
scalar type:

i = pack(packing.low, 5);

Table 3-2�Storage Sizes of DataTypes

Type Size in Memory

All scalars up to 32 bits 4 bytes

Scalars larger than 32
bits

Same as a list of bit of the appropriate size

String 4 bytes (the pointer) + the size of the string + 1 byte (the NULL byte)

A NULL string is just the pointer.

Struct pointer 4 bytes

Struct 8 bytes + the sum of the field sizes

A NULL struct is just the pointer (4 bytes)

List 4 bytes (a pointer to the list) + approximately 16 bytes (header) + the sum
of the sizes of the elements

Lists of scalars of size up to 16 bits are packed to the nearest power of 2
(in bits). This is often the most efficient representation.
This is an unapproved IEEE Standards Draft, subject to change.
87

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned.
In the following example, the value of �j�, 0x4, is implicitly packed and converted to the size of
'top.a' before the value is driven:

'top.a' = j;

NOTE� Implicit packing is not supported for strings, structs, or lists of non-scalar types. As
a result, the assignment above would cause a load-time error if �j� were a string, a struct, or a
list of a non-scalar type.

� When the untyped expression is the operand of any binary operator (+, -, *, /,%), the expression is
assumed to be a numeric type. The precision of the operation is determined by the expected type and
the type of the operands. See �Precision Rules for Numeric Operations� on page 93 for more infor-
mation.
Both 'top.a' and �pack(packing.low, -4)� are handled as numeric types.

print ('top.a' + pack(packing.low, 4) == 0);

� When a pack() expression includes the parameter or the return value of a method call, the expression
takes the type and size as specified in the method declaration.
The pack() expression �pack(packing.low, data)� generates a list of bit that is implicitly unpacked
into the required type list of byte as defined in the declaration of the send_data() method.

extend sys {

data[10]:list of byte;

send_data(d: list of byte) is {

...

};

run() is also {

send_data(pack(packing.low, data));

};

};

NOTE� The method parameter or return value in the pack expression must be a scalar type
or a list of scalar type. For example, the following results in a load-time error:

struct instruction {

 %opcode : uint (bits : 3);

 %operand : uint (bits : 5);

 %address : uint (bits : 8);

};

extend sys {

instr: instruction;

send_instr(i: instruction) is {

...

};

run() is also {;
88 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
send_instr(pack(packing.low, 5)); --load-time error

};

};

� When an untyped expression appears in one of the following contexts, it is treated as a boolean
expression:

if (untyped_exp) then {..}

while (untyped_exp) do {..}

check that (untyped_exp)

not untyped_exp

rise(untyped_exp), fall(untyped_exp), true(untyped_exp)

When the type and bit size cannot be determined from the context, the expression is automatically cast
according to the following rules.

� The default type of an HDL signal is an unsigned integer.
� The default type of a pack expression and a bit concatenation expression is a list of bit.
� If no bit width specification is detected, the default width is 32 bits.

When expressions are untyped, an implicit pack/unpack is performed according to the expected type.

See Also

� �Implicit Packing and Unpacking� on page 515

3.1.4 Assignment Rules

Assignment rules define what is a legal assignment and how values are assigned to entities. The following
sections describe various aspects of assignments:

� �What Is an Assignment?� on page 89
� �Assignments Create Identical References� on page 90
� �Assignment to Different but Compatible Types� on page 91

3.1.4.1 What Is an Assignment?

There are several legal ways to assign values:

� Assignment actions
� Return actions
� Parameter passing
� Variable declaration

Here is an example of an assignment action, where a value is explicitly assigned to a variable �x� and to a
field �sys.x�.

extend sys{
x: int;
m() is {

sys.x = '~/top/address';
var x: int;
This is an unapproved IEEE Standards Draft, subject to change.
89

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
x = sys.x + 1;
};

};

Here�s an example of a return action, which implicitly assigns a value to the result variable:

extend sys {
n(): int (bits: 64) is {

return 1;
};

};

Here�s an example of assigning a value (6) to a method parameter (�i�):

extend sys {
k(i: int) @sys.any is {

wait [i] * cycle;
};

run() is also {
start k(6);

};
};

Here�s an example of how variables are assigned during declaration:

extend sys {
b() is {

var x: int = 5;
var y:= "ABC";

};
};

NOTE� You cannot assign values to fields during declaration in this same manner.

3.1.4.2 Assignments Create Identical References

Assigning one struct, list, or value to another object of the same type results in two references pointing to the
same memory location, so that changes to one of the objects also occur in the other object immediately.

data1: list of byte;
data2: list of byte;
run() is also {

data2 = data1;
data1[0] = 0;

};

After generation, the two lists data1 and data2 are different lists. However, after the data2=data1 assignment,
both lists refer to the same memory location, therefore changing the data1[0] value also changes the data2[0]
value immediately.
90 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.1.4.3 Assignment to Different but Compatible Types

3.1.4.3.1 Assignment of Numeric Types

Any numeric type (for example, uint, int, or one of their subtypes) can be assigned with any other numeric
type. Untyped expressions, such as HDL objects, can also appear in assignments of numeric types. See
�Untyped Expressions� on page 87 for more information.

extend sys {
!x1: int;
x2: uint (bits: 3);
!x3: int [10..100];

post_generate() is also{
x1 = x2;
x3 = x1;
var x: int (bits: 48) = x3;

};
};

Automatic casting is performed when a numeric type is assigned to a different numeric type, and automatic
extension or truncation is performed if the types have different bit size. See �Automatic Type Casting� on
page 96 for more information. See �Precision Rules for Numeric Operations� on page 93 for information on
how precision is determined for operations involving numeric types.

3.1.4.3.2 Assignment of Boolean Types

A boolean type can only be assigned with another boolean type.

var x: bool;
x = 'top.a' >= 16;

3.1.4.3.3 Assignment of Enumerated Types

An enumerated type can be assigned with that same type, or with its scalar subtype. (The scalar subtype dif-
fers only in range or bit size from the base type.)

The example below shows:

� An assignment of the same type:

var x: color = blue;

� An assignment of a scalar subtype:

var y: color2 = x;

Example

type color: [red,green,blue];
type color2: color (bits: 2);

extend sys {
m() is {

var x: color = blue;
var y: color2 = x;

};
};
This is an unapproved IEEE Standards Draft, subject to change.
91

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
To assign any scalar type (numeric, enumerated, or boolean type) to any different scalar type, you must use
the .as_a() operator.

3.1.4.3.4 Assignment of Structs

An entity of type struct can be assigned with a struct of that same type or with one of its subtypes. The fol-
lowing example shows:

� A same type assignment:

p2 = p1;

� An assignment of a subtype (Ether_8023 packet):

set_cell(p);

� An assignment of a derived struct (cell_8023):

p.cell = new cell_8023;

Example

type packet_kind: [Ether, Ether_8023];
struct cell {};

struct cell_8023 like cell {};
struct packet {

packet_kind;
!cell: cell;

};

extend sys {
p1: packet;
!p2: packet;
!p3: packet;
post_generate() is also {

p2 = p1;
var p: Ether_8023 packet;
gen p;
set_cell(p);

};

set_cell(p: packet) is {
p.cell = new cell_8023;

};
};

Although you can assign a subtype to its parent struct without any explicit casting as shown above, to per-
form the reverse assignment (assign a parent struct to one of its subtypes), you must use the .as_a() method.
See �as_a()� on page 104 for an example of how to do this.

3.1.4.3.5 Assignment of Strings

A string can be assigned only with strings, as shown below.

extend sys {
m(): string is {

return "aaa"; // assignment of a string
};

};
92 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.1.4.3.6 Assignment of Lists

An entity of type list can be assigned only with a list of the same type. In the following example, the assign-
ment of �list1� to �x� is legal because both lists are lists of integers.

extend sys {
list1: list of int;
m() is {

var x: list of int = list1;
};

};

However, an assignment such as �var y: list of int (bits: 16) = list1;� would be an error, because �list1� not
the same list type as �y�. �y� has a size modifier, so it is a subtype of �list1�. You can use the .as_a() method
to cast between lists and their subtypes.

See Also

� �Untyped Expressions� on page 87
� �Precision Rules for Numeric Operations� on page 93
� �Automatic Type Casting� on page 96

3.1.5 Precision Rules for Numeric Operations

For precision rules, there are two types of numeric expressions in e:

� Context-independent expressions, where the precision of the operation (bit width) and numeric type
(signed or unsigned) depend only on the types of the operands

� Context-dependent expressions, where the precision of the operation and the numeric type depend
on the precision and numeric type of other expressions involved in the operation (the context), as
well as the types of the operands

A numeric operation in e is performed in one of three possible combinations of precision and numeric type:

� Unsigned 32-bit integer (uint)
� Signed 32-bit integer (int)
� Infinite signed integer (int (bits: *))

The e language has rules for:

� Determining the context of an expression
� Deciding precision, and performing data conversion and sign extension

The following sections describe these rules and give an example of how these rules are applied:

� �Determining the Context of an Expression� on page 94
� �Deciding Precision and Performing Data Conversion and Sign Extension� on page 95
� �Example Application of Precision Rules� on page 95

See Also

� �Operator Precedence� on page 28
This is an unapproved IEEE Standards Draft, subject to change.
93

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
3.1.5.1 Determining the Context of an Expression

The rules for defining the context of an expression are applied in the following order:

1) In an assignment (lhs = rhs), the right-hand side (rhs) expression inherits the context of the
left-hand side (lhs) expression.

2) A sub-expression inherits the context of its enclosing expression.
3) In a binary-operator expression (lho OP rho), the right-hand operand (rho) inherits context

from the left-hand operand (lho), as well as from the enclosing expression.

Table 3-3 summarizes context inheritance for each type of operator that can be used in numeric expressions.

Table 3-3�Summary of Context Inheritance in Numeric Operations

Operator Function Context

* / % + -
< <= > >=
== !=
=== !==
& | ^

Arithmetic,
comparison,
equality, and
bit-wise bool-
ean

The right-hand operand inherits context from the
left-hand operand (lho), as well as from the
enclosing expression. lho inherits only from the
enclosing expression.

~ !
unary + -

Bitwise not,
boolean not,
unary plus,
minus

The operand inherits context from the enclosing
expression.

[] List indexing The list index is context independent.

[..] List slicing The indices of the slice are context independent.

[:] Bit slicing The indices of the slice are context independent.

f(...) Method or
routine call

The context of a parameter to a method is the
type and bit width of the formal parameter.

{...; ...} List concate-
nation

Context is passed from the lhs of the assignment,
but not from left to right between the list mem-
bers.

%{..., ...} Bit concatena-
tion

The elements of the concatenation are context
independent.

>>, << Shift Context is passed from the enclosing expression
to the left operand. The context of the right oper-
and is always 32-bit uint.

lho in [i..j] Range list
operator

All three operands are context independent. (The
range specifiers i and j must be constant.)

&&, || Boolean All operands are context independent.

a ? b : c Conditional
operator

a is context independent, b inherits the context
from the enclosing expression, c inherits context
from b as well as from the enclosing expression

.as_a() Casting The operand is context independent.
94 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.1.5.2 Deciding Precision and Performing Data Conversion and Sign Extension

The rules for deciding precision, performing data conversion and sign extension are as follows:

� Determine the context of the expression. The context may be comprised of up to two types.
� If all types involved in an expression and its context are 32 bits in width or less:

� The operation is performed in 32 bits.

� If any of the types is unsigned, the operation is performed with unsigned integers.

NOTE� Decimal constants are treated as signed integers, whether they are negative or
not. All other constants are treated as unsigned integers unless preceded by a hyphen.

� Each operand is automatically cast, if necessary, to the required type.

NOTE� Casting of small negative numbers (signed integers) to unsigned integers
produces large positive numbers.

� If any of the types is greater than 32 bits:

� The operation is performed in infinite precision (int (bits:*))

� Each operand is zero-extended, if it is unsigned, or sign-extended, if it is signed, to infinite precision.

3.1.5.3 Example Application of Precision Rules

Given the following assignment:

sum: int;
exp1: int (bytes:2);
exp2: uint (bits:4);
exp3: int (bits:4);

abs(), odd()
even()

Arithmetic
routine

The parameter is context independent.

min(), max() Arithmetic
routine

The right parameter inherits context from the left
parameter (lp), as well as from the enclosing
expression. lp inherits only from the enclosing
expression.

ilog2(),
ilog10(),
isqrt()

Arithmetic
routine

The context of the parameter is always 32-bit
uint.

ipow() Arithmetic
routine

Both parameters inherit the context of the
enclosing expression, but the right parameter
does not inherit context from the left.

Table 3-3�Summary of Context Inheritance in Numeric Operations
(continued)

Operator Function Context
This is an unapproved IEEE Standards Draft, subject to change.
95

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
sum = exp1 + exp2 * exp3;

1) The precision of the multiplication operation (exp2 * exp3) is based on the four types involved
here:
The inherited context of the lhs expression (int)
The inherited context of the lho (int (bytes:2))
The type of exp2 (4-bit uint)
The type of exp3 (4-bit int)

Because one of these four types is unsigned, the multiplication is done in 32-bit unsigned inte-
ger. Both exp2 and exp3 are converted to 32-bit uint and the multiplication operation is per-
formed.

2) The precision of the addition operation is based on the three types involved here:
The inherited context of the lhs expression (int)
The type of exp1 (int (bytes:2))
The type of (exp2 * exp3) (uint)

Because one of these types is unsigned, the addition is done in 32-bit unsigned integer. exp1 is
converted to 32-bit uint and the addition operation is performed.

3) For the assignment operation, the result of the addition operation is converted to 32-bit int and
assigned to sum.

See Also

� �Untyped Expressions� on page 87
� �Assignment Rules� on page 89
� �Automatic Type Casting� on page 96

3.1.6 Automatic Type Casting

During assignment of a type to a different but compatible type, automatic type casting is performed in the
following contexts:

� Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon
assignment to different numeric types. For example:

var x: uint;

var y: int;

x = y;

� Untyped expressions are automatically cast on assignment. See �Untyped Expressions� on page 87
for more information.

var j: uint = 0xff;

'top.a' = j;

� Sized scalars are automatically type cast to differently sized scalars of the same type.

type color: [red,green,blue];

type color2: color (bits: 2);

var x: color = blue;

var y: color2 = x;

� Struct subtypes are automatically cast to their base struct type.

type packet_protocol: [Ethernet, IEEE, foreign];
96 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct packet {

protocol: packet_protocol;

size: int [0..1k];

data[size]: list of byte;

show() is undefined; // To be defined by children

};

extend Ethernet packet {

e_field: int;

show() is {out("I am an Ethernet packet")};

};

extend sys {

m() is {

var epkt: Ethernet packet = new;

var pkt: packet = epkt;

};

};

There are three important ramifications to automatic type casting:

1) If the two types differ in bit size, then the assigned value is extended or truncated to the
required bit size. See Example 1 on page 97.

2) Casting of small negative numbers (signed integers) to unsigned integers produces large posi-
tive numbers. See Example 2 on page 98.

3) There is no automatic casting to a reference parameter. See �Parameter Passing� on page 484
for more information.

Example 1

In the following example, �x� is a 32-bit signed integer, �y� is a 48-bit unsigned integer, and �z� is a 3-bit
signed integer. Assigning �x� to �y� extends �x� to 48 bits. Assigning �x� to �z� chops �x� to 3 bits.

extend sys {
m() is {

var x: int = -1;
var y: int (bits: 48) = x;
var z: int (bits: 3) = x;
print y,z;

};
};

Result

Calling �sys.m()� results in:

y = 0xffffffffffff
z = 0x7
This is an unapproved IEEE Standards Draft, subject to change.
97

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

m() is {
var x: int = -1;
var y: uint = MAX_UINT;
var z: uint = 1;
print x == y;
print x > z;

};

Result

The int value �x� (0xffffffff) is automatically cast to uint and becomes MAX_UINT. As a result, the print
statements display the following:

x == y = TRUE
x > z = TRUE

See Also

� �as_a()� on page 104
� �Untyped Expressions� on page 87
� �Assignment Rules� on page 89
� �Precision Rules for Numeric Operations� on page 93

3.2 Defining and Extending Scalar Types

You can use the following constructs to define and extend scalar types:

� �type enumerated scalar� on page 98
� �type scalar subtype� on page 100
� �type sized scalar� on page 101
� �extend type� on page 103

3.2.1 type enumerated scalar

Purpose

Define an enumerated scalar type

Category

Statement

Syntax

type enum-type-name: [[name[=exp], ...]] [(bits | bytes: width-exp)]

Syntax example:

type PacketType :[rx = 1, tx, ctrl];
98 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Defines an enumerated scalar type having the name you specify and consisting of a set of names or name-
value pairs. If no values are specified, the names get corresponding numerical values starting with 0 for the
first name, and casting can be done between the names and the numerical values.

Example 1

This is a simple example of the basic syntax.

type PacketType :[rx, tx, ctrl];

struct packet {
kind :PacketType;

do_print() is {
if kind == ctrl {

out("This is a control packet.");
};

};
};

Example 2

This example shows how HDL variables are automatically cast to the required scalar type.

type PacketType :[rx, tx, ctrl];

struct packet {
kind :PacketType;

set() is {
kind = 'top.pkt_type';

};
};

Example 3

This example shows an enumerated type with a bit width:

type NetworkType :[IP=0x0800, ARP=0x8060](bits:16);

enum-type-name A legal e name. The name must be different from any other predefined or enu-
merated type name because the name space for types is global.

name A legal e name. Each name must be unique within the type.
exp A unique 32-bit constant expression. Names or name-value pairs can appear in

any order. By default, the first name in the list is assigned the integer value
zero. Subsequent names are assigned values based upon the maximum value of
the previously defined enumerated items + 1.

width-exp A positive constant expression. The valid range of values for sized enumerated
scalar types is limited to the range 1 to 2**n - 1, where n is the number of bits.
This is an unapproved IEEE Standards Draft, subject to change.
99

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct header {
dest_address :uint(bits:48);
src_address :uint(bits:48);
type :NetworkType;

do_print() is {
if type == IP {

out("This is an IP packet.");
};

};
};

Example 4

This example shows how to type cast between an enumerated type and an unsigned integer.

type signal_number: [signal_0, signal_1, signal_2, signal_3];
struct signal {

cast_1() is {
var temp_val: uint = 3;
var signal_name: signal_number = temp_val.as_a(signal_number);
print signal_name;

};

cast_2() is {
var temp_enum: signal_number = signal_0;

var signal_value: uint = temp_enum.as_a(uint);
print signal_value;

};
};

See Also

� �type scalar subtype� on page 100
� �type sized scalar� on page 101
� �extend type� on page 103
� �as_a()� on page 104
� �Enumerated Scalar Types� on page 77

3.2.2 type scalar subtype

Purpose

Define a scalar subtype

Category

Statement

Syntax

type scalar-subtype-name: scalar-type [range, ...]

Syntax example:
100 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
type size: int [8, 16];

Parameters

Description

Defines a subtype of a scalar type by restricting the legal values that can be generated for this subtype to the
specified range.

NOTE� The default value for variables or fields of this type �size� is zero, the default for all
integers; the range affects only the generated values.

Example 1

The integer subtype defined below includes all non-negative integers except 4,5, and 7.

type medium: uint [0..3,6,8..MAX_INT];

Example 2

The following example defines the �inst� type, which has five legal instruction values, and the subtype
�mem_inst�, which has only the values related to memory.

type inst: [add, sub, mul, div, load, store];
type mem_inst: inst [load..store];

Example 3

You can omit the range list, thus renaming the full range. The first example below gives the name �my_int�
to the full range of integers. The second example gives the name �true_or_false� to the full range of the
boolean type.

type my_int: int;
type true_or_false: bool;

See Also

� �type enumerated scalar� on page 98
� �type sized scalar� on page 101
� �extend type� on page 103
� �Scalar Subtypes� on page 76

3.2.3 type sized scalar

Purpose

Define a sized scalar

scalar-subtype-name A unique e name.
scalar-type Any previously defined enumerated scalar type, any of the predefined sca-

lar types, including int, uint, bool, bit, byte, or time, or any previously
defined scalar subtype.

range A constant expression or two constant expressions separated by two dots.
All constant expressions must resolve to legal values of the named type.
This is an unapproved IEEE Standards Draft, subject to change.
101

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Statement

Syntax

type sized-scalar-name: type (bits | bytes: exp)

Syntax example:

type word :uint(bits:16);
type address :uint(bytes:2);

Parameters

Description

Defines a scalar type with a specified bit width. The actual bit width is exp * 1 for bits and exp * 8 for bytes.
In the example shown below, both types �word� and �address� have a bit width of 16.

type word :uint(bits:16);
type address :uint(bytes:2);

Example

When assigning any expression into a sized scalar variable or field, the expression's value is truncated or
extended automatically to fit into the variable. An expression with more bits than the variable is chopped
down to the size of the variable. An expression with fewer bits is extended to the length of the variable. The
added upper bits are filled with zero if the expression is unsigned, or with the sign bit (zero or one) if it is a
signed expression.

Here is an example of assigning an expression where the expression's value is truncated:

type SmallAddressType :uint(bits:2);

extend sys {
chop_expression() is {

var small_address :SmallAddressType;

small_address = 0x2 * 8;
out("small_address: ", small_address);

};

run() is also {
chop_expression();

};
};

sized-scalar-name A unique e name.
type Any previously defined enumerated type or any of the predefined scalar

types, including int, uint, bool, or time.
exp A positive constant expression. The valid range of values for sized scalars is

limited to the range 1 to 2n - 1, where n is the number of bits.
102 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �type enumerated scalar� on page 98
� �type scalar subtype� on page 100
� �extend type� on page 103
� �Assignment Rules� on page 89
� �Precision Rules for Numeric Operations� on page 93

3.2.4 extend type

Purpose

Extend an enumerated scalar type

Category

Statement

Syntax

extend enum-type: [name[= exp], ...]

Syntax example:

type PacketType :[rx, tx, ctrl];
extend PacketType :[status];

Parameters

Description

Extends the specified enumerated scalar type to include the names or name-value pairs you specify.

Example 1

This is an example of the basic syntax.

type command :[ADD=0x00, SUB=0x02, AND=0x04,
 XOR=0x06, UDEF=0xFF] (bits: 8);

extend command :[ADDI=0x01, SUBI=0x03,
ANDI=0x05, XORI=0x07];

enum-type Any previously defined enumerated type.
name A legal e name. Each name must be unique within the type.
exp A unique 32-bit constant expression. Names or name-value pairs can appear in

any order. By default, the first name in the list is assigned the integer value
zero. Subsequent names are assigned values based upon the maximum value of
the previously defined enumerated items + 1.
This is an unapproved IEEE Standards Draft, subject to change.
103

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

A common use of type extension is defining a protocol type and extending it as new protocols are added to
the test environment. For example, you can define a packet header without having to know what specific
network protocols are supported by the packet:

type NetworkType :[](bits:16);

struct header {
dest_address :uint(bits:48);
src_address :uint(bits:48);
type :NetworkType;

};

As protocols are gradually added to the test environment, the new protocol type can be added without
changes to the original code:

extend NetworkType :[ARP=0x8060];

Then again for more protocols:

extend NetworkType :[IP=0x0800];

See Also

� �type enumerated scalar� on page 98
� �type scalar subtype� on page 100
� �type sized scalar� on page 101
� �e Data Types� on page 75

3.3 Type Conversion Between Scalars and Strings

This section contains:

The as_a() expression is used to convert an expression from one data type to another. Information about how
different types are converted, such as strings to scalars or lists of scalars, is contained in Table 3-4, �Type
Conversion Between Scalars and Lists of Scalars�, on page 105 and Table 3-5, �Type Conversion Between
Strings and Scalars or Lists of Scalars�, on page 107.

This section contains:

� �as_a()� on page 104
� �all_values()� on page 115

3.3.1 as_a()

Purpose

Casting operator

Category

Expression
104 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

exp.as_a(type: type name): type

Syntax example:

print (b).as_a(uint);

Parameters

Description

Returns the expression, converted into the specified type. Although some casting is done automatically (see
�Automatic Type Casting� on page 96), explicit casting is required in some cases when making assignments
between different but compatible types.

3.3.1.1 Type Conversion Between Scalars and Lists of Scalars

Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon assignment
to different numeric types.

For other scalars and lists of scalars, there are a number of ways to perform type conversion, including the
as_a() method, the pack() method, the %{} bit concatenation operator and various string routines. Table 3-
4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105 shows the recommended methods
for converting between scalars and lists of scalars.

In Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, int represents int/uint
of any size, including bit, byte, and any user-created size. If a solution is specific to bit or byte, then bit or
byte is explicitly stated.

int(bits:x) means x as any constant; variables cannot be used as the integer width.

The solutions assume that there is a variables declared as

var int : int ;
var bool : bool ;
var enum : enum ;
var list_of_bit : list of bit ;
var list_of_byte : list of byte ;
var list_of_int : list of int ;

Any conversions not explicitly shown may have to be accomplished in two stages.

exp Any e expression.
type Any legal e type.

Table 3-4�Type Conversion Between Scalars and Lists of Scalars

From To Solutions

int list of bit list_of_bit = int[..]
This is an unapproved IEEE Standards Draft, subject to change.
105

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
int list of
int(bits:x)

list_of_int = %{int}

list_of_int = pack(packing.low, int)

(LSB of int goes to list[0] for either choice)

list of bit

list of byte

int int = list_of_bit[:]

list of
int(bits:x)

int int = pack(packing.low, list_of_int)

(Use packing.high for list in other order.)

int(bits:x) int(bits:y) intx = inty

(Truncation or extension is automatic.)

intx.as_a(int(bits:y))

bool int int = bool.as_a(int)

(TRUE becomes 1, FALSE becomes 0.)

int bool bool = int.as_a(bool)

(0 becomes FALSE, non-0 becomes TRUE.)

int enum enum = int.as_a(enum)

(No checking is performed to make sure the int value is valid for the
range of the enum.)

enum int int = enum.as_a(int)

(Truncation is automatic.)

enum bool enum.as_a(bool)

(Enumerated types with an associated unsigned integer value of 0
become FALSE; those with an associated non-0 values become
TRUE. See �Enumerated Scalar Types� on page 77 for more infor-
mation on values associated with enumerated types.)

bool enum bool.as_a(enum)

(Boolean types with a value of FALSE are converted to the enumer-
ated type value that is associated with the unsigned integer value of
0; those with a value of TRUE are converted to the enumerated type
value that is associated with the unsigned integer value of 1. No
checking is performed to make sure the boolean value is valid for the
range of the enum.)

Table 3-4�Type Conversion Between Scalars and Lists of Scalars (continued)

From To Solutions
106 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.3.1.2 Type Conversion Between Strings and Scalars or Lists of Scalars

There are a number of ways to perform type conversion between strings and scalars or lists of scalars,
including the as_a() method, the pack() method, the %{} bit concatenation operator and various string rou-
tines. Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107 shows
how to convert between strings and scalars or lists of scalars.

In Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, int repre-
sents int/uint of any size, including bit, byte, and any user-created size. If a solution is specific to bit or byte,
then bit or byte is explicitly stated.

int(bits:x) means x as any constant; variables cannot be used as the integer width.

The solutions assume that there is a variables declared as

var int : int ;
var list_of_byte : list of byte ;
var list_of_int : list of int ;
var bool : bool ;
var enum : enum ;
var string : string ;

Any conversions not explicitly shown may have to be accomplished in two stages.

enum enum enum1 = enum2.as_a(enum1)

(no checking is performed to make sure the int value is valid for the
range of the enum)

list of
int(bits:x)

list of
int(bits:y)

listx.as_a(list of int(bits:y))

(same number of items, each padded or truncated)

listy = pack(packing.low, listx)

(concatenated data, different number of items)

Table 3-5�Type Conversion Between Strings and Scalars or Lists of Scalars

From To ASCII
Convert? Solutions

list of int

list of byte

string yes list_of_int.as_a(string)

(Each list item is converted to its ASCII character
and the characters are concatenated into a single
string. int[0] represents left-most character. If a list
item is not a printable ASCII character, the string
returned is empty.)

Table 3-4�Type Conversion Between Scalars and Lists of Scalars (continued)

From To Solutions
This is an unapproved IEEE Standards Draft, subject to change.
107

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
string list of int

list of byte

yes string.as_a(list of int)

(Each character in the string is converted to its
numeric value and assigned to a separate element in
the list. The left-most character becomes int[0])

string list of int yes list_of_int = pack(packing.low, string)

list_of_int = %{string}

(The numeric values of the characters are concate-
nated before assigning them to the list. Any pack
option gives same result; null byte, 00, will be last
item in list.)

string int yes int = %{string}

int = pack(packing.low, string)

(Any pack option gives same result.)

int string yes unpack(packing.low, %{8�b0, int}, string)

(Any pack option with scalar_reorder={} gives same
result.)

string int no string.as_a(int)
(Converts to decimal.)

append(�0b�, string).as_a(int)
(Converts to binary.)

append(�0x�, string).as_a(int)
(Converts to hexadecimal.)

int string no int.as_a(string)
(Uses the current print radix.)

append(int)
(Converts int according to current print radix.)

dec(int), hex(int), bin(int)
(Converts int according to specific radix.)

string bool no bool = string.as_a(bool)

(Only �TRUE� and �FALSE� can be converted to
boolean; all other strings return an error.)

bool string no string = bool.as_a(string)

Table 3-5�Type Conversion Between Strings and Scalars or Lists of Scalars (contin-
ued)

From To ASCII
Convert? Solutions
108 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3.3.1.3 Type Conversion Between Structs, Struct Subtypes, and Lists of Structs

Struct subtypes are automatically cast to their base struct type, so, for example, you can assign a variable of
type �Ethernet packet� to a variable of type �packet� without using as_a().

You can use as_a() to cast a base struct type to one of its subtypes; if a mismatch occurs, then NULL is
assigned. For example, the �print pkt.as_a(foreign packet)� action results in �pkt.as_a(foreign packet) =
NULL� if pkt is not a foreign packet.

When the expression to be converted is a list of structs, as_a() returns a new list of items whose type
matches the specified type parameter. If no items match the type parameter, an empty list is returned.

The list can contain items of various subtypes, but all items must have a common parent type. That is, the
specified type parameter must be a subtype of the type of the list.

Assigning a struct subtype to a base struct type does not change the declared type. Thus, you have to use
as_a() to cast the base struct type as the subtype in order to access any of the subtype-specific struct mem-
bers. See Example 6 on page 112.

Subtypes created through like inheritance exhibit the same behavior as subtypes created through when
inheritance.

3.3.1.4 Type Conversion Between Simple Lists and Keyed Lists

You can convert simple lists to keyed lists and keyed lists to simple lists. When you convert a keyed list to a
simple list, the hash key is dropped. When you convert a simple list to a keyed list, you must specify the key.

For example, if �sys.packets� is a simple list of packets and you want to convert it to a keyed list where the
�len� field of the packet struct is the key, you can do so like this:

var pkts: list (key: len) of packet
pkts = sys.packets.as_a(list (key: len) of packet)

The as_a() method returns a copy of sys.packets, so the original sys.packets is still a simple list, not a keyed
list. Thus �print pkts.key_index(130)� returns the index of the item that has a �len� field of 130, while �print
sys.packets.key_index(130)� returns an error.

If a conversion between a simple list and a keyed list also involves a conversion of the type of each item, that
conversion of each item follows the standard rules. For example, it is a rule that if you use as_a() to convert
an integer to a string, no ASCII conversion is performed. Similarly, if you use as_a() to convert a simple list
of integers to a keyed list of strings, no ASCII conversion is performed:

var lk: list (key:it) of string
var l: list of int = {1;2;3;4;6;9}

string enum no enum = string.as_a(enum)

enum string no string = enum.as_a(string)

Table 3-5�Type Conversion Between Strings and Scalars or Lists of Scalars (contin-
ued)

From To ASCII
Convert? Solutions
This is an unapproved IEEE Standards Draft, subject to change.
109

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
lk = l.as_a(list (key:it) of string)
print lk.key_index("9")
lk.key_index("9") = 5

NOTE� No checking is performed to make sure the value is valid when casting from a numeric
or boolean type to an enumerated type or when casting between enumerated types.

Example 1

In this example, the most significant bits of the 32-bit variable �i� are truncated when �i� is printed as a 16-
bit variable. When �i� is printed as a 64-bit variable, it is sign-extended to fit.

extend sys {
m() is {

var i : int = 0xffff000f;
print (i).as_a(int(bits:16)) using radix=HEX;
print (i).as_a(int(bits:64)) using radix=HEX;

};
};

Result

(i).as_a(int(bits:16)) = 0x000f
(i).as_a(int(bits:64)) = 0xffffffffffff000f

Example 2

No checking is performed when �c�, a variable of type color, is assigned a value outside its range. However,
a message is issued when the �c� is accessed by the print statement.

type color: [red=2, blue=0, yellow=1];
extend sys{

m() is {
var c : color = blue;
var i : int = 2;
var u : uint = 0x74786574;
print (i).as_a(color);
print (c).as_a(int);
c = u.as_a(color); --no checking
print c; --message issued

};
};

Result

(i).as_a(color) = red
(c).as_a(int) = 0x0
c = (Bad enum value for 'color': 1954047348)

Example 3

You can use the as_a() method to convert a boolean type to a numeric or an enumerated type or from one of
those types to a boolean.

type color: [red=2, blue=0, yellow=1];
extend sys{

m() is {
110 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var c : color = blue;
var i : int = 2;
var s : string = "hello";
print (i).as_a(bool);
print (c).as_a(bool);

};
};

Result

(i).as_a(bool) = TRUE
(c).as_a(bool) = FALSE

Example 4

You can cast between numeric types and strings with as_a(), but no ASCII conversion is performed. This
example shows how to get ASCII conversion using unpack() and the bit concatenation operator %{}.

extend sys{
 m() is {
 var i : int = 65;
 var s1 : string;
 var s2 : string = "B";
 print (i).as_a(string);
 unpack(packing.low, %{8’b0,i}, s1);
 print s1;
 --print (s2).as_a(int); --run-time error;

--”B” is not a valid integer
 i = %{s2};
 print i;
 };
};

Result

(i).as_a(string) = "65"
s1 = "A"
i = 66

Example 5

You can cast between lists of numerics and strings with as_a(). As shown in the first print statement, each
character in the string is converted to its numeric value and assigned to a separate element in the list. As
shown in the second to last print statement, using pack() to convert a string concatenates the numeric values
of the characters before assigning them to the list.

extend sys {
 m() is {
 var s: string;
 s = "hello";
 var lint: list of int;
 lint = s.as_a(list of int);
 print lint;
 print lint.as_a(string);
 var lint2: list of int;
 lint2 = pack(packing.low, s);
 print lint2 using bin;
 print lint using bin;
This is an unapproved IEEE Standards Draft, subject to change.
111

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 };
};

Result

lint =
0. 104
1. 101
2. 108
3. 108
4. 111
 lint.as_a(string) = "hello"
 lint2 =
0. 0b1101100011011000110010101101000
1. 0b1101111
 lint =
0. 0b1101000
1. 0b1100101
2. 0b1101100
3. 0b1101100
4. 0b1101111

Example 6

The �print pkt.as_a(foreign packet)� action below results in �pkt.as_a(foreign packet) = NULL� because
�pkt� is of type �Ethernet packet�.

The �print pkt.e_field� action in this example results in a compile-time error because the declared type of
�pkt� does not have a field �e_field�. However, the �print pkt.as_a(Ethernet packet).e_field� action prints
the value of the field.

type packet_protocol: [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
show() is undefined; // To be defined by children

};
extend Ethernet packet {

e_field: int;
show() is {out("I am an Ethernet packet")};

};
extend sys {

m() is {
var epkt: Ethernet packet = new;
var pkt: packet = epkt;
print pkt.type().name;
print pkt.declared_type().name;
print pkt.as_a(foreign packet);

-- print pkt.e_field; //compile-time error
print pkt.as_a(Ethernet packet).e_field;
print pkt.size;

};
};

Result

pkt.type().name = "Ethernet packet"
112 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
pkt.declared_type().name = "packet"
pkt.as_a(foreign packet) = (NULL)
pkt.as_a(Ethernet packet).e_field = 0
pkt.size = 0

Example 7

The as_a() pseudo-method, when applied to a scalar list, creates a new list whose size is the same as the
original size and then casts each element separately.

To pass a list of integer(bits: 4) as a parameter to a method that requires a list of integers, you can use
explicit casting, as follows:

struct dtypes {
increment_list (cnt: list of int) is {

for each in cnt {
cnt[index] = cnt[index] + 1;

};
};

};

extend sys {
di:dtypes;
m() is {

var small_list: list of int (bits: 5) = {3;5;7;9};
var big_list: list of int = {0;0;0;0;};
big_list = small_list.as_a(list of int);
di.increment_list(big_list);
print big_list;

};
};

Result

The print statement gives the following results:

big_list =
0. 4
1. 6
2. 8
3. 10

Example 8

When the as_a() operator is applied to a list of structs, the list items for which the casting failed are omitted
from the list.

type packet_protocol: [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
show() is undefined; // To be defined by children

};
extend Ethernet packet {

e_field: int;
show() is {out("I am an Ethernet packet")};
This is an unapproved IEEE Standards Draft, subject to change.
113

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
extend sys {

packets[5]: list of packet;
post_generate() is also {

print packets;
print packets.as_a(list of IEEE packet);

};
};

Result

Doing setup ...
Generating the test using seed 1...
 packets =
item type protocol size data Ethernet’*

0. packet Ethernet 872 (872 item* -21166003*
1. packet Ethernet 830 (830 item* -21443627*
2. packet Ethernet 834 (834 item* 1684201428
3. packet Ethernet 663 (663 item* -15262725*
4. packet IEEE 213 (213 item*
 packets.as_a(list of IEEE packet) =
item type protocol size data Ethernet’*

0. packet IEEE 213 (213 item*

Example 9

You can use as_a() to convert a string to an enumerated type. The string has to match letter by letter one of
the possible values of that type or a runtime error is issued.

This example sets a list of items of an enumerated type to the values read from a file.

type reg_address: [UARTCTL1, UARTDATA1, UARTCTL2, UARTDATA2];
extend sys {

ctl_regs: list of reg_address;

keep ctl_regs == (each line in file
"~/data/enum_items.txt").apply(it.as_a(reg_address));

run() is also {
print sys.ctl_regs;

};
};

enum_items.txt

UARTCTL1
UARTDATA1
UARTCTL2
UARTDATA2
UARTDATA1
UARTCTL2
UARTCTL2
UARTCTL1
UARTDATA1
114 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

sys.ctl_regs =
0. UARTCTL1
1. UARTDATA1
2. UARTCTL2
3. UARTDATA2
4. UARTDATA1
5. UARTCTL2
6. UARTCTL2
7. UARTCTL1
8. UARTDATA1

NOTE� If the file is not accessible, you will see a runtime error with the name of the missing file.
If there is a typo in the file, you will see a runtime error message like the following:

*** Error: Enum type ’reg_address’ has no item called ’UARTCTL’

See Also

� �Automatic Type Casting� on page 96
� �e Data Types� on page 75
� �is [not] a� on page 67

3.3.2 all_values()

Purpose

Access all values of a scalar type

Category

Pseudo routine

Syntax

all_values(scalar-type: type name): list of scalar type

Syntax example:

print all_values(reg_address);

Parameters

Description

Returns a list that contains all the legal values of the specified scalar type. When that type is an enumerated
type, the order of the items is the same as the order in which they were defined. When the type is a numeric
type, the order of the items is from the smallest to the largest.

NOTE� When the specified type has more than 1million legal values, this routine gives a compile
time error to alert you to possible memory abuse.

scalar-type Any legal e scalar type.
This is an unapproved IEEE Standards Draft, subject to change.
115

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

type reg_address: [UARTCTL1, UARTDATA1, UARTCTL2, UARTDATA2];
extend sys {

ctl_regs: list of reg_address;

keep ctl_regs ==
all_values(reg_address).all(it.as_a(string) ~"*CTL*");

run() is also {
print sys.ctl_regs;

};
};

Result

Running the test ...
 sys.ctl_regs =
0. UARTCTL1
1. UARTCTL2
116 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
4 Structs, Fields, and Subtypes

The basic organization of an e program is a tree of structs. A struct is a compound type that contains data
fields, procedural methods, and other members. It is the e equivalent of a class in other object-oriented lan-
guages. A base struct type can be extended by adding members. Subtypes can be created from a base struct
type which inherit the base type�s members, and contain additional members.

This chapter contains the following sections:

� �Structs Overview� on page 117
� �Defining Structs: struct� on page 118
� �Extending Structs: extend type� on page 121
� �Extending Subtypes� on page 123
� �Defining Fields: field� on page 125
� �Defining List Fields� on page 127
� �Creating Subtypes with When� on page 133
� �Extending When Subtypes� on page 136
� �Defining Attributes� on page 139
� �Comparison of When and Like Inheritance� on page 142

See Also

� �Syntactic Elements� on page 11
� �Struct Hierarchy and Name Resolution� on page 19
� �Overview of e Data Types� on page 75
� �Defining and Extending Scalar Types� on page 98
� Chapter 7.1, �Basic Concepts of Generation�
� Chapter 15.1, �Rules for Defining and Extending Methods�
� Chapter 19, �List Pseudo-Methods Library�
� Chapter 8.1, �Events Overview�
� Chapter 10, �Temporal Struct Members�
� Chapter 12, �Coverage Constructs�

4.1 Structs Overview

Structs are used to define data elements and behavior of components of a test environment. A struct can hold
all types of data and methods.

All user-defined structs inherit from the predefined base struct type, any_struct.

For reusability of e code, you can add struct members or change the behavior of a previously defined struct
with extend.

Inheritance is implemented in e by either of two of aspects of a struct definition:

� �when� inheritance is specified by defining subtypes with when struct members
� �like� inheritance is specified with the like clause in new struct definitions

The best inheritance methodology for most applications is �when� inheritance. See �Comparison of When
and Like Inheritance� on page 142 for more information.
This is an unapproved IEEE Standards Draft, subject to change.
117

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
4.2 Defining Structs: struct

Purpose

Define a data struct

Category

Statement

Syntax

struct struct-type [like base-struct-type] {
[struct-member; ...]}

Syntax example:

type packet_kind: [atm, eth];
struct packet {

len: int;
keep len < 256;
kind: packet_kind;

};
118 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Structs are used to define the data elements and behavior of components and the test environment. Structs
contain struct members of the types listed in the Parameters table. Struct members can be conditionally
defined (see �Creating Subtypes with When� on page 133).

The optional like clause is an inheritance directive. All struct members defined in base-struct-type are
implicitly defined in the new struct subtype, struct-type. New struct members can also be added to the inher-
iting struct subtype, and methods of the base struct type can be extended in the inheriting struct subtype.

Example 1

A struct type named �transaction� is defined in this example.

struct transaction {
address: uint;
data: list of uint;
transform(multiple:uint) is empty;

};

The �transaction� struct contains three members:

� �address� field
� �data� field
� �transform()� empty method definition

struct-type The name of the new struct type.
base-struct-type The type of the struct from which the new struct inherits its mem-

bers.
struct-member; ... The contents of the struct. The following are types of struct mem-

bers:

� data fields for storing data

� methods for procedures

� events for defining temporal triggers

� coverage groups for defining coverage points

� when, for specifying inheritance subtypes

� declarative constraints for describing relations between
data fields

� on, for specifying actions to perform upon event
occurrences

� expect, for specifying temporal behavior rules

The definition of a struct can be empty, containing no members.
This is an unapproved IEEE Standards Draft, subject to change.
119

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

In this example, a �pci_transaction� struct is derived from the �transaction� struct in the previous example,
using like inheritance. The following struct members are added in this inherited struct:

� Fields named �command�, �dual_address�, and �bus_id�
(a type statement is included, to enumerate values for the �command� field)

� A keep constraint
� A when conditional subtype
� An event definition
� An on member
� A cover group definition

The �transform()� method, defined as empty in the �transaction� base type, is given a method body using the
is only method extension syntax.

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command : PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event has been initiated on bus ", bus_id);
};
cover initiate is {

item command;
};
transform(multiple:uint) is only {

address = address * multiple;
};

};

Example 3

Additional subtypes can, in turn, be derived from a subtype. In the following example, an �agp_transaction�
subtype is derived from the �pci_transaction� subtype of the previous example. Each subtype can add fields
to its base type, and place its own constraints on fields of its base type.

type AGPModeType: [AGP_2X, AGP_4X];
struct agp_transaction like pci_transaction {

block_size: uint;
mode: AGPModeType;
when AGP_2X agp_transaction {

keep block_size == 32;
};
when AGP_4X agp_transaction {

keep block_size == 64;
};

};
120 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Struct Members� on page 13
� �Extending Structs: extend type� on page 121
� �Extending Subtypes� on page 123
� �Creating Subtypes with When� on page 133
� �Comparison of When and Like Inheritance� on page 142
� Chapter 3, �Data Types�
� Chapter 15, �Methods�
� Chapter 7, �Generation Constraints�
� Chapter 8, �Events�
� Chapter 10, �Temporal Struct Members�
� Chapter 12, �Coverage Constructs�

4.3 Extending Structs: extend type

Purpose

Extend an existing data struct

Category

Statement

Syntax

extend [struct-subtype] base-struct-type {
[struct-member; ...]}

Syntax example:

type packet_kind: [atm, eth];
struct packet {

len: int;
kind: packet_kind;

};
extend packet {

keep len < 256;
};
This is an unapproved IEEE Standards Draft, subject to change.
121

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Adds struct members to a previously defined struct or struct subtype.

Members added to the base struct type in extensions apply to all other extensions of the same struct. Thus,
for example, if you extend a method in a base struct with is only, it overrides that method in every one of the
like children.

NOTE� If like inheritance has been used on a struct type, there are limitations on how the original
base struct type definition can be further extended with extend. See �Restrictions on Like
Inheritance� on page 149.

Example 1

In the following example, a struct type named �pci_transaction� is defined in one module, which is then
imported into another module where a field named �data_phases� and two constraints are added in an exten-
sion to the struct.

<'
// module pci_transaction_definition.e
type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,

MEM_READ=0x6, MEM_WRITE=0x7];
struct pci_transaction {

address: uint;
data: list of uint;
command : PCICommandType;
bus_id: uint;
event initiate;
on initiate {

out("An event has been initiated on bus ", bus_id);
};

struct-subtype Adds struct members to the specified subtype of the base struct type only. The
added struct members are known only in that subtype, not in other subtypes.

base-struct-type The base struct type to extend.
member; ... The contents of the struct. A struct member is one of the following types:

� data fields for storing data

� methods for procedures

� events for defining temporal triggers

� coverage groups for defining coverage points

� when, for specifying inheritance subtypes

� declarative constraints for describing relations between data fields

� on, for specifying actions to perform upon event occurrences

� expect, for specifying temporal behavior rules

The extension of a struct can be empty, containing no members.
122 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
cover initiate is {
item command;

};
};
'>

<'
// module pci_transaction_extension.e
import pci_transaction_definition;
extend pci_transaction {

data_phases: uint;
keep data_phases in [0..7];
keep data.size() == data_phases;

};
'>

Example 2

In the following, the �tx_packet� struct inherits its kind field from the �packet� struct definition, from which
it is derived using like inheritance. The �keep kind == atm� constraint in the packet struct extension applies
to both packet instances and tx_packet instances. The �keep len > 10� constraint in the tx_packet subtype
applies only to tx_packet instances, reducing the range of len in tx_packet instances to [11..40]:

type packet_kind: [atm, eth];
struct packet {

len: int;
keep soft len <= 40;
kind: packet_kind;

};
struct tx_packet like packet {

send_delay: int [0..100];
keep len > 10;

};
extend packet {

keep kind == atm;
};

See Also

� �Defining Structs: struct� on page 118
� �Extending Subtypes� on page 123
� �Creating Subtypes with When� on page 133
� �Comparison of When and Like Inheritance� on page 142
� Chapter 3, �Data Types�
� Chapter 15, �Methods�
� Chapter 7, �Generation Constraints�
� Chapter 8, �Events�
� Chapter 10, �Temporal Struct Members�
� Chapter 12, �Coverage Constructs�

4.4 Extending Subtypes

A struct subtype is an instance of the struct in which one of its fields has a particular value. For example, the
�packet� struct defined in the following example has �atm packet� and �eth packet� subtypes, depending on
whether the �kind� field is �atm� or �eth�.
This is an unapproved IEEE Standards Draft, subject to change.
123

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
type packet_kind: [atm, eth];
struct packet {

len: int;
kind: packet_kind;

};
extend packet {

keep len < 256;
};

A struct subtype can optionally be specified with extend, so that the extension only applies to that subtype.

Example 1

The following shows a definition of a struct type named �packet�, an extension that adds a field named �len�
to the struct definition, and a second extension that adds a field named �transmit_size� only to packets
whose �kind� is �transmit�.

type packet_kind: [transmit, receive];
struct packet {

kind: packet_kind;
};
extend packet {

len: int;
};
extend transmit packet {

transmit_size: int;
};
The “extend transmit packet” syntax above is equivalent to:
extend packet {

when transmit packet {
transmit_size: int;

};
};

Example 2

The �packet� struct definition below is extended with a boolean field named �legal�. Two additional exten-
sions add a field named �header� to the packet struct: for packets whose �legal� value is TRUE, the �header�
field gets a �legal_header� struct instance. For packets whose �legal� values is FALSE, the �header� field
gets a �bad_header� struct instance.

type packet_kind: [atm, eth];
struct packet {

len: int;
keep soft len == 40;
kind: packet_kind;

};

extend packet{
legal: bool;

};

struct legal_header {
legal_ck: byte;

};
124 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct bad_header {
bad_ck: byte;

};

extend legal packet {
header: legal_header;

};
extend FALSE'legal packet {

header: bad_header;
};

See Also

� �Defining Structs: struct� on page 118
� �Extending Structs: extend type� on page 121
� �Creating Subtypes with When� on page 133
� �Extending When Subtypes� on page 136

4.5 Defining Fields: field

Purpose

Define a struct field

Category

Struct member

Syntax

[!][%] field-name[: type] [[min-val .. max-val]] [((bits | bytes):num)]

Syntax example:

type NetworkType: [IP=0x0800, ARP=0x8060] (bits: 16);
struct header {

address: uint (bits: 48);
hdr_type: NetworkType;
!counter: int;

};
This is an unapproved IEEE Standards Draft, subject to change.
125

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Defines a field to hold data of a specific type. You can specify whether it is a physical field or a virtual field,
and whether the field is to be automatically generated. For scalar data types, you can also specify the size of
the field in bits or bytes.

Physical Fields

A field defined as a physical field (with the �%� option) is packed when the struct is packed. Fields that rep-
resent data that is to be sent to the HDL device in the simulator or that are to be used for memories, need to
be physical fields. Nonphysical fields are called virtual fields and are not packed automatically when the
struct is packed, although they can be packed individually.

If no range is specified, the width of the field is determined by the field�s type. For a physical field, if the
field�s type does not have a known width, you must use the (bits | bytes : num) syntax to specify the width.

Ungenerated Fields

A field defined as ungenerated (with the �!� option) is not generated automatically. This is useful for fields
that are to be explicitly assigned during the test, or whose values involve computations that cannot be
expressed in constraints.

Ungenerated fields get default initial values (0 for scalars, NULL for structs, empty list for lists). An
ungenerated field whose value is a range (such as [0..100]) gets the first value in the range. If the field is a
struct, it will not be allocated and none of the fields in it will be generated.

Assigning Values to Fields

Unless you define a field as ungenerated, a value is generated for it when the struct is generated, subject to
any constraints that exist for the field. However, even for generated fields, you can always assign values in
user-defined methods or predefined methods such as init(), pre_generate(), or post_generate(). The ability
to assign a value to a field is not affected by either the �!� option or generation constraints.

! Denotes an ungenerated field. The �!� and �%� options can be used together,
in either order.

% Denotes a physical field. The �!� and �%� options can be used together, in
either order.

field-name The name of the field being defined.
type The type for the field. This can be any scalar type, string, struct, or list.

If the field name is the same as an existing type, you can omit the �: type�
part of the field definition. Otherwise, the type specification is required.

min-val..max-val An optional range of values for the field, in the form. If no range is specified,
the range is the default range for the field�s type.

(bits | bytes: num) The width of the field in bits or bytes. This syntax allows you to specify a
width for the field other than the default width.

This syntax can be used for any scalar field, even if the field has a type with
a known width.
126 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

The struct definitions below contain several types of fields.

type NetworkType: [IP=0x0800, ARP=0x8060] (bits: 16);
struct header {

%address: uint (bits: 48);
%length: uint [0 .. 32];

};
struct packet {

hdr_type: NetworkType;
%hdr: header;
is_legal: bool;
!counter: uint;

};
extend sys {

packet;
};

The �header� struct contains two physical fields:

� A field named �address� which is a 48-bit field of data type uint
� A field named �length� of data type uint

The �packet� struct contains:

� An enumerated �hdr_type� field that can be either �IP� or �ARP�
� A physical field named �hdr� of type �header�, which will hold an instance of the �header� struct
� A boolean �is_legal� field
� An ungenerated uint field named �counter�

The sys struct extension contains a field for an instance of a �packet� struct. No type declaration is required
for the �packet� field in the sys extension, since the field name is the same as the name of a type that was
already defined.

See Also

� Chapter 3, �Data Types�
� Chapter 7, �Generation Constraints�
� Chapter 17, �Packing and Unpacking�
� �list of� on page 127

4.6 Defining List Fields

This section shows the syntax and examples of lists in general, and of keyed lists. It contains these topics:

� �list of� on page 127
� �list(key) of� on page 129

4.6.1 list of

Purpose

Define a list field
This is an unapproved IEEE Standards Draft, subject to change.
127

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Struct member

Syntax

[!][%]list-name[[length-exp]]: list of type

Syntax example:

packets: list of packet;

Parameters

Description

Defines a list of items of a specified type.

An initial size can be specified for the list. The list initially contains that number of items. The size conforms
to the initialization rules, the generation rules and the packing rules. Even if an initial size is specified, the
list size can change during the test if the list is operated on by a list method that changes the number of
items.

All list items are initialized to their default values when the list is created. For a generated list, the initial
default values are replaced by generated values.

For information about initializing list items to particular values, see �Assignment of Lists� on page 93 and
�Constraining Lists� on page 264.

Example 1

Three list fields are defined in the struct definitions below. The �cell� struct contains a list of bytes, the
�packet� struct contains a list of �cell� struct instances, and the sys struct extension contains a list of 16
�packet� struct instances.

struct cell {
%data: list of byte;
%length: uint;

};
struct packet {

%is_legal: bool;
cells: list of cell;

};

! Do not generate this list. The �!� and �%� options can be used together, in either
order.

% Denotes a physical list. The �!� and �%� options can be used together, in either
order.

list-name The name of the list being defined.
length-exp An expression that gives the initial size for the list. The expression must evaluate to

a non-negative integer.
type The type of items in the list. This can be any scalar type, string, or struct. It cannot

be a list.
128 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend sys {
packets[16]: list of packet;

};

Example 2

Two lists of cells are defined in this following example, both with initial sizes specified using the [length]
syntax. For the cells_1 list, the length expression is a value generated from within the 16 to 32 range speci-
fied for the num_cells field. For the cells_2 list, the length expression is the integer value of an item from the
enumerated list named l_sel (sm has value 0, med has value 1, lge has value 3 due to their positions in the
enumerated list).

struct cell {
%data: list of byte;
%length: uint;

};
struct packet {

%is_legal: bool;

num_cells: int;
keep num_cells in [16..32];
cells_1[num_cells]: list of cell;

l_sel: [sm, med, lge];
cells_2[l_sel.as_a(int)]: list of cell;

};

See Also

� �Defining Fields: field� on page 125
� �Expressions� on page 19
� Chapter 3, �Data Types�
� Chapter 7, �Generation Constraints�
� Chapter 17, �Packing and Unpacking�
� Chapter 19, �List Pseudo-Methods Library�

4.6.2 list(key) of

Purpose

Define a keyed list field

Category

Struct member

Syntax

![%]list-name: list(key: key-field) of type

Syntax example:

!locations: list(key: address) of location;
This is an unapproved IEEE Standards Draft, subject to change.
129

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Keyed lists are used to enable faster searching of lists by designating a particular field or value which is to be
searched for. A keyed list can be used, for example, in the following ways:

� As a hash table, in which searching only for a key avoids the overhead of reading the entire contents
of each item in the list.

� For a list that has the capacity to hold many items, but which in fact contains only a small percentage
of its capacity, randomly spread across the range of possible items. An example is a sparse memory
implementation.

Although all of the operations that can be done using a keyed list can also be done using a regular list, using
a keyed list provides an advantage in the greater speed of searching a keyed list.

Besides the key parameter, the keyed list syntax differs from regular list syntax in the following ways:

� The list must be declared with the �!� do-not-generate operator. This means that you must build a
keyed list item by item, since you cannot generate it.

� The �[exp]� list size initialization syntax is not allowed for keyed lists. That is, �list[exp]: list(key:
key) of type� is not legal. Similarly, you cannot use a keep constraint to constrain the size of a keyed
list.

The keyed list pseudo-methods (see �Keyed List Pseudo-Methods� on page 618) only work on lists that
were defined and created as keyed lists. Conversely, restrictions apply when using regular list pseudo-meth-
ods or other operations on keyed lists. See �Restrictions on Keyed Lists� on page 624.

A keyed list is a distinct type, different from a regular list. This means that you cannot assign a keyed list to
a regular list, nor assign a regular list to a keyed list: if list_a is a keyed list and list_b is a regular list, list_a
= list_b is a syntax error.

If the same key value exists in more than one item in a keyed list. the keyed list pseudo-methods always use
the item latest in the list (the one with the highest list index number). Other items with the same key value
are ignored.

Example 1

In the following example, the list named cl is declared to be a keyed list of four-bit uints, with the key being
the list item itself. That is, the key is the value of a four-bit uint. A list of 10 items is built up by generating
items and adding them to the keyed list in the for loop.

! Do not generate this list. For a keyed list, the �!� is required, not optional.
% Denotes a physical list. The �%� option may precede or follow the �!�.
list-name The name of the list being defined.
key-field The key of the list. For a list of structs, it is the name of a field of the struct. For a

list of scalar or string items, it is the item itself, represented by the it variable.

This is the field or value which the keyed list pseudo-methods will check when they
operate on the list.

type The type of items in the list. This can be any scalar type, string, or struct. It cannot
be a list.
130 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
In the if action, the list.key_exists() and list.key_index() keyed list pseudo-methods are used to check for
the existence of an item with the value of 8, and to print the list and the key value�s index if it exists.

<’
extend sys {

!cl: list(key: it) of uint(bits: 4);
run() is also {

var ch: uint(bits: 4);
for i from 0 to 10 {

gen ch;
cl.add(ch);

};
if cl.key_exists(8) then {

print cl;
print cl.key_index(8);

};
};

};
’>

Results

cl = (10 items, dec):
13 5 4 11 9 14 3 8 5 4 .0

cl.key_index(8) = 2

Example 2

In the following example, the struct type named s has fields a and b. A keyed list of s structs, with the n field
as the key, is declared in the sys extension, and the list is built by the bl() method.

In the run() method, the list.key_exists() keyed list pseudo-method is used to check whether the value 98
occurs in the n field in any of the structs in the keyed list. It so happens that the n value in the fourth struct in
the list (index 3) is 98. Other keyed list pseudo-methods are then used to print the struct instance and the list
index number of the struct that has n equal to 98.

Note that two list instances, index 12 and index 15, have the value 95 for n. If 95 was entered as the key
value for the list.key_exists() and list.key_index() pseudo-methods, those methods would use the last
instance, that is index number 15, and ignore the instance with index 12.

<’
struct s {

n: byte;
b: bit;

};

extend sys {
!sl: list(key: n) of s;
bl() is {

for i from 0 to 15 {
var t: s;
gen t;
sl.add(t);

};
};
This is an unapproved IEEE Standards Draft, subject to change.
131

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
run() is also {
bl();
print sl;
var b: bool;
b = sl.key_exists(98);
print b;
if b {

print sl.key(98);
print sl.key_index(98);

};
};

};
’>

Results

sl =
item type n b

0. s 109 0
1. s 122 0
2. s 133 1
3. s 98 0
4. s 163 0
5. s 196 0
6. s 159 0
7. s 223 1
8. s 118 1
9. s 192 1
10. s 22 1
11. s 170 1
12. s 95 0
13. s 153 1
14. s 169 0
15. s 95 0

b = TRUE
sl.key(98) = s-@0: s

@tmp
0 n: 98
1 b: 0

sl.key_index(98) = 3

Example 3

In the following example, a keyed list is used to model sparse memory. A struct type named location has
address and value fields. A keyed list named locations, with address as the key, is used to hold instances of
location structs generated in the while loop. For each new location struct generated, the list.key_exists()
pseudo-method checks to see if the list already contains an instance with that address value. If it is not
already in the list, the new instance is added to the list.This ensures that the keyed list will contain exactly
LLEN (50) items, all with different address values.

<’
define LLEN 50;

struct location {
address: uint(bits: 8);
value: int;

};
132 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend sys {
!locations: list(key: address) of location;
post_generate() is also {

var loc: location = new;
while locations.size() < LLEN do {

gen loc;
if locations.key_exists(loc.address) == FALSE then {

locations.add(loc);
};

};
};

};
’>

See Also

� �Keyed Lists� on page 85
� �Keyed List Pseudo-Methods� on page 618

4.7 Creating Subtypes with When

4.7.1 Overview

The when struct member creates a conditional subtype of the current struct type, if a particular field of the
struct has a given value. This is called �when� inheritance, and is one of two techniques that e provides for
implementing inheritance. The other is called �like� inheritance. When inheritance is described in this sec-
tion. Like inheritance is described in �Defining Structs: struct� on page 118.

When inheritance is the recommended technique for modeling in e. Like inheritance is more appropriate for
procedural testbench programming. When and like inheritance are compared in �Comparison of When and
Like Inheritance� on page 142.

4.7.2 when

Purpose

Create a subtype

Category

Struct member

Syntax

when struct-subtype base-struct-type
{struct-member; ...}

Syntax example:

struct packet {
len: uint;
good: bool;
This is an unapproved IEEE Standards Draft, subject to change.
133

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
when FALSE'good packet {
pkt_msg() is {

out("bad packet");
};

};
};

Parameters

Description

You can use the when construct to create families of objects, in which multiple subtypes are derived from a
common base struct type.

A subtype is a struct type in which specific fields of the base struct have particular values. For example:

� If a struct type named �packet� has a field named �kind� that can have a value of �eth� or �atm�, then
two subtypes of �packet� are �eth packet� and �atm packet�.

� If the �packet� struct has a boolean field named �good�, two subtypes are �FALSE�good packet� and
�TRUE�good packet�.

Subtypes can also be combinations of fields, such as �eth TRUE�good packet� and
�eth FALSE�good packet�.

Struct members you define in a when construct can be accessed only in the subtype, not in the base struct.
This provides a way to define a subtype that has some struct members in common with the base type and all
of its other subtypes, but has other struct members that belong only to the current subtype.

NOTE� Once you have used like inheritance to create a subtype of a base struct type, you cannot
extend the base type using when.

struct-subtype A subtype declaration in the form type-qualifier'field-name.

The type-qualifier is one of the legal values for the field named by field-
name. If the field-name is a boolean field, and its value is TRUE for the sub-
type, you can omit type-qualifier. That is, if �big� is a boolean field, �big� is
the same as �TRUE'big�.

The field-name is the name of a field in the base struct type. Only boolean or
enumerated fields can be used. If the field type is boolean, the type qualifier
must be TRUE or FALSE. If the field type is enumerated, the qualifier must
be a value of the enumerated type. If the type qualifier can apply to only one
field in the struct, you can omit 'field-name.

More than one type-qualifier'field-name combination can be stated, to cre-
ate a subtype based on more than one field of the base struct type.

base-struct-type The struct type of the current struct (in which the subtype is being created).
struct-member Definition of a struct member for the struct subtype. One or more new struct

members can be defined for the subtype.
134 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

An instance of the �packet� struct below can have a �kind� of either �transmit� or �receive�. The when con-
struct creates a �transmit packet� subtype. The �length� field and the print() method apply only to packet
instances that have �kind� values of �transmit�.

type packet_kind: [transmit, receive];
struct packet {

kind: packet_kind;
when transmit packet {

length: int;
print() is {

out("packet length is: ", length);
};

};
};

Example 2

The �op1� field in the struct definition below can have one of the enumerated �reg_n� type values (REG0,
REG1, REG2, or REG3). The �kind� field can have a value of �imm� or �reg�, and the �dest� field can have
a value of �mm_1� or �reg�.

The �REG0'op1� subtype specification in the first when construct creates a subtype of instances in which
the �op1� value is �REG0�. This subtype has all the �instr� struct fields plus a �print_op1()� method.

The �reg'kind� subtype specification in the second when construct creates a subtype of instances in which
the �kind� value is �reg�. This subtype also has all the �instr� struct fields plus a �print_kind()� method.

It is necessary to add the �'kind� expression in the second when construct because the �dest� field can also
have a value of reg, which means that �reg� is ambiguous without the further specification of the field name.

type reg_n : [REG0, REG1, REG2, REG3];
struct instr {

%op1: reg_n;
kind: [imm, reg];
dest: [mm_1, reg];

};
extend instr {

when REG0'op1 instr {
print_op1() is {

out("instr op1 is REG0");
};

};
when reg'kind instr {

print_kind() is {
out("instr kind is reg");

};
};

};

See Also

� �Defining Structs: struct� on page 118
� �Comparison of When and Like Inheritance� on page 142
� �is [not] a� on page 67
This is an unapproved IEEE Standards Draft, subject to change.
135

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
4.8 Extending When Subtypes

There are two general rules governing the extensions of when subtypes:

� If a struct member is declared in the base struct, it cannot be re-declared in any when subtype, but it
can be extended.

� With the exception of coverage groups and the events associated with them, any struct member
defined in a when subtype does not apply or is unknown in other subtypes, including:

fields
constraints
events
methods
on
expect
assume

4.8.1 Coverage and When Subtypes

All coverage events must be defined in the base struct. Defining the ready3 event within the ADD subtype,
for example, results in a load time error. Coverage groups can be defined in the base struct or in the subtype.

struct operation {
opcode: [ADD, SUB];
op1: uint;
op2: uint;
op3: uint;

event ready is rise(’top.ready’);
event ready3 is rise(’top.op3ready’); // Must define here

cover ready is {
item op1;
item op2;
cross op1, op2;

};
};
extend operation {

when ADD operation {
// event ready3 is rise(’top.op3ready’); // Can’t define here

cover ready3 is {
item op1;
item op2;
item op3;
cross op1, op2, op3;
};

};

};

4.8.2 Extending Methods in When Subtypes

A method defined or extended within a when construct is executed in the context of the subtype and can
freely access the unique struct members of the subtype with no need for any casting.
136 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
When a method is declared in a base type, each extension of the method in a subtype must have the same
parameters and return type as the original declaration. For example, because do_op() is defined with two
parameters in the base type, extending do_op() in the ADD subtype to have three parameters results in a load
time error.

struct operation {
 opcode: [ADD, ADD3];
 op1: uint;
 op2: uint;

 do_op(op1: uint, op2: uint): uint is {
 return op1 + op2;
 };
};

extend operation {
 when ADD3 operation {

op3: uint;
// do_op(op1:uint,op2:uint,op3:uint): uint is { // Load time error
// return op1 + op2 +op3;
// };
 };
};

However, if a method is not declared in the base type, each definition of the method in a subtype can have
different parameters and return type. The following variation of the example above loads without error.

struct operation {
 opcode: [ADD, ADD3];
 op1: uint;
 op2: uint;
};

extend operation {
 when ADD operation {
 do_op(op1: uint, op2: uint): uint is {
 return op1 + op2;
 };
 };
 when ADD3 operation {
 op3: uint;
 do_op(op1:uint,op2:uint,op3:uint): uint is {
 return op1 + op2 +op3;
 };
 };
};

If more than one method of the same name is known in a when subtype, any reference to that method is
ambiguous and results in a load-time error. In the following example, the legal ethernet packet subtype
inherits two definitions of the method show(). The error is not reported when the ambiguity becomes possi-
ble (when the legal ethernet packet subtype is extended) but when the reference to the show() method is
made.

type protocol: [ethernet, ieee, foreign];
struct packet {
 legal: bool;
 protocol;
This is an unapproved IEEE Standards Draft, subject to change.
137

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 when legal packet {
 show() is {out("it is a legal packet")};
 };

 when ethernet packet {
 show() is {out("it is a ethernet packet")};
 };

 when legal ethernet packet{
le:uint;

};
};

extend sys {
 packets: list of packet;

post_generate() is {
// for each legal ethernet packet (p) in packets {
// p.show(); // Load-time error
// };
 };
};

To remove the ambiguity from such a reference, use the as_a() type casting operator or the when subtype
qualifier syntax:

p.as_a(legal packet).show();
break on call legal packet.show()

NOTE� Method calls are checked when the e code is parsed. If there is no ambiguity, the method
to be called is selected and all similar references are resolved in the same manner. In the example
above, the extension to ethernet packet could be placed in a separate file like this:

extend packet {
when ethernet packet {

 show() is {out("it is a ethernet packet")};
 };
};

If this file is loaded after the rest of the e code has been loaded, no error is issued because the method call to
p.show() was resolved when the first file was loaded. Any call to p.show() always prints:

it is a legal packet

See Also

� �Defining Structs: struct� on page 118
� �Extending Structs: extend type� on page 121
� �Extending Subtypes� on page 123
� �Creating Subtypes with When� on page 133
� �Rules for Defining and Extending Methods� on page 459
138 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
4.9 Defining Attributes

4.9.1 Overview

You can define attributes that control how a field behaves when it is copied or compared. These attributes
are used by deep_copy(), deep_compare(), and deep_compare_physical().

4.9.2 attribute field

Purpose

Define the behavior of a field when copied or compared

Category

Struct member

Syntax

attribute field-name attribute-name = exp

Syntax example:

attribute channel deep_copy = reference;

Parameters

Description

Defines how a field behaves when copied or compared. For a full description of the behavior specified by
each expression, see the description of the �deep_copy()� on page 713, �deep_compare()� on page 716, or
�deep_compare_physical()� on page 720 routine.

The attribute construct can appear anywhere, including inside a when construct or an extend construct.

field-name The name of a field in the current struct.
attribute-name is one of the following:
deep_copy Controls how the field is copied by the deep_copy() routine.
deep_compare Controls how the field is compared by the deep_compare() rou-

tine.
deep_compare_physical Controls how the field is compared by the

deep_compare_physical() routine.
deep_all Controls how the field is copied by the deep_copy() routine or

compared by the deep_compare() or deep_compare_physical()
routines.

exp is one of the following:
normal Perform a deep (recursive) copy or comparison.
reference Perform a shallow (non-recursive) copy or comparison.
ignore Do not copy or compare.
This is an unapproved IEEE Standards Draft, subject to change.
139

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
To determine which attributes of a field are valid, all extensions to a unit or a struct are scanned in the order
they were loaded. If several values are specified for the same attribute of the same field, the last attribute
specification loaded is the one that is used.

Example

This example shows the effects of field attributes on the deep_copy() and deep_compare() routines. An
instance of �packet�, which contains three fields of type �port� (also a struct type), is deep copied and then
deep compared. Because each of the three �port� fields has a different attribute, the way each field is copied
and compared is also different.

<’
struct port {
 %counter: int;
};

struct packet {
 %parent: port;
 attribute parent deep_all = reference;

 %origin: port;
 attribute origin deep_copy = ignore;

 %dest: port;
 attribute dest deep_copy = normal;
 attribute dest deep_compare = ignore;
 attribute dest deep_compare_physical = ignore;

 %length: int;
};

extend sys {
 run() is also {
 var port1: port = new port;
 var port2: port = new port;
 var port3: port = new port;

 var packet1: packet = new packet with {
 .parent = port1;
 .origin = port2;
 .dest = port3;
 };

 var packet2: packet = deep_copy(packet1);

 out("");
 out("parent of packet1 is : ", packet1.parent);
 out("parent of packet1 should be: ",

port1, " original copy");
 out("");

 out("parent of packet2 is : ", packet2.parent);
 out("parent of packet2 should be: ", port1,

" shallow copy");
 out("");

 out("origin of packet1 is : ", packet1.origin);
 out("origin of packet1 should be: ", port2,
140 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
" original copy");
 out("");

 out("origin of packet2 is : ", packet2.origin);
 out("origin of packet2 should be: \

a NULL port, attribute: copy: ignore");
 out("");

 out("dest of packet1 is : ", packet1.dest);
 out("dest of packet1 should be: ", port3);
 out("");

 out("dest of packet2 is : ", packet2.dest);
 out("dest of packet2 should be: a different \

port, attribute: copy: normal (deep)");
 out("");

 packet2.dest = new port; // force different field value

 var ldiff: list of string =

deep_compare(packet1, packet2, UNDEF);
 out(ldiff, "\n");
 out("Notice a diff in the origin field, \

attribute is normal for deep_compare");
 out("Notice no diff for the dest field, \

attribute is ignore for deep_compare");
 out("");
 };
};

’>

Result

Here are the results of running the packet example:

1 Running the test ...
2
3 parent of packet1 is : port-@0
4 parent of packet1 should be: port-@0 original copy
5
6 parent of packet2 is : port-@0
7 parent of packet2 should be: port-@0 shallow copy
8
9 origin of packet1 is : port-@1
10 origin of packet1 should be: port-@1 original copy
11
12 origin of packet2 is : (a NULL port)
13 origin of packet2 should be: a NULL port,
14 attribute: copy: ignore
15
16 dest of packet1 is : port-@2
17 dest of packet1 should be: port-@2
18
19 dest of packet2 is : port-@3
20 dest of packet2 should be: a different port,
21 attribute: copy: normal (deep)
22
This is an unapproved IEEE Standards Draft, subject to change.
141

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
23 Differences between packet-@4 and packet-@5
24 --
25 origin: port-@1 != (a NULL port)
26
27 Notice a diff in the origin field,
28 attribute is normal for deep_compare
29 Notice no diff for the dest field,
30 attribute is ignore for deep_compare

Line 3-Line 7: Because the parent field has the deep_all attribute reference, the parent field of the packet2
instance contains a pointer to the parent field of packet1 (port-@0).

Line 9-Line 14: Because the origin field has the deep_copy attribute ignore, the origin field of the packet2
instance contains a NULL instance of type port.

Line 16-Line 21: Because the dest field has the deep_copy attribute normal, the dest field of the packet2
instance contains a new instance of type port (port-@3).

Line 23-Line 25: These lines show the results of a deep_compare() of packet1 and packet2. Note that just
prior to this comparison, a new instance of type port was assigned to the dest field of packet2. However, no
difference is reported for the dest fields of the two packet instances, because the deep_compare attribute of
the dest field is ignore. A difference is reported for the origin field because the deep_compare attribute is
normal and the fields are not the equal.

See Also

� �deep_copy()� on page 713
� �deep_compare()� on page 716
� �deep_compare_physical()� on page 720

4.10 Comparison of When and Like Inheritance

There are two ways to implement object-oriented inheritance in e:

� Like inheritance is the classical, single inheritance familiar to users of all object-oriented languages.
� When inheritance is a concept introduced by e. It is less familiar initially, but lends itself more easily

to the kind of modeling that people do in e.

This section discusses the pros and cons of both these types of inheritance and recommends when to use
each of them.

4.10.1 Summary of When versus Like

In general, �when� inheritance should be used for modeling all DUT-related data structures. It is superior
from a knowledge representation point of view and from an extensibility point of view. When inheritance
lets you:

� Explicitly reference a field that determines the when subtype
� Create multiple, orthogonal subtypes
� Use random generation to generate lists of objects with varying subtypes
� Easily extend the struct later
142 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Although like inheritance has more restrictions than when inheritance, it is recommended in some special
cases because:

� Like inheritance is somewhat more efficient than when inheritance.
� Generation of objects that use like inheritance can also be more efficient.

4.10.2 A Simple Example of When Inheritance

You can create a when subtype of a generic struct using any field in the struct that is a boolean or enumer-
ated type. This field, which determines the when subtype of a particular struct instance, is called the when
determinant. In the following example, the when determinant is �legal�.

struct packet {
legal: bool;

when legal packet {
pkt_msg() is {

out("good packet");
};

};
};

NOTE� The following syntax is used in this document because it looks closer to the �like�
version:

extend legal packet {...}

This syntax is exactly equivalent to the when construct:

extend packet {when legal packet {...}}

The following example shows a generic packet struct with 3 fields, protocol, size and data, and an abstract
method show(). In this example, the �protocol� field is the determinant of the when version of the packet.
That is, this field determines whether the packet instance has a subtype of �IEEE�, �Ethernet�, or �foreign�.
In this example. the Ethernet packet subtype is extended by adding a field and extending the show() method.

type packet_protocol: [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
show() is undefined; // To be defined by children

};
extend Ethernet packet {

e_field: int;
show() is {out("I am an Ethernet packet")};

};

Of course, it is possible for a struct to have more than one when determinant. In the following example, the
Ethernet packet subtype is extended with a field of a new enumerated type, Ethernet_op.

type Ethernet_op: [e1, e2, e3];
extend Ethernet packet { op: Ethernet_op; };
extend e1 Ethernet packet {

e1_foo: int;
This is an unapproved IEEE Standards Draft, subject to change.
143

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
show() is {out("I am an e1 Ethernet packet")};
};

Because it is possible for a struct to have more than one when determinant, the inheritance tree for a struct
using when inheritance consists of any number of orthogonal trees, each rooted at a separate enumerated or
boolean field in the struct. Figure 4-1 on page 144 shows a when inheritance tree consisting of 3 orthogonal
trees rooted in the legal, protocol, and op fields. Note that the when subtypes that have not been explicitly
defined, such as IEEE packet, exist implicitly.

Figure 4-1�When Inheritance Tree for Packet Struct Subtypes

4.10.3 A Simple Example of Like Inheritance

You can create a like child of a generic struct using the like construct. In this example, a child
Ethernet_packet is created from the generic struct packet and is extended by adding a field and extending the
show() method.

struct packet {
size: int [0..1k];
data[size]: list of byte;
show() is undefined; // To be defined by children

};
struct Ethernet_packet like packet {

e_field: int;
show() is {out("I am an Ethernet packet")};

};
...

In the same way, you can create an IEEE_packet from packet using like:

struct IEEE_packet like packet {
i_field: int;
show() is {out("I am an IEEE packet")};

packet

e1 e2 e3

op

IEEE Ethernet foreign

protocol

legal
FALSE

TRUE
144 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};

You can also easily create an e1_Ethernet_packet from Ethernet_packet using like inheritance.

struct e1_Ethernet_packet like Ethernet_packet {
e1_foo: int;
show() is {out("I am an e1 Ethernet packet")};

};

In contrast to the when inheritance tree, the like inheritance tree for the packet type is a single tree where
each subtype must be defined explicitly, as shown in Figure 4-2. This difference between the like and when
inheritance trees is the essential difference between like and when inheritance.

Figure 4-2�Like Inheritance Tree for Packet Struct Subtypes

4.10.4 Advantages of Using When Inheritance for Modeling

While the like version and the when version look similar, and the �like� version may seem more natural to
people familiar with other object-oriented languages, the �when� version is much better for the kind of mod-
eling typically done in e. There are several reasons for this, which are explained in more detail below:

� �You can refer explicitly to the determinant fields� on page 145
� �You can create multiple orthogonal subtypes� on page 146
� �You can use random generation to create lists of objects with varying subtypes� on page 147
� �You can easily extend the struct later� on page 148
� �You can create a new type by simple extension� on page 148

You can refer explicitly to the determinant fields

In the when version, the determinant of the when is an explicit field. In the like version, there is no explicit
field that determines whether a packet instance is an Ethernet packet, an IEEE packet, or a foreign packet.
The explicit determinant fields provide several advantages:

� Explicit determinant fields are more intuitive.
Fields are more tangible than types and correspond better to the way hardware engineers perceive
architectures. Having a field whose value determines what fields exist under it is familiar to engi-
neers. (It is similar to C unions, for example.)

� You can specify the attributes of determinants that are physical fields.

packet

IEEE_packetEthernet_packet

e1_Ethernet_packet
This is an unapproved IEEE Standards Draft, subject to change.
145

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
If the determinant is a physical field, you probably want to specify its size in bits, the mapping of
enumerated items to values, where it is in the order of fields, and so on. These things are done very
naturally with when inheritance, because the determinant is just another field. For example:

%protocol: packet_protocol (bits: 2);

� With like inheritance, you can define the same field as the when determinant, but you also have to tie
it to the type with code equivalent to the following:

var pkt: packet;

case protocol {

Ethernet {var epkt: Ethernet packet; gen epkt; pkt = epkt;};

IEEE {var ipkt: IEEE packet; gen ipkt; pkt = ipkt;};

};

There is an added inconvenience of having to generate or calculate protocol separately from the rest
of the packet.

� You can constrain the when determinant.
Using when inheritance, it is very natural to write constraints like these in a test:

keep protocol in [Ethernet, IEEE];

keep protocol != IEEE;

keep soft protocol == select { 20: IEEE; 80: foreign; };

keep packets.is_all_iterations(.protocol, ...);

Constraining the value of fields in various ways is a main feature of generation. Doing the same with
like inheritance is more complicated. For example, the first constraint above might be stated some-
thing like this:

keep me is an Ethernet_packet or me is an IEEE_packet;

// This pseudocode is not a legal constraint specification

However, constraints like this can become quite complex in like inheritance. Furthermore, there is
no way to write the last two constraints.

You can create multiple orthogonal subtypes

Suppose each packet (of any protocol) can be either a normal (data) packet, an ack packet or a nack packet,
except that foreign packets are always normal:

type packet_kind: [normal, ack, nack];
extend packet {

kind: packet_kind;
keep protocol == foreign => kind == normal;

};
extend normal packet { n1: int; };
 ...

How do you do this in like inheritance? Disregard for now the issue of extending the packet struct later.
Assume that you know the requirement stated above in advance, and you want to model it using like inherit-
ance in the best possible way.

Here is one way:

struct normal_Ethernet_packet like Ethernet_packet {
n1: int;

};
146 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct ack_Ethernet_packet like Ethernet_packet { ... };
struct nack_Ethernet_packet like Ethernet_packet { ... };
struct normal_IEEE_packet like IEEE_packet { ... };
// ...

This requires eight declarations.

Then, the Ethernet_op possibilities must be taken into account:

struct ack_e1_Ethernet_packet like e1_Ethernet_packet { ... }
// ...

This works, but requires ((N1 * N2 * ... * Nd) - IMP) declarations, where d is the number of orthogonal
dimensions, Ni is the number of possibilities in dimension i, and IMP is the number of impossible cases.

Another issue is how to represent the impossible cases.

Multiple inheritance would solve some of these problems, but would introduce new complications.

With when inheritance all the possible combinations exist implicitly, but you do not have to enumerate them
all. It is only when you want to say something about a particular one that you mention it, as in the following
examples:

extend normal IEEE packet { ni_field: int; }; // Adds a field
extend ack e1 Ethernet packet { keep size == 0; };
// Adds a constraint

All in all, the when version is more natural from a knowledge representation point of view, because:

� It is immediately clear from the description what goes with what
� You only need to mention types if you have something to say about them

You can use random generation to create lists of objects with varying subtypes

The job of the generator is to create (in this example) packet instances. By default, all possible packets
should be generated. In both versions, you would create a list of packets. For example:

extend sys { packets: list of packet; };

However, the generator should only generate fully instantiated packets. In the when version, that happens
automatically � there is no other way.

With like inheritance, if you generate a parent struct, only that parent struct is created; none of the like chil-
dren are created. For example, the following gen action always creates a generic packet, never an Ethernet
packet or an IEEE packet:

pkt: packet;
gen pkt;

Thus, in practice you should only generate fields whose type is a leaf in the like inheritance tree. For exam-
ple, you normally write:

p: e1_Ethernet_packet;
gen p;
This is an unapproved IEEE Standards Draft, subject to change.
147

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
You can easily extend the struct later

There are some restrictions on extending structs that have like children. Details are in �Restrictions on Like
Inheritance� on page 149.

You can create a new type by simple extension

You can extend the packet_protocol type and add new members to the packet subtype, for example:

extend packet_protocol: [brand_new];
extend brand_new packet {

...new struct members...
};

Automatically your old environment is able to generate brand_new packets. With like inheritance, you have
to find all instances of the procedural generation code and add the new case to the case statement.

4.10.5 Advantages of Using Like Inheritance

Like inheritance is a shorthand notation for a subset of when inheritance. It is restricted but more efficient.

Like inheritance often has better performance than when inheritance for the following reasons:

� Method calling is faster for like inheritance.
� When generation is slower then like generation. This can be important if a large part of the total run

time is attributable to generation.
� When inheritance uses more memory because all of the fields of all of the when subtypes consume

space all the time.

NOTE� If this becomes a problem in a particular design, there is a workaround. Rather than
having many separate fields under the when, put all the fields into a separate struct and put a
single field for that struct under the when. For example, the following coding style may use a
lot of memory if there are many fields declared under the Ethernet packet subtype.

type packet_protocol: [Ethernet, IEEE, foreign];

struct packet {

protocol: packet_protocol;

when Ethernet packet {

e_field0: int;

e_field1: int;

e_field2: int;

e_field3: int;

// ...

};

};

A more efficient coding style is shown below, where a single field is declared under the Ethernet
packet subtype.

type packet_protocol: [Ethernet, IEEE, foreign];
148 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct Ethernet_packet {

e_field0: int;

e_field1: int;

e_field2: int;

e_field3: int;

// ...

};

struct packet {

protocol: packet_protocol;

when Ethernet packet {

e_packet: Ethernet_packet;

};

};

When to Use Like Inheritance

Like inheritance should be used for modeling only when the performance win is big enough to offset the
restrictions, for example:

� Objects that use a lot of memory, such as a register file, where the number of distinct registers is very
large, and for each such register a field of the register type must be generated, for example,
�pc: pc_reg�, �psr: psr_reg� and so on.

� Objects that do not require randomization, such as a scoreboard or a memory.

Like inheritance should also be used for non-modeling, programming-like activities, such as implementing a
generic package for a queue.

4.10.6 Restrictions on Like Inheritance

There are three types of restrictions on like inheritance:

� �Restrictions Due to Inherent Differences� on page 149
� �Restrictions Due to Implementation� on page 150
� �Generation Restrictions on Like Inheritance� on page 150

4.10.6.1 Restrictions Due to Inherent Differences

Some of the restrictions on like inheritance derive from the inherent differences between when and like
inheritance:

� You cannot explicitly reference the determinant fields.
� Creating multiple, orthogonal subtypes can be difficult with like inheritance.
� Generation of parent does not create like children.
� You cannot add when subtypes to a struct with like children. Similarly, you cannot create a like child

from a struct that has when subtypes. See Example 1 on page 152 for more information.

For more information on the first 3 items in this list, see �Advantages of Using When Inheritance for Model-
ing� on page 145.
This is an unapproved IEEE Standards Draft, subject to change.
149

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
4.10.6.2 Restrictions Due to Implementation

In addition, the following restrictions are implementation-based and may be removed in future releases:

� You cannot extend a struct with like children by:

� Extending or overriding a TCM, if the TCM has been modified by one of the like children.

� Adding fields, unless none of the like children have added fields either explicitly or implicitly.
(Adding an event or a dynamic C routine might implicitly add a field, for example.)

� Adding an event, unless none of the like children have added fields either explicitly or implicitly.

� Adding or modifying an expect or assume, unless none of the like children have added fields either
explicitly or implicitly.

� Adding a dynamic C routine, unless none of the like children have added fields either explicitly or
implicitly.

� You cannot modify in a like child a cover group whose event is defined in the parent.

For more information see See �Examples of Like Inheritance Restrictions� on page 152.

4.10.6.3 Generation Restrictions on Like Inheritance

This section describes restrictions on generation when like inheritance is used.

� Temporary fields in the parent cause problems.
Constraints that have expressions on one side of an equality or inequality create temporary fields.
For example:

keep a > b * c;

gets translated internally into:

keep tmp == b * c; keep a > tmp;

If such constraints are specified in a parent, this may cause a crash during run time. (Note that there
is no problem with constraints in a leaf child.)

<’

struct x {

 a:uint;

 b:uint;

 c:uint;

 keep a > b * c;

};

struct y like x {

 d:uint;

};
150 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend sys {

 x_list: list of x;

 y_list: list of y;

};

’>

A possible workaround is to use explicit temporary variables. That is, replace:

keep a > b * c;

with:

tmp: int;

keep tmp == b * c;

keep a > tmp;

� Unidirectional constraints in the parent do not induce generation order.
Unidirectional constraints in the parent struct do not induce the expected generation order in the
child.
For example, suppose that the following constraint appears in packet:

keep size == f(b);

During generation of a like-inherited packet struct, such as Ethernet_packet, the constraint above
does not cause b to be generated before size. This often leads to a contradiction.

<’

struct x {

 size:uint;

 b:uint;

 keep size == f(b);

 f(z:uint): uint is {

 return z * 5;

 };

};

struct y like x {

 c: uint;

};

extend sys {

 y_list: list of y;

};

’>
This is an unapproved IEEE Standards Draft, subject to change.
151

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
4.10.6.4 Examples of Like Inheritance Restrictions

Restrictions on like inheritance are demonstrated in the following sample e code.

Example 1

You cannot add when subtypes to a struct with like children. Similarly, you cannot create a like child from a
struct that has when subtypes.

<’
type protocol: [Ethernet, IEEE, foreign];
struct packet {
 p: protocol;
 data:list of byte;
};
struct tx_packet like packet {
 t:uint
};
extend packet {
// Load-time error
// when Ethernet packet {
// e:uint;
// };
};
’>

Example 2

You cannot extend or override a TCM in a struct that has like children, if the TCM has been modified by one
of the like children.

<’
struct packet {

 event clk is rise (’~/top.clk’);
 zip()@clk is {wait [4]};
};

struct tx_packet like packet {
 t:uint;

zip()@clk is also {wait [2]};
};

extend packet {
// Load-time error
// zip()@clk is also {wait [5]};
};
’>

Example 3

You cannot add fields to a struct that has like children if those children have added fields, either implicitly or
explicitly.

<’
struct packet {

152 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 event clk is rise (’~/top.clk’);
 zip()@clk is {wait [4]};

};

struct tx_packet like packet {
 t:uint;
};

extend packet {
// Load-time error
// u:uint;
};
’>

Example 4

You cannot add an event to a struct that has like children if those children have added fields, either implicitly
or explicitly. It is OK to extend a parent to modify an event.

<’
struct packet {

 event clk is rise (’~/top.clk’)@sim;
 zip()@clk is {wait [4]};
};

struct tx_packet like packet {
 t:uint;
};

extend packet {
 event clk is only fall (’~/top.clk’)@sim; // No load-time error
// event ready is rise (’~/top.ready’); // Load-time error
};
’>

Example 5

You cannot add or modify an expect or assume to a struct that has like children if those children have added
fields, either implicitly or explicitly.

<’
struct packet {

 event clk is rise (’~/top.clk’)@sim;
 event ready is rise (’~/top.ready’);
 event start_count;
 event stop_count;

 expect rule1 is @start_count => {[1..5];@ready}@clk;
};

struct tx_packet like packet {
 t:uint;
};
This is an unapproved IEEE Standards Draft, subject to change.
153

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
extend packet {
// Load-time error for either of the following 2 lines
// expect rule1 is only @start_count => {[2..6];@ready}@clk;
// expect rule2 is @start_count => (eventually @stop_count);
};
’>

Example 6

You cannot modify in a like child a cover group whose event is defined in the parent. It may load without
error, but it will fail in unpredictable ways when run.

<’
struct packet {
 len: uint;
 addr:uint;

 event clk is rise (’~/top.clk’)@sim;
 event packet_sent;

cover packet_sent is {
 item len;
 item addr;

};
};
struct tx_packet like packet {
 t:uint;

// cover packet_sent is { // Error
// item len;
// item addr;
// item t;
// };
};

’>

4.10.7 A When Inheritance Example

The following example contains the e code fragments in the section titled �A Simple Example of When
Inheritance� on page 143.

<'
type packet_protocol: [Ethernet, IEEE, foreign];
struct packet {

protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;
show() is undefined;

};
extend Ethernet packet {

e_field: int;
show() is {out("I am an Ethernet packet")};

};
extend IEEE packet {

i_field: int;
show() is {out("I am an IEEE packet")};
154 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
extend foreign packet {

f_field: int;
show() is {out("I am a foreign packet")};

};
type Ethernet_op: [e1, e2, e3];
extend Ethernet packet { op: Ethernet_op; };
extend e1 Ethernet packet {

e1_foo: int;
show() is {out("I am an e1 Ethernet packet")};

};
extend e2 Ethernet packet {

e2_foo: int;
show() is {out("I am an e2 Ethernet packet")};

};
extend e3 Ethernet packet {

e3_foo: int;
show() is {out("I am an e3 Ethernet packet")};

};
extend sys {

packets: list of packet;
post_generate() is also { for each in packets {.show()}; };

};
'>
This is an unapproved IEEE Standards Draft, subject to change.
155

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
156 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
5 Units

This chapter describes the constructs used to define units and explains how you can use units to implement a
modular verification methodology. This chapter contains the following sections:

� �Units Overview� on page 157
� �Defining Units and Fields of Type Unit� on page 160
� �Predefined Methods for Any Unit� on page 170
� �Unit-Related Predefined Methods for Any Struct� on page 177
� �Unit-Related Predefined Routines� on page 184

See Also

� Chapter 4, �Structs, Fields, and Subtypes�

5.1 Units Overview

Units are the basic structural blocks for creating verification modules (verification cores) that can easily be
integrated together to test larger and larger portions of an HDL design as it develops. Units, like structs, are
compound data types that contain data fields, procedural methods, and other members. Unlike structs, how-
ever, a unit instance is bound to a particular component in the DUT (an HDL path). Furthermore, each unit
instance has a unique and constant place (an e path) in the runtime data structure of an e program. Both the
e path and the complete HDL path associated with a unit instance are determined during pre-run generation.

The basic runtime data structure of an e program is a tree of unit instances whose root is sys, the only pre-
defined unit in e. Additionally there are structs that are dynamically bound to unit instances. The runtime
data structure of a typical e program is similar to that of the XYZ_router program shown in Figure 5-1.

Figure 5-1�Runtime Data Structure of the XYZ_Router

Each unit instance in the unit instance tree of the XYZ_router matches a module instance in the Verilog
DUT, as shown in Figure 5-2. The one-to-one correspondence in this particular design between e unit
instances and DUT module instances is not required for all designs. In more complex designs, there may be
several levels of DUT hierarchy corresponding to a single level of hierarchy in the tree of e unit instances.

sys

XYZ_router

kind addr len data parity

chan2chan1chan0 current_packet

unit instance

struct instance

field

key
This is an unapproved IEEE Standards Draft, subject to change.
157

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 5-2�DUT Router Hierarchy

Binding an e unit instance to a particular component in the DUT hierarchy allows you to reference signals
within that DUT component using relative HDL path names. When the units are integrated into a unit
instance tree during pre-run generation,the complete path name for each referenced HDL object is deter-
mined by concatenating the complete HDL path of the parent unit to the path of the unit containing the refer-
enced object.

This ability to use relative path names to reference HDL objects allows you to freely change the combination
of verification cores as the HDL design and the verification environment evolve. Regardless of where the
DUT component is instantiated in the final integration, the HDL path names in the verification environment
remain valid.

See Also

� �Units vs. Structs� on page 158
� �HDL Paths and Units� on page 159
� �Methodology Recommendations and Limitations� on page 160

5.1.1 Units vs. Structs

The decision of whether to model a DUT component with a unit or a struct often depends on your verifica-
tion strategy. Compelling reasons for using a unit instead of a struct include:

� You intend to test the DUT component both standalone and integrated into a larger system.
Modeling the DUT component with a unit instead of a struct allows you to use relative path names
when referencing HDL objects. When you integrate the component with the rest of the design, you
simply change the HDL path associated with the unit instance and all the HDL references it contains
are updated to reflect the component�s new position in the design hierarchy.
This methodology eliminates the need for computed HDL names (for example, �(path_str).sig�),
which impact runtime performance.

� Your e program has methods that access many signals at runtime.
The correctness of all signal references within units is determined and checked during pre-run gen-
eration.
If your e program does not contain user units, the absolute HDL references within structs are also
checked during pre-run generation. However, if your e program does contain user units, the relative
HDL references within structs are checked at run time. In this case, using units rather than structs
can enhance runtime performance.

On the other hand, using a struct to model abstract collections of data, like packets, allows you more flexibil-
ity as to when you generate the data. With structs, you can generate the data either during pre-run generation,
at runtime, or on the fly, possibly in response to conditions in the DUT. Unit instances, however, can only be
generated during pre-run generation, because each unit instance has a unique and constant place (an e path)

top

router_i

chan2chan1chan0
158 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
in the runtime data structure of an e program, just as an HDL component instance has a constant place in the
DUT hierarchical tree.Thus you cannot modify the unit tree by generating unit instances on the fly.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is a gener-
ated during pre-run generation it inherits the parent unit of its parent struct. If the struct is dynamically allo-
cated by the new or gen action, then the parent unit is inherited from the struct belonging to the enclosing
method.

See Also

� �HDL Paths and Units� on page 159
� �Methodology Recommendations and Limitations� on page 160

5.1.2 HDL Paths and Units

Relative HDL paths are essential in creating a verification module that can be used to test a DUT component
either standalone or integrated into different or larger systems. Binding an e unit instance to a particular
component in the DUT hierarchy allows you to reference signals within that DUT component using relative
HDL path names. Regardless of where the DUT component is instantiated in the final integration, the HDL
path names are still valid. To illustrate this, let�s look at how the XYZ_router (shown in Figure 5-1 on
page 157) is bound to the DUT router (shown in Figure 5-2 on page 158).

To associate a unit or unit instance with a DUT component, you use the hdl_path() method within a keep
constraint. For example, the following code extends sys by creating an instance of the XYZ_router unit and
binds the unit instance to the �router_i� instance in the DUT.

extend sys {
unit_core: XYZ_router is instance;

 keep unit_core.hdl_path() =="top.router_i";
};

Similarly, the following code creates three instances of XYZ_channel in XYZ_router and constrains the
HDL path of the instances to be �chan0�, �chan1�, �chan2�. These are the names of the channel instances in
the DUT relative to the �router_i� instance.

unit XYZ_router {
channels: list of XYZ_channel is instance;
keep channels.size() == 3;
keep for each in channels {.hdl_path() ==

append("chan", index); };
};

The full HDL path of each unit instance is determined during generation, by appending the HDL path of the
child unit instance to the full path of its parent, starting with sys. sys has the empty full path ��. Thus the full
path for the XYZ_router instance is �top.router_i� and that for the first channel instance is
�top.router_i.chan0�.

The full path for a unit instance is used to resolve any internal HDL object references that contain relative
HDL paths.

By default, the do_print() method of any unit prints two predefined lines as well as the user-defined fields.
The predefined lines display the e path and the full HDL path for that unit. The e path line contains a hyper-
link to the parent unit.
This is an unapproved IEEE Standards Draft, subject to change.
159

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
5.1.3 Methodology Recommendations and Limitations

Each unit instance has a unique and constant place (an e path) in the runtime data structure of an e program
that is determined during pre-run generation. Thus you cannot modify the unit tree created during pre-run
generation by generating unit instances on the fly or making assignments of new values to existing unit
instances. You can generate fields of unit type dynamically. However, when you generate a field of type unit,
either on-the-fly or during pre-run generation, you must constrain the field to refer to an existing unit
instance.

The following limitations are implied by the nature of unit instances and fields of unit type:

� Unit instances cannot be the object of a new or gen action or a call to copy().
� Unit instances cannot be placed on the left-hand-side of the assignment operator.
� List methods which alter the original list, like list.add() or list.pop() cannot be applied to lists of unit

instances.
� Units are intended to be used as structural components and not as data carriers. Therefore, using

physical fields in unit instances, as well as packing or unpacking into unit instances is not recom-
mended. Unpacking into a field of type unit when the field is NULL causes a runtime error.

� All instances of the same unit type must be bound to the same kind of HDL component.

If you intend to create a modular verification environment, the following recommendations are also impor-
tant:

� Avoid setting global configuration options with set_config(). Instead, for numeric settings, use
set_config_max().

� Avoid global changes to the default packing options. Instead, define unit-specific options in the top-
level unit and access them from lower-level units with get_enclosing_unit().

� References to HDL objects should be placed in unit methods. If you need to access HDL objects
from struct methods, you may declare additional methods in a unit. Because these access methods
will probably be one line of e code, you can declare them as inline methods for maximum effi-
ciency. For example, to access the following inline method declared in a struct,

get_reset_value() is inline { return 'reset'; };

you would use

get_enclosing_unit(CONTROLLER).get_reset_value();

� In structs that may be dynamically associated with more than one unit, it is recommended to use
computed path names.

� Pre-run generation is performed before creating the stubs file. To minimize the time required to cre-
ate a stubs file, you can move any pre-run generation that is not related to building the tree of unit
instances into the procedural code, preferably as an extension of the run() method of the appropriate
structs. For example, you probably want to avoid generating thousands of packets in order to create
a stubs file.

5.2 Defining Units and Fields of Type Unit

The following sections describe the constructs for defining units and fields of type unit:

� �unit� on page 161
� �field: unit-type is instance� on page 165
� �field: unit-type� on page 166
� �field: list of unit instances� on page 167
� �field: list of unit-type� on page 169
160 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
5.2.1 unit

Purpose

Define a data struct associated with an HDL component or block

Category

Statement

Syntax

unit unit-type [like base-unit-type] {
[unit-member; ...]}

Syntax example:

unit XYZ_channel {
event external_clock;
event packet_start is rise('valid_out')@sim;
event data_passed;

verilog variable 'valid_out' using wire;

data_checker() @external_clock is {
while 'valid_out' == 1 {
wait cycle;
check that 'data_out' == 'data_in';
};

emit data_passed;
};

on packet_start {
start data_checker();

};
};
This is an unapproved IEEE Standards Draft, subject to change.
161

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Units are the basic structural blocks for creating verification modules (verification cores) that can easily be
integrated together to test larger designs. Units are a special kind of struct, with two important properties:

� Units or unit instances can be bound to a particular component in the DUT (an HDL path).
� Each unit instance has a unique and constant parent unit (an e path). Unit instances create a static

tree, determined during pre-run generation, in the runtime data structure of an e program.

Because the base unit type (any_unit) is derived from the base struct type (any_struct), user-defined units
have the same predefined methods. In addition, units can have verilog members and have several special-
ized predefined methods.

A unit type can be extended or used as the basis for creating unit subtypes. Extended unit types or unit sub-
types inherit the base type�s members and contain additional members.

See �Units vs. Structs� on page 158 for a discussion of when to use units instead of structs.

Example

This example defines a unit type XYZ_router.

<'
unit XYZ_router {

debug_mode: bool;

unit-type The type of the new unit.
base-unit-type The type of the unit from which the new unit inherits its members.
unit-member; ... The contents of the unit. Like structs, units can have the following types of

members:

� data fields for storing data

� methods for procedures

� events for defining temporal triggers

� coverage groups for defining coverage points

� when, for specifying inheritance subtypes

� declarative constraints for describing relations between data fields

� on, for specifying actions to perform upon event occurrences

� expect, for specifying temporal behavior rules

Unlike structs, units can also have verilog members. This capability lets you
create Verilog stub files for modular designs.

The definition of a unit can be empty, containing no members.
162 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
channels: list of XYZ_channel is instance;

keep channels.size() == 3;

keep for each in channels {
.hdl_path() == append("chan", index);
.router == me };

event pclk is rise('clock')@sim;

mutex_checker() @pclk is {
while ('packet_valid') {

var active_channel: int = UNDEF;
for each in channels {

if '(it).valid_out' {
check that active_channel == UNDEF else

dut_error ("Violation of the mutual \
exclusion by channels ",
active_channel, " and ", index);

active_channel = index;
check that active_channel == 'addr' else

dut_error ("Violation of the \
correspondence between active \
channel and selected address");

};
};
wait cycle;

};
};

// transaction-level checking and coverage

!current_packet: XYZ_packet;

event packet_in is rise('packet_valid’)@pclk;
on packet_in {

current_packet = new XYZ_packet;
current_packet.addr = 'addr';
current_packet.len = 'len';
out(current_packet.get_unit());
start sample_data();
start mutex_checker();

};

sample_data() @pclk is {
if (debug_mode) {

out("Start of sampling");
};
for j from 1 to current_packet.len {

wait cycle;
current_packet.data.add('data');

};
if (debug_mode) {

out("End of sampling: packet data ",
current_packet.data);

};
 // Don’t read parity yet

};
This is an unapproved IEEE Standards Draft, subject to change.
163

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
event packet_out is fall('packet_valid')@pclk;

expect (@packet_in => { [current_packet.len];
cycle @packet_out}) @pclk

 else dut_error ("Violation of expected packet duration");

event log is @packet_out;

on packet_out {
current_packet.parity = 'parity';

// Check the last byte of the data
current_packet.kind =

('data' == current_packet.parity_calc()) ? good : bad;

if (debug_mode) {
print current_packet;

};

if (current_packet.kind == good) then {
check that 'err' == 0 else dut_error ("Err != 0 \

for good pkt");
}
else {

check that 'err' == 1 else dut_error ("Err != 1 \
for bad pkt");

};
};

event channel_data_passed;
expect (@packet_out => [1] @channel_data_passed) @pclk

else dut_error("Channel data pass and packet out \
aren’t synchronous");

cover log using text = "End of package transaction" is {
item addr : uint (bits : 2) = current_packet.addr

using illegal = (addr == 3);
item len : uint (bits : 6) = current_packet.len

using ranges={
range([0..3],"short");
range([4..15],"medium");
range([16..63],"long");

};
item kind : XYZ_kind_type = current_packet.kind ;
item err : bool = 'err' ;

};
};
'>

See Also

� �Units Overview� on page 157
� Chapter 4, �Structs, Fields, and Subtypes�
164 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
5.2.2 field: unit-type is instance

Purpose

Define a unit instance field

Category

Unit member

Syntax

field-name[: unit-type] is instance

Syntax example:

cpu: XYZ_cpu is instance;

Parameters

Description

Defines a field of a unit to be an instance of a unit type. Units can be instantiated within other units, thus cre-
ating a unit tree. The root of the unit tree is sys, the only predefined unit in e.

A unit instance has to be bound to a particular component in the DUT (an HDL path). Each unit instance
also has a unique and constant place (an e path) in the runtime data structure of an e program that is deter-
mined during pre-run generation.

Notes

� Instantiating a unit in a struct causes a compile-time error; units can only be instantiated within
another unit.

� The do-not-generate operator (!) is not allowed with fields of type unit instance. Unit instances can
be created only during pre-run generation.

� It is not recommended to use the physical field operator (%) with fields of type unit instance.

Example

This example creates an instance of the XYZ_router unit type in sys.

<'
extend sys {
 mntr: monitor;
 unit_core: XYZ_router is instance;
 keep unit_core.hdl_path() =="top.router_i";
 keep unit_core.debug_mode == TRUE;

field-name The name of the unit instance being defined.
unit-type The name of a unit type.

If the field name is the same as an existing type, you can omit the
�: unit-type� part of the field definition. Otherwise, the type specifi-
cation is required.
This is an unapproved IEEE Standards Draft, subject to change.
165

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 setup() is also {
 set_check("...", WARNING);
 set_config(cover, mode, on);
 };
};
'>

See Also

� �Units Overview� on page 157
� �field: unit-type� on page 166
� �field: list of unit-type� on page 169
� Chapter 4, �Structs, Fields, and Subtypes�

5.2.3 field: unit-type

Purpose

Define a field of type unit

Category

Struct or unit member

Syntax

[!] field-name[: unit-type]

Syntax example:

extend XYZ_router{
!current_chan: XYZ_channel;

};

Parameters

Description

Defines a field of unit type. A field of unit type is always either NULL or a reference to a unit instance of a
specified unit type.

Notes

� It is not recommended to use the physical field operator (%) with fields of type unit.
� If a field of type unit is generated it must be constrained to an existing unit instance.

! Denotes an ungenerated field. If you generate this field on the fly, you
must constrain it to an existing unit instance or a runtime error is issued.

field-name The name of the field being defined.
unit-type The name of a unit type.

If the field name is the same as an existing type, you can omit the
�: unit-type� part of the field definition. Otherwise, the type specifica-
tion is required.
166 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

In the example below, the XYZ_router is extended with an ungenerated field of type XYZ_channel, a unit
type. It remains NULL until the �mutex_checker()� method is called. In this method the �current_chan�
field is used as a pointer to each of the unit instances of type XYZ_channel in the channels list.

extend XYZ_router {
!current_chan: XYZ_channel;

mutex_checker() @pclk is {
while ('packet_valid') {

var active_channel: int = UNDEF;
for each in channels {

current_chan = it;
if '(current_chan).valid_out' {

check that active_channel == UNDEF else
dut_error ("Violation of the mutual exclusion by \
channels ", active_channel, " and ", index);

active_channel = index;
check that active_channel == 'addr' else
dut_error ("Violation of the correspondence \
between active channel and selected address");

};
};
wait cycle;

};
};

};

See Also

� �field: unit-type is instance� on page 165
� �field: list of unit-type� on page 169
� Chapter 4, �Structs, Fields, and Subtypes�

5.2.4 field: list of unit instances

Purpose

Define a list field of unit instances

Category

Struct or unit member

Syntax

name:[[length-exp]]: list of unit-type is instance

Syntax example:

channels: list of XYZ_channel is instance;
This is an unapproved IEEE Standards Draft, subject to change.
167

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Defines a list field of unit instances. A list of unit instances can only be created during pre-run generation
and cannot be modified after it is generated.

Notes

� List operations, such as list.add() or list.pop(), that alter the list created during pre-run generation
are not allowed for lists of unit instances.

� It is not recommended to use the physical field operator (%) with lists of unit instances.

Example

This example creates a list of unit instances of type XYZ_channel in XYZ_router.

<'
unit XYZ_channel {

event external_clock;
event packet_start is rise('valid_out')@sim;
event data_passed;

verilog variable 'valid_out' using wire;

data_checker() @external_clock is {
while 'valid_out' == 1 {
wait cycle;
check that 'data_out' == 'data_in';
};

emit data_passed;
 };

on packet_start {
start data_checker();

};
};

unit XYZ_router {
channels: list of XYZ_channel is instance;
keep channels.size() == 3;

};
'>

See Also

� �field: unit-type� on page 166
� �field: unit-type is instance� on page 165
� Chapter 4, �Structs, Fields, and Subtypes�

name The name of the list being defined.
length-exp An expression that gives the initial size for the list.
unit-type A unit type.
is instance Creates a list of unit instances.
168 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
5.2.5 field: list of unit-type

Purpose

Define a list field of type unit

Category

Struct or unit member

Syntax

[!]name[[length-exp]]: list of unit-type

Syntax example:

var currently_valid_channels: list of XYZ_channel;

Parameters

Description

Defines a list field of type unit.

NOTE� It is not recommended to use the physical field operator (%) with lists of unit type.

Example

This example creates a list of unit type XYZ_channel, which is used to create a list of currently valid chan-
nels.

<'
unit XYZ_channel {
 router: XYZ_router;
};
unit XYZ_router {
 channels: list of XYZ_channel is instance;
 keep channels.size() == 3;

 validity_checker() is {
 var currently_valid_channels: list of XYZ_channel;

 for each in channels {
 if '(it).valid_in' {
 currently_valid_channels.add(it);
 };
 };
 print currently_valid_channels;
 };

! Do not generate this list.
name The name of the list being defined.
length-exp An expression that gives the initial size for the list.
unit-type A unit type.
This is an unapproved IEEE Standards Draft, subject to change.
169

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
'>

See Also

� �field: unit-type� on page 166
� �field: unit-type is instance� on page 165
� Chapter 4, �Structs, Fields, and Subtypes�

5.3 Predefined Methods for Any Unit

There is a predefined generic type any_unit, which is derived from any_struct. any_unit is the base type
implicitly used in user-defined unit types, so all predefined methods for any_unit are available for any user-
defined unit. The predefined methods for any_struct are also available for any user-defined unit.

The predefined methods for any unit include:

� �hdl_path()� on page 170
� �full_hdl_path()� on page 172
� �e_path()� on page 173
� �agent()� on page 174
� �get_parent_unit()� on page 176

See Also

� �Unit-Related Predefined Methods for Any Struct� on page 177
� �Unit-Related Predefined Routines� on page 184

5.3.1 hdl_path()

Purpose

Return a relative HDL path for a unit instance

Category

Predefined pseudo-method for any unit

Syntax

[unit-exp.]hdl_path(): string

Syntax example:

extend dut_error_struct {
write() is first {

var channel: XYZ_channel =
source_struct().try_enclosing_unit(XYZ_channel);

if (channel != NULL) {
out("Error in XYZ channel: instance ",

channel.hdl_path());
 };
 };
};
170 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Returns the HDL path of a unit instance. The most important role of this method is to bind a unit instance to
a particular component in the DUT hierarchy. Binding an e unit or unit instance to a DUT component allows
you to reference signals within that component using relative HDL path names. Regardless of where the
DUT component is instantiated in the final integration, the HDL path names are still valid. The binding of
unit instances to HDL components is a part of the pre-run generation process and must be done in keep con-
straints.

Although absolute HDL paths are allowed, relative HDL paths are recommended if you intend to follow a
modular verification strategy.

This method always returns an HDL path exactly as it was specified in constraints. If, for example, you use
a macro in a constraint string, then hdl_path() returns the original and not substituted string.

Notes

� All instances of the same unit must be bound to the same kind of HDL components.
� You cannot constrain the HDL path for sys.

Example 1

This example shows how you can use relative paths in lower-level instances in the unit instance tree. To cre-
ate the full HDL path of each unit instance, its HDL path is prefixed with the HDL path of its parent
instance. In this example, because the HDL path of sys is ��, the full HDL path of �unit_core� is
�top.router_i�. The full HDL path of �extra_channel� is �top.router_i.chan3�.

extend sys {
unit_core: XYZ_router is instance;
keep unit_core.hdl_path() == "top.router_i";

};

extend XYZ_router {
extra_channel: XYZ_channel is instance;
keep extra_channel.hdl_path() == "chan3";

};

Example 2

This example shows how hdl_path() returns the HDL path exactly as specified in the constraint. Thus the
first print action prints �`TOP.router_i�. The second print action, in contrast, accesses �top.router_i.clk�.

verilog import macros.v;
extend sys {

unit_core: XYZ_router is instance;
keep unit_core.hdl_path() == "‘TOP.router_i";
run() is also {

print unit_core.hdl_path();
print '(unit_core).clk';

};

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
171

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

Result

unit_core.hdl_path() = "‘TOP.router_i"
 ’top.router_i.clk’ = 0

See Also

� �HDL Paths and Units� on page 159
� �full_hdl_path()� on page 172
� �e_path()� on page 173

5.3.2 full_hdl_path()

Purpose

Return an absolute HDL path for a unit instance

Category

Predefined method for any unit

Syntax

[unit-exp.]full_hdl_path(): string

Syntax example:

out ("Mutex violation in ", get_unit().full_hdl_path());};

Parameters

Description

Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational
messages. Like the hdl_path() method, this method returns the path as originally specified in the keep con-
straint, without making any macro substitutions.

Example

This example uses full_hdl_path() to display information about where a mutex violation has occurred.

extend XYZ_router {
!current_chan: XYZ_channel;

mutex_checker() @pclk is {
while ('packet_valid') {

var active_channel: int = UNDEF;
for each XYZ_channel(current_chan) in channels {

if '(current_chan).valid_out' {
if active_channel != UNDEF then {

out ("Mutex violation in ",

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
172 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
get_unit().full_hdl_path());};
active_channel = index;

};
};
wait cycle;

};
};

};

Result

Mutual exclusion violation in top.router_i

See Also

� �hdl_path()� on page 170
� �e_path()� on page 173

5.3.3 e_path()

Purpose

Returns the location of a unit instance in the unit tree

Category

Predefined method for any unit

Syntax

[unit-exp.]e_path(): string

Syntax example:

out("Started checking ", get_unit().e_path());

Parameters

Description

Returns the location of a unit instance in the unit tree. This method is used mainly in informational mes-
sages.

Example

<'
unit ex_u {

run() is also {
inst = get_unit().e_path();
var inst: string;
inst = get_unit().e_path();
out("ex instance: ", inst);

};

unit-exp An expression that returns a unit instance. If no expression is specified, the current unit
instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
173

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

unit top_u {
exlist[10]: list of ex_u is instance;

};

extend sys {
top: top_u is instance;

};
'>

Result

ex instance: sys.top.exlist[0]
ex instance: sys.top.exlist[1]
ex instance: sys.top.exlist[2]
ex instance: sys.top.exlist[3]
ex instance: sys.top.exlist[4]
ex instance: sys.top.exlist[5]
ex instance: sys.top.exlist[6]
ex instance: sys.top.exlist[7]
ex instance: sys.top.exlist[8]
ex instance: sys.top.exlist[9]

See Also

� �full_hdl_path()� on page 172
� �hdl_path()� on page 170

5.3.4 agent()

Purpose

Maps the DUT�s HDL partitions into e code

Category

Predefined pseudo-method for any unit

Syntax

keep [unit-exp.]agent() == string;

Syntax example:

router: XYZ_router is instance;
keep router.agent() == "Verilog";
174 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Specifying an agent identifies the simulator that is used to simulate the corresponding DUT component.
Once a unit instance has an explicitly specified agent name then all other unit instances instantiated within it
are implicitly bound to the same agent name, unless another agent is explicitly specified.

An agent name may be omitted in a single-HDL environment but it must be defined implicitly or explicitly
in a mixed HDL environment for each unit instance that is associated with a non-empty hdl_path(). If an
agent name is not defined for a unit instance with a non-empty hdl_path() in a mixed HDL environment, an
error message is issued.

Given the hdl_path() and agent() constraints, a correspondence map is established between the unit
instance HDL path and its agent name. Any HDL path below the path in the map is associated with the same
agent unless otherwise specified. This map is further used internally to pick the right adapter for each
accessed HDL object.

It is possible to access Verilog signals from a VHDL unit instance code and vice-versa. Every signal is
mapped to its HDL domain according to its full path, regardless of the specified agent of the unit that the sig-
nal is accessed from.

When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the agent
string is exactly as specified in the corresponding constraint.

Notes

� Agents are bound to unit instances during the generation phase. Consequently, there is no way to
map between HDL objects and agents before generation. As a result of this limitation, HDL objects
in a mixed Verilog/VHDL environment cannot be accessed before generation from sys.setup() or
from the command line.

� An unsupported agent name causes an error message during the test phase.

Example 1

In the following example, the driver instance inherits an agent name implicitly from the enclosing router unit
instance.

extend sys {

router: XYZ_router is instance;

keep router.agent() == "Verilog";

keep router.hdl_path() == "top.rout";

unit-exp An expression that returns a unit instance. If no expression is specified,
the current unit instance is assumed.

string One of the following predefined agent names: verilog, vhdl, mti_vlog,
mti_vhdl, ncvlog and ncvhdl. Specifying the agent name as verilog or
vhdl is preferred because it makes the e code portable between simula-
tors. In contrast, if a unit is bound to a specific agent, for example to
mti_vhdl, an error is issued if it is ported to NC Simulator. The pre-
defined names are case-insensitive; in other words, verilog is the same
as Verilog.
This is an unapproved IEEE Standards Draft, subject to change.
175

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

extend XYZ_router {

driver: XYZ_router_driver is instance;

};

Example 2

In this example, the signal �top.rout.packet_valid� is sampled using the Verilog PLI because the path
�top.rout� is specified as a Verilog path. In contrast, the signal �top.rout.chan.mux.data_out� is sampled
using a VHDL foreign interface because the closest mapped path is �top.rout.chan� and it is mapped as a
VHDL path.

extend sys {

router: XYZ_router is instance;

keep router.agent() == "Verilog";

keep router.hdl_path() == "top.rout";

};

unit XYZ_router {

channel: XYZ_channel is instance;

keep channel.agent() == "VHDL";

keep channel.hdl_path() == "chan";

run() is also {

print 'packet_valid';

};

};

unit XYZ_channel {

run() is also {

print 'mux.data_out';

};

};

5.3.5 get_parent_unit()

Purpose

Return a reference to the unit containing the current unit instance

Category

Predefined method for any unit
176 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

[unit-exp.]get_parent_unit(): unit type

Syntax example:

out(sys.unit_core.channels[0].get_parent_unit());

Parameters

Description

Returns a reference to the unit containing the current unit instance.

Example

out(sys.unit_core.channels[0].get_parent_unit())
XYZ_router-@2

See Also

� �get_unit()� on page 177
� �get_enclosing_unit()� on page 180
� �try_enclosing_unit()� on page 182

5.4 Unit-Related Predefined Methods for Any Struct

The predefined methods for any struct include:

� �get_unit()� on page 177
� �get_enclosing_unit()� on page 180
� �try_enclosing_unit()� on page 182
� �set_unit()� on page 183

See Also

� �Predefined Methods for Any Unit� on page 170
� �Unit-Related Predefined Routines� on page 184

5.4.1 get_unit()

Purpose

Return a reference to a unit

Category

Predefined method of any struct

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
177

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

[exp.]get_unit(): unit type

Syntax example:

out ("Mutex violation in ", get_unit().full_hdl_path());};

Parameters

Description

When applied to an allocated struct instance, this method returns a reference to the parent unit�the unit to
which the struct is bound. When applied to a unit, it returns the unit itself.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is gener-
ated during pre-run generation it inherits the parent unit of its parent struct. If the struct is dynamically allo-
cated by the new or gen action, then the parent unit is inherited from the struct the enclosing method belongs
to. See Example 3 on page 179 for an illustration of this point.

This method is useful when you want to determine the parent unit instance of a struct or a unit. You can also
use this method to access predefined unit members, such as hdl_path() or full_hdl_path(). To access user-
defined unit members, use get_enclosing_unit(). See Example 1 on page 178 for an illustration of this
point.

Example 1

This example shows that get_unit() can access predefined unit members, while get_enclosing_unit() must
be used to access user-defined unit members.

struct instr {
 %opcode : cpu_opcode ;
 %op1 : reg ;
 kind : [imm, reg];

 post_generate() is also {
-- get_unit().print_msg() ; -- COMPILE-TIME ERROR
 get_enclosing_unit(XYZ_cpu).print_msg();
 out("Destination for this instruction is ",

get_unit().hdl_path()) ;
 };
};

unit XYZ_cpu {
 instrs[3] : list of instr;
 print_msg() is {out("Generating instruction for \

XYZ_cpu...");};
};

extend sys {
 cpu1: XYZ_cpu is instance;
 keep cpu1.hdl_path()=="‘TOP/CPU1";
};

exp An expression that returns a unit or a struct. If no expression is specified, the current struct
or unit is assumed.
178 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
'>

Result

Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1
Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1
Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1

Example 2

The first call to get_unit() below shows that the parent unit of the struct instance �p� is sys. The second call
shows that the parent unit has been changed to �XYZ_router�.

var p: XYZ_packet = new
out(p.get_unit())

sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())

XYZ_router-@1

Example 3

In this example, the trace_inject() method displays the full HDL path of the �XYZ_dlx� unit (not the
�XYZ_tb� unit) because �instr_list� is generated by the run method of �XYZ_dlx�.

extend sys {
 tb: XYZ_tb is instance;
 keep tb.hdl_path()=="‘TOP/tb";
};
unit XYZ_tb {
 dlx: XYZ_dlx is instance;
 keep dlx.hdl_path()=="dlx_cpu";
 !instr_list: list of instruction;
 debug_mode: bool;
};
unit XYZ_dlx {
 run() is also {
 gen sys.tb.instr_list keeping { .size() < 30;};
 };
};
extend instruction {
 trace_inject() is {
 if get_enclosing_unit(XYZ_tb).debug_mode == TRUE {
 out("Injecting next instruction to ",
 get_unit().full_hdl_path());
 };
 };
};

Result

sys.tb.instr_list[0].trace_inject()
Injecting next instruction to ‘TOP/tb.dlx_cpu
This is an unapproved IEEE Standards Draft, subject to change.
179

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �get_parent_unit()� on page 176
� �get_enclosing_unit()� on page 180
� �try_enclosing_unit()� on page 182

5.4.2 get_enclosing_unit()

Purpose

Return a reference to nearest unit of specified type

Category

Predefined pseudo-method of any struct

Syntax

[exp.]get_enclosing_unit(unit-type: exp): unit instance

Syntax example:

unpack(p.get_enclosing_unit(XYZ_router).pack_config,
'data', current_packet);

Parameters

Description

Returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access
fields of the parent unit in a typed manner.

You can use the parent unit to store shared data or options such as packing options that are valid for all its
associated subunits or structs. Then you can access this shared data or options with the get_enclosing_unit()
method.

Notes

� The unit type is recognized according to the same rules used for the is a operator. This means, for
example, that if you specify a base unit type and there is an instance of a unit subtype, the unit sub-
type is found.

� If a unit instance of the specified type is not found, a runtime error is issued.

exp An expression that returns a unit or a struct. If no expression is specified, the current
struct or unit is assumed.

NOTE� If get_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.
180 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

In the following example, get_enclosing_unit() is used to print fields of the nearest enclosing unit instances
of type �XYZ_cpu� and �tbench�. Unlike get_unit(), which returns a reference only to its immediate parent
unit, get_enclosing_unit() searches up the unit instance tree for a unit instance of the type you specify. A
runtime error is issued unless an instance of type �XYZ_cpu� and an instance of type �tbench� are found in
the enclosing unit hierarchy.

struct instr {
 %opcode : cpu_opcode ;
 %op1 : reg ;
 kind : [imm, reg];

 post_generate() is also {
 out("Debug mode for CPU is ",

get_enclosing_unit(XYZ_cpu).debug_mode);
 out("Memory model is ",

get_enclosing_unit(tbench).mem_model);
 };
};
unit XYZ_cpu {
 instr: instr;

debug_mode: bool;
};
unit tbench {
 cpu: XYZ_cpu is instance;
 mem_model: [small, big];
};

extend sys {
 tb: tbench is instance;
};

Result

Debug mode for CPU is FALSE
Memory model is small

Example 2

extend XYZ_router {
 pack_config:pack_options;

 keep pack_config == packing.low_big_endian;
};

Result

var p: XYZ_packet = new
print p.data
 p.data = (empty)
out(p.get_unit())
 sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())
 XYZ_router-@1
unpack(p.get_enclosing_unit(XYZ_router).pack_config, data, p)
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0| +0
 |
This is an unapproved IEEE Standards Draft, subject to change.
181

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0|
 |
 data |

 |5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0| +32
 + |
 |0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0
 + |
 | |

See Also

� �get_unit()� on page 177
� �set_unit()� on page 183
� �try_enclosing_unit()� on page 182
� �get_parent_unit()� on page 176

5.4.3 try_enclosing_unit()

Purpose

Return a reference to nearest unit instance of specified type or NULL

Category

Predefined method of any struct

Syntax

[exp.]try_enclosing_unit(unit-type: exp): unit instance

Syntax example:

var MIPS := source_struct().try_enclosing_unit(MIPS);

Parameters

Description

Like get_enclosing_unit(), this method returns a reference to the nearest higher-level unit instance of the
specified type, allowing you to access fields of the parent unit in a typed manner.

Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified
type is found. Instead, it returns NULL. This feature makes the method suitable for use in extensions to glo-
bal methods such as dut_error_struct.write(), which may be used with more than one unit type.

exp An expression that returns a unit or a struct. If no expression is specified, the current
struct or unit is assumed.

NOTE� If try_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.
182 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
extend dut_error_struct {

write() is also {
var MIPS := source_struct().try_enclosing_unit(MIPS);
if MIPS != NULL then {

out("Status of ", MIPS.e_path(),
" at time of error:");

MIPS.show_status();
};

};
};
'>

See Also

� �get_unit()� on page 177
� �get_enclosing_unit()� on page 180
� �get_parent_unit()� on page 176

5.4.4 set_unit()

Purpose

Change the parent unit of a struct

Category

Predefined method of any struct

Syntax

[struct-exp.]set_unit(parent: exp)

Syntax example:

p.set_unit(sys.unit_core)

Parameters

Description

Changes the parent unit of a struct to the specified unit instance.

NOTE� This method does not exist for units because the unit tree cannot be modified.

Example

var p: XYZ_packet = new
out(p.get_unit())
sys-@0

struct-exp An expression that returns a struct. If no expression is specified, the current struct is
assumed.

parent An expression that returns a unit instance.
This is an unapproved IEEE Standards Draft, subject to change.
183

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
p.set_unit(sys.unit_core)
out(p.get_unit())
XYZ_router-@1

5.5 Unit-Related Predefined Routines

The predefined routines that are useful for units include:

� �set_config_max()� on page 184
� �get_all_units()� on page 186

5.5.1 set_config_max()

Purpose

Increase values of numeric global configuration parameters

Category

Predefined routine

Syntax

set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])

Syntax example:

set_config_max(memory, gc_threshold, 100m);
184 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Sets the numeric options of a particular category to the specified maximum values.

If you are creating a modular verification environment, it is recommended to use set_config_max() instead
of set_config() in order to avoid possible conflicts that may happen in an integrated environment. For exam-
ple, if two units are instantiated and both of them attempt to enlarge the configuration value of
absolute_max_size then the recommended way to it is via set_config_max, so that no unit decrements the
value set by another one.

Example

<'
extend sys {

setup() is also {
set_config_max(memory, gc_threshold, 100m);

};
};
'>

See Also

� �Predefined Methods for Any Unit� on page 170

category Is one of the following: cover, gen, memory, and run.
option The valid cover option is:

� absolute_max_buckets.

The valid generate options are:

� absolute_max_list_size

� max_depth

� max_structs

The valid memory options are:

� gc_threshold

� gc_increment

� max_size

� absolute_max_size

The valid run option is:

� tick_max

The options are described in �set_config()� on page 766.
value The valid values are different for each option and are described in

�set_config()� on page 766.
This is an unapproved IEEE Standards Draft, subject to change.
185

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �Unit-Related Predefined Methods for Any Struct� on page 177

5.5.2 get_all_units()

Purpose

Return a list of instances of a specified unit type

Category

Routine

Syntax

get_all_units(unit-type: exp): list of unit instances

Syntax example:

print get_all_units(XYZ_channel);

Parameters

Description

This routine receives a unit type as a parameter and returns a list of instances of this unit type as well as any
unit instances contained within each instance.

Example

This example uses get_all_units() to print a list of the instances of XYZ_router. Note that the display also
shows that this instance of XYZ_router contains �channels�, which is a list of three unit instances.

<'
unit XYZ_router {
 channels: list of XYZ_channel is instance;

 keep channels.size() == 3;
 keep for each in channels {

.hdl_path() == append("chan", index);

.router == me
};

};

unit XYZ_channel {
 router:XYZ_router;
};

extend sys {
 router:XYZ_router is instance;

 run() is also {
print get_all_units(XYZ_router);

unit-type The name of a unit type. The type must be defined or an error occurs.
186 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 };
};
'>

Result

get_all_units(XYZ_router) =
item type channels

0. XYZ_router (3 items)

See Also

� �Predefined Methods for Any Unit� on page 170
� �Unit-Related Predefined Methods for Any Struct� on page 177
This is an unapproved IEEE Standards Draft, subject to change.
187

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
188 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6 e Ports

This document describes ports, an e unit member that enhances the portability and inter-operability of verifi-
cation environments by making separation between an e unit and its interface possible.

This document discusses the following topics:

� �Introduction to e Ports� on page 189
� �Using Simple Ports� on page 192
� �Using Buffer Ports� on page 199
� �Using Event Ports� on page 201
� �Defining and Referencing Ports� on page 202
� �Port Attributes� on page 210
� �Using Port Values and Attributes in Constraints� on page 231
� �Buffer Port Methods� on page 232
� �Multi-Value Logic (MVL) Methods for Simple Ports� on page 235
� �Methods for Simple Ports� on page 244
� �Global MVL Routines� on page 247

6.1 Introduction to e Ports

A port is an e unit member that makes a connection between an e unit and its interface to another internal or
external entity. There are two ways to use ports:

� Internal ports (e2e ports) connect an e unit to another e unit.
� External ports connect an e unit to a simulated object.

External ports are a generic way to access simulated objects of various kinds. An external port is bound to a
simulated object, for example an HDL signal in the DUT. Then all access to that signal is made via the port.
The port can be used to access a different signal simply by changing the binding; all the code that reads or
writes to the port remains the same. Similarly, port semantics remain the same, regardless of what simulator
is used.

NOTE� In this document, �simulator� means any hardware or software agent that runs in parallel
with an e program, and models the behavior of any part of the design under test (DUT) or its
environment.

6.1.1 Advantages of Using Ports

Although previous HDL access mechanisms are still supported, ports have the following advantages over
the old access mechanisms:

� Ports support modularity and encapsulation by explicitly declaring interfaces to e units.
� They are typed.
� They improve performance of accessing DUT objects with configurable names.
� They can pass not only single values but also other kinds of information, such as events and queues.
� They can be accompanied in e with generic or simulator-specific attributes that let you specify infor-

mation needed for enhanced access to DUT objects.
� They are suitable for use with a publicly available procedural External Simulator Interface (ESI).
� Some new simulator interfaces, such as SystemC, require the use of ports.
This is an unapproved IEEE Standards Draft, subject to change.
189

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
6.1.2 Creating Port Instances

Port type is defined by three aspects:

� The kind of port, either simple port, buffer port, or event port:

� Simple ports access data directly.

� Buffer ports implement an abstraction of queues with blocking get and put.

� Event ports transfer events between e units or between an e unit and a simulator.

� Direction, either input or output (or inout for simple and event ports)
� Data element, the e type that can be passed through this port

You can instantiate ports only within units. Like units, port instances are generated during prerun generation
and cannot be created, modified or removed during a run. When you instantiate a port, you must specify:

� A unique instance name
� The port type (direction, port kind, and a kind-specific type specifier)

The generic syntax for ports is as follows:

port-instance-name: [direction] port-kind of [type-specifier] is instance;

NOTE� Event ports do not allow a type specifier.

For example, the following unit member creates a port instance:

data_in: in buffer_port of packet is instance;

where:

� The port instance name is data_in.
� The port kind is a buffer port.
� The port direction is input.
� The data element the port accepts is �packet�.

As another example, the following line creates a list of simple ports which each pass data of type bit:

ports: list of simple_port of bit is instance;

6.1.3 Using Ports

A port�s behavior is influenced by port attributes, such as hdl_path() or bind(), which are applied to port
instances using pre-run generation keep constraints. For example, the following lines of code create a port
named �data� and connect (bind) it to an external simulator-related object whose HDL pathname is �data�.

data: inout simple_port of list of bit is instance;
keep bind(data, external);
keep data.hdl_path() == "data";

Each port kind has predefined methods that you use to access the port values. For example, buffer ports have
a predefined method put(), which writes a value onto an output port:
190 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
data_out: out buffer_port of cell is instance;
drive_all() @sys.any is {

var stimuli: cell;
var counter: int=0;
while counter < cells {

wait [1]*cycle;
gen stimuli;
data_out.put(stimuli);
counter+=1;

};
};

6.1.4 Ports Example

The e code in this section shows examples of instantiating and using buffer ports. An output buffer port and
an input buffer port are created, the ports are connected together, and data elements of type �cell� are gener-
ated and transmitted from the output buffer port to the input buffer port.

1 struct cell {
2 header[2] : list of byte;
3 data[50] : list of byte;
4 };
5
6 unit trans {
7 data_out: out buffer_port of cell is instance;
8 !cells : int;
9 keep cells == 100;
10 drive_all() @sys.any is {
11 var stimuli: cell;
12 var counter: int=0;
13 while counter < cells {
14 wait [1]*cycle;
15 gen stimuli;
16 data_out.put(stimuli);
17 counter+=1;
18 };
19 };
20 };
21
22 unit rec {
23 data_in: in buffer_port of cell is instance;
24 keep data_in.buffer_size() == 20;
25 get_all() @sys.any is {
26 while TRUE {
27 print data_in.get();
28 };
29 };
30 };

31 extend sys{
32 transmitter: trans is instance;
33 receiver: rec is instance;
34 keep bind(transmitter.data_out, receiver.data_in);
35 run() is also {
36 start transmitter.drive_all();
37 start receiver.get_all();
38 };
This is an unapproved IEEE Standards Draft, subject to change.
191

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
39 };

Line 1 - Line 4 : define �cell�, the data element that is passed by the output buffer port.

Line 7 creates a port instance named �data_out�, whose type is �out buffer_port of cell�.

Line 10 - Line 19 : define a TCM that generates a variable named �stimuli� of type �cell� every cycle until
100 have been generated. This variable is written to the output buffer port by a predefined buffer port TCM,
put(), in Line 16.

Line 23 creates a port instance named �data_in� of type �in buffer_port of cell�. This port complements the
�data_out� port created in the trans unit, and is used to receive cell data written to the data_out port.

Line 24 constrains the maximum number of cells that can be held in the port queue to 20.

Line 25 - Line 29 : define a TCM that retrieves and prints, one by one, the cells that have been placed on the
port queue by the drive_all() TCM. Another predefined buffer port method, get(), is used to do this.

Line 32 - Line 34 : create instances of the �rec� and �trans� units and connect the data_out port with the
data_in port.

6.2 Using Simple Ports

You can use simple ports to transfer one data element at a time to or from either an external simulated object,
such as a Verilog register, a VHDL signal or a SystemC method, or an internal object (another e unit). A
simple port�s direction can be either input, output or inout.

Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists
of scalar types, including MVL data elements. Currently there is no support for passing structs or lists of
struct through external simple ports.

You can read or write port values using the $ port access operator. To access multi-value logic (MVL) on
simple ports, you can either declare a port�s data element to be mvl or list of mvl, or you can use the MVL
methods. See �Accessing Simple Ports and Their Values� on page 193 and �Multi-Value Logic (MVL) on
Simple Ports� on page 194 for more information.

Internal and external ports must have a bind() attribute that defines how they are connected. In addition, you
can use the delayed() attribute to control whether new values are propagated immediately or at the next tick.

An external simple port must have an hdl_path() attribute to specify the name of the object that it is con-
nected to. In addition, an external simple port can have several additional attributes that enable continuous
driving of external signals.

See �Port Attributes� on page 210 for more information on attributes for simple ports.

See Also

� �@sim Temporal Expressions with External Simple Ports� on page 196
� �An Internal Simple Ports Example� on page 197
� �An External Simple Ports Example� on page 198
� �simple_port� on page 202
� �any_simple_port, any_buffer_port, any_event_port� on page 207
192 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.2.1 Accessing Simple Ports and Their Values

Ports are containers, and the values they hold are separate entities from the port itself. The $ access operator
distinguishes port value expressions from port reference expressions.

The $ access operator, for example p$, is used to access or update the value held in a simple port p. When
used on the right-hand side, p$ refers to the port�s value. On the left-hand side of an assignment, p$ refers to
the value�s location, so an assignment to p$ changes the value held in the port.

Without the $ operator an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

NOTE� You cannot apply the $ access operator to an item of abstract type, such as
any_simple_port. This type does not have any access methods. The expression �port_arg$ == 0� in
the following code causes a syntax error.

foo_tcm (port_arg : any_simple_port)@clk is {
if (port_arg$ == 0) then { -- syntax error

out (sys.time, " Testing port logic comparison.");
};

};

Examples of Accessing Port Values

NOTE� Indexing, slicing, and field access for a port value on the left-hand-side of an expression
are currently not supported.

print p$; Prints the value of a simple port, p.

NOTE� Compare with �print p�, which prints information
about port p.

p$ = 0; Assigns the value 0 to a simple port, p.

NOTE� Compare with �pref = NULL�, which modifies a
port reference so that it does not point to any port instance.

force p$ = 0; Forces a simple external port to 0.
print q$[1:0]; Prints the two least-significant bits of the value of q.
print q$[2:2]; Prints the third least-significant bit of the value of q.
print sys.pp$; Prints the value of port sys.pp.
print sys.plist[0]$; Prints the value of port plist[0] from a list of ports, plist.
print blist$[0..1]; Prints the first two elements of a list value. blist is defined as:

blist: in simple_port of list of bit is instance;

print listbl[0]$[1]; Prints the second bit in a list value of the first element in a list of
ports. Could be written (listbl[0])$[1]. listbl is defined as:

listbl: list of in simple_port of list of bit is
instance;
This is an unapproved IEEE Standards Draft, subject to change.
193

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Examples of Accessing a Port

See Also

� �Multi-Value Logic (MVL) on Simple Ports� on page 194
� �simple_port� on page 202

6.2.2 Multi-Value Logic (MVL) on Simple Ports

There are two ways to read and write multi-value logic on simple ports:

� Define numeric ports (uint, int, and so on) and use the predefined MVL methods described in �Multi-
Value Logic (MVL) Methods for Simple Ports� on page 235 to read and write values to the port.

� Define ports of type mvl or list of mvl and use the $ access operator to read and write values to the
port.

Ports of type mvl or list of mvl (MVL ports) allow easy transformation between exact e values and multi-
value logic, which is useful for communicating with objects that sometimes model bit values other than 0 or
1 during a test. Otherwise, using numeric ports is preferable, since numeric ports allow keeping the port val-
ues in a bit-by-bit representation, while MVL ports require having an e list for a multi-value logic vector.

The enumerated type mvl is defined as:

type mvl: [MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N]

Notes

� You will get a syntax error if you use the Verilog comparison operators (=== or !==) with either
numeric ports or MVL ports. These operators can be used only with the tick access syntax.

print p; Prints the information about port p. Port p is defined as:

p: simple_port of int (bits:8) is instance;

// p = 5; An error, as it is an attempt to assign incompatible types.
keep q == p; q refers to the port instance p. Port reference q is defined as:

!q: simple_port of int (bits:8);

r = q; Port reference r refers to the port instance p too. It is defined
as:

var r: any_simple_port;

keep plist.size() == 3; plist is defined as:

plist: list of in simple_port of int
(bits:8) is instance;

keep plist[0] == p; plist[0] refers to the port instance p.
keep plist[1] == p2; plist[1] refers to the port instance p2. p2 is defined as:

p2: simple_port of int (bits:8) is
instance;

keep plist[2] == q; plist[2] refers to the port instance p (because of q).
194 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� Not all supported simulators need all the potential MVL values. All nine values are supported only
for VHDL simulations. For Verilog simulations, only four values (MVL_U, MVL_X, MVL_0,
MVL_1) are supported.

Example 1: Numeric Port

This example shows how tick access notation translates to MVL methods, assuming the following numeric
port declaration:

data: inout simple_port of int is instance;
keep bind (data, external);
keep data.hdl_path() == "data";

d: int;

Example 2: MVL Port

This example shows how tick access notation translates to use of an MVL port, assuming the following
MVL port declaration:

data: inout simple_port of list of mvl is instance;
keep bind (data, external);
keep data.hdl_path() == "data";

Example 3: Checking Numeric Ports for MVL Values

If you have several ports that pass numeric data elements of different sizes, you might want to create a
generic method that checks these ports for MVL values such as MVL_X or MVL_Z. For example, you can
create a generic method for the following ports:

byte_port: in simple_port of byte is instance;
uint_port: in simple_port of uint is instance;

The correct way to create a generic method is to pass the port value, not the port itself, to the method. You
must convert the port value to the desired type before passing it. For example:

 x_chk(m: list of mvl) is inline {
 check that m.has(it == MVL_X) == FALSE else

d = 'data'; d = data$;
'data' = 32'bz; data.put_mvl_list(32'bz);
check that 'data@x' == 0; check that data.get_mvl_list().has(it == MVL_X) == FALSE;

check that data.has_x() == FALSE;
d = 'data[31:10]@z'; d = mvl_to_int(data.get_mvl_list(), {MVL_Z})[31:0];

check that 'data@x' == 0; check that data$.has(it == MVL_X} == FALSE;

check that data.has_x() == FALSE;
'data' = 32'bz; data$ = 32'bz;
This is an unapproved IEEE Standards Draft, subject to change.
195

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 dut_error("Bus has value of X!");
 };
 run() is also {
 x_chk(byte_port.get_mvl_list());
 x_chk(uint_port.get_mvl_list());
 };

See Also

� �Multi-Value Logic (MVL) Methods for Simple Ports� on page 235
� �Methods for Simple Ports� on page 244
� �Global MVL Routines� on page 247

6.2.3 @sim Temporal Expressions with External Simple Ports

When you specify an event port, you cause e to be sensitive to the corresponding HDL signal during the
entire simulation session. This might result in some unnecessary runtime performance cost if you need e to
be sensitive only in certain scenarios. In such cases you can use an external simple port in temporal expres-
sions with @sim, using the following syntax:

[change|rise|fall](simple-port$)@sim;

Normally you use this syntax in wait actions. For example:

transaction_complete: in simple_port of bit is instance;
keep bind(transaction_complete, external);

write_transaction(data: list of byte) @clk$ is {
...
data_port$ = data;
wait rise(transaction_complete$)@sim;

};

This syntax might be also useful if you are interested in accessing a value of a signal, in addition to knowing
if it changed. For example:

counter: in simple_port of uint is instance;
keep bind(counter, external);

event counter_change is change(counter$)@sim;
on counter_change {
 if (counter$ >= 255) {out("Counter is full")};
};

Example

unit collector {
pclk1: in simple_port of bit is instance;
dataport: in simple_port of byte is instance;

read_packet(pclk: in simple_port of bit) @sys.any is {
var p: packet = new;
var len := dataport$;
for j from 0 to len - 1 {

wait fall(pclk$)@sim;
p.data.add(dataport$);

};
196 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
sys.packets.add(p);
};
run() is also {

start read_packet(pclk1);
};

};

Trying to apply the @sim operator to a bound internal port causes an error when the corresponding temporal
expression is evaluated, which occurs at runtime.

See Also

� �simple_port� on page 202

6.2.4 An Internal Simple Ports Example

This example shows two units communicating through simple ports, with no external ports.

unit u1 {
p1: in simple_port of int(bits:64) is instance;
// Define a simple port
doit()@sys.any is {

for i from 1 to 10 do {
wait cycle;
print p1$; // Do a get from the port
wait cycle;

};
stop_run();

};
run() is also {

start doit();
};

};
unit u2 {

p2: out simple_port of int(bits:64) is instance;
// Define another simple port
doit()@sys.any is {

var v: int(bits:64);
while TRUE {

 gen v;
p2$ = v;
wait cycle;
wait cycle;

};
};
run() is also {

start doit();
};

};
extend sys {

u1: u1 is instance;
u2: u2 is instance;
keep bind(u1.p1, u2.p2); // Bind the two ports

};
This is an unapproved IEEE Standards Draft, subject to change.
197

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
6.2.5 An External Simple Ports Example

The following e code describes a testbench component that drives data into an encoder and checks the out-
put of the encoder for errors.

In this example the clk, data_length, data, address and rq ports are external ports associated with various
Verilog signals. The name of the simulator is established by the pre-run generation constraint on Line 67
(keep e.agent() == �verilog�). You can re-direct the access to another simulator (and possibly, to another
modeling language) by changing this constraint.

Verilog objects associated with the external ports are registers (clk, temp_address, data_width) and nets
(data). On the e side, each port�s behavior corresponds to its specified type�event port, simple port, or
buffer port. The event port clk, in Line 3, is used to synchronize the e program with the simulator. Port rq, in
Line 21, illustrates the declaration of a buffer port. The other ports read and write the specified Verilog
objects directly.

The postfix $ access operator, for example clk$ or data$ in Line 29 and Line 32, is used to access the event
associated with an event port or to read or write to a simple port. Access to a buffer port, on the other hand,
is performed using the predefined methods for buffer ports, get() and put(), as shown in Line 42.

1 unit encoder {
2
3 clk: in event_port is instance;
4 keep bind(clk, external);
5 keep clk.hdl_path() == "clk";
6
7 data_length: in simple_port of uint is instance;
8 keep bind(data_length, external);
9 keep data_length.hdl_path() == "data_width";
10
11 data: inout simple_port of list of bit is instance;
12 keep bind(data, external);
13 keep data.hdl_path() == "data";
14 keep data.verilog_wire() == TRUE; -- simple port attribute
15 keep data.declared_range() == "[31:0]"; -- simple port attribute
16
17 address: in simple_port of uint is instance;
18 keep bind(address, external);
19 keep address.hdl_path() == "PRIO/temp_address";
20
21 rq: in buffer_port of bool is instance;
22 keep bind(rq, external);
23 keep rq.buffer_size() == 8; -- buffer port attribute
24 keep rq.hdl_path() == "rq";
25
26 data_list: list of bit;
27 keep data_list.size() < 32;
28
29 inject()@clk$ is {
30 for j from 0 to 15 {
31 gen data_list;
32 data$ = data_list;
33 wait cycle;
34 };
35 stop_run();
36 };
37
198 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
38 checker() @clk$ is {
39 while TRUE {
40 wait cycle;
41
42 if not rq.get() {
43 check that address$ == 0;
44 check that data$.has(it != 0)== FALSE;
45 } else {
46 check that address$!= 0;
47 var mask: uint = 0x10000000;
48 for {var i: byte = data_length$ - 1; i>0; i -= 1} {
49 if (data$[31:0] & mask) != 0 {
50 check that address$ == i;
51 break;
52 };
53 mask >>= 1;
54 };
55 };
56 };
57 };
58 run() is also {
59 start inject();
60 start checker();
61 };
62 };
63
64 extend sys {
65 e: encoder is instance;
66 keep e.hdl_path() == "~/priority_encoder";
67 keep e.agent() == "verilog";
68
69 };

6.3 Using Buffer Ports

You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in FIFO order. When the queue is full, write access to the port is
blocked. When the queue is empty, read access to the port is blocked.

The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size may be set to 0 for rendezvous ports. See �buffer_size()� on page 217 and �Rendezvous-
Zero Size Buffer Queue� on page 200 for more information.

A buffer port�s direction can be either input or output. Inout is not supported. Internal buffer ports can trans-
fer data elements of any type..

You can read or write port values using the buffer port�s predefined get() and put() methods. These methods
are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.

Buffer ports must have a bind() attribute that defines how they are connected. In addition, you can use the
delayed() attribute to control whether new values are propagated immediately or at the next tick. The
pass_by_pointer() attribute controls how data elements of composite type are passed. See �Port Attributes�
on page 210 for more information on these attributes.
This is an unapproved IEEE Standards Draft, subject to change.
199

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �An Internal Buffer Ports Example� on page 200
� �buffer_port� on page 204
� �any_simple_port, any_buffer_port, any_event_port� on page 207
� �Methods for Simple Ports� on page 244

6.3.1 Rendezvous-Zero Size Buffer Queue

In rendezvous-style handshaking protocol, access to a port is blocked after each put() until a subsequent
get() is performed, and access is blocked after each get() until a subsequent put() is performed.

This style of communication is easily achieved by using buffer ports with a data queue size of 0. The follow-
ing example shows how this is done.

Example

unit consumer {
in_p: in buffer_port of atm_cell is instance;

};

unit producer {
out_p: out buffer_port of atm_cell is instance;

};

extend sys {
consumer: consumer is instance;
producer: producer is instance;
keep bind(producer.out_p, consumer.in_p);
keep producer.out_p.buffer_size() == 0;

};

See Also

� �buffer_port� on page 204

6.3.2 An Internal Buffer Ports Example

This example shows two units communicating through buffer ports, with no external ports.

unit producer {
p: out buffer_port of atm_cell is instance;
producer()@sys.any is {

var cell: atm_cell;
for i from 1 to 100 do {

gen cell;
p.put(cell) // Waits if the buffer is full

};
stop_run();

};
};
unit consumer {

p: in buffer_port of atm_cell is instance;
consumer()@sys.any is {

while (TRUE) do {
var cell: atm_cell;
cell = p.get(); // Waits if the buffer is empty
200 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
// Inject the cell into the DUT
};

};
};
extend sys {

consumer: consumer is instance;
producer: producer is instance;
keep bind(producer.p, consumer.p);
keep producer.p.buffer_size() == 10;

};

6.4 Using Event Ports

You can use event ports to transfer events between two e units or between an e unit and an external object.
An internal event port�s direction can be either input, output or inout.

You can read or write port values using the $ port access operator. See �Accessing Event Ports� on page 201
for more information.

Internal and external ports must have a bind() attribute that defines how they are connected.

An external port must have an hdl_path() attribute to specify the name of the object that it is connected to.
The edge() attribute for an external input event port specifies the edge on which an event is generated.

See �Port Attributes� on page 210 for more information on these attributes.

See Also

� �event_port� on page 205
� �any_simple_port, any_buffer_port, any_event_port� on page 207

6.4.1 Accessing Event Ports

The $ access operator is used to access the event associated with an event port. An expression of type
event_port without the �$� operator refers to the port itself and not to its event.

Example 1

emit me.ep$;
monitor()@ep$ is { ... };
wait @lep[0]$;
event ep1 is @ep$;
wait cycle @ep$;
expect @a => { ... }@ep$;

Example 2

This example shows how to connect event ports, using a bind() constraint, and how to use the $ operator to
access event ports in event contexts.

unit u1 {
in_ep: in event_port is instance;
tcm1()@in_ep$ is {
// ...
};
This is an unapproved IEEE Standards Draft, subject to change.
201

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

unit u2 {
out_ep: out event_port is instance;
event clk is @sys.any;
counter: uint;
on clk {

counter = counter + 1;
if counter %10 == 0 {

emit out_ep$
};

};
};

extend sys {
u1: u1 is instance;
u2: u2 is instance;
keep bind(u1.in_ep,u2.out_ep);

};

See Also

� �Methods for Simple Ports� on page 244

6.4.2 Defining and Referencing Ports

This section covers the following topics:

� �simple_port� on page 202
� �buffer_port� on page 204
� �event_port� on page 205
� �any_simple_port, any_buffer_port, any_event_port� on page 207
� �port$� on page 209

6.4.2.1 simple_port

Purpose

Access other port instances or external simulated objects directly

Category

Unit member

Syntax

port-instance-name: [list of] [direction] simple_port of element-type is instance;

Syntax example:

data: in simple_port of byte is instance;
202 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

You can use simple ports to transfer one data element at a time to or from either an external simulated object
or an internal object (another e unit).

Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists
of scalar types, including MVL data elements. Currently there is no support for passing structs or lists of
struct through external simple ports.

The port can be configured to access a different signal simply by changing the binding; all the code that
reads or writes to the port remains the same. Similarly, port semantics remain the same, regardless of what
simulator is used. Binding is fixed during generation.

A simple port�s direction can be either input, output, or inout. The direction specifier in a simple port is not a
when subtype determinant. This means, for example, that the following type:

data: simple_port of byte is instance;

is not the base type of:

data: out simple_port of byte is instance;

Furthermore, the following types are fully equivalent:

data: simple_port of byte is instance;
data: inout simple_port of byte is instance;

Thus, the following constraint is an error because the two types are not equivalent:

data: out simple_port of byte is instance;
!data_ref: simple_port of byte; // means inout simple_port of byte
keep data_ref == data; // error

Example

<'
unit encoder {

data: out simple_port of int(bits:64) is instance;
keep bind(data, external);
keep data.hdl_path() == "data";

drive()@sys.any is {
var v: int(bits:64);
while TRUE {

port-instance-name A unique identifier you can use to refer to the port or access its value.
direction One of in, out, or inout. The default is inout, which means that you

can read values from and write values to this port. For an in port, you
can only read values from the port, and for an out port you can only
write values to the port.

element-type Any predefined or user-defined e type except a port type or a unit
type.
This is an unapproved IEEE Standards Draft, subject to change.
203

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 gen v;
data$ = v;
wait cycle;
wait cycle;

};
};
run() is also {

start drive();
};

};
'>

See Also

� �Using Simple Ports� on page 192
� �any_simple_port, any_buffer_port, any_event_port� on page 207
� �Multi-Value Logic (MVL) Methods for Simple Ports� on page 235
� �Global MVL Routines� on page 247
� �Methods for Simple Ports� on page 244

6.4.2.2 buffer_port

Purpose

Implement an abstraction of queues with blocking get and put

Category

Unit member

Syntax

port-instance-name: [list of] direction buffer_port of element-type is instance;

Syntax example:

rq: in buffer_port of bool is instance;

Parameters

Description

You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in FIFO order. When the queue is full, write access to the port is
blocked. When the queue is empty, read access to the port is blocked.

port-instance-name A unique identifier you can use to refer to the port or access its value.
direction One of in or out. There is no default. For an in port, you can only read

values from the port, and for an out port you can only write values to
the port. See �Buffer Port Methods� on page 232 for information on
how to read and write buffer ports.

element-type Any predefined or user-defined e type except a unit or a port type.
204 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size may be set to 0 for rendezvous ports.

You can read or write port values using the buffer port�s predefined get() and put() methods. These methods
are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.

A typical usage of a buffer port is in a producer and consumer protocol, where one object puts data on an
output port at possibly irregular intervals, and another object with the corresponding input port reads the
data at its own rate.

Example

unit encoder {

rq: in buffer_port of bool is instance;
keep rq.buffer_size() == 8; -- buffer port attribute

};

See Also

� �Using Buffer Ports� on page 199
� �Buffer Port Methods� on page 232
� �Methods for Simple Ports� on page 244

6.4.2.3 event_port

Purpose

Transfer events between units or between simulators and units

Category

Unit member

Syntax

event-port-field-name: [list of] [direction] event_port is instance;

Syntax example:

clk: in event_port is instance;

Parameters

Description

You can use event ports to transfer events between two e units or between an e unit and an external object.

event-port-field-name A unique identifier you can use to refer to the port or access its value.
direction One of in, out, or inout. The default is inout, which means that

events can be both emitted and sampled on the port. For a port with
direction in, events can only be sampled. For a port with direction
out, events can only be emitted.
This is an unapproved IEEE Standards Draft, subject to change.
205

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
You can read or write port values using the $ port access operator. See �Accessing Event Ports� on page 201
for more information.

An internal event port�s direction specifier can be either input, output or inout. The direction specifier is not
a when subtype determinant. This means, for example, that the following type

clk: event_port is instance;

is not the base type of

clk: out event_port is instance;

Furthermore, the following types are fully equivalent:

clk: event_port is instance;
clk: inout event_port is instance;

Notes

� Currently, external out and inout event ports are unsupported.
� The on struct member for event ports is not supported.
� Coverage on event ports is currently unsupported.
� It is impossible to specify a temporal formula (like �event_port is ...�) for definition of an out event

port.

In order to use any of the above unsupported capabilities (except the first in the list) it is possible to define an
additional event and connect it to the event port as follows:

ep: in event_port is instance;
keep bind(ep,external);
event e is @ep$;

Example 1

References to event ports are supported. In the following example, current_clk is an event port reference.

unit u {
clks: list of in event_port is instance;
events: list of out event_port is instance;

};

extend u {
!current_clk: in event_port;
keep current_clk == clks[0];

};

Example 2

You can pass an event port as a parameter to a TCM. In this example, each event in a list of events is passed
as a parameter to the drive() method.

extend u {
drive(ep: out event_port) @current_clk$ is {

emit ep$;
};
206 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
run() is also {
for each in events do {

start drive(it);
};

};
};

Example 3

The attribute hdl_path() must be specified for external event ports. In the following example, only a �cti�
simulator can emit ext_ep. Presumably there is some DUT event related to a simulated item �~/top_s/
transaction_done�.

unit u {
ext_ep: in event_port is instance;

keep bind(ext_ep,external);
keep ext_ep.hdl_path() == "transaction_done";

};
extend sys {

u: u is instance;
keep u.hdl_path() == "top_s";

};

See Also

� �Using Event Ports� on page 201
� �Methods for Simple Ports� on page 244

6.4.2.4 any_simple_port, any_buffer_port, any_event_port

Purpose

Reference a port instance

Category

Unit field, variable or method parameter

Syntax

[! | var] port-reference-name: [direction] port-kind [of element-type]

[! | var] port-reference-name: any-port-kind

Syntax example:

!last_printed_port: any_buffer_port;
 !in_int_buffer_port_ref: in buffer_port of int;
This is an unapproved IEEE Standards Draft, subject to change.
207

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Port instances may be referenced by a field, a variable, or a method parameter of the same port type or of an
abstract type:

� any_simple_port
� any_buffer_port
� any_event_port.

Abstract port types reference only the port kind, not the port direction or data element. Thus, a method
parameter of type any_simple_port accepts all simple ports, including, for example:

data_length: in simple_port of uint is instance;
data: inout simple_port of list of bit is instance;

If a port reference is a field, then it must be marked as non-generated or it must be constrained to an existing
port instance. Otherwise, a generation error results.

Port binding is allowed only for port instance fields, not for port reference fields. Trying to apply a keep
bind() constraint to a port reference results in an error.

Notes

� You cannot apply the $ access operator to an item of type any_simple_port or any_event_port.
Abstract types do not have any access methods. For example, the expression �port_arg$ == 0� in the
following code causes a syntax error.

foo_tcm (port_arg : any_simple_port)@clk is {

if (port_arg$ == 0) then { -- syntax error

out (sys.time, " Testing port logic comparison.");

};

};

� You cannot use an abstract type in a port instance; you must specify the element type.

Example

The print_port() method in the following example can be called with any buffer port. The iterate() method
shows an alternative way to print a list of ports.

unit u {
plist: list of in buffer_port of int is instance;
!last_printed_port: any_buffer_port; // A field, so must be

// non-generated

port-reference-name A unique identifier.
direction One of in, out, or, for simple ports and event ports, inout.
port-kind One of simple_port, buffer_port or event_port.
any-port-kind One of any_simple_port, any_buffer_port or

any_event_port.
element-type Required if port-kind is simple_port or buffer_port.
208 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
print_port(p: any_buffer_port) is { // A method parameter
print p; // Prints the port's e path, agent name, and so on
last_printed_port = p;

};

iterate() is {
for each in plist {

in_int_buffer_port_ref = it;
print_port(in_int_buffer_port_ref);

};
};

};

6.4.2.5 port$

Purpose

Read or write a value to a simple port or event port

Category

Operator

Syntax

exp$

Syntax example:

p$ = 32'bz; // Assigns an mvl literal to the port 'p'

Parameters

Description

The $ access operator is used to access or update the value held in a simple port or event port. When used on
the right-hand side, p$ refers to the port�s value. On the left-hand side of an assignment, p$ refers to the
value�s location, so an assignment to p$ changes the value held in the port.

Without the $ operator an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

NOTE� You cannot apply the $ access operator to an item of type any_simple_port or
any_event_port. Abstract types do not have any access methods. For example, the expression
�port_arg$ == 0� in the following code causes a syntax error.

foo_tcm (port_arg : any_simple_port)@clk is {

if (port_arg$ == 0) then { -- syntax error

out (sys.time, " Testing port logic comparison.");

exp An expression that returns a simple port or event port
instance.
This is an unapproved IEEE Standards Draft, subject to change.
209

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

};

Example

<'
unit u {

free_port(p: inout simple_port of list of mvl) is {
p$ = 32'bz; // Assigns an mvl literal to the port

};
};
'>

See Also

� �Accessing Simple Ports and Their Values� on page 193
� �Accessing Event Ports� on page 201
� �Multi-Value Logic (MVL) on Simple Ports� on page 194
� �Methods for Simple Ports� on page 244

6.5 Port Attributes

Ports have attributes that affect their behavior and how they can be used. You assign port attributes using the
attribute() syntax in pre-generation constraints, as follows:

keep [soft] port_instance.attribute() == value;

You can use soft constraints for attributes that you might want to override later.

Most port attributes are ignored unless the port is an external port, but it does no harm to specify attributes
for ports that are not external ports. Attributes intended for external ports may or may not be supported for a
particular simulator. A particular adapter can also define additional port attributes that are required to
enhance access to simulated objects.

6.5.1 Generic Port Attributes

Port attributes that are potentially valid for all simulators are described in Table 6-1. However, a particular
simulator adapter might not implement some of these attributes.
210 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
NOTE� Depending on the simulator adapter you are using, port attributes might cause additional
code to be written to the stubs file. In that case, if you add or change an attribute, you must rewrite
the stubs file.

Table 6-1�Generic Port Attributes

Attribute Description Applies to

bind() Connects two internal ports or connect a port to an
external object

Type: bool

Default: none

See also �bind()� on page 215.

All kinds of internal and
external ports

buffer_size() Specifies the maximum number of elements for a
buffer port queue.

Type: uint

Default: none

See also �buffer_size()� on page 217.

Buffer ports

declared_range() Specifies the bit width of an external multi-bit
object.

Type: string

Default: none

See also �declared_range()� on page 219.

External output simple
ports that are bound to
some kinds of multi-bit
objects

delayed() Specifies whether propagation of a new port value
assignment occurs immediately or is delayed to
the tick boundary.

Type: bool

Default: TRUE

See also �delayed()� on page 219.

Internal and external
simple ports

driver() When TRUE, an additional resolved HDL driver
is created for the corresponding simulator item,
and that driver is written to instead of the port.

Type: bool

Default: FALSE

See also �driver()� on page 220.

External output simple
ports
This is an unapproved IEEE Standards Draft, subject to change.
211

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
6.5.2 Port Attributes for HDL Simulators

Port attributes that are potentially valid for all HDL simulators are described in Table 6-2. However, a partic-
ular simulator adapter might not implement some of these attributes.

driver_delay() Specifies the delay time for all assignments from
e to the port.

Type: time

Default: 0

See also �driver_delay()� on page 221.

External output simple
ports

edge() Specifies the edge on which an event is generated.

Type: event_port_edge

Default: change

See also �edge()� on page 222.

External input event
ports

hdl_path() Specifies a relative path of the corresponding sim-
ulated item as a string.

Type: string

Default: none

See also �hdl_path()� on page 223.

External ports

pack_options() Specifies how the port�s data element is implicitly
packed and unpacked.

Type: pack_options

Default: global.packing.adapter

See also �pack_options()� on page 225.

External simple ports
whose data element is a
composite type (lists and
structs)

pass_by_pointer When TRUE, composite data (structs or lists) are
transferred by reference.

Type: bool

Default: FALSE (pass by value)

See also �pass_by_pointer()� on page 225.

Internal simple or buffer
ports whose data element
is a composite type (lists
and structs)

Table 6-1�Generic Port Attributes

Attribute Description Applies to
212 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The port attributes in Table 6-2 enable extended functionality. They cause additional information to be writ-
ten into the HDL stubs file to enhance user control over the driving of HDL signals. For this reason, if you
add or change any attribute shown in Table 6-2, you must rewrite the stubs file.

Some of these attributes are similar to Verilog or VHDL unit members, such as verilog variable or vhdl
driver.

Example

The following verilog variable declaration

verilog variable 'sig[7:0]' using strobe="#1", drive="#5" ;

is equivalent to the following port attributes:

data : inout simple_port of uint(bits: 8) is instance;
keep bind(data, external);
keep data.hdl_path()=="sig";
keep data.declared_range() == "[7:0]";
keep data.verilog_strobe() == "#1";
keep data.verilog_drive() == "#5";

Table 6-2�Port Attributes for Verilog or VHDL Agents

Attribute Description Applies to

driver_initial_value() Applies an initial mvl value to the port.

Type: list of mvl

Default: {} (empty list)

See also �driver_initial_value()� on page 222.

External output
simple ports

verilog_drive() Specifies the event on which the data is driven to
the Verilog object.

Type: string

Default: none

See also �verilog_drive()� on page 226.

External output
simple ports

verilog_drive_hold() Specifies an event after which the port data is set
to Z.

Type: string

Default: none

See also �verilog_drive_hold()� on page 227.

External output
simple ports
This is an unapproved IEEE Standards Draft, subject to change.
213

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
verilog_forcible() Allows forcing of Verilog wires.

Type: bool

Default: FALSE

See also �verilog_forcible()� on page 227.

External output
simple ports

verilog_strobe() Specifies the sampling event for the Verilog sig-
nal that is bound to the port.

Type: string

Default: none

See also �verilog_strobe()� on page 228.

External output
simple ports

verilog_wire() Binds an external out port to a Verilog wire.

Type: bool

Default: FALSE

See also �verilog_wire()� on page 229.

External output
simple ports

vhdl_delay_mode() Specifies whether pulses whose period is shorter
than the delay are propagated through the driver.

Type: sn_vhdl_delay_mode

Default: TRANSPORT (all pulses, regardless of
length, are propagated)

See also �vhdl_delay_mode()� on page 229.

External output
simple ports

vhdl_disconnect_value() Applies an mvl value to the port when you
restore Specman Elite after issuing a test com-
mand but do not restart the simulator.

Type: list of mvl

Default: {} (empty list)

See also �vhdl_disconnect_value()� on
page 230.

External output
simple ports

Table 6-2�Port Attributes for Verilog or VHDL Agents

Attribute Description Applies to
214 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.2.1 bind()

Purpose

Connect two internal ports or connect a port to an external object

Category

Generic port attribute

Syntax

bind(exp1, exp2);

bind(exp1, external);

bind(exp1, empty | undefined);

Syntax example:

buf_in1: in buffer_port of int(bits:16) is instance;
buf_out1: out buffer_port of int(bits:16) is instance;
keep bind(buf_in1, buf_out1); // Valid

Parameters

Description

Ports are connected to other e ports or to external simulated objects such as Verilog registers, VHDL signals,
or SystemC methods using a pre-run generation constraint on the bind() attribute. Ports can also be left
explicitly disconnected with empty or undefined.

vhdl_driver() This is an alias for the driver() attribute.

Type: bool

Default: FALSE

See also �driver()� on page 220.

External output
simple ports

exp1, exp2 One or more expressions of port type. If two expressions are given and
the port types are compatible, the two port instances are connected.

external Defines a port as connected to a simulated object, such as a Verilog reg-
ister, a VHDL signal, or a SystemC object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an unde-
fined binding causes an error

Table 6-2�Port Attributes for Verilog or VHDL Agents

Attribute Description Applies to
This is an unapproved IEEE Standards Draft, subject to change.
215

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Rules

� All ports must be bound in one of the following ways:

� Bound in pairs, that is, one in or inout port bound to one out or inout port. It is illegal to bind together
two input ports, two output ports, or two inout ports.

� Only ports of the same kind may be bound together. A simple port cannot be bound to a buffer port
or to an event port and a buffer port cannot be bound to an event port.

� Bound to an external simulated item.

� Explicitly disconnected (empty or undefined).

NOTE� Dangling ports (ports without bind() attributes) cause an error during
elaboration. See �Checking of Ports� on page 216 for more information.

� Currently, no port may be connected to more than one other port. In other words, you can connect
port A to port B or to port C but not to both.

� You can explicitly disconnect a port and then over-ride that disconnect with a binding to an internal
or external object. No other multiple bindings are allowed. In other words, you cannot bind a port to
an internal object and also bind it to an external object. Similarly, you cannot define a port�s binding
as both empty and undefined.

� Ports connected in a pair must have exactly the same element type.

NOTE� For Verisity adapters, if you add or change this attribute for an external port, you must
rewrite the stubs file.

Checking of Ports

Binding and checking of ports takes place automatically at the end of the predefined generate_test() test
method. This process, called elaboration of ports, includes checking for dangling ports and binding consis-
tency (directions, buffer sizes, and so on).

A port that has no bind() constraint is a dangling port. Since all ports must be bound, a dangling port causes
an elaboration-time error.

Disconnected Ports

A port that is bound using the empty or undefined keyword is called a disconnected port.

The empty or undefined keyword can only appear as the second argument of the bind() constraint, in place
of a second port instance name.

The same port cannot be both empty and undefined. Attempting to apply such contradicting constraints to
one port causes an elaboration-time error.

Empty binding allows you to define a port that is connected to nothing. Runtime accessing of an empty-
bound port is allowed. Its effect depends on the operation and type of the port:

� Reading from an empty-bound simple port returns the last written value or the default of the port ele-
ment type, if no value has been written so far.

� Writing to an empty-bound out or inout simple port stores the new value internally.
� Reading from an empty-bound buffer port causes the thread to halt.
� Writing to an empty-bound buffer port causes the thread to halt if the buffer is full.
216 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� Waiting for an empty-bound event port causes the thread to halt. If the port direction is inout then
emitting the port resumes the thread.

� An empty-bound event port can be emitted.

A subsequent constraint can be used to overwrite the empty binding constraint.

Like empty binding, undefined binding lets you define a port that is connected to nothing. The difference is
that runtime accessing of a port with an undefined binding causes an error.

A subsequent constraint can be used to overwrite the undefined binding constraint.

Example 1: Valid Bindings

buf_in1: in buffer_port of int(bits:16) is instance;
buf_out1: out buffer_port of int(bits:16) is instance;
keep bind(buf_in1, buf_out1); // Valid

buf_in4: in buffer_port of int(bits:16) is instance;
buf_out4: out buffer_port of int(bits:16) is instance;
keep bind(buf_in4, empty);
keep bind(buf_in4, buf_out4); // Valid; buf_in4 will be bound to buf_out4

simple_in1: in simple_port of int(bits:16) is instance;
keep bind(simple_in1, empty);
keep bind(simple_in1, external);
keep simple_in1.hdl_path() == "foo"; // Valid; buf_in5 will be bound to foo

Example 2: Invalid Bindings

buf_in2: in buffer_port of int(bits:32) is instance;
buf_out2: out buffer_port of int(bits:16) is instance;
keep bind(buf_in2, buf_out2); // Invalid; different bit size

buf_in3: in buffer_port of packet is instance;
buf_out3: out buffer_port of small packet is instance;
keep bind(buf_in3, buf_out3); // Invalid; different subtypes

simple_in2: in simple_port of int(bits:16) is instance;
simple_out2: out simple_port of int(bits:16) is instance;
keep bind(simple_in2, simple_out2);
keep bind(simple_in2, external); // Invalid; multiple binding

Example 3

The bind() method can also be used in procedural code. It returns TRUE if the port in its argument is bound
as specified. For example:

print bind(p, q);

6.5.2.2 buffer_size()

Purpose

Specify the size of a buffer port queue
This is an unapproved IEEE Standards Draft, subject to change.
217

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Buffer port attribute

Syntax

exp.buffer_size() == num

Syntax example:

keep u.p.buffer_size() == 20;

Parameters

Description

This attribute determines the number of put() actions that can be performed before a get(). A get() action is
required to remove data and make more room in the queue. Specifying a buffer size of 0 means rendezvous-
style synchronization.

No default buffer size is provided. If a buffer size is not specified in a constraint, an error occurs. It is only
necessary to specify a buffer size for one of the two ports in a pair of connected ports. That size applies to
both ports. If the two ports have different buffer sizes specified, then both of them get the larger of the two
sizes.

Example

Like all port attributes, the buffer size can also be used as an expression.

unit consumer {
in_p: in buffer_port of atm_cell is instance;

};

unit producer {
out_p: out buffer_port of atm_cell is instance;

};

extend sys {
consumer: consumer is instance;
producer: producer is instance;
keep bind(producer.out_p, consumer.in_p);
keep producer.out_p.buffer_size() == 500;

run() is also {
// Print the size of the queue
outf("Size of the queue is set to %u\n",

consumer.in_p.buffer_size());
};

};

See Also

� �buffer_port� on page 204

exp An expression of type [in | out] buffer_port of type.
num An integer specifying the maximum number of elements for the queue.
218 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.2.3 declared_range()

Purpose

Specify the bit width of a multi-bit external object

Category

External port attribute

Syntax

exp.declared_range() == string

Syntax example:

keep u.p.declared_range() == "[31:0]";

Parameters

Description

This string attribute is meaningful for external simple ports that are bound to multi-bit objects. Because it is
legal to bind a port to an HDL object with a different size, the range information is not extracted from the
port declaration. In order to implement access to multi-bit signals correctly in the stubs file, this attribute is
required when using the verilog_wire(), verilog_drive(), verilog_strobe() or driver() attributes.

The interpretation of the string is adapter-specific. For Verisity adapters, the declared range must match the
actual range of the signal; it cannot be a part select.

Example

unit u {
p: simple_port of int is instance;

};
extend sys {

u: u is instance;
keep u.hdl_path() == "top";
keep u.agent() == "Verilog";
keep bind(u.p, external);
keep u.p.hdl_path() == "shr";
keep u.p.verilog_wire() == TRUE;
keep u.p.declared_range() == "[31:0]";

};

6.5.2.4 delayed()

Purpose

Specify immediate or delayed propagation of new values

exp An expression of a simple port type.
string An expression in the form:

"[msb:lsb]"
This is an unapproved IEEE Standards Draft, subject to change.
219

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Simple port attribute

Syntax

exp.delayed() == bool

Syntax example:

keep u.p.delayed() == FALSE;

Parameters

Description

This boolean attribute specifies whether propagation of a new port value assignment occurs immediately or
is delayed.

When the delayed() attribute is TRUE (the default), propagation of external ports is delayed until the next
tick. Propagation of internal ports is delayed until the next tick at which the sys.time value changes. This
behavior is consistent with the definition of delayed assignments in e and matches temporal e semantics with
regard to the multiple ticks occurring at the same simulator time.

To make assigned values on ports visible immediately, constrain this attribute to be FALSE, for example:

keep u.p.delayed() == FALSE;

6.5.2.5 driver()

Purpose

Create a resolved driver for an external object

Category

External out simple port attribute

Syntax

exp.driver() == bool

Syntax example:

keep u.p.driver() == TRUE;

exp An expression of a simple port type.
bool Either TRUE or FALSE. The default is TRUE.
220 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

This boolean attribute is meaningful only for external out ports. When this attribute is set to TRUE, an addi-
tional resolved HDL driver is created for the corresponding simulator item, and that driver is written to
instead of the port.

Every port instance associated with the same simulator may create a separate driver, thus allowing HDL res-
olution to be applied for multiple e resources.

Notes

� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
� Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.
� Verisity Verilog adapters make use of this attribute only if it is applied to an external signal that can

be driven contiguously and allows multiple drivers, such as Verilog wires (not registers or memo-
ries).

� Verisity VHDL adapters make use of this attribute only for MTI ModelSim and only if the VHDL
signals are of a resolved type (not VHDL variables or signals of unresolved type).

� The Verisity OSCI (SystemC) adapter requires this attribute to be specified in order to drive SystemC
ports.

6.5.2.6 driver_delay()

Purpose

Specify the delay for assignments to a port

Category

External out simple port attribute

Syntax

exp.driver_delay() == time

Syntax example:

keep u.p.driver_delay() == 2;

exp An expression of a simple port type.
bool Either TRUE or FALSE. The default is FALSE.
This is an unapproved IEEE Standards Draft, subject to change.
221

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

This attribute of type time is meaningful only for external out ports. It specifies the delay time for all assign-
ments from e to the port. This attribute is silently ignored unless the driver() attribute or the vhdl_driver()
attribute is set to TRUE.

NOTE� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.

6.5.2.7 driver_initial_value()

Purpose

Specify an initial value for an HDL object

Category

HDL port attribute

Syntax

exp.driver_initial_value() == mvl-list

Syntax example:

keep u.p.driver_initial_value() == {MVL_X;MVL_X;MVL_1;MVL_1};

Parameters

Description

This mvl list type attribute applies an initial mvl value to an external Verilog or VHDL object. This attribute
is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.

When an e program is driving a std_logic signal that is also driven from VHDL, unless an initial value is
specified, the adapter creates a VHDL driver that is initialized by MVL_X.

6.5.2.8 edge()

Purpose

Specify the edge on which an event is generated

exp An expression of a simple port type.
time A value of type time (64 bits). The default is 0.

exp An expression that returns a port instance.
mvl-list A lists of mvl values. Possible values are MVL_U,

MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L,
MVL_H, MVL_N. The default is {} (an empty list).
222 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Event port attribute

Syntax

exp.edge() == edge-option

Syntax example:

keep e.edge() == any_change;

Parameters

Description

This attribute of type event_port_edge for an external event port specifies the edge on which an event is
generated.

Example

e: in event_port is instance;
keep bind(e,external);
keep e.hdl_path() == "clk";
keep e.edge() == any_change;

6.5.2.9 hdl_path()

Purpose

Map port instance to an external object

exp An expression of an event port type.
edge-option Possible values are of type event_port_edge:

� change, rise, fall � equivalent to the behavior of @sim
temporal expressions. This means that transitions between x
and 0, z and 1 are not detected, x to 1 is considered a rise, z to
0 a fall, and so on.

� any_change � any change within the supported MVL values
is detected, including transitions from x to 0 and 1 to z.

� MVL_0_to_1 � transitions from 0 to 1 only.

� MVL_1_to_0 � transitions from 1 to 0 only.

� MVL_X_to_0 � transitions from X to 0 only.

� MVL_0_to_X � transitions from 0 to X only.

� MVL_Z_to_1 � transitions from Z to 1 only.

� MVL_1_to_Z � transitions from 1 to Z only.

The default is change.
This is an unapproved IEEE Standards Draft, subject to change.
223

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Generic port attribute

Syntax

exp.hdl_path() == string

Syntax example:

clk: in event_port is instance;
keep clk.hdl_path() == "clk";

Parameters

Description

To access an external, simulated object, you must provide a path to the object with the hdl_path() attribute.
This path is a concatenation of the partial paths you provide for the port itself and for its enclosing units. The
partial paths can contain any separator that is supported by the adapter for the simulator you are using.

To allow portability between simulators, you can use the e canonical path notation. (See the documentation
for the adapter for a description of supported separators.)

NOTE� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.

Example

In this example, all ports inherit the Verilog simulator specified as the agent for the encoder instance. The
clk, data_width, data and rq ports access Verilog signals of the same name in the top-level module
�priority_encoder�. The address port accesses a signal with the path priority_encoder.PRIO.temp_address.

unit encoder {

clk: in event_port is instance;
keep bind(clk, external);
keep clk.hdl_path() == "clk";

data_length: in simple_port of uint is instance;
keep bind(data_length, external);
keep data_length.hdl_path() == "data_width";

data: inout simple_port of list of bit is instance;
keep bind(data, external);
keep data.hdl_path() == "data";
keep data.verilog_wire() == TRUE; -- simple port attribute
keep data.declared_range() == "[31:0]"; -- simple port attribute

address: in simple_port of uint is instance;
keep bind(address, external);
keep address.hdl_path() == "PRIO/temp_address";

exp An expression of a port type.
string The path to the external object, enclosed in double quotes.

The default is an empty string.
224 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

rq: in buffer_port of bool is instance;

keep bind(rq, external);
keep rq.buffer_size() == 8; -- buffer port attribute
keep rq.hdl_path() == "rq";

extend sys {
e: encoder is instance;

keep e.hdl_path() == "~/priority_encoder";
};

6.5.2.10 pack_options()

Purpose

Specify how an external port�s data element is implicitly packed and unpacked

Category

External simple port attribute

Syntax

exp.pack_options() == pack-option

Syntax example:

keep u.p.pack_options() == packing.low_big_endian;

Parameters

Description

This attribute of type pack_options is meaningful only for external ports whose data element is a composite
type (lists and structs). It affects the way a port�s data element is implicitly packed and unpacked. This
attribute exists both for units and ports and may be propagated downwards from an enclosing unit instance
to its ports and other unit instances.

NOTE� None of the existing simulator adapters supports external simple port of structs.

6.5.2.11 pass_by_pointer()

Purpose

Specify how composite data is transferred by internal ports

Category

Internal port attribute

exp An expression of a simple or buffer port type.
pack-option A predefined or user-defined pack option. The default is

global.packing.adapter.
This is an unapproved IEEE Standards Draft, subject to change.
225

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

exp.pass_by_pointer() == bool

Syntax example:

keep u.p.pass_by_pointer() == TRUE;

Parameters

Description

This boolean attribute specifies how composite data (structs or lists) are transferred by internal simple ports
or buffer ports.

By default, this attribute is FALSE and complex objects are deep-copied upon an internal port access opera-
tion. To pass data by reference and speed up the test, you can set this attribute to TRUE. If you do so, you
must write your code such that it does not result in test correctness violations.

There is also a global config misc option, ports_data_pass_by_pointer. Setting this option influences all
internal ports.

6.5.2.12 verilog_drive()

Purpose

Specify timing control for data driven to the Verilog object

Category

Verilog port attribute

Syntax

exp.verilog_drive() == timing-control

Syntax example:

keep u.p.verilog_drive() == "@posedge clk2";

exp An expression of a simple or buffer port type.
bool Either TRUE or FALSE. The default is FALSE.
226 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

This string attribute tells an external output port to drive its data to the Verilog signal when the specified tim-
ing occurs. It can be either a Verilog temporal expression such as �@(posedge top.clk)� or a simple delay of
kind �#1�. This attribute is functionally equivalent to a verilog variable using drive declaration.

Notes

� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
� Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

6.5.2.13 verilog_drive_hold()

Purpose

Specify when to set the port to Z

Category

Verilog port attribute

Syntax

exp.verilog_drive_hold() == event

Syntax example:

keep u.p.verilog_drive_hold() == "@negedge clk2";

Parameters

Description

On the first occurrence of the specified event after the port data is driven, the value of the corresponding
Verilog signal is set to Z. The event is a string specifying any legal Verilog timing control. This attribute
requires that you also specify the verilog_drive() attribute.

6.5.2.14 verilog_forcible()

Purpose

Specifies that a Verilog object can be forced

exp An expression of a simple port type.
timing-control A string specifying any legal Verilog timing control

(event or delay).

exp An expression of a simple port type.
event A string specifying any legal Verilog timing control.
This is an unapproved IEEE Standards Draft, subject to change.
227

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Verilog port attribute

Syntax

exp.verilog_forcible() == bool

Syntax example:

keep u.p.verilog_forcible() == TRUE;

Parameters

Description

This boolean attribute allows forcing of Verilog wires. By default Verilog wires are not forcible. This
attribute requires that you also specify the verilog_wire() attribute.

6.5.2.15 verilog_strobe()

Purpose

Specify the sampling event for a Verilog object

Category

Verilog port attribute

Syntax

exp.verilog_strobe() == event

Syntax example:

keep u.p.verilog_strobe() == "@posedge clk1";

Parameters

Description

This string attribute specifies the sampling event for the Verilog signal that is bound to an external input
port. This attribute is equivalent to the verilog variable ... using strobe declaration.

Notes

� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
� Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

exp An expression of a simple port type.
bool Either TRUE or FALSE. The default is FALSE.

exp An expression of a simple port type.
event A string specifying any legal Verilog timing control.
228 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.2.16 verilog_wire()

Purpose

Create a single driver for a port (or multiple ports)

Category

Verilog port attribute

Syntax

exp.verilog_wire() == bool

Syntax example:

keep u.p.verilog_wire() == TRUE;

Parameters

Description

This boolean attribute allows an external out port to be bound to a Verilog wire, in a manner similar to a ver-
ilog variable using wire declaration.

The main difference between this attribute and the driver() attribute is that, being backward compatible, the
verilog_wire() attribute merges all of the ports that have this attribute into a single Verilog driver, while the
driver() attribute creates a separate driver for each port.

Notes

� For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
� Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

6.5.2.17 vhdl_delay_mode()

Purpose

Specify whether short pulses are propagated through driver

Category

HDL port attribute

Syntax

exp.vhdl_delay_mode() == mode-option

Syntax example:

keep u.p.vhdl_delay_mode() == INERTIAL;

exp An expression of a simple port type.
bool Either TRUE or FALSE. The default is FALSE.
This is an unapproved IEEE Standards Draft, subject to change.
229

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

This sn_vhdl_delay_mode type attribute applies a VHDL delay mode value to an external out port. This
attribute specifies whether pulses whose period is shorter than the delay specified by the driver_delay()
attribute are propagated through the driver. INERTIAL specifies that such pulses are not propagated.
TRANSPORT specifies that all pulses, regardless of length, are propagated.

This attribute also influences what happens if another driver (either VHDL or another unit) schedules a sig-
nal change and before that change occurs, this driver schedules a different change. With INERTIAL, the first
change never occurs.

This attribute is silently ignored unless the driver_delay() attribute is also specified.

6.5.2.18 vhdl_disconnect_value()

Purpose

Specify value to apply on Specman Elite restore

Category

HDL port attribute

Syntax

exp.vhdl_disconnect_value() == mvl-value-list

Syntax example:

keep u.p.vhdl_disconnect_value() == {MVL_Z};

Parameters

Description

This mvl type attribute applies an mvl value to an external output port when you restore Specman Elite after
issuing a test command but do not restart the simulator. This value should be set to a value that does not
affect the overall value of the resolved signal. In Verisity�s ModelSim VHDL adapter the default value for
std_logic signals is MVL_Z.

This attribute is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.

exp An expression of a simple port type.
mode-option Either TRANSPORT (the default) or INERTIAL.

exp An expression that returns a port instance.
mvl-value-list A list of one or more of the following: MVL_U, MVL_X,

MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H,
MVL_N.
230 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.3 Using Port Values and Attributes in Constraints

Like units, port instances can be created only during pre-run generation. They cannot be created with new,
nor generated at runtime. Consequently, a port value cannot be initialized or sampled in pre-run generation
constraints. Port values can be used in on-the-fly generation constraints in accordance with the basic con-
straint principles, such as the bidirectional nature of constraints. See Example 1 on page 231.

Another methodological requirement is that you must explicitly specify attribute values in hard constraints if
the attributes are used anywhere in bidirectional constraints, including implication constraints. See Example
2 on page 231.

Example 1

This example shows the correct way to initialize an out port.

<'
extend sys {

inport: in simple_port of int is instance;
keep bind(inport, external);
outport: inout simple_port of int is instance;
keep bind(outport, external);
!startval: int;

run() is also {
gen startval;
outport$ = startval; // Use port$ to set a value

};
};
'>

Trying to constrain the generation of startval to equal the value of the out port does not work because
outport$ in this context samples the port value, but does not affect it:

gen startval keeping { outport$ == startval}; // does not work

Example 2

This example shows how using port attribute values in bidirectional constraints can have undesired effects.

<'
extend sys {

pclk: buffer_port of packet is instance;
keep synthesized() == FALSE => pclk.pass_by_pointer() == TRUE;

};
'>

The implication constraint above requires the following constraint to be set in every specific non-synthe-
sized test, instead of relying on the default value:

extend sys {
keep synthesized() == FALSE;

};

Adding a constraint such as

keep pclk.pass_by_pointer()==FALSE
This is an unapproved IEEE Standards Draft, subject to change.
231

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
silently sets synthesized() to TRUE.

6.5.4 Buffer Port Methods

The methods in this section are used to read from or write to buffer ports and to check whether a buffer port
queue is empty or full. The methods are:

� �get()� on page 232
� �put()� on page 233
� �is_empty()� on page 234
� �is_full()� on page 235

6.5.4.1 get()

Purpose

Read and remove data from an input buffer port queue

Category

Predefined TCM for buffer ports

Syntax

in-port-instance-name.get(): port element type

Syntax example:

rec_cell = in_port.get();

Description

Reads a data item from the buffer port queue and removes the item from the queue.

Since buffer ports use a FIFO queue, get() returns the first item that was written to the port.

The thread blocks upon get() when there are no more items in the queue.

If the queue is empty, or if it has a buffer size of 0 and no put() has been done on the port since the last get(),
then the get() is blocked until a put() is done on the port.

The number of consecutive get() actions that is possible is limited to the number of items inserted by put().

Example

unit consumer {
cell_in: in buffer_port of atm_cell is instance;
current_cell: atm_cell;
update_cell() @clk$ is {

current_cell = cell_in.get();
};

};
232 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �put()� on page 233
� �is_empty()� on page 234
� �is_full()� on page 235

6.5.4.2 put()

Purpose

Write data to an output buffer port queue

Category

Predefined TCM for buffer ports

Syntax

out-port-instance-name.put(data: port-element-type)

Syntax example:

out_port.put(trans_cell);

Parameters

Description

Writes a data item to the output buffer port queue. The sampling event of this TCM is sys.any.

The new data item is placed in a FIFO queue in the output buffer port.

If the queue is full, or if it has a buffer size of 0 and no get() has been done on the port since the last put(),
then the put() is blocked until a get() is done on the port.

The number of consecutive put() actions that is possible is limited to the buffer size.

The thread blocks upon put() when there is no more room in the queue, that is, when the number of conse-
quent put() operations exceeds the buffer_size() of the port instance.

Example

unit producer {
clk: in event_port is instance;
cell_out: out buffer_port of atm_cell is instance;
write_cell_list(atm_cells: list of atm_cell) @clk$ is {

for each in atm_cells do {
cell_out.put(it);

};
};

};

data A data item of the port element type.
This is an unapproved IEEE Standards Draft, subject to change.
233

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �get()� on page 232
� �is_empty()� on page 234
� �is_full()� on page 235

6.5.4.3 is_empty()

Purpose

Check if an input buffer port queue is empty

Category

Pseudo-method for buffer ports

Syntax

in-port-instance-name.is_empty(): bool

Syntax example:

var readable: bool;
readable = not cell_in.is_empty();

Description

Returns TRUE if the input port queue is empty.

Returns FALSE if the input port queue is not empty.

Example

unit consumer {
cell_in: in buffer_port of atm_cell is instance;
clk: in event_port is instance;
check_and_read(atm_cell): atm_cell @clk$ is {

if cell_in.is_empty() {
// No data is available - avoid blocking:
dut_error("No atm cell is available");

}
else {
// Read data from the port:

return cell_in.get();
};

};
};

See Also

� �get()� on page 232
� �put()� on page 233
� �is_full()� on page 235
234 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.4.4 is_full()

Purpose

Check if an output buffer port queue is full

Category

Pseudo-method for buffer ports

Syntax

out-port-instance-name.is_full(): bool

Syntax example:

var overflow: bool;
overflow = cell_out.is_full();

Description

Returns TRUE if the output port queue is full.

Returns FALSE if the output port queue is not full.

Example

unit producer {
cell_out: out buffer_port of atm_cell is instance;
clk: in event_port is instance;
check_and_write(cell: atm_cell)@clk$ is {

if cell_out.is_full() {
// Cannot write to the port without being blocked
dut_error("Overflow in atm cells queue");

}
else {

// Write data to the port
cell_out.put(cell);

};
};

};

See Also

� �get()� on page 232
� �put()� on page 233
� �is_empty()� on page 234

6.5.5 Multi-Value Logic (MVL) Methods for Simple Ports

The predefined port methods in this section are for reading and writing MVL data between ports, to facilitate
communication with objects where MVL values occur.

These methods operate on data of type mvl, which is defined as follows:
This is an unapproved IEEE Standards Draft, subject to change.
235

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
type mvl: [MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N]

The enumeration literals are the same as those of VHDL, except for MVL_N, which corresponds to the
VHDL �-� (�don�t care�) literal.

NOTE� Mixed access�accessing a port with MVL methods and accessing it through the
$ operator�is allowed.

The MVL methods are applicable in accordance to the port direction. Methods that write a value to a port are
accessible for out and inout simple ports, while methods that read a value from a port are accessible for in
and inout simple ports.

The predefined methods for simple ports are:

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �put_mvl_list()� on page 238
� �get_mvl_list()� on page 239
� �put_mvl_string()� on page 240
� �get_mvl_string()� on page 241
� �get_mvl4()� on page 241
� �get_mvl4_list()� on page 242
� �get_mvl4_string()� on page 243

6.5.5.1 put_mvl()

Purpose

Put an mvl data on a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.put_mvl(value: mvl)

Syntax example:

p.put_mvl(MVL_Z)

Parameters

Description

Place an mvl value on an output or inout simple port, to initialize an object to a �disconnected� value, for
example.

Placing an mvl value on a port whose element type is list places the value in the LSB of the list.

exp An expression that returns a simple port instance.
value A multi-value logic value.
236 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

unit uo {
pbo: out simple_port of bit is instance;
keep bind(pbo, external);
disconnect_pbo() is {

pbo.put_mvl(MVL_Z);
};

};

See Also

� �get_mvl()� on page 237
� �put_mvl_list()� on page 238
� �put_mvl_string()� on page 240
� �string_to_mvl()� on page 247
� �int_to_mvl()� on page 250
� �bits_to_mvl()� on page 252
� �mvl_to_mvl4()� on page 252

6.5.5.2 get_mvl()

Purpose

Read mvl data from a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.get_mvl(): mvl

Syntax example:

check that pbi.get_mvl() != MVL_X else dut_error("Bad value");

Parameters

Description

Reads an mvl value from an input or inout simple port, to check that there are no undefined �x� bits, for
example.

Getting an mvl value from a port whose element type is list reads the LSB of the list.

Example

unit ui {
pbi: in simple_port of bit is instance;
keep bind(pbi, external);
chk_pbi() is {

check that pbi.get_mvl() != MVL_X else

exp An expression that returns a simple port instance.
This is an unapproved IEEE Standards Draft, subject to change.
237

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
dut_error("Bad value");
};

};

See Also

� �put_mvl()� on page 236
� �get_mvl_list()� on page 239
� �get_mvl_string()� on page 241
� �get_mvl4()� on page 241
� �mvl_to_string()� on page 248
� �mvl_to_int()� on page 249
� �mvl_to_bits()� on page 251
� �mvl_to_mvl4()� on page 252

6.5.5.3 put_mvl_list()

Purpose

Put a list of mvl values on a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.put_mvl_list(values: list of mvl)

Syntax example:

pbo.put_mvl_list({MVL_H; MVL_0; MVL_L; MVL_0});

Parameters

Description

Writes a list of mvl values to an output or inout simple port.

Putting a list of mvl values on a port whose element type is a single bit writes only the LSB of the list.

Example

unit ui {
pbi: in simple_port of uint(bits:4) is instance;

};

unit uo {
uin: ui is instance;
pbo: out simple_port of uint(bits:4) is instance;
keep bind(pbo, uin.pbi);
wr_pbo() is {

exp An expression that returns a simple port instance.
values A list of mvl values
238 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
pbo.put_mvl_list({MVL_H; MVL_0; MVL_L; MVL_0});
};

};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �get_mvl_list()� on page 239

6.5.5.4 get_mvl_list()

Purpose

Get a list of mvl values from a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.get_mvl_list(): list of mvl

Syntax example:

check that pbil.get_mvl_list().has(it == MVL_U) == FALSE else
dut_error("Bad list");

Parameters

Description

Reads a list of mvl values from an input or inout simple port.

Example

unit uo {
pbol: out simple_port of list of bit is instance;

};

unit ui {
uout: uo is instance;
pbil: in simple_port of list of bit is instance;
keep bind(uout.pbol, pbil);
chk_pbil() is {

check that pbil.get_mvl_list().has(it == MVL_U) == FALSE else
dut_error("Bad list");

};
};

See Also

� �put_mvl()� on page 236

exp An expression that returns a simple port instance.
This is an unapproved IEEE Standards Draft, subject to change.
239

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �get_mvl()� on page 237
� �put_mvl_list()� on page 238
� �get_mvl4_list()� on page 242

6.5.5.5 put_mvl_string()

Purpose

Put an mvl value on a port of a non-mvl type when a value is represented as a string

Category

Predefined method for simple ports

Syntax

exp.put_mvl_string(value: string)

Syntax example:

pbol.put_mvl_string("32'hxxxxllll");

Parameters

Description

Writes a string representing a list of mvl values to a simple output or inout port. The mvl value consists of
any legal base, for example, 32'b, followed by one or more characters, for example xxxxzzzz. The string rep-
resentation follows the same rules as Verilog literals. The difference is that Verilog literals support only 4-
value logic digits (1,0,x and z) while e allows also the characters u, l, h, w and n.

Example

unit uo {
pbol: out simple_port of uint(bits:4) is instance;
keep bind(pbol, external);
wr_pbol() is {

pbol.put_mvl_string("32'hxxxxllll");
};

};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �get_mvl_string()� on page 241

exp An expression that returns a simple port instance.
value An mvl value in the form of a base and one or more characters,

entered as a string. The mvl values in the string must be lowercase.
Use 1 for MVL_1, 0 for MVL_0, z for MVL_Z, and so on.
240 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.5.6 get_mvl_string()

Purpose

Get a value in form of a string from a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.get_mvl_string(radix: radix): string

Syntax example:

print pbis.get_mvl_string(BIN);

Parameters

Description

Returns a string in which each character represents an mvl value. The characters are lowercase. HDL value
�1� is represented by the character 1, �Z� by z, �-� by character n. The returned string always includes all the
bits, with no implicit extensions. For example, a port of type uint returns a string of 32 characters, since an
int is a 32-bit data type.

Example

unit ui {
pbis: in simple_port of uint(bits:4) is instance;
keep bind(pbis,external);
chk_pbis() is {

print pbis.get_mvl_string(BIN);
};

};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �put_mvl_string()� on page 240
� �get_mvl4_string()� on page 243

6.5.5.7 get_mvl4()

Purpose

Get an mvl value from a port, converting 9-value logic to 4-value logic

exp An expression that returns a simple port instance.
radix One of BIN, OCT, or HEX.
This is an unapproved IEEE Standards Draft, subject to change.
241

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Predefined method for simple ports

Syntax

exp.get_mvl4(): mvl

Syntax example:

check that pbi.get_mvl4() != MVL_Z else dut_error("Bad value");

Parameters

Description

Reads a 9-value mvl value from an input simple port and converts it to 4-value subset mvl.

The predefined mapping from 9-value logic to 4-value logic is:

MVL_U, MVL_W, MVL_X, MVL_N -> MVL_X
MVL_L, MVL_0 -> 0
MVL_H, MVL_1 -> 1
MVL_Z -> MVL_Z

Example

unit ui {
pbi: in simple_port of bit is instance;
keep bind(pbi, external);
chk_pbi() is {

check that pbi.get_mvl4() != MVL_X else
dut_error("Bad value");

};
};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �get_mvl4_list()� on page 242
� �get_mvl4_string()� on page 243
� �mvl_to_mvl4()� on page 252

6.5.5.8 get_mvl4_list()

Purpose

Get a list of mvl values from a port, converting from 9-value logic to 4-value logic

Category

Predefined method for simple ports

exp An expression that returns a simple port instance.
242 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

exp.get_mvl4_list(): list of mvl

Syntax example:

check that pbi4l.get_mvl4_list().has(it == MVL_X) == FALSE else
dut_error("Bad list");

Parameters

Description

Reads a list of 9-value mvl values from an input simple port and converts them to 4-value MVL.

The predefined mapping from 9-value logic to 4-value logic is:

MVL_U, MVL_W, MVL_X, MVL_N -> MVL_X
MVL_L, MVL_0 -> 0
MVL_H, MVL_1 -> 1
MVL_Z -> MVL_Z

Example

unit ui {
pbi4l: in simple_port of list of bit is instance;
keep bind(pbi4l, external);
chk_pbi4l() is {

check that pbi4l.get_mvl4_list().has(it == MVL_X) == FALSE else
dut_error("Bad list");

};
};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �get_mvl4()� on page 241
� �mvl_list_to_mvl4_list()� on page 253

6.5.5.9 get_mvl4_string()

Purpose

Get a 4-state value in form of a string from a port of a non-mvl type

Category

Predefined method for simple ports

Syntax

exp.get_mvl4_string(radix): string

exp An expression that returns a simple port instance.
This is an unapproved IEEE Standards Draft, subject to change.
243

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

print pbi4s.get_mvl4_string(BIN);

Parameters

Description

Reads a string in which each character represents a 4-value logic digit from a subset of mvl, converted from
9-value logic. The characters are lowercase.

The predefined mapping from 9-value logic to 4-value logic is the same as it is commonly used when con-
verting from VHDL std_logic to Verilog:

U, W, X, N -> x
L, 0 -> 0
H, 1 -> 1
Z -> z

The returned string always includes all the bits, with no implicit extensions. For example, a port of type int
returns a string of 32 characters, since an int is a 32-bit data type.

Example

unit ui {
pbi4s: in simple_port of list of int(bits:4) is instance;
keep bind(pbi4s,external);
chk_pbi4s() is {

print pbi4s.get_mvl4_string(HEX);
};

};

See Also

� �put_mvl()� on page 236
� �get_mvl()� on page 237
� �get_mvl4()� on page 241
� �string_to_mvl4()� on page 254

6.5.6 Methods for Simple Ports

These methods are defined for all simple ports, regardless of the type of data element:

� �has_x()� on page 245
� �has_z()� on page 245
� �has_unknown()� on page 246

exp An expression that returns a simple port instance.
radix One of BIN, OCT, or HEX.
244 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
6.5.6.1 has_x()

Purpose

Determine if port has X

Category

Predefined method for simple ports

Syntax

exp.has_x(): bool

Syntax example:

print pbi4s.has_x();

Parameters

Description

Returns TRUE if at least one bit of the port is MVL_X.

Example

unit ui {
pbi4s: in simple_port of uint(bits:4) is instance;
keep bind(pbi4s,external);
chk_pbi4s() is {

print pbi4s.has_x();
};

};

See Also

� �has_z()� on page 245
� �has_unknown()� on page 246

6.5.6.2 has_z()

Purpose

Determine if port has Z

Category

Predefined method for simple ports

Syntax

exp.has_z(): bool

exp An expression of a simple port type.
This is an unapproved IEEE Standards Draft, subject to change.
245

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

print pbi4s.has_z();

Parameters

Description

Returns TRUE if at least one bit of the port is MVL_Z.

Example

unit ui {
pbi4s: in simple_port of uint(bits:4) is instance;
keep bind(pbi4s,external);
chk_pbi4s() is {

print pbi4s.has_z();
};

};

See Also

� �has_x()� on page 245
� �has_unknown()� on page 246

6.5.6.3 has_unknown()

Purpose

Determine if port has U

Category

Predefined method for simple ports

Syntax

exp.has_unknown(): bool

Syntax example:

print pbi4s.has_unknown();

Parameters

Description

Returns TRUE if at least one bit of the port is one of the following:

� MVL_U

exp An expression of a simple port type.

exp An expression of a simple port type.
246 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� MVL_X

� MVL_Z

� MVL_W

� MVL_N

Example

unit ui {
pbi4s: in simple_port of uint(bits:4) is instance;
keep bind(pbi4s,external);
chk_pbi4s() is {

print pbi4s.has_unknown();
};

};

See Also

� �has_x()� on page 245
� �has_z()� on page 245

6.5.7 Global MVL Routines

The global routines for manipulating MVL values are:

� �string_to_mvl()� on page 247
� �mvl_to_string()� on page 248
� �mvl_to_int()� on page 249
� �int_to_mvl()� on page 250
� �mvl_to_bits()� on page 251
� �bits_to_mvl()� on page 252
� �mvl_to_mvl4()� on page 252
� �mvl_list_to_mvl4_list()� on page 253
� �string_to_mvl4()� on page 254

6.5.7.1 string_to_mvl()

Purpose

Convert a string to a list of mvl values

Category

Predefined routine

Syntax

string_to_mvl(value-string: string): list of mvl

Syntax example:

mlist = string_to_mvl("8'bxz1");
This is an unapproved IEEE Standards Draft, subject to change.
247

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Converts each character in the input string to an mvl value.

Example

var mlist: list of mvl;
mlist = string_to_mvl("8'bz");
// returns {MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z};
mlist = string_to_mvl("8'bxz1");
// returns {MVL_1; MVL_Z; MVL_X; MVL_X; MVL_X; MVL_X; MVL_X; MVL_X};

See Also

� �mvl_to_string()� on page 248

6.5.7.2 mvl_to_string()

Purpose

Convert a list of mvl values to a string

Category

Predefined routine

Syntax

mvl_to_string(mvl-list: list of mvl, radix: radix): string

Syntax example:

mstring = mvl_to_string({MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_X; MVL_X; MVL_X;
MVL_X}, BIN);

Parameters

Description

Converts a list of mvl values to a string. The mapping is done in the following way:

MVL_U is converted to character "u" (lowercase)
MVL_X - "x"
MVL_0 - "0"
MVL_1 - "1"

value-string A string representing mvl values, consisting of a width and base fol-
lowed by a series of characters corresponding to mvl values. Format
of the input string is the same as in Verilog literals, except there are
additional 9-value logic digits: u, l, h, w and n.

mvl-list A list of mvl values.
radix One of BIN, OCT, or HEX.
248 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
MVL_Z - "z"
MVL_W - "w";
MVL_L - "l"
MVL_H - "h"
MVL_N - "n"

NOTE� This routine always returns a sized number as a string.

Example 1

var mstring: string;
mstring = mvl_to_string({MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_X; MVL_X; MVL_X;

MVL_X}, BIN);
// returns "8b'zzzzxxxx"

Example 2

var l: list of mvl = {MVL_1;MVL_0};
print mvl_to_string(l, BIN); --prints 2'b10
print mvl_to_string(l, HEX); --prints 2'h2

See Also

� �string_to_mvl()� on page 247
� �mvl_to_int()� on page 249
� �mvl_to_bits()� on page 251
� �mvl_to_mvl4()� on page 252
� �mvl_list_to_mvl4_list()� on page 253

6.5.7.3 mvl_to_int()

Purpose

Convert an mvl value to an integer

Category

Predefined routine

Syntax

mvl_to_int(mvl-list: list of mvl, mask: list of mvl): uint

Syntax example:

var ma: uint = mvl_to_int(l, {MVL_X});
This is an unapproved IEEE Standards Draft, subject to change.
249

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Converts each value in a list of mvl values into a binary integer (1 or 0), using a list of mvl mask values to
determine which mvl values are converted to 1.

When the list is less than 32 bits, it is padded with 0. When it is greater than 32 bits, it is truncated, leaving
the 32 least significant bits.

Example

var l: list of mvl = {MVL_X; MVL_X; MVL_0; MVL_1};
var ma: uint = mvl_to_int(l,{MVL_X});
// returns 12 (0b1100)
var mb: uint = mvl_to_int(l, {MVL_Z})
// returns 0

See Also

� �int_to_mvl()� on page 250
� �mvl_to_bits()� on page 251
� �mvl_to_mvl4()� on page 252
� �mvl_list_to_mvl4_list()� on page 253

6.5.7.4 int_to_mvl()

Purpose

Convert an integer value to a list of mvl values

Category

Predefined routine

Syntax

int_to_mvl(value: uint, mask: mvl): list of mvl

Syntax example:

var mlist: list of mvl = int_to_mvl(12, MVL_X)

mvl-list A list of mvl values to convert to an integer value.
mask A list of mvl values that are to be converted to 1.
250 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Maps each bit that has the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns a list of
32 mvl values. The returned list always has a size of 32.

Example

var mlist: list of mvl = int_to_mvl(12, MVL_X)
// returns MVL_0;..........MVL_X;MVL_X;MVL_0;MVL_0

See Also

� �mvl_to_int()� on page 249

6.5.7.5 mvl_to_bits()

Purpose

Convert a list of mvl values to a list of bits

Category

Predefined routine

Syntax

mvl_to_bits(mvl-list: list of mvl, mask: list of mvl): list of bit

Syntax example:

var bl: list of bit = mvl_to_bits({MVL_Z; MVL_Z; MVL_X; MVL_L}, {MVL_Z; MVL_X})

Parameters

Description

Converts a list of mvl values to a list of bits, using a mask of mvl values to indicate which mvl values are
converted to 1 in the list of bits.

Example

var bl: list of bit = mvl_to_bits({MVL_Z; MVL_Z; MVL_X; MVL_L}, {MVL_Z; MVL_X})
// returns {1; 1; 1; 0}

value An integer value to convert to a list of mvl values.
mask An mvl value that replaces each bit in the integer that has the value 1.

mvl-list A list of mvl values to convert to bits.
mask A list of mvl values that specifies which mvl values are to be con-

verted to 1.
This is an unapproved IEEE Standards Draft, subject to change.
251

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �mvl_to_string()� on page 248
� �mvl_to_int()� on page 249
� �mvl_to_mvl4()� on page 252

6.5.7.6 bits_to_mvl()

Purpose

Convert a list of bits to a list of mvl values

Category

Predefined routine

Syntax

bits_to_mvl(bit-list: list of bit, mask: mvl): list of mvl

Syntax example:

var ml: list of mvl = bits_to_mvl({1; 0; 1; 0}, MVL_Z)

Parameters

Description

Maps each bit with the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns an mvl list
that is bit-list size.

Example

var ml: list of mvl = bits_to_mvl({1; 0; 1; 0}, MVL_Z)
// returns {MVL_Z;MVL_0;MVL_Z;MVL_0}

See Also

� �mvl_to_bits()� on page 251

6.5.7.7 mvl_to_mvl4()

Purpose

Convert an mvl value to a 4-value logic value

Category

Predefined routine

bit-list A list of bits to convert to mvl values.
mask An mvl value that replaces each bit in the list that has the value 1.
252 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

mvl_to_mvl4(value: mvl): mvl

Syntax example:

var m4: mvl = mvl_to_mvl4(MVL_U)

Parameters

Description

Converts an mvl value to the appropriate 4-value logic subset value.

The predefined mapping from 9-value logic to 4-value logic is:

MVL_U, MVL_W, MVL_X, MVL_N -> MVL_X
MVL_L ,MVL_0 -> 0
MVL_H, MVL_1 -> 1
MVL_Z -> MVL_Z

Example

var m4: mvl = mvl_to_mvl4(MVL_U)
// returns MVL_X

See Also

� �mvl_to_string()� on page 248
� �mvl_to_int()� on page 249
� �mvl_to_bits()� on page 251
� �mvl_list_to_mvl4_list()� on page 253

6.5.7.8 mvl_list_to_mvl4_list()

Purpose

Convert a list of mvl values to a list of 4-value logic subset values

Category

Predefined routine

Syntax

mvl_list_to_mvl4_list(mvl-list: list of mvl): list of mvl

Syntax example:

var m4l: list of mvl = mvl_list_to_mvl4_list({MVL_N; MVL_L; MVL_H; MVL_1})

value An mvl value to convert to a 4-value logic value
This is an unapproved IEEE Standards Draft, subject to change.
253

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Converts each value in a list of mvl values to the corresponding 4-value logic value.

The predefined mapping from 9-value logic to 4-value logic is:

MVL_U, MVL_W, MVL_X, MVL_N -> MVL_X
MVL_L, MVL_0 -> MVL_0
MVL_H, MVL_1 -> MVL_1
MVL_Z -> MVL_Z

Example

var m4l: list of mvl = mvl_list_to_mvl4_list({MVL_N; MVL_L; MVL_H; MVL_1})
// returns {MVL_X; MVL_0; MVL_1; MVL_1;}

See Also

� Line 6.5.7.2
� �mvl_to_int()� on page 249
� �mvl_to_bits()� on page 251
� �mvl_to_mvl4()� on page 252

6.5.7.9 string_to_mvl4()

Purpose

Convert a string to a list of 4-value logic mvl subset values

Category

Predefined routine

Syntax

string_to_mvl4(value-string: string): list of mvl

Syntax example:

mlist = string_to_mvl("8'bxz");

Parameters

Description

Converts each character in the string to the corresponding 4-value logic value. If the string contains charac-
ters other than �0�, �1�, �x�, �z�, �h�, �l�, �u�, �w� or �n� a runtime error is issued.

mvl-list A list of mvl values to convert to a list of 4-value logic subset values

value-string A string representing MVL values, consisting of a width and base fol-
lowed by a series of characters corresponding to 9-value logic values.
254 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

var mlist: list of mvl;
mlist = string_to_mvl4("8'bz");
// returns {MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z; MVL_Z};
mlist = string_to_mvl("8'bxz");
// returns {MVL_Z; MVL_X; MVL_X; MVL_X; MVL_X; MVL_X; MVL_X; MVL_X};

See Also

� �string_to_mvl()� on page 247
� �mvl_to_string()� on page 248
� �mvl_to_mvl4()� on page 252
� �mvl_list_to_mvl4_list()� on page 253
This is an unapproved IEEE Standards Draft, subject to change.
255

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
256 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
7 Generation Constraints

Test generation is the process that produces values for fields and variables (data items). Constraints are
directives that influence the behavior of the test generator. They are declared within a struct and influence
the generation of values for data items within the struct and its subtree. There are two basic types of con-
straints:

1) Value constraints restrict the range of possible values that the generator produces for data items,
and they constrain the relationship between multiple items.

2) Order constraints influence the sequence in which data items are generated. Generation order is
important because it affects the distribution of values and the success of generation.

Both value and order constraints can be hard or soft:

� Hard constraints (either value or order) must be met or an error is issued.
� Soft value constraints suggest default values but can be overridden by hard value constraints.
� Soft order constraints suggest modifications to the default generation order, but they can be overrid-

den by dependencies between data items or by hard order constraints.

You can define constraints in many ways:

� By defining a range of legal values in the field or variable declaration
� By defining a list size in the list declaration
� By using one of the keep construct variations within a struct definition
� By using a gen...keeping action within a method

You can generate values for particular struct instances, fields, or variables during simulation (on-the-fly gen-
eration) with the gen action. You can also set values procedurally before or after generation within the
pre_generate() or post_generate() methods.

This chapter contains the following sections:

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1 Basic Concepts of Generation

The following introduce basic concepts related to constraints and generation.

� �Generation Order� on page 257
� �Unidirectional Constraints� on page 259
� �Enforceable Expressions� on page 261
� �Order of Evaluation of Soft Value Constraints� on page 262
� �Constraining Struct Instances� on page 263
� �Constraining Lists� on page 264
� �Constraining Bit Slices� on page 266

7.1.1 Generation Order

The fields in a struct are generated one by one, starting with the first field defined and progressing through
the fields in the order in which they appear in the e code. A struct item is always fully generated, including
This is an unapproved IEEE Standards Draft, subject to change.
257

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
all substructs, before the next item is generated. Similarly, within a list, each item is fully generated, includ-
ing all substructs, before the next item is generated. Lists are generated in ascending index order.

User-defined constraints can affect generation order. A constraint for a particular item might create a depen-
dency that requires a field to be generated before some other fields. For example, the keep constraint shown
below requires that the �kind� field be generated first and passed to the �get_size()� method in order to
determine the value of �size�. Value constraints that induce a generation order are called unidirectional con-
straints.

type kind: [tx, rx];
struct packet {

kind;
size: byte;
keep size == get_size(kind);

};

Generation order is important because it influences the distribution of values. For example, in the keep con-
straint shown below, if �kind� is generated first, �kind� is �tx� about 1/2 the time because there are only two
legal values for �kind�:

struct packet {
kind: [tx, rx];
size: byte;
keep size > 15 => kind == rx;

};

On the other hand, if �size� is generated first, there is only a 1 in 16 chance that �size� will be less than or
equal to 15, so �kind� will be �tx� about 1/16 of the time.

7.1.2 Subtype Generation Optimization Constraints

In a subtype generation optimization constraint like the keep gen_before_subtypes(kind) constraint shown
below, you specify a field that has at least one value that is used as a when determinant for creation of a sub-
type of the struct. In this case, the when determinant is the tx value of the kind field, since that is the value
that determines when a subtype (that is, a tx packet) will be created.

type kind: [tx, rx];
struct packet {

kind;
offset: uint;
keep gen_before_subtypes(kind);
when tx packet {

len: uint;
keep size > 0 => offset == size - 1;

};
size: byte;

};

A subtype generation optimization constraint may change the order of generation by delaying analysis of
constraints under the when until a when determinant value is actually generated. When no subtype genera-
tion optimization constraint is present, the generator analyzes all of the constraints and fields in the struct
before it generates the struct, even fields and constraints that are defined under subtypes. When a subtype
optimization constraint is present, then the generator initially analyzes and generates only the base type of
the struct. It is not until it encounters a subtype optimization when determinant field that the generator ana-
lyzes the fields and constraints in the associated subtype, and then generates the subtype.
258 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
In the example below, the keep gen (size) before (offset) constraint might be ignored if, due to subtype opti-
mization, the �offset� field is generated before the �kind� field is generated.

type kind: [tx, rx];
struct packet {

kind;
offset: uint;
keep gen_before_subtypes(kind);
when tx packet {

len: uint;
keep gen (size) before (offset);

};
size: byte;

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1.3 Unidirectional Constraints

Value constraints that induce a generation order are called unidirectional constraints. For example, the keep
constraint shown below requires that the �kind� field be generated first. The test generator cannot determine
the value of the expression �get_size(kind)� without first generating the value of �kind�.

type kind: [tx, rx];
struct packet {

kind;
size: byte;
keep size == get_size(kind);

};

Expressions like �get_size(kind)� are treated like constants within the context of a constraint boolean
expression. That is, any parameters in these expressions are first generated, the operation is performed on
the generated values, and the returned value can be used to constrain other generatable items in the con-
straint boolean expression. In the example above, the field �size� is constrained by return value of
�get_size(kind)�.

Other expressions that are treated as constants within the context of a constraint boolean expression are:

The only method calls that are not treated as constants are:

� my_list.size()

list slicing lob[7..15]
bitwise operations ~sigA, sigA | sigB
most method calls my_method(), b.as_a(int), value()
multiplication, division, and mod-
ulo operations

i.address % 2, 3*b, c/4

in cellA in cellList, cellListA in cellListB
This is an unapproved IEEE Standards Draft, subject to change.
259

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� my_list.is_all_iterations()
� my_list.is_a_permutation()

When �my_list� is a generatable list, these expressions are also generatable.

A unidirectional constraint can cause a runtime contradiction error if it selects a value for a parameter that
turns out to conflict with a subsequent constraint. In the example below, the first constraint is unidirectional
for b, c, and d because of the multiplication operator. Thus the generator first selects a value for b from the
range [0-16], then selects a value for c from the range [0-4], and for d from the range [0-1]. Finally, the gen-
erator applies the constraint (a + 3*b + 12*c + 48*d) == 48. Most of the time this constraint results in a con-
tradiction error because the values for three of the integers are selected before the constraint defining the
required relationship between the integers is applied.

a: uint;
b: uint;
c: uint;
d: uint;

keep a + 3*b + 12*c + 48*d == 48; // Usually results in a contradiction error
keep a <= 48;
keep b <= 16;
keep c <= 4;
keep d <= 1;

In some cases you can rewrite the constraints to avoid the contradiction error. To avoid the contradiction
illustrated above, for example, you need define the generation order so that the integers in the multiplication
expressions (d, c, and b) are generated before a. You also must define each integer based only on constants
and the values of the previously generated integers. Modifying the constraints in this manner avoids the con-
tradiction error. To change the distribution of values (50% of the time d is 1 and a, b, and c are all 0), you can
either add keep soft select constraints or you can constrain one of the other integers (a, b, or c) to a constant,
and then constrain the others based only on constants and products of previously generated integers.

d: uint;
keep d <= 1;
c: uint;
keep c <= (48 - 48*d)/12;
b: uint;
keep b <= (48 - 48*d - 12*c)/3;
a: uint;
keep a + 3*b + 12*c + 48*d == 48;

Unidirectional constraints can also cause a constraint cycle, which results in a runtime contradiction error. A
constraint cycle occurs when two or more unidirectional constraints impose conflicting requirements on the
generation order. For example, the first constraint shown below requires that the �kind� field be generated
first. The second constraint, however, requires that the �size� field be generated first.

type kind: [tx, rx];
struct packet {

kind;
size: byte;
keep size == get_size(kind);
keep kind == get_kind(size); // Constraint cycle

};
260 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1.4 Enforceable Expressions

An enforceable constraint boolean expression is an expression for which the test generator can choose a
value that satisfies the constraint. Expressions that are not enforceable often involve non-generatable items
or expressions that are treated as constants.

The following expressions are not enforceable:

� An expression that contains no generatable item
� An expression that restricts the legal values of an expression that is treated as a constant

Example 1

For a compound constraint boolean expression that uses and, both subexpressions must be enforceable. The
expression in this example is not enforceable because �sys.x� is not generatable. A runtime error is issued.

struct cons {
y: int;
z: int;

keep sys.x > 100 and z < 100; // Not enforceable

};
extend sys {

ci: cons;
x: int;

};

Example 2

For a compound constraint boolean expression that uses or, only one subexpression has to be enforceable. In
this example, the second expression (z < 100) is enforceable, so no runtime error occurs. The first expression
(sys.x > 100) is ignored because �sys.x� is not generatable.

struct cons {
y: int;
z: int;

keep sys.x > 100 or z < 100;

};
extend sys {

ci: cons;
x: int;

};
This is an unapproved IEEE Standards Draft, subject to change.
261

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 3

This expression is not enforceable because the test generator first generates �address�, then performs the
modulo operation, and then cannot constrain the resulting value to zero.

i.address % 2 == 0 // Not enforceable

Example 4

This expression is not enforceable because the test generator first generates �y�, then passes �y� to the
value() method, and then cannot constrain the returned value to zero.

value(y) == 0 // Not enforceable

Example 5

This expression is enforceable because the test generator first generates �y�, then passes �y� to the value()
method, and then generates �x�.

value(y) == x

Example 6

This expression is enforceable because the test generator first generates �y�, extracts the least significant bit
of �y�, and then generates �x�.

x == y[0:0]

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1.5 Order of Evaluation of Soft Value Constraints

Soft value constraints on a data item are considered only at the time the data item is generated, after the hard
value constraints on the data item are applied. Soft constraints are evaluated in reverse order of definition. If
a soft constraint conflicts with the constraints that have already been applied, it is skipped.

NOTE� If a soft constraint does not contradict a hard constraint, it will be applied. If your intent
is to over-ride a soft constraint with a hard constraint, use reset_soft(). See Example 2 on page 263.

Example 1

keep x in [1..10];
keep soft x > 3;
keep soft x==8;
keep soft x < 6;

The evaluation of the constraints is as follows:

1) The hard constraint is applied, so the range is [1..10].
2) The last soft constraint in the code order, x < 6, is considered. It does not conflict with the cur-

rent range, so it is applied. The range is now [1..5].
262 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
3) The next to last soft constraint, x == 8, conflicts with the current range, so it is skipped. The
range is still [1..5].

4) The first soft constraint in the code order, x > 3, does not conflict with the current range, so it is
applied. The final range of legal values is [4, 5].

Example 2

The constraint shown below sets the default value for num to the range [1..10].

<’
struct x {

num: uint;

keep soft num in [1..10];
};
’>

In order to override the default and change the range with a hard constraint to [10.20] for a particular test,
you must also reset the soft constraint. Because there is one value (10) in the intersection of the soft and the
hard constraint, both constraints are applied and num will always be 10. The example below shows how to
override the soft constraint with reset_soft().

<’
extend sys {

xlist[10]: list of x;

keep for each (n) in xlist {
n.num.reset_soft();
n.num in [10..20];

};

run() is also {
print sys.xlist;

};
};
’>

See Also

� �keep gen-item.reset_soft()� on page 283
� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1.6 Constraining Struct Instances

You can constrain two struct instances of the same type to have the same contents. The constraint causes the
two struct instances to refer to the same memory location. As a result, changing one of the struct instances
also changes the other struct instance immediately. For example, in the code below, when scons1.x is set to
5, the value of scons2.x also becomes 5.

struct scons {
x: uint;
blist: list of byte;

};
This is an unapproved IEEE Standards Draft, subject to change.
263

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
extend sys {
scons1: scons;
scons2: scons;
keep scons2 == scons1;

run() is also {
scons1.x = 5;

};
};

7.1.7 Constraining Lists

There are several ways that you can constrain a list or its elements. See the following sections for more
information:

� �List Size� on page 264
� �List Item� on page 264
� �One List to Another List� on page 265
� �Multiple List Items� on page 265
� �List of Structs� on page 266
� �Multiple Lists� on page 266

7.1.7.1 List Size

You can constrain the list size of a field either by using a size expression in a field declaration or by using a
keep constraint. The following statements both constrain the number of elements in the �pacs� list to 10:

pacs[10]: list of pac;
keep pacs.size() == 10;

The key difference between these two methods is that the keep constraint affects only generation, whereas
the field declaration also initializes the list automatically. Note, however, that if you use the field declaration
approach and the size expression cannot be evaluated when init() is called, you will see an error. For exam-
ple, if the size expression is struct-field.field and struct-field is NULL when init() is called, you get an error.

If you unpack data into a field declared as a list, it is better to use the size expression in a field declaration.
That way, the list�s size is always exactly as specified. See �Packing and Unpacking Lists� on page 503 for
more information.

To constrain the list size of a variable, you must use the keep constraint. A size expression in a variable dec-
laration is not allowed.

If there are no explicit constraints on the size of a list, the generated list will have a size between zero and the
value of the configuration variable, default_max_list_size. This variable is set initially to 50.

7.1.7.2 List Item

You can constrain an individual item in a list of scalar items using the keep constraint as follows.

keep me.data[0] == 0x9a;

You can constrain an individual item in a list of structs using the keep constraint as follows.
264 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
keep dstructs[0].data == 0xff;

NOTE� Neither multiple list indexing nor index expressions may be used in constraints. For
example, top[0].dstruct[0].data is not legal, and dstruct[n+1].data is not legal.

7.1.7.3 Item in List

You can constrain a list to keep a specific item in the list. For example:

<'
extend sys {
 x: uint;
 keep x == 5;
 lu: list of uint;
 keep x in lu;
};
'>

This constraint is bidirectional, meaning that it does not imply a generation order for the item and list. How-
ever, the item is always at the last place in the list, regardless of which is generated first, the item or the list).

In this example, x is generated before lu and therefore the last item in lu is 5.

Therefore, the following code results in a contradiction:

<'
extend sys {
 x: uint;
 y: uint;
 lu: list of uint;
 keep x in lu; // last item in lu is x
 keep y in lu; // last item in lu is y
 keep x != y;
};
'>

7.1.7.4 One List to Another List

You can constrain one list to contain the same items as another list, using the keep constraint.

data1: list of byte;
data2: list of byte;
keep data2 == data1;

This results in two references to two separate lists which initially contain the same values. Changing one of
the lists does not affect the other list unless one list is assigned to the other, which results in the references to
the two lists pointing to the same memory location.

7.1.7.5 Multiple List Items

You can constrain multiple items in a list, using the keep for each constraint.

keep for each in pacs {
index == 0 => it.kind == control;
This is an unapproved IEEE Standards Draft, subject to change.
265

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

7.1.7.6 List of Structs

You can constrain a list of structs to have all legal values of one or more fields, using the .is_all_iterations()
method.

keep pacs.is_all_iterations(.kind);

7.1.7.7 Multiple Lists

You can constrain a list to be a subset of another list, using the in construct. In this example, all the elements
in the �pacs_sub� list are contained in the �pacs� list, but not necessarily in the same order. The �pacs� list
can have elements that are not in �pacs_sub�.

pacs_sub[10]: list of pac;
keep pacs_sub in pacs;

You can constrain a list to have the same elements as another list using the is_a_permutation() pseudo-
method. In this example, the �pacs_dup� list and the �pacs� list have exactly the same elements, but not nec-
essarily in the same order.

pacs_dup[10]: list of pac;
keep pacs_dup.is_a_permutation(pacs);

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.1.8 Constraining Bit Slices

You can use the bit slice operator in constraints to achieve a variety of purposes. A simple example is using
the bit slice operator to constrain the fields of a CPU instruction:

struct cpu_env {
instr: uint (bits: 16);

keep instr[15:13] == 0b100;
keep instr[12:8] == 0b11001;
keep instr[7:0] == 0b00001111;

};

Another simple but useful application of the bit slice constraint is to generate a list of even integers:

struct cpu_env {
lint: list of int;

keep for each in lint {
it[0:0] == 0;

};
};
266 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
NOTE� Using �it%2 == 0� to generate a list of even integers does not work. Since the �%�
operator makes the constraint unidirectional, �it� is generated before the constraint is checked, and
a contradiction occurs about 50% of the time.

You can also use a bit constraint to constrain particular bits in relation to each other. For example, the fol-
lowing constraint ensures that only one of the lower four bits of �x� is 1:

keep x[3:0] in [1,2,4,8];

You can use non-constant bit indices in bit slice constraints, as in the following example, which generates a
4-bit integer with 1s in two consecutive bits:

i: int [0..3];
j: int [0..3];
l: int (bits: 4);

keep j - i == 1;
keep l[j:i] == 0b11;

See Also

� �Bit Slice Constraints and Generation Order� on page 267
� �Bit Slice Constraints and Signed Entities� on page 268
� �Bit Slice Constraints and Soft Constraints� on page 269
� �Limitations of Bit Slice Constraints� on page 269
� �Debugging Bit Slice Constraints� on page 269

7.1.8.1 Bit Slice Constraints and Generation Order

A generatable item can contain a bit slice reference; however, there are implications for generation order:

Non-constant Bit Indices

Non-constant bit indices must be generated before other entities in the constraint. You cannot override this
order.

For example, the following constraint

keep x[j:i] == y;

implies

keep gen (j, i) before (x, y);

NOTE� A further implication is that constraints like the following, where the bit indices are non-
constant and the other items are constant, cannot be solved.

keep 125[j:i] == 0b101;

Generation of Bit Sliced Items

By default, bit sliced items are generated after other items in the same constraint. You can override this
default with a keep gen constraint.

For example, the following constraint
This is an unapproved IEEE Standards Draft, subject to change.
267

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
keep x[j:i] == y;

implies

keep soft gen (y) before (x);

There can be cases where you need to override this default generation order with a keep gen constraint. For
example, to meet the following constraints, �x� must be generated before �y�:

keep y == x[1:0];
keep x in [1,2,5,6];

In order to make this happen, you can add the constraint:

keep gen (x) before (y);

or you can add the value() routine to the existing constraint:

keep y == value(x[1:0])

7.1.8.2 Bit Slice Constraints and Signed Entities

Bit slices in e are treated as unsigned. It is possible, however, to constrain the value of a bit slice (or any
unsigned entity) relative to a signed entity. In the example below, a bit slice of �x� is constrained by a signed
entity, �y�:

x: int;
y: int (bits:5);
keep x[4:0] == y;

There are several implications of constraints that relate a bit slice to a signed entity:

� The value of the bit slice is treated as an unsigned integer; in other words, none of the bits in the slice
is treated as a sign bit. In the example above, although �x� can be a negative number, x[4:0] is
treated as a positive value.

� The value of the signed entity is generated as a non-negative. In the example above, �y� will always
be generated as a non-negative integer.

� The value of both the bit slice and the signed entity must fit into the smaller of

� The bit width of the bit slice

� The bit width of the highest possible value of the signed entity (This width excludes one bit used to
store the sign.)

Example

Given the following integers, �x� and �y�,

x: int;
y: int (bits:5);

any one of the following constraints requires the value of �y� to be a non-negative number no larger than
four bits (the bit width of �y�, minus one bit to store the sign). In other words, the value of both �y� and the
specified bit slice of �x� is generated in the range [0..15]. Any upper bits of the bit slice not required to store
the value are set to 0:
268 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
keep x[7:0] == y; // x[7:4] is 0
keep x[4:0] == y; // x[4] is 0
keep x[3:0] == y;

By contrast, the value of �y� in the following constraint must fit into only three bits (the bit width of the bit
slice), so �y� and �x[2:0]� are generated in the range [0..7]:

keep x[2:0] == y;

7.1.8.3 Bit Slice Constraints and Soft Constraints

A hard constraint on a bit slice of a variable always overrides a soft constraint on that variable. For example,
the intention of the following constraints is to make all the bits of a scalar be zero by default, then set indi-
vidual bits with bit slice constraints:

keep soft x == 0;
keep x[7:7] == 1; // Doesn’t have desired effect

These constraints will not have the desired effect as the soft constraint will always be overridden. The only
way to achieve this purpose is to apply the soft constraint to each individual bit explicitly:

keep soft x[0:0] == 0;
...
keep soft x[31:31] == 0;
keep x[7:7] == 1;

7.1.8.4 Limitations of Bit Slice Constraints

If a bit slice is a function of another bit slice of the same field or variable, in many cases a contradiction
occurs.

In the following example, �x� is an argument to the �bit_parity()� function and must be generated before the
function is called:

keep x[8:8] == bit_parity(x[7:0]); // Usually a contradiction error

The result of the function call is then compared to �x[8:8]� and will fail in 50% of the cases.

The workaround is to assign a new virtual field for �x[7:0]�.

y: uint (bits:8);
keep y == x[7:0];
keep x[8:8] == bit_parity(y);

These constraints cause �y� to be generated first, �x[7:0]� to be constrained to have the value of �y� and
�x[8:8]� to be constrained to have the return value from the bit_parity() method.

7.1.8.5 Debugging Bit Slice Constraints

For bit slice constraints, the collect gen command displays the item�s range list (enclosed in square brackets)
together with the item�s bit value representation (enclosed in angle brackets) as shown below:

[range-list]: <bit-value-representation>
This is an unapproved IEEE Standards Draft, subject to change.
269

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The bit value representation has a single character, either 0, 1, or X, that represents each bit. The characters
0 and 1 indicate that a particular bit must be a 0 or a 1, respectively. The character X indicates that a bit can
be either 0 or 1.

For example, the following display describes an 8-bit odd integer within the range 10 to 20 or 50 to 60:

[11..19, 51..59] : <00XXXXX1>

7.2 Defining Constraints

For information on the constructs used to define constraints, see:

� �keep� on page 270
� �keep all of {...}� on page 272
� �keep struct-list.is_all_iterations()� on page 274
� �keep for each� on page 275
� �keep soft� on page 278
� �keep soft... select� on page 279
� �keep gen-item.reset_soft()� on page 283
� �keep gen ... before� on page 284
� �keep soft gen ... before� on page 285
� �keep gen_before_subtypes()� on page 287
� �keep reset_gen _before_subtypes()� on page 289
� �value()� on page 290
� �constraint-bool-exp� on page 292
� �gen-item� on page 294

In addition, see the following for helpful information.

� �Constraining Lists� on page 264
� �Constraining Bit Slices� on page 266
� �Comparison Operators� on page 42

7.2.1 keep

Purpose

Define a hard value constraint

Category

Struct member

Syntax

keep constraint-bool-exp

Syntax example:

keep kind != tx or len == 16;
270 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

States restrictions on the values generated for fields in the struct or the struct subtree, or describes required
relationships between field values and other items in the struct or its subtree.

Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a gener-
ated struct, the generator either meets the constraint or issues a constraint contradiction message.

NOTE� If the keep constraint appears under a when construct, the constraint is considered only
if the when condition is true.

Example 1

This example describes a required relationship between two fields, �kind� and �len�. If the current �pkt� is
of kind �tx�, then �len� must be 16.

struct pkt {
kind: [tx, rx];
len: uint;
keep kind == tx => len == 16;

};

This constraint is translated internally into an or constraint:

keep kind != tx or len == 16;

Example 2

This example shows a required relationship between two fields, �kind� and �len�, using a local variable,
�p�, to represent �pckt� instances of kind �tx�:

struct pckt {
kind: [tx, rx];
len: uint;

};
struct top {

packet: pckt;
keep packet is a tx pckt (p) => p.len in [128..255];

};

Example 3

This example shows another way to describe the required relationship between the two fields, �kind� and
�len�. This constraint is also translated into an or constraint:

struct pkt {
kind: [tx, rx];
len: uint;
when tx pkt {

constraint-bool-exp A simple or a compound boolean expression. See �constraint-bool-exp�
on page 292 for a full description of this parameter.
This is an unapproved IEEE Standards Draft, subject to change.
271

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
keep len == 16;
};

};

Example 4

This example shows how to call the list.is_a_permutation() method to constrain a list to have a random per-
mutation of items from another list. In this example, �l_1� and �l_2� will have exactly the same elements.
The elements will not necessarily appear in the same order.

struct astr {
l_1: list of int;
l_2: list of int;
keep l_2.is_a_permutation(l_1);

};

Example 5

This example shows a constraint on a single list item (�data[0]�) and the use of path names to identify the
item to be constrained.

type transaction_kind: [good, bad];
struct transaction {
 kind: transaction_kind;
 address: uint;
 length: uint;
 data: list of byte;
};

extend transaction {
keep length < 24;
keep data[0] == 0x9a;
keep address in [0x100..0x200];
keep me.kind == good;

};

extend sys {
t: transaction;
keep me.t.length != 0;

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.2 keep all of {...}

Purpose

Define a constraint block
272 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Struct member

Syntax

keep all of {constraint-bool-exp; ...}

Syntax example:

keep all of {
kind != tx;
len == 16;

};

Parameters

Description

A keep constraint block is exactly equivalent to a keep constraint for each constraint boolean expression in
the block. For example, the following constraint block

keep all of {
kind != tx;
len == 16;

};

is exactly equivalent to

keep kind != tx;
keep len == 16;

The all of block can be used as a constraint boolean expression itself, as is shown in Example on page 273.

Example

type transaction_kind: [VERSION1, VERSION2, VERSION3];
struct transaction {
 kind: transaction_kind;
 address: uint;
 length: uint;
 data: list of byte;

keep kind in [VERSION1, VERSION2] => all of {
length < 24;
data[0] == 0x9a;
address in [0x100..0x200];

};
};

See Also

� �Basic Concepts of Generation� on page 257

constraint-bool-exp A simple or a compound boolean expression. See �constraint-bool-exp�
on page 292 for a full description of this parameter.
This is an unapproved IEEE Standards Draft, subject to change.
273

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.3 keep struct-list.is_all_iterations()

Purpose

Cause a list of structs to have all iterations of a field

Category

Constraint-specific list method

Syntax

keep gen-item.is_all_iterations(.field-name: exp, ...)

Syntax example:

keep packets.is_all_iterations(.kind,.protocol);

Parameters

Description

Causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field list.
Fields not included in the field list are not iterated; their values can be constrained by other relevant con-
straints. The highest value always occupies the last element in the list.

Soft constraints on fields specified in the field list are skipped. For example, given the following constraints,
packet_list will have all legal iterations of the length field, not just iterations within 10 and 100:

keep soft len in [10..100];
keep packet_list.is_all_iterations(.len)

All other relevant hard constraints on the list and on the struct are applied. If these constraints reduce the
ranges of some of the fields in the field list, then the generated list is also reduced.

Memory Usage and Performance Considerations

The number of iterations in a list produced by list.is_all_iterations() is the product of the number of possi-
ble values in each field in the list. For example, if you list all iterations of a struct with the following fields:

i: int [0..4] // 5 possible values
j: int [0..3, 5..7] // 7 possible values
k: int (bits: 8) // 256 possible values

gen-item A generatable item of type list of struct. See �gen-item� on page 294 for more
information.

field-name The name of a scalar field of a struct. The field name must be prefixed by a period.
The order of fields in this list does not affect the order in which they are iterated.
The specified field that is defined first in the struct is the one that is iterated first.
274 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The number of iterations for the list is:

5 * 7 * 256 = 8960

The absolute_max_list_size generation configuration option sets the maximum number of iterations
allowed in a list. The default is 524,288. If the number of iterations in your list exceeds this number, you can
set absolute_max_list_size to a larger number with the config gen command.

Notes

� The list.is_all_iterations() method can only be used in a constraint boolean expression.
� The fields to be iterated must be of a scalar type, not a list or struct type.

Example

The �sys.packets� list will have six elements (2 �kinds� * 3 �protocols�). The �len� field is not iterated on; it
will get any value from its legal range for each of the list items.

type p_kind: [tx, rx];
type p_protocol: [atm, eth, other];
struct packet {

kind: p_kind;
protocol: p_protocol;
len: int [0..4k];

};
extend sys {

packets: list of packet;
keep packets.is_all_iterations(.kind,.protocol);

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.4 keep for each

Purpose

Constrain list items

Category

Struct member

Syntax

keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in
gen-item {constraint-bool-exp | nested-for-each; ...}

Syntax example:

keep for each (p) in pkl {
soft p.protocol in [atm, eth];
This is an unapproved IEEE Standards Draft, subject to change.
275

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

Parameters

Description

Defines a value constraint on multiple list items.

Notes

� You must refer to the items you want to generate using a path name that starts either with it, such as
�it.pk� or with the name that you assigned to the list item (item-name). Items whose pathname does
not start with it can only be sampled; their generated values cannot be constrained.

� Within a for each constraint, prev and index are predefined constants and cannot be constrained or
generated.

� Items in lists are generated in ascending order starting with index zero. Constraints that use an index
expression to refer to other items in a list can only refer to items with lower index values.

� Referencing prev while in the first item of the list causes an error.
� You can nest for each constraints.
� If a for each constraint is contained in a gen ... keeping action, you must name the iterated variable.

See Example 3 on page 298 for more information.

Example 1

In this example, the �keep for each in dat� constraint in the �pstr� struct constrains all the �dat� fields to be
less than 64. Note that referring to the list items in the boolean expression �it < 64� as �dat[index]� rather
than �it� generates an error.

struct pstr {
dat: list of uint;
keep for each in dat {

it < 64;
};

};

Example 2

The following example uses an item name �p� and an index name �pi� to constrain the generation of values
for the variable �indx�:

item-name An optional name used as a local variable referring to the current item in
the list. The default is it.

index-name An optional name referring to index of the current item in the list. The
default is index.

prev-name An optional name referring to the previous item in the list. The default is
prev.

gen-item A generatable item of type list. See �gen-item� on page 294 for more
information.

constraint-bool-exp A simple or a compound boolean expression. See �constraint-bool-exp�
on page 292 for a full description of this parameter.

nested-for-each A nested for each block, with the same syntax as the enclosing for each
block, except that �keep� is omitted.
276 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct packet {
indx: uint;

};
extend sys {

packets: list of packet;
keep for each (p) using index (pi) in packets {

p.indx == pi;
};

};

Example 3

The following example shows the use of index in a nested for each block. The �x� field receives the value
of the outer index and each byte of �payload� receives the value of the inner index.

struct packet {
x: int;
%payload: list of byte;
keep payload.size() == 10;

};
extend sys {

packets: list of packet;
keep packets.size() == 5;
keep for each (p) in packets {

p.x == index;
for each in p.payload {

it == index;
};

};
post_generate() is also {

for i from 0 to 4 {
print packets[i].x;
print packets[i].payload;

};
};

};

Result

Generating the test using seed 1...
 packets[i].x = 0
 packets[i].payload = (10 items, dec):
 9 8 7 6 5 4 3 2 1 0 .0

 packets[i].x = 1
 packets[i].payload = (10 items, dec):
 9 8 7 6 5 4 3 2 1 0 .0

 packets[i].x = 2
 packets[i].payload = (10 items, dec):
 9 8 7 6 5 4 3 2 1 0 .0

 packets[i].x = 3
 packets[i].payload = (10 items, dec):
 9 8 7 6 5 4 3 2 1 0 .0

 packets[i].x = 4
This is an unapproved IEEE Standards Draft, subject to change.
277

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 packets[i].payload = (10 items, dec):
 9 8 7 6 5 4 3 2 1 0 .0

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.5 keep soft

Purpose

Define a soft value constraint

Category

Struct member

Syntax

keep soft constraint-bool-exp

Syntax example:

keep soft legal == TRUE;

Parameters

Description

Suggests default values for fields or variables in the struct or the struct subtree, or describes suggested rela-
tionships between field values and other items in the struct or its subtree.

Soft constraints are order dependent and will not be met if they conflict with hard constraints or soft con-
straints that have already been applied. See �Order of Evaluation of Soft Value Constraints� on page 262 for
more information on this topic.

NOTE� The soft keyword can be used in simple boolean expressions, but not in compound
boolean expressions. Thus the first constraint below is valid, but the second generates a compile-
time error:

keep x > 0 => soft y < 0;
keep soft x > 0 => y < 0; // Compile-time error

Example 1

Because soft constraints only suggest default values, it is better not to use them to define architectural con-
straints, such as �keep opcode in [ADD, SUB, AND, XOR, RET, NOP]�. If you want to be able to explicitly
override the architectural constraints in order to generate illegal instructions for a particular test, then you
can define a boolean field for legal instructions and place a soft constraint on that:

constraint-bool-exp A simple boolean expression. See �constraint-bool-exp� on page 292 for a
full description of this parameter.
278 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct instr {
%opcode: cpu_opcode;
legal: bool;
keep soft legal == TRUE;
keep legal => opcode in [ADD, SUB, AND, XOR, RET, NOP];

};

Example 2

Individual constraints inside a constraint block can be soft constraints.

extend sys {
packets: list of packet;
keep for each in me.packets {

soft .len == 2k;
.kind != tx;

};
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.6 keep soft... select

Purpose

Constrain distribution of values

Category

Struct member

Syntax

keep soft gen-item==select {weight: value; ...}

Syntax example:

keep soft me.opcode == select {
30: ADD;
20: ADDI;
10: [SUB, SUBI];

};
This is an unapproved IEEE Standards Draft, subject to change.
279

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Specifies the relative probability that a particular value or set of values is chosen from the current range of
legal values. The current range is the range of values as reduced by hard constraints and by soft constraints
that have already been applied.

A weighted value will be assigned with the probability of

� weight/(sum of all weights)

Weights are treated as integers. If you use an expression for a weight, take care to avoid a situation where the
value of the expression is larger than the maximum integer size (MAX_INT).

Like other soft constraints, keep soft select is order dependent and will not be met if it conflicts with hard
constraints or soft constraints that have already been applied. See �Order of Evaluation of Soft Value Con-
straints� on page 262 for more information on this topic.

Example 1

The following soft select constraint specifies that there is a 3/6 probability that ADD is selected from the
current range, a 2/6 probability for ADDI, and a 1/6 probability that either SUB or SUBI is selected.

struct instr {
%opcode: cpu_opcode;
keep soft me.opcode == select {

30: ADD;
20: ADDI;
10: [SUB, SUBI];

gen-item A generatable item. See �gen-item� on page 294 for a full description of
this parameter.

weight Any uint expression. Weights are proportions; they do not have to add up
to 100. A relatively higher weight indicates a greater probability that the
value is chosen.

value is one of the following:
range-list A range list such as [2..7]. A select expression with a range list selects the

portion of the current range that intersects with the specified range list.
exp A constant expression. A select expression with a constant expression

(usually a single number) selects that number, if it is part of the current
range.

others Selects the portions of the current range that do not intersect with other
select expressions in this constraint.

Using a weight of 0 for others causes the constraint to be ignored. That is,
the effect is the same as if the others option were not entered at all.

pass Ignores this constraint and keeps the current range as is.
edges Selects the values at the extreme ends of the current range(s).
min Selects the minimum value of the gen-item.
max Selects the maximum value of the gen-item.
280 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

Example 2

In the following example, �address� is generated in the range [0..49] 10% of the time, as exactly [50] 60% of
the time, and in range [51..99] 30% of the time, assuming that the current range includes all these values.

struct transaction {
address: uint;
keep soft address == select {

10: [0..49];
60: 50;
30: [51..99];

};
};

Example 3

This particular test uses the distribution described in the original definition of �transaction� only 10% of the
time and uses the range [200..299] 90% of the time.

extend transaction {
keep soft address == select {

10: pass;
90: [200..299];

};
};

The final distribution is 90% [200..299], 1% [0..49], 6% [50], 3% [51..99].

Example 4

This extension to �transaction� sets the current range with a hard constraint. 50% of the time the extreme
edges of the range are selected (0, 50, 100, and 150). 50% of the time other values in the range are chosen.

extend transaction {
keep address in [0..50,100..150];
keep soft address == select {

50: edges;
50: others;

};
};

Example 5

This extension to �transaction� sets the current range with a hard constraint. About 10% of the values are to
be 10 and about 30% of the values are to be 50. The remaining 60% of the values are to be distributed
between 10 and 50.

extend transaction {
keep address in [10..50];
keep soft address == select {
This is an unapproved IEEE Standards Draft, subject to change.
281

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
10: min;
60: others;
30: max;

};
};

Example 6

This example shows how to weight the values of generated elements of a list. The it variable is used to rep-
resent a list element in the keep for each construct. The values A, B, and C are given equal weights of 20,
and all other possible values (D through L) are given a collective weight of 40. About 20% of the generated
list elements will be A, 20% will be B, 20% will be C, and the remaining 40% will get random values in the
range D through L.

<’
type alpha: [A, B, C, D, E, F, G, H, I, J, K, L];
struct top {

my_list[50]: list of alpha;

keep for each in my_list {
soft it == select {

20: A;
20: B;
20: C;
40: others;

};
};

};

extend sys {
top;

};
’>

Example 7

This example shows how a runtime value from the simulation can be used to weight the selection of a value.
In this case, the generation of the JMPC opcode is controlled by the value of the 'top.carry' signal.

extend instr {
keep soft opcode == select {

40: [ADD, ADDI, SUB, SUBI];
20: [AND, ANDI, XOR, XORI];
10: [JMP, CALL, RET, NOP];

'top.carry' * 90: JMPC;
};

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296
282 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
7.2.7 keep gen-item.reset_soft()

Purpose

Quit evaluation of soft constraints for a field

Category

Struct member

Syntax

keep gen-item.reset_soft()

Syntax example:

keep c.reset_soft();

Parameters

Description

Causes the program to quit the evaluation of soft value constraints for the specified field. Soft constraints for
other fields are still evaluated..

Example 1

It is important to remember that soft constraints are considered in reverse order to the order in which they are
defined in the e code. If the following constraints are defined in the order shown, then the program applies
the �keep soft c > 5 and c < 10� constraint (the last one defined) and then quits the evaluation of soft value
constraints for �c� when it encounters the �keep c.reset_soft()� constraint. It never considers the �keep soft
c < 3� constraint. It does evaluate the �keep soft d< 3� constraint:

struct adder {
c: uint;
d: uint;
keep soft c < 3; // Is never considered
keep soft d < 3; // Is considered

};

extend adder {
keep c.reset_soft();

};

extend adder {
keep soft c > 5 and c < 10;

};

gen-item A generatable item. See �gen-item� on page 294 for a full description of this parame-
ter.
This is an unapproved IEEE Standards Draft, subject to change.
283

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

This example shows the use of reset_soft() in the situation where a soft constraint is written with the intent
that it will be ignored if other constraints are added in an extension. Normally, �address� should be less than
64. The test writer needs to do nothing additional to get this behavior.

In a few tests, �address� should be any value less than 128. The test writer needs to remove the effect of the
soft constraint so that it does not reduce the range [0..128] to [0..64].

struct transaction {
 address: uint;
 keep soft address < 64;
};
extend transaction {
 keep address.reset_soft();
 keep address < 128;
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.8 keep gen ... before

Purpose

Modify the generation order

Category

Struct member

Syntax

keep gen (gen-item: exp, ...) before (gen-item: exp, ...)

Syntax example:

keep gen (y) before (x);

Parameters

Description

Requires the generatable items specified in the first list to be generated before the items specified in the sec-
ond list. You can use this constraint to influence the distribution of values by preventing soft value con-
straints from being consistently skipped. Before using this constraint for this purpose, read �Basic Concepts
of Generation� on page 257 to be sure that you understand how soft constraints are evaluated.

gen-item, ... An expression that returns a generatable item. The parentheses are required. See
�gen-item� on page 294 for more information.
284 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Notes

� This constraint itself can cause constraint cycles. If a constraint cycle involving one of the fields in
the keep gen ... before constraint exists and if the resolve_cycles generation configuration option is
TRUE, the constraint can be ignored if the program cannot satisfy both it and other constraints that
conflict with it.

� This constraint cannot appear on the left-hand side of a implication operator (=>).

Example

In the following example, the constraint requires the test generator to generate values for �length� and
�data� before generating �crc�.

struct packet {
good: bool;
length: byte [1..24];
data [length]: list of byte;
crc: uint;
keep good => crc == crc_calc();
keep gen (length, data) before (crc);

crc_calc() : uint is {
result = pack(packing.low,length,data).crc_32(0,length);

};
};

extend sys {
p: list of packet;
run() is also {

 print sys.p.crc;
 };
};

extend packet {
keep good == TRUE; // just to show interesting case

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.9 keep soft gen ... before

Purpose

Suggest order of generation

Category

Struct member

Syntax

keep soft gen (gen-item: exp, ...) before (gen-item: exp, ...)
This is an unapproved IEEE Standards Draft, subject to change.
285

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

keep soft gen (y) before (x);

Parameters

Description

Modifies the �soft� generation order by recommending that the fields specified in the first field list to be
generated before the fields specified in the second field list. This soft generation order is second in priority
to the hard generation order created by dependencies between parameters and keep gen before constraints.

You can use this constraint to suggest a generation order that you can later override for particular purposes in
individual tests with a hard order constraint.

NOTE� This constraint cannot appear on the left-hand side of a implication operator (=>).

Example

This example shows how you can use a soft order constraint to get the distribution of values you want. In the
example below, there is a hard value constraint on �length� and �address�.

struct transaction {
 address: uint;
};

extend transaction {
 length: uint [1..10];
 keep length == 5 => address < 50;
};

However, because �address� is generated first (based on coding order), �length� is generated to 5 only a
small percentage of the time (50 out of MAX_UINT). If you want 5 to be as likely as any other value, the
default ordering must be changed with a soft order constraint.

extend transaction {
 keep soft gen (length) before (address);
};

Since the order constraint is soft, it can be overridden by a hard constraint, such as one that uses a method.
The following hard value constraint requires �address� to be generated before �length�, overriding the soft
generation order suggested by the previous extension to �transaction�.

extend transaction {
 keep length == value(address);
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

gen-item, ... An expression that returns a generatable item. See �gen-item� on page 294 for
more information.
286 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
7.2.10 keep gen_before_subtypes()

Purpose

Specify a when determinant field for deferred generation

Category

Struct member

Syntax

keep gen_before_subtypes(determinant-field: field, ...)

Syntax example:

keep gen_before_subtypes(format);

Parameters

Description

To speed up generation of structs with multiple when subtypes, this type of constraint, called a subtype opti-
mization constraint, causes the generator engine to wait until a when determinant value is generated for a
specified field before it analyzes constraints and generates fields under the when subtype.

When no subtype optimization constraints are present in a struct, the generator analyzes all of the constraints
and fields in the struct before it generates the struct, even those constraints and fields that are defined under
when subtypes. When a subtype optimization constraint is present, the generator initially analyzes only the
constraints and fields of the base struct type. Only when a subtype optimization when determinant is
encountered does the generator analyze the associated when subtype and then generate it.

Notes

� Subtype optimization can handle multiple determinants. Subtypes are analyzed and generated in the
order in which their when determinants are encountered.

� If multiple determinants are specified, and some of them are subtype optimization determinants
while others are not, then a subtype that is a result of multiple inheritance of a subtype optimization
determinant and a non-subtype optimization determinant will be treated the same as a other subtype
optimization determinant subtype.

� The generator engine�s ability to resolve contradictions is diminished somewhat by subtype optimi-
zation constraints. Specifically, the generator might not be able to resolve contradictions arising
from constraints under subtypes that involve fields of the base type.

� The analysis and generation is recursive. If a subtype contains another determinant that is specified
in a subtype optimization constraint, then that sub-subtype is analyzed and generated as soon as its
determinant field is generated under the higher-level subtype.

determinant-field An expression that evaluates to the name of a field in the struct type. The field
must be one that has at least one value that is used as a when determinant for a
subtype definition. If the field is not a when determinant field, a warning is
issued and the constraint is ignored.

Multiple field expressions can be entered, separated by commas.
This is an unapproved IEEE Standards Draft, subject to change.
287

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

This example shows a subtype optimization constraint on the field named format in the instr_s struct. The
generator defers analysis and generation of constraints and fields under the FMT_A and FMT_B subtypes,
since those are when determinants.

type format_t: [FMT_A, FMT_B, FMT_C];
struct instr_s {

intrpt: bool;
format: format_t;
keep gen_before_subtypes(format);
keep format == FMT_A => intrpt != FALSE;

when FMT_A'format instr_s {
a_intrp: bool;
keep intrpt != a_intrp;
keep gen (size) before (offset);
keep offset == 0x10;

};

when FMT_B'format instr_s {
b_intrp: bool;
keep intrpt == TRUE;

};

offset: int;
size: int;

};

The generation order for the example above is:

1) All constraints in the base struct concerning intrpt and format are analyzed.
2) A value is generated for intrpt.
3) A value is generated for format.
4) When format is FMT_A,

� All constraints under subtype FMT_A are analyzed.

� A value is generated for a_intrp.

5) A value is generated for size.
6) A value is generated for offset.

Notes

� The gen...before constraint in the FMT_A subtype can be satisfied because neither offset nor size
has been generated when that constraint is encountered.

� The constraint between intrpt and a_intrp can be satisfied even though it is unidirectional, because
intrpt is generated before a_intrp.

� If the gen...before constraint under FMT_A was between intrpt and offset, for example, then it
would be ignored because intrpt is generated before any subtypes are analyzed (unless an explicit
order constraint was added between the format determinant and intrpt).

Example 2

In the following example, the keep op != SUB constraint under the FMT_A subtype might cause a contra-
diction, since it involves a field in the base struct. This is because the generator initially generates the base
288 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct (the op and format fields) before it analyzes the constraints in the subtype. There are no constraints
involving op and format in the base struct, so the generator is free to choose FMT_A and SUB for those
fields. However, once the format determinant is fixed, the generator analyzes the FMT_A subtype, and finds
that op is not allowed to be SUB. This results in a contradiction.

type format_t: [FMT_A, FMT_B, FMT_C];
type opcode_t: [ADD, SUB, MUL, DIV];
struct instr_s {

op: opcode_t;
format: format_t;
keep gen_before_subtypes(format);

when FMT_A'format instr_s {
a_intrp: bool;
keep op != SUB; // Might cause a contradiction

};
};

To avoid the possibility of a contradiction described above, you can elevate the constraint from the subtype
to the base struct:

keep format == FMT_A => op != SUB;

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.11 keep reset_gen _before_subtypes()

Purpose

Disable all previous keep gen_before_subtypes() subtype optimization constraints

Category

Struct member

Syntax

keep reset_gen_ before_subtypes()

Syntax example:

keep reset_gen_before_subtypes();

Description

When subtype optimization is turned off by default, this constraint causes the generator to ignore all previ-
ously defined gen_before_subtypes() constraints for the enclosing struct or unit. Any
gen_before_subtypes() constraints you define after the reset will be followed.
This is an unapproved IEEE Standards Draft, subject to change.
289

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
When subtype optimization is turned on by default, this constraint turns off subtype optimization for the
enclosing struct or unit.

When subtype optimization is forced on or off, this constraint has no effect.

NOTE� You can define other subtype optimization constraints following a keep
reset_gen_before_subtypes() constraint.

Example

This example shows a reset_gen_before_subtypes() constraint, which disables all previous
gen_before_subtypes() constraints, followed by a new gen_before_subtypes() constraint which is still
effective.

type format_t: [FMT_A, FMT_B, FMT_C];
struct instr_s {

intrpt: bool;
format: format_t;
keep gen_before_subtypes(format);

};
extend instr_s {

keep reset_gen_before_subtypes();
// Disables previous subtype optimization constraints
keep gen_before_subtypes(intrpt);
// This new subtype optimization constraint is still in effect

};

See Also

� �keep gen_before_subtypes()� on page 287
� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.12 value()

Purpose

Modify generation sequence

Category

Pseudo-method

Syntax

value(item: exp)

Syntax example:

keep i < value(j);
290 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Generates values for any data items that are contained in the expression and returns the value of the expres-
sion.

This method affects generation order and also makes the constraint unidirectional.

keep a == value(b + c);

The constraint shown above has two results:

� �b� and �c� will be generated before �a�.
� You cannot otherwise constrain the value of �a�.

The value() method is similar to a gen before constraint in that it affects generation order. It can also pro-
vide some performance improvement. The test generator has less work to do because it does not need to
propagate constraint information from �a� to �b� and �c�.

NOTE� Like most other method calls, the value() method cannot be used to constrain the legal
values for any data item that it contains. A constraint such as �keep value(j) == 16�, which appears
to require the test generator to keep the value of �j� equal to 16, is not enforceable.

Thus, although the following example loads without error, a contradiction almost always occurs during gen-
eration because �j� is generated before the constraint is applied:

extend sys {

 j:int;

 keep value(j) == 16;

};

Result

In these sample results, �j� was generated as 536940611, and then the constraint was applied, reducing the
valid range to [].

*** Error: Contradiction:
 A contradiction has occurred when generating sys-@0.(j) :
 Previous constraints reduced its range of possible values,
 then the following constraint contradicted these values:
 keep 16 == value(j) at line 5 in @test4
 Reduced: sys-@0.(j) into []
 Using: sys-@0.j == [536940611]
 To see details, reload and rerun with "col gen"

See �Enforceable Expressions� on page 261 for more information.

item A legal e expression.
This is an unapproved IEEE Standards Draft, subject to change.
291

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

�j� is generated first, then �i�. �i� is always less than the value of �j� shifted one bit to the right.

extend sys {
i: int;
j: int;
keep i < value(j >> 1);

};

The code shown below is equivalent:

extend sys {
i: int;
j: int;
keep gen (j) before (i);
keep i < (j >> 1);

};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.2.13 constraint-bool-exp

Purpose

Define a constraint on a generatable item

Category

Expression

Syntax

bool-exp [or | and | => bool-exp] ...

Syntax example:

z == x + y

Parameters

Description

A constraint boolean expression is a simple or compound boolean expression that describes the legal values
for at least one generatable item or constrains the relation of one generatable item with others.

A compound boolean expression is composed of two or more simple expressions joined with the or, and or
implication (=>) operators.

bool-exp An expression that returns either TRUE or FALSE when evaluated at run time.
292 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
e has several special constructs that are useful in constraint boolean expressions:

Notes

� The soft keyword can be used in simple boolean expressions, but not in compound boolean expres-
sions. Thus the first constraint below is valid, but the second generates a compile-time error:

keep x > 0 => soft y < 0;

keep soft x > 0 => y < 0; // Compile-time error

� The order of precedence for boolean operators is: and, or, =>. A compound expression containing
multiple boolean operators of equal precedence is evaluated from left to right, unless parentheses are
used to indicate expressions of higher precedence. See Example 3 on page 294.

� Any e operator can be used in a constraint boolean expression. However, certain operators can affect
generation order or can create an constraint that is not enforceable. See �Unidirectional Constraints�
on page 259 and �Enforceable Expressions� on page 261 for more information.

Example 1

The following are examples of simple constraint boolean expressions:

long == TRUE
 soft x > y
 x == WIDTH
 x + z == y + 7
 x in [0..10]
 (list_1) in (list_2)
 list_3.is_a_permutation(list_4)
 list_of_packets.is_all_iterations(.protocol)
 packet.reset_soft()
 packet is a legal packet
 soft me.opcode == select {

30: ADD;
20: ADDI;
10: [SUB, SUBI];

};

soft A keyword that indicates that the constraint is either a soft value con-
straint or a soft order constraint. See �Generation Constraints� on
page 257 for a definition of these types of constraints.

soft...select An expression that constrains the distribution of values.
.reset_soft() A pseudo-method that causes the test generator to quit evaluation of

soft constraints for a field, in effect, removing previously defined soft
constraints.

.is_all_iterations() A list method used only within constraint boolean expressions that
causes a list of structs to have all legal, non-contradicting iterations of
the specified fields.

.is_a_permutation() A list method that can be used within constraint boolean expressions to
constrain a list to have the same elements as another list.

[not] in An operator that can be used within constraints boolean expressions to
constrain an item to a range of values or a list to be a subset of another
list, or, with not, to be outside the range or absent from another list.

is [not] a An operator that checks the subtype of a struct.
This is an unapproved IEEE Standards Draft, subject to change.
293

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

The following are examples of compound constraint boolean expressions:

x > 0 and soft x < y
is_a_good_match(x, y) => z < 1024
color != red or resolution in [900..999]
packet is a good packet => length in [0..1023]

Example 3

In compound expressions where multiple implication operators are used, the order in which the operations
are performed is significant. For example, in the following constraint, the first expression (a => b) is evalu-
ated first by default:

keep a => b => c; // is equivalent to
keep (not a or b) => c; // is equivalent to
keep a and (not b) or c;

However, adding parentheses around the expression (b => c) causes it to be evaluated first, with very differ-
ent results.

keep a => (b => c); // is equivalent to
keep a => (not b) or c; // is equivalent to
keep (not a) or (not b) or c;

See Also

� �keep soft� on page 278
� �keep soft gen ... before� on page 285
� �keep gen-item.reset_soft()� on page 283
� �keep struct-list.is_all_iterations()� on page 274
� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296
� �Scalar Types� on page 75

7.2.14 gen-item

Purpose

Identifies a generatable item

Category

Expression

Syntax

[me.]field1-name[.field2-name ...]

| it | [it].field1-name[.field2-name ...]

Syntax example:
294 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
me.protocol

Parameters

Description

A generatable item is an operand in a boolean expression that describes the legal values for that generatable
item or constrains its relation with another generatable item. Every constraint must have at least one generat-
able item or an error is issued.

In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct con-
taining the constraint and ending with a field name. In a gen action, the syntax for specifying a generatable
item is a path starting with it of the struct containing the constraint and ending with a field name.

NOTE� A generatable item cannot have an indexed reference in it except as the last item in the
path. Thus, constraints such as �keep a.keys[i] > 10� are legal, while constraints such as �keep
packets[0].len > 10� are illegal.

To work around this restriction, use a keep for each constraint with an implication constraint:

keep for each (p) in packets {
index == 0 => p.len > 10;

};

Example 1

This example illustrates generatable and non-generatable items within a keep constraint. In the constraint
boolean expression �x > sys.yy + y� shown in the example below, �x� is a generatable item. �y� is also gen-
eratable, even though it is marked with ! as do-not-generate. On the other hand, �sys.yy� is not a generatable
item because its path does not start with me.

extend sys {
yy: int;

};
struct tmp {

!y: int;
x: int;
keep x > sys.yy + y;

};

Example 2

This example illustrates generatable and non-generatable items within a gen action. In the gen action shown
below, it is the only generatable item. �i� is a local variable, and the paths of the other variables do not start
with it.

extend sys {
yy: int;

};
struct tmp {

!y: int;
x: int;

field-name The name of a field in the current struct or struct type.
This is an unapproved IEEE Standards Draft, subject to change.
295

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
m() is {
var i: int;
gen y keeping {

it > i - me.x + sys.yy;
};

};
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296
� �Implicit Variables� on page 24

7.3 Invoking Generation

For information on constructs used to control or invoke generation, see:

� ! described in �Defining Fields: field� on page 125
� �gen� on page 296
� �pre_generate()� on page 299
� �post_generate()� on page 300

7.3.1 gen

Purpose

Generate values for an item

Category

Action

Syntax

gen gen-item [keeping {[it].constraint-bool-exp; ...}]

Syntax example:

gen next_packet keeping {
.kind in [normal, control];

};
296 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Generates a random value for the instance of the item specified in the expression and stores the value in that
instance, while considering all the constraints specified in the keeping block as well as other relevant con-
straints at the current scope on that item or its children. Constraints defined at a higher scope than the enclos-
ing struct are not considered. See Example 1 on page 297.

You can generate values for particular struct instances, fields, or variables during simulation (on-the-fly gen-
eration) with the gen action.

This constraint allows you to specify constraints that apply only to one instance of the item.

Notes

� You can use the soft keyword in the list of constraints within a gen action.
� The earliest the gen action can be called is from a struct�s pre_generate() method.
� The generatable item for the gen action cannot include an index reference. For example, �gen

sys.pckts[index].dat;� and �gen sys.pckts.dat[index];� are both illegal.
� If a gen ... keeping action contains a for each constraint, you must name the iterated variable. See

Example 3 on page 298 for more information.

Example 1

This example uses the gen action within a TCM called �gen_next()� to create packets to send to the device
under test. A constraint within the gen action keeps �len� with a range of values. A constraint defined at a
lower scope level, �packet�, is also applied when the gen action is executed, keeping the size of the �data�
field equal to the �len� field. The constraint defined at the sys level �keep sp.next_packet.len == 4;� is not
considered because it is not at the current scope of the gen action.

extend sys {
event event_clk is @sys.any;
sp: send_packet;
keep sp.next_packet.len == 4;

};

struct packet {
len: int [0..10];
kind: [normal, control, ack];
data: list of int;
keep me.data.size() == len;

};

struct send_packet {
num_of_packets_to_send: int [0..20];
!next_packet: packet;

gen_next() @sys.event_clk is {
gen num_of_packets_to_send; // Random loop delimiter
for i from 0 to num_of_packets_to_send - 1 do {

gen-item A generatable item. If the expression is a struct, it is automatically allo-
cated, and all fields under it are generated recursively, in depth-first order.

constraint-bool-exp A simple or a compound boolean expression. See �constraint-bool-exp�
on page 292 for more information.
This is an unapproved IEEE Standards Draft, subject to change.
297

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
wait ([100]*cycle);
gen next_packet keeping {

.len in [5..10];

.kind in [normal, control];
};

};
};
run() is also {

start gen_next();
};

};

Example 2

This example shows a keep soft ... select constraint on the gen action, which weights the distribu-
tion of values for the len field of a packet.

struct packet {
len: int [0..10];
kind: [normal, control, ack];

};
struct top {

!packet_list: list of packet;
pkt_gen() is {

var pkt: packet;
for i from 0 to 100 {

gen pkt keeping {
soft it.len == select {

20: [0..3];
60: [4..6];
20: [7..10];

};
};
packet_list.add(pkt);

};
};

};

Example 3

This example shows how to generate a struct containing a list on the fly, while constraining each item in the
list.

NOTE� You must provide a name for the list item that is iterated. In other words substituting �for
each in .data� for �for each (item) in .data� causes an error.

<'
struct packet {

addr: uint;
data: list of byte;

};

extend sys {

send_packet()@sys.any is {
var p: packet;
298 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
gen p keeping {
it.addr > 450000;
for each (item) in .data { // name is required

item > 10 and item < 30;
};

};
};

};
'>

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.3.2 pre_generate()

Purpose

Method run before generation of struct

Category

Method of any struct

Syntax

[struct-exp.]pre_generate()

Syntax example:

pre_generate() is also {
m = 7;

};

Parameters

Description

The pre_generate() method is run automatically after an instance of the enclosing struct is allocated but
before generation is performed. This method is initially empty, but you can extend it to apply values proce-
durally to prepare constraints for generation. The pre_generate() method allows you to simplify constraint
expressions before they are analyzed by the constraint solver.

The order of generation is recursively as follows:

1) Allocate the new struct.
2) Call pre_generate().
3) Perform generation
4) Call post_generate().

struct-exp An expression that returns a struct. The default is the current struct.
This is an unapproved IEEE Standards Draft, subject to change.
299

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� Prefix the ! character to the name of any field whose value is determined by
pre_generate(). Otherwise, normal generation will overwrite this value.

Example

struct a {
!m: int;
m1: int;
keep m1 == m + 1;
pre_generate() is also {

m = 7;
};

};
extend sys {

A: a;
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296

7.3.3 post_generate()

Purpose

Method run after generation of struct

Category

Predefined method of any struct

Syntax

[struct-exp.]post_generate()

Syntax example:

post_generate() is also {
m = m1 + 1;

};

Parameters

Description

The post_generate() method is run automatically after an instance of the enclosing struct is allocated and
both pre-generation and generation have been performed. You can extend the predefined post_generate()
method for any struct to manipulate values produced during generation. The post_generate() method allows
you to derive more complex expressions or values from the generated values.

The order of generation is recursively as follows:

struct-exp An expression that returns a struct. The default is the current struct.
300 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
1) Allocate the new struct.
2) Call pre_generate().
3) Perform generation
4) Call post_generate().

Example

struct a {
!m: int;
m1: int;
post_generate() is also {

m = m1 + 1;
};

};
extend sys {

 A: a;
};

See Also

� �Basic Concepts of Generation� on page 257
� �Defining Constraints� on page 270
� �Invoking Generation� on page 296
This is an unapproved IEEE Standards Draft, subject to change.
301

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
302 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
8 Events

The e language provides temporal constructs for specifying and verifying behavior over time. All e temporal
language features depend on the occurrence of events, which are used to synchronize activity with a simula-
tor and within the e program.

This chapter contains the following sections:

� �Events Overview� on page 303
� �Defining and Emitting Named Events� on page 305
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309

See Also

� �Defining Structs: struct� on page 118
� �Rules for Defining and Extending Methods� on page 459
� �Invoking Methods� on page 474
� Chapter 9, �Temporal Expressions�
� Chapter 10, �Temporal Struct Members�
� Chapter 11, �Time-Consuming Actions�

8.1 Events Overview

An example of an event definition is shown in Figure 8-1. An event named �rclk� is defined to be the rising
edge of a signal named �top.clk� at another event named �sim�. The @ symbol is used with an event name,
@event, to mean �when the event is true�. The special @sim syntax means at a callback from the simulator.
The rise() expression always causes a callback when the signal rises. Therefore, this event definition means
�a rise of top.clk causes rclk to occur�. Occurrences of the �rclk� event are represented by arrows.

Figure 8-1�Event Definition Example

Once an event has been defined, it can be used in as the sampling event in temporal constructs such as tem-
poral expressions (see Chapter 9, �Temporal Expressions�) like the following:

expect {[1]; true(chk)@rclk};
on rclk { ... };

Events also are used as the sampling points in time-consuming methods (see �Rules for Defining and
Extending Methods� on page 459):

set_chk()@rclk is { ... };

The occurrence of any event is counted as a tick. Ticks are the means by which the e program marks the pas-
sage of time.

'top.clk'

rclk

event rclk is rise('top.clk')@sim

time
This is an unapproved IEEE Standards Draft, subject to change.
303

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Many events are predefined in e. You can use event struct members to define your own events, called named
events, like the �rclk� example above.

All user-defined events are automatically included in functional coverage. A field named events in the ses-
sion struct holds the user-defined event coverage data.

See Also

� �Causes of Events� on page 304
� �Scope of Events� on page 304
� �Defining and Emitting Named Events� on page 305
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309

8.1.1 Causes of Events

The ways in which an event are made to occur are described below.

You can use the emit action in any method to cause an event to occur, whether it has an attached temporal
expression or not.

See Also

� �Events Overview� on page 303

8.1.2 Scope of Events

The scoping rules for events are similar to other struct members, such as fields.

Events are defined as a part of a struct definition. When a struct is instantiated, each instance has its own
event instances. Each event instance has its own schedule of occurrences. There is no relation between
occurrences of event instances of the same type.

All references to events are to event instances. The scoping rules are as follows:

� If a path is provided, use the event defined in the struct instance pointed to by the path.
� If no path is provided, the event is resolved at compile time. The current struct instance is searched.
� If the event instance is not found, a compile-time error is issued.

Syntax Cause of the Event

event a is (@b and @c)@d Derived from other events (see Chapter 9, �Tem-
poral Expressions�).

event a is rise('top.b')@sim Derived from behavior of a simulated device (see
Chapter 9, �Temporal Expressions�).

event a is { @b; @c; @d }@e A sequence of other events (see Chapter 9, �Tem-
poral Expressions�)

event a;
meth_b()@c is { ... ; emit a; ... };

By the emit action in procedural code (see �emit�
on page 307).
304 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Events Overview� on page 303

8.2 Defining and Emitting Named Events

This section describes the following constructs:

� �event� on page 305
� �emit� on page 307

See Also

� �Events Overview� on page 303
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309

8.2.1 event

Purpose

Define a named event

Category

Struct member

Syntax

event event-type[is [only] temporal-expression]

Syntax example:

event clk is rise('top.cpu_clk') @sim;

Parameters

Description

Events can be attached to temporal expressions, using the option is [only] temporal-expression syntax, or
they can be unattached. An attached event is emitted automatically during any tick in which the temporal
expression attached to it succeeds.

event-type The name you give the event type. It can be any legal
e identifier.

temporal-expression An event or combination of events and temporal operators.

To use an event name alone as a temporal expression, you
must prefix the event name with the @ sign. For example,
to define event A to succeed whenever event D succeeds,
you must use the @ in front of D: �event A is @D�. For
more information about temporal expressions, see
Chapter 9, �Temporal Expressions�.
This is an unapproved IEEE Standards Draft, subject to change.
305

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Events, like methods, can be redefined in struct extensions. The is only temporal-expression syntax in a
struct extension is used to change the definition of an event. You can define an event once, and then attach it
to several different temporal expressions under different when struct subtypes, using the is only syntax.

Example 1

In the following, �start_ct� is an unattached event, and �top_clk� and �stop_ct� are attached events. The
�m_str� extension contains a redefinition of the �top_ct� event.

struct m_str {
event start_ct;
event top_clk is fall('top.r_clk') @sim;
event stop_ct is {@start_ct; [1]} @top_clk;

};
extend m_str {

event stop_ct is only {@start_ct; [3]}@top_clk;
};

Example 2

One way to cause a callback from the simulator is to sample a change, rise, or fall of a simulator object using
@sim. The following causes a callback and a �sim_ready� event whenever the value of the simulator object
�top/ready� changes.

event sim_ready is change('top/ready') @sim;

Example 3

The emit action can be used to force any event to occur. The emit action in the following forces the
�sim_ready� event to occur even if the �change('top/ready') @sim� temporal expression has not succeeded.

struct sys_ready {
event sim_ready is change('top/ready') @sim;
bar() @sys.clk is {

while TRUE {
wait until @sys.ok;
wait [1] *cycle;
emit sim_ready;

};
};

};

See Also

� Chapter 9, �Temporal Expressions�
� �Rules for Defining and Extending Methods� on page 459
� �emit� on page 307
� �Events Overview� on page 303
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309
306 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
8.2.2 emit

Purpose

Cause a named event to occur

Category

Action

Syntax

emit [struct-exp.]event-type

Syntax example:

emit ready;

Parameters

Description

Causes an event of the specified type to occur.

The simplest usage of emit is to synchronize two TCMs, where one TCM waits for the named event and the
other TCM emits it.

Emitting an event causes the immediate evaluation of all temporal expressions that contain that event.

The emit event does not consume time. It can be used in regular methods and in TCMs.

Example

<'
struct xmit_recv {

event rec_ev;
transmit() @sys.clk is {

wait cycle;
emit rec_ev;
out("rec_ev emitted");

};
receive() @sys.clk is {

wait until @rec_ev;
out("rec_ev occurred");
stop_run();

};
run() is also {

start transmit();
start receive();

};
};

extend sys {

struct-exp An expression referring to the struct instance in which the event is defined.
event-type The type of event to emit.
This is an unapproved IEEE Standards Draft, subject to change.
307

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
event clk is @sys.any;
xmtrcv_i: xmit_recv;

};
'>

See Also

� �event� on page 305
� �Events Overview� on page 303
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309

8.3 Sampling Events Overview

Events are used to define the points at which temporal expressions and TCMs are sampled. An event
attached to a temporal expression becomes the sampling event for the temporal expression. The event is
attached using the @sampling-event syntax:

temporal-expression @sampling-event

The temporal expression is evaluated at every occurrence of the sampling event. The sampling period is the
time from after one sampling event up to and including the next sampling event. All event occurrences
within the same sampling period are considered simultaneous. Multiple occurrences of a particular event
within one sampling period are considered to be one occurrence of that event.

In Figure 8-2, Q and R are previously defined events that occur at the points shown. The temporal expres-
sion �Q@R� means �evaluate Q every time the sampling event R occurs�. If Q has occurred since the previ-
ous R event, then �Q@R� succeeds upon the next occurrence of R. The final �Q@R� success happens
because the sampling period for the expression includes the last R event, which occurs at the same time as
the last Q.

Figure 8-2�Sampling Event for a Temporal Expression

If �Q� in the figure above is a temporal expression that includes other events, �R� is the default sampling
event of the temporal expression. The default sampling event of a temporal expression applies to all subex-
pressions within the expression, except where it is overridden explicitly by another event embedded in the
expression.

For a TCM, the sampling event is written as:

time-consuming-method(...)@sampling-event is {...}

Q

R

Q@R

time

cycle of Q

cycle of R
308 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The default sampling event specified for a TCM drives or synchronizes actions within the TCM. It is not a
trigger that launches the TCM, but is rather the event to which temporal actions and expressions in the TCM
relate.

The predefined sys.any event occurs every time any other event occurs in the test. Expressions that need the
highest time resolution can be attached to the sys.any event. The sys.any event is the default sampling event
for all temporal expressions.

When a callback to is needed upon a change in a simulator variable, you can attach the name sim to the sim-
ulator variable. A change in a simulator variable to which sim is attached always causes a callback. The term
@sim just represents a callback from the simulator; no sim event ever actually occurs.

In Figure 8-3, �S� and �T� are previously defined events. Attaching @sim to each of these event names
causes the event to occur when its conditions are true at the time of a callback. The sys.any event occurs at
every �S� event and every �T� event. The temporal expression �S@T� succeeds at every occurrence of T
where �S� has occurred since the last T event.

Figure 8-3�Occurrences of the sys.any Event

See Also

� �Events Overview� on page 303
� �Defining and Emitting Named Events� on page 305
� �Predefined Events Overview� on page 309

8.4 Predefined Events Overview

Predefined events are emitted at particular points in time. They are described in the following sections:

� �General Predefined Events� on page 310
� �Events for Aiding Debugging� on page 312
� �Simulation Time and Ticks� on page 312

See Also

� �Events Overview� on page 303
� �Defining and Emitting Named Events� on page 305
� �Sampling Events Overview� on page 308

S@sim

T@sim

sys.any

S@T

time
This is an unapproved IEEE Standards Draft, subject to change.
309

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
8.4.1 General Predefined Events

Table 8-1 lists the general predefined events. The events are described in more detail after the table.

sys.any

Emitted on every tick.

This is a special event that defines the highest granularity of time. The occurrence of any event in the system
causes an occurrence of the any event at the same tick. For any temporal expression used without an explicit
sampling event, sys.any is used by default.

In stand-alone e program operation (that is, with no simulator attached), the sys.any event is the only one
that occurs automatically. It typically is used as the clock for stand-alone operation, as in the following
example.

Original clock definition for simulation:

<'
extend sys {

event clk is rise('top.clk')@sim; // clk drives the system
};
'>

Extension to override the clock to tie it to sys.any for stand-alone operation:

<'
extend sys {

event clk is only cycle @sys.any;
};
'>

Table 8-1�Predefined Events

Predefined Event Description

sys.any Emitted on every tick.

sys.tick_start Emitted at the start of every tick.

sys.tick_end Emitted at the end of every tick.

session.start_of_test Emitted once at test start.

session.end_of_test Emitted once at test end.

struct.quit Emitted when a struct�s quit() method is called. Only exists in structs that
contain events or have members that consume time (for example, time-
consuming methods and on struct members).

sys.new_time In stand-alone operation (no simulator), this event is emitted on every
sys.any event. When a simulator is being used, this event is emitted every
time a callback occurs, if the attached simulator�s time has changed since
the previous callback.
310 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
sys.tick_start

Emitted at the start of every tick.

This event is provided mainly for visualizing and debugging the program flow in the event viewer.

sys.tick_end

Emitted at the end of every tick.

This event is provided mainly for visualizing and debugging the program flow in the event viewer. It also
can be used to provide visibility into changes of values that are computed during the tick, such as the values
of coverage items.

session.start_of_test

Emitted once at the start of the test.

The first action the predefined run() method executes is to emit the session.start_of_test event. This event
is typically used to anchor temporal expressions to the beginning of a test.

For example, in the following, the �watchdog� time is anchored to the beginning of the test by ses-
sion.start_of_test:

<'
extend sys {

event clk is cycle @sys.any;
event watchdog is {@session.start_of_test; [100]}@clk;
on watchdog {

out("Watchdog triggered");
stop_run();

};
};
'>

session.end_of_test

Emitted once at the end of the test.

This event is typically used to sample data at the end of the test. This event cannot be used in temporal
expressions as it is emitted after evaluation of temporal expression has been stopped. The on ses-
sion.end_of_test struct member is typically used to prepare the data sampled at the end of the test.

struct.quit

Exists only in structs that contain temporal members (events, on, expect, TCMs). Emitted when the struct�s
quit() method is called, to signal the end of time for the struct.

The first action executed during the check test phase is to emit the quit event for each struct that contains it.
It can be used to cause the evaluation of temporal expressions that contain the eventually temporal operator.
This allows you to check for eventually temporal expressions that have not been satisfied.

See Also

� �Events Overview� on page 303
This is an unapproved IEEE Standards Draft, subject to change.
311

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �Defining and Emitting Named Events� on page 305
� �Sampling Events Overview� on page 308
� �Predefined Events Overview� on page 309
� �Events for Aiding Debugging� on page 312
� �Simulation Time and Ticks� on page 312

8.4.2 Events for Aiding Debugging

Table 8-2 shows predefined events intended as aids in debugging. By setting trace on event, you can see
occurrences of events as the program runs. For example, entering �trace on tcm_start� before a test displays
every occurrence of the session.tcm_start event.

NOTE� The predefined events in the session struct are not graded until the end of the test run,
unlike user-defined events which are graded during the run. If you look at the session events grades
during the run, you will see grades of 0.

See Also

� �Events Overview� on page 303
� �Defining and Emitting Named Events� on page 305
� �Predefined Events Overview� on page 309

8.4.3 Simulation Time and Ticks

Using any of the following expressions causes the DUT to be monitored for a change in that expression:

Table 8-2�Predefined Debugging Events

Debugging Events Description

session.tcm_start Emitted when any TCM is started

session.tcm_end Emitted when any TCM finishes

session.tcm_call Emitted when any TCM is called

session.tcm_return Emitted when any TCM returns

session.call Emitted when any method is called

session.return Emitted when any method returns

session.output Emitted when any output is issued

session.line Shows line numbers for all traced events

session.tcm_wait Emitted when a wait action occurs

session.tcm_state Emitted when a state change occurs

session.sim_read Emitted when a simulator variable is read

session.sim_write Emitted when a simulator variable is written to

session.check Emitted when a check action is performed.

session.dut_error Emitted when a dut_error action is performed.
312 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� rise | fall | change (HDL expression) @sim
� wait delay expression
� Verilog event

For each simulation delta cycle in which a change in at least one of these monitored expressions occurs, the
simulator passes control to the e program. If simulation time has advanced since the last time control was
passed to the e program, a new_time event is issued. In any case, tick_start and any events are issued.
Then, after emitting all events initiated by changes in monitored expressions in that simulation delta cycle, a
tick_end event is issued.

Thus, the new_time event corresponds to a new simulation time slot, and a tick corresponds to a simulation
delta cycle in which at least one monitored expression changes.

Multiple ticks can occur in the same simulation time slot under the following conditions:

� When a new value is driven into the DUT and that value causes a change in a monitored HDL object,
as in a clock generator

� When a monitored event is derived from another monitored event, as in a clock tree
� When a zero delay HDL subprogram is call from e

NOTE� Glitches that occur in a single simulation time slot are ignored. Only the first occurrence
of a particular monitored event in a single simulation time slot is recognized. For example, if a signal
transitions from 0 to 1 and back to 0 in the same time slot, only the 0 to 1 transition is seen; the 1 to
0 transition is ignored. See Example 3 on page 316 for ways to handle glitches.

For an explanation of when values are assigned, see �<=� on page 493.

Example 1

This example shows a clock generator and illustrates how two ticks can occur at the same simulation time.

clock_gen.v

module top;
 reg clk;

 initial clk = 0;

 reg [31:0] data;
endmodule

clock_gen.e

<'
extend sys {

 event clk is change('top.clk')@sim;

 event boot;

 clk_gen()@boot is {
 var clk_value: bit = 0;

 for j from 0 to 9 {

'top.clk' = clk_value;
 wait delay(5);
This is an unapproved IEEE Standards Draft, subject to change.
313

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 clk_value = ~clk_value;
 };
 stop_run();
 };

 run() is also {
 start clk_gen();
 emit boot;
 };
};
'>

Result

There are two ticks in each simulation time slot. The first tick is caused by the elapse of the wait delay; the
second, by the new value applied to top.clk.

-> 0 sys-@0.tick_start
-> 0 sys-@0.any
-> 0 sys-@0.tick_end

-> 5 sys-@0.new_time
-> 5 sys-@0.tick_start
-> 5 sys-@0.any
-> 5 sys-@0.tick_end
-> 5 sys-@0.tick_start
-> 5 sys-@0.any
-> 5 sys-@0.clk
-> 5 sys-@0.tick_end

-> 10 sys-@0.new_time
-> 10 sys-@0.tick_start
-> 10 sys-@0.any
-> 10 sys-@0.tick_end
-> 10 sys-@0.tick_start
-> 10 sys-@0.any
-> 10 sys-@0.clk
-> 10 sys-@0.tick_end

-> 15 sys-@0.new_time
-> 15 sys-@0.tick_start
-> 15 sys-@0.any
-> 15 sys-@0.tick_end
-> 15 sys-@0.tick_start
-> 15 sys-@0.any
-> 15 sys-@0.clk
-> 15 sys-@0.tick_end
...

Example 2

This example shows a clock tree and illustrates how two ticks can occur at the same simulation time.

tree.v

module top;

 reg prim_clk;
314 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 reg sec_clk;

 initial begin
 prim_clk = 0;
 sec_clk = 0;
 end

 always #10 prim_clk = ~prim_clk;

 always @(prim_clk)
 sec_clk <= prim_clk;

endmodule

tree.e

In this example, the wait statement marked with a comment is expected to miss one edge of the secondary
clock because the old value of top.sec_clk is sampled� one delta cycle before it changes. Note that wait
action cannot resume in zero time, even if there are multiple delta cycles.

<'
extend sys {
 event prim_clk is change('top.prim_clk')@sim;
 event sec_clk is change('top.sec_clk')@sim;

 verify() @prim_clk is {
 var sec_clk_value: int;

 wait cycle;
 print sys.time;
 sec_clk_value = 'top.sec_clk';

 // Following wait misses one edge of secondary clock

wait change('top.sec_clk')@sim;
 print sys.time;
 out("TCM reacts at edge of 'top.sec_clk': ", 'top.sec_clk');
 check that 'top.sec_clk' != sec_clk_value;
 wait change('top.sec_clk')@sim;
 print sys.time;
 stop_run();
 };

 on sec_clk {
 out("The program observes an edge of 'top.sec_clk': ",

'top.sec_clk');
 };

 run() is also {
 start verify();
 };
};

'>

Result

There are two ticks in each simulation time slot. The first tick is caused by the primary clock event; the sec-
ond, by the secondary clock event.
This is an unapproved IEEE Standards Draft, subject to change.
315

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
--
-> 0 sys-@0.tick_start
-> 0 sys-@0.any
-> 0 sys-@0.tick_end
 --
-> 10 sys-@0.new_time
-> 10 sys-@0.tick_start
-> 10 sys-@0.any
-> 10 sys-@0.prim_clk
-> 10 sys-@0.tick_end
-> 10 sys-@0.tick_start
-> 10 sys-@0.any
The program observes an edge of ’top.sec_clk’: 1
-> 10 sys-@0.sec_clk
-> 10 sys-@0.tick_end
 --
-> 20 sys-@0.new_time
-> 20 sys-@0.tick_start
-> 20 sys-@0.any
-> 20 sys-@0.prim_clk
 sys.time = 20
-> 20 sys-@0.tick_end
-> 20 sys-@0.tick_start
-> 20 sys-@0.any
The program observes an edge of ’top.sec_clk’: 0
-> 20 sys-@0.sec_clk
-> 20 sys-@0.tick_end
 --
-> 30 sys-@0.new_time
-> 30 sys-@0.tick_start
-> 30 sys-@0.any
-> 30 sys-@0.prim_clk
-> 30 sys-@0.tick_end
-> 30 sys-@0.tick_start
-> 30 sys-@0.any
The program observes an edge of ’top.sec_clk’: 1
-> 30 sys-@0.sec_clk
-> 30 sys-@0.tick_end
 --
-> 40 sys-@0.new_time
-> 40 sys-@0.tick_start
-> 40 sys-@0.any
-> 40 sys-@0.prim_clk
-> 40 sys-@0.tick_end
-> 40 sys-@0.tick_start
-> 40 sys-@0.any
The program observes an edge of 'top.sec_clk': 0
-> 40 sys-@0.sec_clk
 sys.time = 40
TCM reacts at edge of 'top.sec_clk': 0
-> 40 sys-@0.tick_end
 --

Example 3

If multiple edges occur in a single simulation time slot on a signal monitored with @sim, the e program sees
only the first one. For example, if you have an event defined as
316 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
event my_event is change('~/top/wireA')@sim;

and wireA transitions from 1 to 0 and back to 1 in the same time slot, my_event is emitted and stores 0 as the
value of wireA. Then, if wireA changes to 0 in a subsequent time slot, the e program does not see this as a
change and does not emit my_event.

There are two ways to handle this situation.

1) Change the sampling event of wireA to a clock sampling event:

event clk is change('~/top/clk')@sim;

event my_event is change('~/top/wireA')@clk;

2) Use the strobe option of verilog variable to filter out the glitch:

verilog variable '~/top/wireA' using wire, strobe = "#1";

See Also

� �Events Overview� on page 303
� �Defining and Emitting Named Events� on page 305
� �Predefined Events Overview� on page 309
� �<=� on page 493
This is an unapproved IEEE Standards Draft, subject to change.
317

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
318 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
9 Temporal Expressions

Temporal expressions provide a declarative way to describe temporal behavior. The e language provides a
set of temporal operators and keywords that you can use to construct temporal expressions.

This chapter contains the following sections:

� �Temporal Expressions Overview� on page 319
� �Temporal Operators and Constructs� on page 327

See Also

� �Invoking Methods� on page 474
� Chapter 8, �Events�
� Chapter 10, �Temporal Struct Members�
� Chapter 11, �Time-Consuming Actions�

9.1 Temporal Expressions Overview

A temporal expression (TE) is a combination of events and temporal operators that describes behavior. A TE
expresses temporal relationships between events, values of fields, variables, or other items during a test.

Temporal expressions are used to define the occurrence of events, specify sequences of events as checkers,
and suspend execution of a thread until the given sequence of events occurs. Temporal expressions are only
legal in the following constructs:

� wait and sync actions in time-consuming methods
� event definitions and expect or assume struct members.

The following sections provide more information about temporal expressions, how they are evaluated over
time, and how the context in which they are used affects their interpretation.

� �Evaluating Temporal Expressions� on page 319
� �Using HDL Objects in Temporal Expressions� on page 322
� �Selected Applications of Temporal Expressions� on page 323
� �Forms for Common Temporal Expressions� on page 324
� �Translation of Temporal Expressions� on page 326

See Also

� �Temporal Operators and Constructs� on page 327
� Chapter 8, �Events�
� Chapter 11, �Time-Consuming Actions�

9.1.1 Evaluating Temporal Expressions

Evaluating a temporal expression is more difficult than evaluating an arithmetic or boolean expression since
it might require several clock cycles to complete. Every temporal expression has a default clock, called its
sampling event, either stated specifically for the TE, or inherited from the context in which it appears. In the
following example three cycles of the clk sampling event are needed before the TE terminates:

{rise('top.req'); [1]; @ack} @clk;
This is an unapproved IEEE Standards Draft, subject to change.
319

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The �@clk� syntax means �evaluate when clk occurs�. The above expression is a sequence temporal expres-
sion containing three simpler temporal expressions:

� rise('top.req') - a rise in the level of an HDL signal, followed by
� [1] - one cycle of the clk sampling event, followed by
� @ack - an occurrence of the ack event

Evaluation of this temporal expression commences with a rise of the top.req signal when sampled at the clk
event. Evaluation then continues for two more clk cycles, and terminates successfully in the third cycle if, in
that cycle, there is an occurrence of the ack event. Evaluation of the temporal expression terminates without
success in the third clk cycle if the ack event does not occur in that cycle.

An evaluation of a TE thus succeeds, fails, or remains open on every occurrence of the sampling event. The
period between occurrences of the sampling event is called the sampling period.

The context in which a TE is used determines when TE evaluation commences. In general a new evaluation
commences on every occurrence of the sampling event, so that there may be several open evaluations of the
TE at any one time. The context also determines the effect of success or failure of TE evaluation.

� A wait or sync action in a TCM operates on a temporal expression. See �Synchronization Actions�
on page 365.

For example, to wait three pclk cycles after a rise on the request line before driving the data:

drive(data: byte) @pclk is {
wait {rise('top.req'); [3]};
'top.inbuf' = data;

};

A wait TE is first evaluated on the next pclk after the drive() TCM is started or called. When the temporal
expression succeeds, the wait or sync construct terminates any open evaluations before resuming the thread.
The TE will not be evaluated again until the drive() method is reinvoked. See �Invoking Methods� on
page 474.

� An event definition is a struct member. An event definition binds a named event to a temporal
expression:

event drive is {rise('top.req'); [3]} @pclk;

The TE in an event definition commences evaluation when the run() method of the struct in which it is
declared is invoked, at the time the struct is initialized. Thereafter a new evaluation of the TE commences on
every occurrence of the sampling event. Whenever the TE succeeds the event will be emitted. No action is
taken when an event temporal expression fails. See Chapter 8, �Events�.

� An expect or an assume is a struct member that binds a named behavioral rule to a temporal expres-
sion. For example a done event must occur no more than three pclk cycles after a drive event occurs:

expect drive_check is @drive => {[..2]; @done} @pclk

else dut_error{"drive_check failed at ", sys.time, ".");

The TE in the declaration of an expect commences evaluation when the run() method of the struct in which
it is declared is invoked, at the time the struct is initialized. Thereafter a new evaluation of the TE com-
mences on every occurrence of the sampling event. Whenever the TE fails the exception associated with the
rule is invoked causing the test to be aborted, or a warning message to be printed. No action is taken when an
expect TE succeeds. See �expect | assume� on page 360
320 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
A struct is terminated by calling the struct.quit() method, which is predefined for any struct that contains
time-consuming constructs. When the quit() method is called any TE evaluation that succeeds or fails at the
same time is allowed to do so, but all open temporal expression evaluations are terminated.

Figure 9-1 shows the graphical notation used in illustrations in the e language temporals documentation. The
illustrations do not show evaluations that start and immediately fail.

Figure 9-1�Legend for Temporals Graphics

An example of the graphical notation to represent evaluation of temporal sequences is shown in Figure 9-2.

Figure 9-2�Evaluation of Three Sequences

Figure 9-2 shows occurrences of three events, pclk, req, and ack. The pclk event is the sampling event for
three sequences involving req and ack.

� The {@req; @ack} sequence starts evaluating each time req occurs at pclk. When ack occurs one
pclk after req, the sequence succeeds.

� The {@req; [1]; @ack} sequence likewise starts evaluating at the first req occurrence at pclk, and
shifts at the next pclk occurrence. When ack occurs at the third pclk, the sequence succeeds.

� The {@req; @req} sequence starts evaluating each time req occurs at pclk, and fails when req does
not occur again at the next pclk.

Some sequences can succeed more than once during a particular evaluation. Figure 9-3 shows an evaluation
of a temporal expression that is the OR of two sequences. The first sequence (a), {@req; @ack}@pclk, suc-
ceeds at the first ack occurrence (second pclk occurrence). The second sequence (b), {@req; [1];
@ack}@plck, succeeds at the second ack occurrence (third pclk).

When req occurs again at the fourth pclk occurrence, a new evaluation of the sequence starts. This evalua-
tion succeeds upon the occurrence of ack at the fifth pclk cycle. Evaluation of the (b) branch continues at the
sixth pclk, where it fails and terminates.

event emitted evaluation starts evaluation succeeds evaluation fails

pclk

ack

req

{@req; @ack} @pclk

{@req; [1]; @ack} @pclk

1 2 3 4 5

{@req; @req} @pclk
This is an unapproved IEEE Standards Draft, subject to change.
321

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 9-3�Evaluation of the OR of Two Sequences

9.1.2 Using HDL Objects in Temporal Expressions

To synchronize an e program to a simulator define an event that depends on a simulator variable (typically a
clock), and use the event as the sampling event for a TCM, or as part of a temporal expression.

To create an event dependent on an HDL object or expression, use the following syntax:

event event-name is (rise | fall | change) ('HDL-expression') @sim

Using the @sim syntax activates the e program whenever the HDL-expression changes in the designated
way (rises, falls, or changes value). The event is emitted at that time.

NOTE� For HDL expressions that contain vectors or bit selects of vectors, e detects changes on
all bits of the vector. Thus, if the HDL expression is a bit select of a multibit clock signal, for example
�/clockbus(1)�, a callback occurs whenever any bit of clockbus changes, not just when clockbus(1)
changes.

HDL expressions can be used in TEs sampled by any e event, not just @sim. The HDL values are sampled
at each occurrence of the given sampling event.

In the following example, an event named clk is defined as the fall of a simulator signal named xor_top.clk.
The clk event is used as the sampling event for a TCM named body() so that every time-consuming action in
the TCM is synchronized to clk.

struct verify {
event clk is fall('xor_top.clk')@sim;

// Causes simulator callback
event rdy is fall('xor_top.ready')@clk;

// Does not cause callback
body() @clk is {

for each operation (op) in sys.ops {
'xor_top.a' = op.a;
'xor_top.b' = op.b;
wait @rdy;
op.result_from_dut = 'xor_top.out';
print sys.time;
print op;
check that op.result_from_dut == (op.a ^ op.b);
wait [1]*cycle;

};

({@req; @ack} // a
or {@req; [1]; @ack} // b

) @pclk

(b) (b)(a) (a)

pclk

ack

req

1 2 3 4 5
322 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

Verilog events can also be used to create events. To create an event from a Verilog event, use change('VL-
event') @sim, as in the following example:

event vl_event1 is change('xor_top.verilog_event1')@sim;

See Also

� �Temporal Expressions Overview� on page 319

9.1.3 Selected Applications of Temporal Expressions

This section describes the following:

� �Handling Overlapping Transactions� on page 323
� �Restricting TE Matches� on page 323

9.1.3.1 Handling Overlapping Transactions

Transactions can overlap in the sense that many of them can be active at the same time. These can be purely
pipelined transactions or transactions that are identified by some key.

Handling pipelined transactions is easy in e. For example, the following is a behavioral rule for a buffer with
a latency of three cycles:

expect @buf.in => {[2]; @buf.out};

Often data need to be carried with the transaction. These may be input our output data associated with the
transaction, or some identification of the specific transaction.

In such cases the solution is to create a �transaction� struct that carries the data. The struct also contains the
temporal rule describing the expected behavior of the struct. A new transaction struct needs to be created
every time a transaction starts.

9.1.3.2 Restricting TE Matches

A temporal expression is re-evaluated at every occurrence of the sampling event to see if there is any possi-
ble match of the behavior it describes. Sometimes a different behavior is expected, where not all matches are
considered.

For example, consider a component that handles fixed length transactions. The basic behavior we want to
check for is �every transaction that starts will end after N cycles�:

expect @trans.start => {[N]; @trans.end} @clk;

However, suppose that the design under test can only handle one transaction at a time. If a new transaction
starts while the previous one is being processed, the component cannot handle the second transaction. The
expect check fails because the component does not emit the expected transaction end. Since an expect auto-
matically traces multiple transactions, you must explicitly rule out such cases. For example:

expect @trans.start =>
This is an unapproved IEEE Standards Draft, subject to change.
323

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
{[N]* not @trans.start;@trans.end}@clk;

This formulation explicitly states that a transaction start must not occur while a transaction is being pro-
cessed.

See Also

� �Temporal Expressions Overview� on page 319

9.1.4 Forms for Common Temporal Expressions

The natural way to specify future behavior is in terms of �cause yields effect�, which is done with the tempo-
ral yield operator (=>). The following is equivalent to the statement, �A transaction start is followed within
1 to 4 cycles by a transaction end�:

@transaction.start => {[..3]; @transaction.end};

The language also provides a way to maintain information about past events, which you can then use in yield
expressions like the above. This is done with the detach operator. The following implements the require-
ment that �a transaction end is preceded by a transaction start within the previous 1 to 4 cycles:

@transaction.end => detach({@transaction.start; ~[2..5]});

The detach() operator causes the embedded temporal expression to be evaluated in parallel with the main
temporal expression. See �detach� on page 343.

Temporal expressions for many situations are shown below. The desired conditions are stated, and then an
expression is shown for those conditions. In these expressions, TEn is a temporal subexpression, which can
be an event.

See Also

� �Examples of Sequence Expressions� on page 324
� �Examples of Behavioral Rule Checks� on page 325

9.1.4.1 Examples of Sequence Expressions

� TE1 and TE2 at the same time:

TE1 and TE2

� TE1 followed by TE2:

{TE1; TE2}

� TE1 any number of times, then TE2:

{[..] * TE1; TE2}

� TE2 in the nth cycle after TE1:

{TE1; [n - 1]; TE2}

� TE2 within n cycles after TE1:

{TE1; [..n-1]; TE2}

� TE2 within n1 to n2 cycles after TE1:

{TE1; [n1-1..n2-1]; TE2}

� TE2 any number of cycles after TE1:
324 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
{TE1; [..]; TE2}

� No TE2 before TE1:

{[..] * not TE2; TE1 and not TE2}

� TE2 after n cycles of no TE1:

{[n] * not TE1; TE2}

� TE2 any number of cycles after TE1, with no TE3 in between:

{TE1; [..] * not TE3; TE2}

� TE2 after TE1, repeated n times:

{@session.start_of_test; [n] * {[..]; detach({TE1; TE2})}

� TE1 after the last TE2 and before TE3:

{TE2; [..] * not TE2; (TE1 and not TE3 and not TE2);

[..] * not TE2; TE3}

9.1.4.2 Examples of Behavioral Rule Checks

� If TE1 succeeds TE2 must follow:

expect TE1 => TE2

else dut_error("TE2 did not occur 1 cycle after TE1")

� TE2 must succeed within n1 to n2 cycles of TE1:

expect TE1 => {[n1-1..n2-1]; TE2}

else dut_error("No TE2 ",n1," to ",n2," cycles after TE1")

� If TE1 succeeds then TE2 should eventually succeed:

expect TE1 => (eventually TE2)

else dut_error("TE1 occurred but not TE2")

� If TE1, then TE2 must not succeed for n cycles:

expect TE1 => [n] * not TE2

else dut_error("TE2 less than ",n," cycles after TE1")

� If TE2, then TE1 must have succeeded n cycles earlier:

expect TE2 => detach({TE1; [n + 1]})

else dut_error("TE2 without TE1 ",n," cycles earlier")

� If TE2, then TE1 must have succeeded sometime earlier:

expect TE2 => detach({TE1; ~[2..]})

else dut_error("TE2 without a previous TE1")

� TE2 should succeed after TE1 and no more that n occurrences of TE3:

expect {TE1; [n] * {[..]; TE3}} => {[..] * not TE3; TE2}

else dut_error("TE1 not followed by TE2")

� TE must not succeed more than n times during the test:

expect @session.start_of_test => fail{[n + 1] * {[..]; TE}}

else dut_error("TE occurred more than ",n," times")
This is an unapproved IEEE Standards Draft, subject to change.
325

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �Temporal Expressions Overview� on page 319

9.1.5 Translation of Temporal Expressions

Certain temporal expressions that describe unusually complex temporal behavior cannot be processed by the
static analysis of the temporal engine. Errors can result from:

� Analysis capacity overflow
� Limited analysis capability

If the e program identifies a failure to translate a complex temporal expression at load or compile time, you
will have to decompose the expression into several smaller expressions. If you have difficulty decomposing
complex temporal expressions, contact support@verisity.com.

Examples of Analysis Capacity Overflow

The following types of temporal expressions may produce complexity beyond the capacity of the static anal-
ysis:

� Multiple bounded repeats (such as [3], [..i] or [n..]) combined by the and or or temporal operator.
The complexity is much higher when using such a temporal expression within expect struct mem-
bers, fail or not temporal operators. For example:

[3] or [4] or [7] or [17]

expect @a => {[..i];@b} or {[..j];@c} or {[n..];@f}

� Nested sampling of multiple temporal expressions combined by temporal and operator. For exam-
ple:

(@a and @b and @c and @d .. and @k) @q

� Use of long temporal sequence or complex nested sampling (as described above) in the match part of
a first-match repeat operator. For example:

{[..];(@a and @b and @c and @k) @q} @sys.any

NOTE� There is no complexity issue if the repeat part and the match part are mutually
exclusive. For example:

{[..]*fail @a;(@a and @b and @c and @k)@q} @sys.any

This may also hold when the match part uses a small constant in a simple repeat temporal expression. For
example:

{[..n]; [3] *@a}.

� Combinations of smaller examples of the above.

Examples of Limited Analysis Capability

The following types of temporal expressions are certain to produce complexity beyond the capabilities of the
static analysis:

� A bounded repeat (such as [m]) in the match expression of a first match repeat. For example:

{[..n]; [m] *@a}
326 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
NOTE� There is no complexity issue if the repeat part and the match part are mutually
exclusive. For example:

{[..n] * fail @a ; [m] *@a}

There is no complexity issue if the match part uses a small constant bound in a simple repeat as described in
1.c above. For example:

{[..n]; [2] *@a}

� A temporal expression that has multiple successes (such as @a or {@b;@b}) as the repeat expres-
sion of a bounded first match repeat. For example:

{[..n]*{@a or {@b;@b}};@c}

� A true match repeat (such as (~[..m]*@a)) as the repeat expression of a bounded first match
repeat. For example:

{[..n]*(~[..m]*@a);@c}

� A bounded true match repeat in an expect struct member or with fail or not temporal operators. For
example:

not {~[..n]*{@a or {@b;@b}; @c}

9.2 Temporal Operators and Constructs

This section describes the constructs you can use in temporal expressions:

In addition, it describes:

� �Precedence of Temporal Operators� on page 328

See Also

� �Temporal Expressions Overview� on page 319

� �not� on page 328

� �fail� on page 329

� �and� on page 331

� �or� on page 333

� �{ exp ; exp }� on page 335

� �eventually� on page 336

� �[exp]� on page 337

� �[exp..exp]� on page 338

� �~[exp..exp]� on page 340

� �=>� on page 342

� �detach� on page 343

� �delay� on page 345

� �@ unary event operator� on
page 346

� �@ sampling operator� on
page 347

� �cycle� on page 349

� �true(exp)� on page 350

� �change(exp), fall(exp),
rise(exp)� on page 351

� �consume� on page 353

� �exec� on page 356
This is an unapproved IEEE Standards Draft, subject to change.
327

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
9.2.1 Precedence of Temporal Operators

The precedence of temporal operators is shown in Table 9-1, listed from highest precedence to lowest.

See Also

� �Temporal Expressions Overview� on page 319

9.2.2 not

Purpose

Temporal expression inversion operator

Category

Temporal expression

Syntax

not temporal-expression

Syntax example:

not {@ev_b;@ev_c}

Table 9-1�Precedence of Temporal Operators

Operator Name Operator Example

named event @event-name

exec
consume

TE exec action-block
consume (@event-name)

repeat [] * TE

fail
not

fail TE
not TE

and TE1 and TE2

or TE1 or TE2

sequence {TE1 ; TE2}

yield TE1 => TE2

sample event TE @ event-name
328 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

The not temporal expression succeeds if the evaluation of the subexpression does not succeed during the
sampling period. Thus not TE succeeds on every occurrence of the sampling event if TE does not succeed.

NOTE� If an event is explicitly emitted (using �emit� on page 307), a race condition can arise
between the event occurrence and the not of the event when used in some temporal expression.

Example 1

In the following, the event ev_d occurs every time there is an occurrence of ev_c that is not preceded by an
occurrence of ev_a and then two consecutive occurrences of ev_b.

event n_e is {not{ @ev_a; @ev_b; @ev_b}}; @ev_c} @clk;

See �{ exp ; exp }� on page 335 for information about the �;� sequence operator.

Example 2

The fail operator (see �fail� on page 329) differs from the not operator. Figure 9-4 on page 331 illustrates
the differences in behavior of not and fail for the sequence of ev_a, ev_b, and ev_c events shown at the top
of the figure. (See �{ exp ; exp }� on page 335 for information about the �;� sequence operator.)

See Also

� �Sampling Events Overview� on page 308
� �fail� on page 329
� �Temporal Operators and Constructs� on page 327

9.2.3 fail

Purpose

Temporal expression failure operator

Category

Temporal expression

Syntax

fail temporal-expression

Syntax example:

fail{@ev_b; @ev_c}

temporal-expression A temporal expression.
This is an unapproved IEEE Standards Draft, subject to change.
329

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

A fail succeeds whenever the temporal expression fails. If the temporal expression has multiple interpreta-
tions (for example, fail (TE1 or TE2)), the expression succeeds if and only if all the interpretations fail.

The expression fail TE succeeds at the point where all possibilities to satisfy TE have been exhausted. Any
TE can fail at most once per sampling event.

NOTE� The not operator differs from the fail operator.

Example

The expression

fail {@ev_b;@ev_c}

succeeds for any of the following conditions:

� event ev_b does not occur in the first cycle
� ev_b succeeds in the first cycle, but event ev_c does not occur in the second cycle

Figure 9-4 on page 331 illustrates the differences in behavior of not and fail.

temporal-expression A temporal expression.
330 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Figure 9-4�Comparison of Temporal not and fail Operators

See Also

� �not� on page 328
� �Temporal Operators and Constructs� on page 327

9.2.4 and

Purpose

Temporal expression and operator

Category

Temporal expression

Syntax

temporal-expression and temporal-expression

Syntax example:

(@TE1 and @TE2)@clk

@ev_a

{@ev_b;@ev_c} @pclk

not{@ev_b;@ev_c} @pclk

fail{@ev_b;@ev_c} @pclk

{@ev_a; not{@ev_b;@ev_c}} @pclk

{@ev_a; fail{@ev_b;@ev_c}} @pclk

@ev_b

@ev_c

@pclk

event emitted evaluation starts evaluation succeeds evaluation fails
This is an unapproved IEEE Standards Draft, subject to change.
331

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

The temporal and succeeds when both temporal expressions start evaluating in the same sampling period,
and succeed in the same sampling period.

Example 1

Evaluation of the and temporal expression:

event TE3 is (TE1 and TE2) @qclk

for the following conditions:

� Evaluation of both TE1 and TE2 begins on the first qclk. Both TE1 and TE2 succeed between the
second and third qclk so the event TE3 is emitted at the third qclk.

� The evaluations of TE1 and TE2 that begin on the fourth qclk eventually result in success of both
TE1 and TE2, but TE1 succeeds before the fifth qclk, and TE2 succeeds before the sixth qclk.
Therefore, TE1 and TE2 does not succeed.

� On the seventh qclk, evaluation of TE1 begins, and it succeeds before the eighth qclk. However, the
corresponding evaluation of TE2 fails during that period, so TE3 fails.

is shown in Figure 9-5 on page 332.

Figure 9-5�Example 1 of Temporal and Operator Behavior

Example 2

Evaluation of the and temporal expression:

event TE3 is (TE1 and TE2) @qclk

for the following conditions:

temporal-expression A temporal expression.

(TE1 and TE2)@qclk

TE3

TE2

TE1

qclk

1 2 3 4 5 6 7 8 9 10

event emitted evaluation starts evaluation succeeds evaluation fails
332 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� TE1 and TE2 both start evaluating at the first qclk.
� TE1 and TE2 both succeed at the third qclk.

The and succeeds because both sides started evaluating at the same time and both succeeded at the
same time.

� TE1 starts evaluating at the fourth qclk.
� TE2 starts evaluating at the fifth qclk.
� TE1 and TE2 both succeed at the sixth qclk.

The and does not succeed because the two sides started evaluating at different time.

is shown in Figure 9-6 on page 333,

Figure 9-6�Example 2 of Temporal and Operator Behavior

See Also

� �Sampling Events Overview� on page 308
� �Temporal Operators and Constructs� on page 327

9.2.5 or

Purpose

Temporal expression or operator

Category

Temporal expression

Syntax

temporal-expression or temporal-expression

Syntax example:

(@TE1 or @TE2)@clk

TE3

TE1

qclk

1 2 3 4 5 6 7 8 9 10

event emitted evaluation starts evaluation succeeds evaluation fails

TE2

(TE1 and TE2)@qclk
This is an unapproved IEEE Standards Draft, subject to change.
333

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

The or temporal expression succeeds when either temporal expression succeeds.

An or operator creates a parallel evaluation for each of its subexpressions. It can create multiple successes
for a single temporal expression evaluation.

Example

Evaluation of the temporal or operator:

event TE3 is (@TE1 or @TE2) @qclk;

for the following conditions:

� Evaluation of both TE1 and TE2 begins on the first qclk, and succeed between the second and third
qclk, so TE1 or TE2 succeeds at the third qclk.

� The evaluations of TE1 and TE2 that begin on the fourth qclk result in success of TE2 before the
fifth qclk, so TE3 succeeds at the fifth qclk.

� Evaluation of TE1 or TE2 begins again at the seventh qclk, and TE1 succeeds before the ninth qclk,
so TE3 succeeds at the ninth qclk.

is shown in Figure 9-7 on page 334.

Figure 9-7�Example of Temporal or Operator Behavior

See Also

� �Sampling Events Overview� on page 308
� �Temporal Operators and Constructs� on page 327

temporal-expression A temporal expression.

(TE1 or TE2) @qclk

TE3

TE2

TE1

qclk

1 2 3 4 5 6 7 8 9 10

event emitted evaluation starts evaluation succeeds evaluation fails
334 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
9.2.6 { exp ; exp }

Purpose

Temporal expression sequence operator

Category

Temporal expression

Syntax

{temporal-expression; temporal-expression; ...}

Syntax example:

{@ev_d; @ev_e} @ev_f

Parameters

Description

The semicolon (;) sequence operator evaluates a series of temporal expressions over successive occurrences
of a specified sampling event. Each temporal expression following a �;� starts evaluating in the sampling
period following that in which the preceding temporal expression succeeded. The sequence succeeds when-
ever its final expression succeeds.

NOTE� Curly braces ({}) in the scope of a temporal expression define a sequence. They should
not be used in any other way.

Example

Figure 9-8 on page 336 shows the results of evaluating the temporal sequence:

{@ev_a; @ev_b; @ev_c} @qclk;

over the series of ev_a, ev_b, and ev_c events shown at the top of the figure. Evaluation of the sequence
starts whenever event ev_a occurs.

temporal-expression A temporal expression.
This is an unapproved IEEE Standards Draft, subject to change.
335

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 9-8�Example Evaluations of a Temporal Sequence

See Also

� �Sampling Events Overview� on page 308
� �Temporal Operators and Constructs� on page 327

9.2.7 eventually

Purpose

Temporal expression success check

Category

Temporal expression

Syntax

eventually temporal-expression

Syntax example:

{@ev_d; eventually @ev_e}

Parameters

Description

Used to indicate that the temporal expression should succeed at some unspecified time.

Typically, eventually is used in an expect struct member to specify that a temporal expression is expected to
succeed sometime before the quit event occurs for the struct.

temporal-expression A temporal expression.

{@ev_a;@ev_b;@ev_c}@qcl

ev_c

ev_b

ev_a

qclk

1 2 3 4 5

event emitted evaluation starts evaluation succeeds evaluation fails
336 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

The following instance of the temporal yield operator (see �=>� on page 342) succeeds after the event ev_c
occurs only if event ev_a occurs in the next cycle, and then event ev_b occurs sometime before the example
struct instance is terminated. See �{ exp ; exp }� on page 335 for information about the �;� sequence opera-
tor.

struct example {
event ev_a;
event ev_b;
event ev_c;
expect @ev_c => {@ev_a; eventually @ev_b};

};

See Also

� �The quit() Method of any_struct� on page 659
� �Temporal Operators and Constructs� on page 327

9.2.8 [exp]

Purpose

Fixed repetition operator

Category

Temporal expression

Syntax

[exp] [* temporal-expression]

Syntax example:

wait [2]*cycle;

Parameters

Description

Repetition of a temporal expression is frequently used to describe cyclic or periodic temporal behavior. The
[exp] fixed repeat operator specifies a fixed number of occurrences of the same temporal expression.

If the numeric expression evaluates to zero, the temporal expression succeeds immediately.

exp A 32-bit, non-negative integer expression, which specifies the number of
times to repeat the evaluation of the temporal expression. This cannot con-
tain functions.

temporal-expression A temporal expression. If �* temporal-expression� is omitted, �* cycle� is
automatically used in its place.
This is an unapproved IEEE Standards Draft, subject to change.
337

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Examples

The {...;...} syntax used in the examples below specifies a temporal sequence. The expressions are evaluated
one after another, in consecutive sampling periods. See �{ exp ; exp }� on page 335 for information about
the �;� sequence operator.

In the following example, the wait action proceeds after the sequence event ev_a, then three occurrences of
event ev_b, then event ev_c, all sampled at the default sampling event:

wait {@ev_a; [3]*@ev_b; @ev_c};

In the following example, the wait action proceeds after M+2 consecutive pclk cycles in which sys.interrupt
occurs. If there is a pclk cycle without a sys.interrupt, the count restarts from 0:

wait ([M+2] * @sys.interrupt)@pclk;

In the following example, the wait action proceeds on the occurrence of the ev_a event:

wait {@ev_a; [0]*@ev_b};

In the following example, the wait action proceeds five sampling event cycles after event ev_a:

wait {@ev_a; [5]};

The numeric expression cannot include any functions. The following two examples show how to substitute
temporary variables for functions in repeat expressions.

In a TCM, this is not legal:

wait [my_func()] * cycle; // illegal

To overcome this restriction, use a variable to hold the function value:

var t: int = my_func();
wait [t] * cycle;

In expect, assume or event struct members, this is not legal:

event my_ev is { @ev_a; [my_func()] } @clk; // illegal

In this situation, use a field to hold the function value and an exec expression to execute the function:

!temp: int;
event my_ev is { @ev_a exec {temp=my_func()}; [temp] } @clk;

See Also

� �Temporal Operators and Constructs� on page 327

9.2.9 [exp..exp]

Purpose

First match variable repeat operator
338 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Expression

Syntax

{ ... ; [[from-exp]..[to-exp]] [* repeat-expression]; match-expression; ... }

Syntax example:

{[2..4]*@pclk;@reset}

Parameters

Description

The first match repeat operator is only valid in a temporal sequence {TE; TE; TE}. The first match repeat
expression succeeds on the first success of the match-expression between the lower and upper bounds spec-
ified for the repeat-expression.

First match repeat also enables specification of behavior over infinite sequences by allowing an infinite
number of repetitions of the repeat-expression to occur before the match-expression succeeds.

Where @ev_a is an event occurrence, {[..]*TE1;@ev_a} is equivalent to:

� {@ev_a} or {[1]*TE1; @ev_a} or {[2]*TE1; @ev_a} or {[3]*TE1; @ev_a}...

Examples

The following examples all make use of the {...;...} syntax for sequence temporal expressions since the first
match repeat operator is only allowed inside a sequence. See �{ exp ; exp }� on page 335 for information
about the �;� sequence operator.

In the following example, the wait action proceeds after the first occurrence of ev_a followed by ev_b at
pclk:

wait {[..]; {@ev_a; @ev_b}}@pclk

In the following example, the wait action proceeds after one or more occurrences of ev_a at consecutive
pclk events, followed by one occurrence of ev_b at the next pclk event:

wait {[1..]*@ev_a; @ev_b}@pclk

from-exp An optional non-negative 32 bit numeric expression that specifies the min-
imum number of repetitions of the repeat-expression. If the from-exp is
missing, zero is used.

to-exp An optional non-negative 32 bit numeric expression that specifies the
maximum number of repetitions of the repeat-expression. If the to-exp is
missing, infinity is used.

repeat-expression The temporal expression that is to be repeated a certain number of times
within the from-exp..to-exp range. If the �*repeat-expression� is omitted,
�*cycle� is assumed.

match-expression The temporal expression to match.
This is an unapproved IEEE Standards Draft, subject to change.
339

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
In the following example, the wait action proceeds after between zero and three occurrences of the sequence
{ev_a; ev_b} (sampled by pclk), followed by an occurrence of ev_c at the next pclk event:

wait {[..3]*{@ev_a; @ev_b}; @ev_c}@pclk

In the following example,

wait {@ev_a; [0..2]*@ev_b; @ev_c}@pclk

the wait action proceeds after any one of the three sequences sampled at consecutive sampling events:

� {@ev_a; @ev_c}

� {@ev_a; @ev_b; @ev_c}

� {@ev_a; @ev_b; @ev_b; @ev_c}

See Also

� �~[exp..exp]� on page 340
� �cycle� on page 349
� �[exp]� on page 337
� �Temporal Operators and Constructs� on page 327

9.2.10 ~[exp..exp]

Purpose

True match variable repeat operator

Category

Expression

Syntax

~[[from-exp]..[to-exp]] [* temporal-expression]

Syntax example:

~[2..4]*@pclk
340 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

You can use the true match repeat operator to specify a variable number of consecutive successes of a tem-
poral expression.

True match variable repeat succeeds every time the subexpression succeeds. This expression creates a num-
ber of parallel repeat evaluations within the range.

True match repeat also enables specification of behavior over infinite sequences by repeating an infinite
number of occurrences of a temporal expression. The expression ~[..]*TE is equivalent to:

� [0] or [1]*TE or [2]*TE...

This construct is mainly useful for maintaining information about past events. See �[exp]� on page 337.

The following are examples of both forms of variable repeats, using implicit and explicit from - to range
expressions:

Example 1

In the examples below, the {...;...} syntax specifies a temporal sequence. See �{ exp ; exp }� on page 335 for
information about the �;� sequence operator.

The following temporal expression succeeds if A has occurred sometime during an earlier cycle:

{@A;~[..]}

The following temporal expression succeeds after any of the sequences {A}, {A; B}, {A; B; B}, or {A; B;
B; B}:

{@A;~[..3]*@B}

Example 2

The following temporal expression succeeds three pclk cycles after reset occurs, again at four pclk cycles
after reset, and again five pclk cycles after reset (with reset also sampled at pclk):

{@reset; ~[3..5]} @pclk

from-exp An optional non-negative 32 bit numeric expression that specifies the min-
imum number of repetitions of the temporal expression. If the from-exp is
missing, zero is used.

to-exp An optional non-negative 32 bit numeric expression that specifies the
maximum number of repetitions of the temporal expression. If the to-exp
is missing, infinity is used.

temporal-expression The temporal expression that is to be repeated some number of times
within the from-expr..to-exp range. If �*temporal-expression� is omitted,
�* cycle� is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
341

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 3

The following temporal expression using the and temporal operator succeeds if A is followed at any time by
B, or if A and B both occur during the same initial cycle:

{@A; ~[..]} and {[..]; @B}

NOTE� A more efficient way to write the above example is:

(@A and @B) or {@A; [..]; @B}

See Also

� �[exp..exp]� on page 338
� �cycle� on page 349
� �[exp]� on page 337
� �Temporal Operators and Constructs� on page 327

9.2.11 =>

Purpose

Temporal yield operator

Category

Temporal expression

Syntax

temporal-expression1 => temporal-expression2

Syntax example:

@A => {[1..2]*@clk; @B}

Parameters

Description

The yield operator is used to assert that success of one temporal expression depends on the success of
another temporal expression. The yield expression TE1 => TE2 is equivalent to (fail TE1) or {TE1 ; TE2}.

The yield expression succeeds without evaluating the second expression if the first expression fails. If the
first expression succeeds, then the second expression must succeed in sequence.

Yield is typically used in conjunction with the expect struct member to express temporal rules.

temporal-expression1 The first temporal expression. The second temporal expression is expected
to succeed if this expression succeeds.

temporal-expression2 The second temporal expression. If the first temporal expression succeeds,
this expression is also expected to succeed.
342 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The sampling event from the context applies to both sides of the yield operator expression. The entire
expression is essentially a single temporal expression, so that

(TE1 => TE2)@sampling_event

is effectively

(TE)@sampling_event

where TE is the temporal expression made up of TE1 => TE2.

Example

The following temporal expression succeeds if acknowledge occurs 1 to 100 cycles after request occurs.
(The {...;...} syntax specifies a temporal sequence. See �{ exp ; exp }� on page 335 for information about the
�;� sequence operator).

expect @request => {[..99]; @acknowledge};

See Also

� �expect | assume� on page 360
� �Temporal Operators and Constructs� on page 327

9.2.12 detach

Purpose

Detach a temporal expression

Category

Temporal expression

Syntax

detach(temporal-expression)

Syntax example:

@trans.end => detach({@trans.start; ~[2..5]})@pclk

Parameters

Description

A detached temporal expression is evaluated independently of the expression in which it is used. It starts
evaluation when the main expression does. Whenever the detached TE succeeds it emits an �implicit� event
which will only be recognized by the main TE. The detached temporal expression inherits the sampling
event from the main temporal expression.

temporal-expression A temporal expression to be independently evaluated.
This is an unapproved IEEE Standards Draft, subject to change.
343

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

In the following example, both S1 and S2 start with @Q. However, the S1 temporal expression expects E to
follow Q, while the S2 temporal expression expects E to precede Q by one cycle.

The detach() construct causes the temporal expressions to be evaluated separately. As a result, the S3 tem-
poral expression is equivalent to the S2 expression. See Figure 9-9.

struct s {
event pclk is @sys.pclk;
event Q;
event E;
event T is {@E; [2]} @pclk;
event S1 is {@Q; {@E; [2]}} @pclk;
event S2 is {@Q; @T} @pclk;
event S3 is {@Q; detach({@E; [2]})} @pclk;

};

Figure 9-9�Examples Illustrating Detached Temporal Expressions

Example 2

Since a detached expression is evaluated independently and in parallel with the main temporal expression
the two events below are not the same:

event ev_a is {@TE1; {@TE1; @TE2}};
event ev_b is {@TE1; detach({@TE1; @TE2})};

The first expression is equivalent to:

event ev_a is {@TE1; @TE1; @TE2};

Q

S1 is {@Q; {@E; [2]}}

E

T is {@E; [2]}

S2 is {@Q; @T}

S3 is {@Q; detach({@E; [2]})}

pclk

event emitted evaluation starts evaluation succeeds evaluation fails
344 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
While the second is equivalent to:

event ev_b is {@TE1; @ev_c};
event ev_c is {@TE1; @TE2};

Example 3

The following two expressions are equivalent:

fail detach({@ev_a; @ev_b})
not({@ev_a; @ev_b})

See Also

� �Temporal Operators and Constructs� on page 327

9.2.13 delay

Purpose

Specify a simulation time delay

Category

Temporal expression

Syntax

delay(int: exp)

Syntax example:

wait delay(3);

Parameters

Description

Succeeds after a specified simulation time delay elapses. A callback occurs after the specified time. A delay
of zero succeeds immediately.

Attaching a sampling event to delay has no effect. The delay ignores the sampling event and succeeds as
soon as the delay period elapses.

NOTE� This expression is not legal in standalone mode. It can only be used if the e porgram is
being run with an attached HDL simulator.

� The delay temporal expression is only supported for the cases:

wait delay(x);

int An integer expression or time expression no larger than 64 bits. The number
specifies the amount of simulation time to delay. The time units are in the
timescale used in the HDL simulator.
This is an unapproved IEEE Standards Draft, subject to change.
345

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
event e is {@a;delay(x)};

Example 1

The following specifies a delay of 20 simulator time units:

wait delay(20);

Example 2

The following specifies a delay of df*5 simulator time units:

wait delay(df*5);

Example 3

The following use of the delay expression generates an error:

// event del_b is {@set_a; delay(10)} @clk; // Load-time error

See Also

� �wait� on page 367
� �verilog time� on page 803
� �vhdl time� on page 829
� �Temporal Operators and Constructs� on page 327

9.2.14 @ unary event operator

Purpose

Use an event as a temporal expression

Category

Temporal expression

Syntax

@[struct-exp.]event-type

Syntax example:

wait @rst;
346 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

An event can be used as the simplest form of a temporal expression. The temporal expression @event-type
succeeds every time the event occurs. Success of the expression is simultaneous with the occurrence of the
event.

The struct-exp is an expression that evaluates to the struct instance that contains the event instance. If no
struct expression is specified, the default is the current struct instance.

NOTE� If a struct expression is included in the event name, the value of the struct expression must
not change throughout the evaluation of the temporal expression.

Examples

In the following, pclk is a temporal expression:

@pclk

The predefined sys.any event occurs at every tick. As a sampling event, use it as follows:

@sys.any

See Also

� �event� on page 305
� �Predefined Events Overview� on page 309
� �Temporal Operators and Constructs� on page 327

9.2.15 @ sampling operator

Purpose

Specify a sampling event for a temporal expression

Category

Temporal expression

Syntax

temporal-expression @event-name

Syntax example:

wait cycle @sys.reset;

struct-exp.event-type The name of an event. This can be either a predefined event or a user-
defined event, optionally including the name of the struct instance in
which the event is defined.
This is an unapproved IEEE Standards Draft, subject to change.
347

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Used to specify the sampling event for a temporal expression. The specified sampling event overrides the
default sampling event.

Every temporal expression has a sampling event. The sampling event applies to all subexpressions of the
temporal expression. It can be overridden for a subexpression by attaching a different sampling event to the
subexpression.

A sampled temporal expression succeeds when its sampling event occurs with or after the success of the
temporal expression.

The sampling event for a temporal expression is one of the following, in decreasing precedence order:

1) For any expression or subexpression, a sampling event specified with the @ binary event oper-
ator.

2) For a subexpression, the sampling event inherited from its parent expression.
3) For an expression in a TCM, the default sampling event of the TCM.
4) If none of the above applies, the predefined sys.any event.

Examples

The reset event is sampled at the pclk event:

@reset @pclk

The reset event is sampled by the predefined sys.any event:

@reset @sys.any

Event ev_a occurs when the reset event occurs, sampled at the rclk event:

event ev_a is @reset @rclk;

The following is the same as event ev_b is @reset @sys.any:

event e_b is @reset;

See Also

� �true(exp)� on page 350
� �event� on page 305
� �Predefined Events Overview� on page 309
� �Sampling Events Overview� on page 308
� �Temporal Operators and Constructs� on page 327

temporal-expression A temporal expression.
event-name The sampling event.
348 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
9.2.16 cycle

Purpose

Specify an occurrence of a sampling event

Category

Temporal expression

Syntax

cycle

Syntax example:

wait cycle;

Description

Represents one cycle of some sampling event. With no explicit sampling event specified, this represents one
cycle of the sampling event from the context (that is, the sampling event from the overall temporal expres-
sion, or the sampling event for the TCM that contains the temporal expression). When a sampling event is
specified, as in cycle@sampling-event, this is equivalent to @sampling-event@sampling-event.

In the following, the event named sys.pclk is the sampling event for the TCM named proc(). The wait cycle
action is the same as wait @sys.pclk.

proc() @sys.pclk is { wait cycle; };

Example 1

The following event definition replicates sys.clk as the local clk for the struct:

event clk is cycle @sys.clk;

This is equivalent to �event clk is @sys.clk @sys.clk�. It is also equivalent to �event clk is @sys.clk�, but
more efficient.

Example 2

The following expression succeeds as soon as ev_a occurs:

m_tcm() @ev_s is {
wait cycle @ev_a;
out("Done");

};

See Also

� �event� on page 305
� �Predefined Events Overview� on page 309
� �Sampling Events Overview� on page 308
� �@ sampling operator� on page 347
This is an unapproved IEEE Standards Draft, subject to change.
349

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �Temporal Operators and Constructs� on page 327

9.2.17 true(exp)

Purpose

Boolean temporal expression

Category

Temporal expression

Syntax

true(bool: exp)

Syntax example:

event rst is true(reset == 1) @clk;

Parameters

Description

Use a boolean expression as a temporal expression. Each occurrence of the sampling event causes an evalu-
ation of the boolean expression. The boolean expression is evaluated only at the sampling point.

The temporal expression succeeds each time the expression evaluates to TRUE.

NOTE� The expression exp will be evaluated after pclk. Changes in exp after true(exp) @pclk
has been evaluated will be ignored.

Example 1

The following causes the TCM to suspend until reset is high. The condition is checked for the first time at
the first occurrence of clk after the wait is encountered; it is then checked every clk cycle after that. See
�wait� on page 367.

notify_reset() @clk is {
wait true(reset == 1);
out("reset is 1");

};

Example 2

The temporal expression below succeeds when the boolean condition sys.number_of_packets == 5 evaluates
to TRUE at the default sampling event. Execution of the TCM containing the wait action suspends until the
boolean condition is true.

wait true(sys.number_of_packets == 5);

bool A boolean expression.
350 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� Boolean scalar type in �Scalar Types� on page 75
� �Sampling Events Overview� on page 308
� �Temporal Operators and Constructs� on page 327

9.2.18 change(exp), fall(exp), rise(exp)

Purpose

Transition or edge temporal expression

Category

Temporal expression

Syntax

change | fall | rise(scalar: exp) [@event-type]

change | fall | rise(�HDL-pathname�) @sim

Syntax example:

event hv_c is change('top.hold_var')@sim;

Parameters

Description

Detects a change in the sampled value of an expression.

The behavior of each of the three temporal expressions (change, fall, and rise) is described in Table 9-2,
�Edge Condition Options�, on page 351.

scalar A boolean expression or an integer expression.
event-type The sampling event for the expression.
�HDL-pathname� An HDL object enclosed in single quotes (' ').
@sim A special annotation used to detect changes in HDL signals.

Table 9-2�Edge Condition Options

Edge Condition Meaning

rise(exp) Triggered when the expression changes from FALSE to TRUE. If it is an
integer expression, the rise() temporal expression succeeds upon any change
from x to y>x. Signals wider than one bit are allowed. Integers larger than 32
bits are not allowed.

fall(exp) Triggered when the expression changes from TRUE to FALSE. If it is an
integer expression, the fall() temporal expression succeeds upon any change
from x to y<x. Signals wider than one bit are allowed. Integers larger than 32
bits are not allowed.
This is an unapproved IEEE Standards Draft, subject to change.
351

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The expression is evaluated at each occurrence of the sampling event, and is compared to the value it had at
the previous sampling point. Only the values at sampling points are detected. The value of the expression
between sampling points is invisible to the temporal expression.

A special notation, @sim, can be used in place of a sampling event for rise, fall, or change of HDL objects.
If @sim is used, the HDL object is watched by the simulator. The @sim notation does not signify an event,
but is used only to cause a callback any time there is a change in the value of the HDL object to which it is
attached.

When a sampling event other than @sim is used, changes to the HDL object are detected only if they are
visible at the sampling rate of the sampling event. In Figure 9-10 on page 352, evaluations of rise, fall, and
change expressions for the HDL signal V are shown, with the sampling event @sim and with the sampling
event @qclk. The qclk event is an arbitrary event that is emitted at the indicated points. The V signal rises
and then falls between the second and third occurrences of event qclk. Since the signal�s value is the same at
the third qclk event as it was at the second qclk event, the change('V')@qclk expression does not succeed at
the third qclk event.

Figure 9-10�Effects of the Sampling Rate on Detecting HDL Object Changes

When applied to HDL variables, the expressions examine the value after each bit is translated from the HDL
four-value or nine-value logic representation to e two-value logic representation. Table 9-3, �Transition of
HDL Values�, on page 353 describes the default translation of HDL values to e values. The �@x� and �@z�
HDL value modifiers can be used to override the default translation.

change(exp) Triggered when the value of the expression changes. The change() temporal
expression succeeds upon any change of the expression. Signals wider than
one bit are allowed. Integers larger than 32 bits are not allowed.

Table 9-2�Edge Condition Options (continued)

Edge Condition Meaning

change('V')@sim

rise('V')@sim

fall('V')@sim

change('V')@qcl

rise('V')@qclk

fall('V')@qclk

qclk

'V'
352 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Notes

� You can use the === operator to detect a change between two-state and four-state logic, as in the fol-
lowing:

change('top.hold_var' === two_state_hold_var)@clk;

� An e program ignores glitches that occur in a single simulation time slot. Only the first occurrence of
a particular monitored event in a single simulation time slot is recognized by the e program. For
example, if a signal transitions from 0 to 1 and back to 0 in the same time slot, the e program sees
only the 0 to 1 transition; the 1 to 0 transition is ignored. For information on how to handle glitches,
see �Simulation Time and Ticks� on page 312.

Examples

The following defines an event that occurs at any change in the value of an HDL signal named top.clk:

event clk_c is change('top.clk')@sim;

The following defines an event that occurs when the boolean expression pkt_size > 20 changes from FALSE
to TRUE:

event big_pkt is rise(pkt.size > 20);

The following defines an event that occurs at a fall in the value of an HDL signal named ~/top/reset, sam-
pled by an event named rsmp:

event rst is fall('~/top/reset')@rsmp;

See Also

� �Sampling Events Overview� on page 308
� �Using HDL Objects in Temporal Expressions� on page 322
� �'HDL-pathname'� on page 838
� �Temporal Operators and Constructs� on page 327

9.2.19 consume

Purpose

Consume an occurrence of an event

Category

Temporal expression

Table 9-3�Transition of HDL Values

HDL Values e Value

0, X, U, W, L, - 0

1, Z, H 1
This is an unapproved IEEE Standards Draft, subject to change.
353

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

consume(@event-type)

Syntax example:

sync consume(@counter);
wait consume(@done)@sys.any;

Parameters

Description

Removes the occurrence of an event so that it is not available for other temporal expressions. The consume
expression succeeds whenever the event occurs. If the event occurs more than once during any given cycle,
all occurrences are consumed.

After an event occurrence is consumed, that occurrence will not be recognized by any temporal expression
during the current tick, unless the event is emitted again.

An event cannot be consumed by more then one consume expression. Care should be used to avoid creating
race conditions between multiple events that use an event that is consumed.

Notes

� The consume(@event-type) temporal expression can only be used in one of the following time con-
suming actions:

sync consume(@event-type) [@sampling_event];

wait consume(@event-type) [@sampling_event];
When an optional sampling event is specified, then the sync or wait action finishes with the first
occurrence of the sampling event after the consume succeeds.
If no sampling event is specified, the default sampling event of the TCM applies.

� An event can either be used in a consume(@event-type) expression or be used in another temporal
expression, but not in both.

Example

The following code shows how you can use consume() to handle concurrent requests from multiple clients
in an orderly manner.

The example enables the following behaviors:

� The requests are granted on a First-In-First-Out basis.
� A client may hold the grant for several cycles.
� The server can accumulate requests during several cycles.
� Multiple clients requests can be granted sequentially at the same e time.

In this example there are four client structs and one server struct. The server ensures that all requests are
granted and that there are no simultaneous grants.

event-type The name of the event that is to be consumed.
354 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
When multiple clients issue a request at the same time the server is using a counter to keep track of the num-
ber of requests. The server consumes all the requests, and then issues a grant event. The first client to issue a
request consumes the grant, making it unavailable to the other clients. When this client is done with the grant
it issues a done event. The server consumes the done event and issues a release event. The release event is
consumed by the client. The server repeats this process until the request counter is zero.

<’
struct server {
 event clk is rise(’top.clock’);
 event request;
 event grant;
 event done;
 event release;
 !req_counter: int;
 on request {
 req_counter += 1;

out("req_counter = ", req_counter);
 };
 serv() @clk is {
 while TRUE {
 if (req_counter == 0 || now @request) {
 sync consume(@request);

 out("Requests consumed...");
 };
 req_counter -= 1;
 emit grant;
 sync consume(@done);
 emit release;
 };
 };

 run() is also {start serv();};
};
struct client {

 id: string;
 s: server;
 handshake() @s.clk is { // Zero delay handshake

 out(id, ": Starting handshake at time ", sys.time);
 emit s.request;
 sync consume(@s.grant);

 out(id, ": Granted, releasing");
 emit s.done;
 sync consume(@s.release);
 };

 run() is also {start handshake();};
};

extend sys {
 event clk;

 s: server;
 c1: client; keep { c1.s==s; c1.id=="client 1" };
 c2: client; keep { c2.s==s; c2.id=="client 2" };
 c3: client; keep { c3.s==s; c3.id=="client 3" };
 c4: client; keep { c4.s==s; c4.id=="client 4" };

 go()@any is {
This is an unapproved IEEE Standards Draft, subject to change.
355

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 for i from 0 to 40 do {
 wait cycle;
 emit clk;
 };
 stop_run();
 };

 run() is also {start go()};
};
’>

Result

Running the test ...
client 1: Starting handshake at time 1
req_counter = 1
client 2: Starting handshake at time 1
req_counter = 2
client 3: Starting handshake at time 1
req_counter = 3
client 4: Starting handshake at time 1
req_counter = 4
Requests consumed...
client 1: Granted, releasing
client 2: Granted, releasing
client 3: Granted, releasing
client 4: Granted, releasing

See Also

� �event� on page 305
� �Temporal Operators and Constructs� on page 327

9.2.20 exec

Purpose

Attach an action block to a temporal expression

Category

Temporal expression side effect

Syntax

temporal-expression exec action; ...

Syntax example:

wait @watcher_on exec {print watcher_status_1;};
356 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Invokes an action block when a temporal expression succeeds. The actions are executed immediately upon
the success of the expression, but not more than once per tick.

To support extensibility of your e code, use method calls in the exec action block rather than calling the
actions directly.

The usage of exec is similar to the on struct member, except that:

� Any temporal expression can be used as the condition for exec, while only an event can be used as
the condition for on.

� exec must be used in the context of a temporal expression in a TCM or an event definition, while on
can only be a struct member.

You cannot attach an exec action to a first match variable repeat expression:

([7..10] *@b) exec {out("in exec")} -- is not allowed

However, you can attach an exec action to the repeat expression of a first match variable repeat expression
as follows:

[7..10] *@b exec {out("in exec")} -- is allowed
[7..10] * (@b exec {out("in exec")}) -- is allowed

NOTE� The two expressions above are equivalent. They will both execute the exec action once
for each occurrence of b.

An exec action cannot be attached to an implicit repeat expression:

expect @e => {
[..20]; -- exec is not allowed here
@a;

};

You must make the implicit repeat expression explicit in order to attach an exec action:

expect @e => {
[..20] * (cycle exec {out("in exec")}); -- is allowed
@a;

};

NOTE� The action block cannot contain any time-consuming actions.

Example

The following code maintains a pipeline of instruction instances.

struct pipelined_alu {
instructions: list of inst;

temporal-expression The temporal expression that invokes the action block.
action A series of actions to perform when the expression succeeds.
This is an unapproved IEEE Standards Draft, subject to change.
357

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
ck_inst: inst;
event alu_watcher is {

rise('inst_start') exec {
var i: inst = new;
instructions.add(i);

};
[..];
rise('inst_end') exec {

ck_inst = instructions.pop()
}

}@sys.alu.aclk;
};

See Also

� Action blocks, described in �Actions� on page 14
� �on� on page 359
� �Temporal Operators and Constructs� on page 327
358 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
10 Temporal Struct Members

In addition to the event struct member (see �event� on page 305), there are two struct members used for
temporal coding. These struct members are described in this chapter:

� �on� on page 359
� �expect | assume� on page 360

See Also

� �Invoking Methods� on page 474
� Chapter 8, �Events�
� Chapter 9, �Temporal Expressions�
� Chapter 11, �Time-Consuming Actions�

10.1 on

Purpose

Specify a block of actions that execute on an event

Category

Struct member

Syntax

on event-type {action; ...}

Syntax example:

on xmit_ready {transmit();};

Parameters

Description

Defines a struct member that executes a block of actions immediately whenever a specified event occurs. An
on struct member is similar to a regular method except that the action block for an on struct member is
invoked immediately upon an occurrence of the event. An on action block is executed before TCMs waiting
for the same event.

The on action block is invoked every time the event occurs. The actions are executed in the order in which
they appear in the action block.

You can extend an on struct member by repeating its declaration, with a different action block. This has the
same effect as using is also to extend a method.

event-type The name of an event that invokes the action block.
action; ... A block of non-time-consuming actions.
This is an unapproved IEEE Standards Draft, subject to change.
359

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The on struct member is implemented as a method, named on_event-type(). You can invoke the action block
without the occurrence of the event by calling the on_event-type() method. You can extend the on_event-
type() method like any other method, using is, is also, is only, or is first.

Notes

� The named event must be local to the struct in which the on is defined.
� The on action block must not contain any time-consuming actions.

Example 1

struct cnt_e {
event ready;
event start_count;
on ready {sys.req = 0};
on start_count {

sys.count = 0;
sys.counting = 1;
out("Starting to count");

};
};

Example 2

The following example shows how to invoke an on action block with an event that is defined in a different
struct, by defining a local event that uses the nonlocal event as its temporal expression.

<'
extend sys {

event global_clk is change('top.clk') @sim;
// system clock

card_i: card;
};
struct card {

event clk is cycle @sys.global_clk;
// replicates the global

on clk { // clock locally
out("local clock tick");

};
};
'>

See Also

� �event� on page 305
� Action block, in �Actions� on page 14
� �method [@event] is also | first | only | inline only� on page 467

10.2 expect | assume

Purpose

Define a temporal behavioral rule
360 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Struct member

Syntax

expect | assume [rule-name is [only]] temporal-expression
[else dut_error(string-exp)]

or

expect | assume rule-name

Syntax example:

expect @a => {[1..5];@b} @clk;

Parameters

Description

Both the expect and assume struct members define temporal rules. If the temporal expression fails at its
sampling event, the temporal rule is violated and an error is reported. If there is no dut_error() clause, the
rule name is printed.

If you are not using an e program linked with a formal verification tool, you can use expect and assume
interchangeably to define temporal rules with no difference in behavior.

When using an e program linked with a formal verification (FV) tool, you can use assume to identify tempo-
ral sequences that the FV tool must not apply to the DUT. Use expect to identify temporal sequences that the
FV tool must verify. In this manner, you avoid applying illegal inputs to the DUT and you improve the per-
formance of the FV tool by requiring it to verify only a subset of the temporal rules defined.

Once a rule has been defined, it can be modified using the is only syntax and it can be changed from an
expect to an assume or vice versa. You can perform multiple verification runs either varying the rules
slightly or using the same set of rules in different expect/assume combinations. See the examples below for
information on how to do this.

NOTE� The is also, is undefined, and is empty forms are not supported for this construct.

Example 1

This example defines an expect, �bus_cycle_length�, which requires that the length of the bus cycle be no
longer than 1000 cycles.

rule-name An optional name that uniquely identifies the rule from other rules or events
within the struct. You can use this name to override the temporal rule later
on in the code or change from expect to assume or vice versa.

temporal-expression A temporal expression that is always expected to succeed. Typically
involves a temporal yield (=>) operation.

string-exp A string or a method that returns a string. If the temporal expression fails,
the string is printed, or the method is executed and its result is printed.
This is an unapproved IEEE Standards Draft, subject to change.
361

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct bus_e {
event bus_clk is change('top.b_clk') @sim;
event transmit_start is rise('top.trans') @bus_clk;
event transmit_end is rise('top.transmit_done') @bus_clk;
event bus_cycle_length;
expect bus_cycle_length is

@transmit_start => {[0..999];@transmit_end} @bus_clk
else dut_error("Bus cycle did not end in 1000 cycles");

};

Result

If the bus cycle is longer than 1000 cycles, the following message will be issued.

 *** Dut error at time 1000
 Checked at line 7 in @expect_msg
 In bus_e-@0:

bus_cycle_length: Bus cycle did not end in 1000 cycles

Will stop execution immediately (check effect is ERROR)

 *** Error: A Dut error has occurred

Example 2

In this example, the �bus_e� struct from Example 1 on page 361 is extended and two subtypes are created,
�Slow� and �Fast�. For the �Fast� subtype, the bus_cycle_length is modified to be shorter. e inheritance
allows subtypes to override rules defined in the base struct using the is only syntax.

extend bus_e {
type: [Slow, Fast];
when Fast bus_e {

expect bus_cycle_length is only
@transmit_start => {[0..99]; @transmit_end} @bus_clk
else dut_error("Bus cycle did not end \

within 100 cycles");
};

};

Example 3

In this example, the �bus_e� struct from Example 1 on page 361 and Example 2 on page 362 is extended.
The bus cycle rule is changed from an expect rule to an assume rule.

<'
struct bus_e {

event bus_clk is change('top.b_clk') @sim;
event transmit_start is rise('top.trans') @bus_clk;
event transmit_end is rise('top.transmit_done') @bus_clk;
expect bus_cycle_length is

@transmit_start => {[0..999];@transmit_end} @bus_clk
else dut_error("Bus cycle did not end in 1000 cycles");

};
362 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend bus_e {
assume bus_cycle_length;

};
extend sys {

bus_e;
};
'>

Example 4

In the following example, two expect statements are used to specify that the �transmit_end� event must
occur within three to six �bus_clk� cycles after the �transmit_start� event. If fewer than three cycles occur,
the �DRV_SHORT� err_id is passed to the �m_error()� method. If more than six cycles occur, the
�DRV_LONG� err_id is passed to the method. The �m_error()� method adds one to the �error_count� value,
and returns a string that states which type of error occurred.

<'
type watcher_errors :[DRV_LONG, DRV_SHORT];

// Enumerated error conditions

extend sys {
event clk is @sys.any;
event start_drive;
event stop_drive;
!error_count: int; // Counts number of errors
my_watcher: watcher;

};

struct watcher {
expect @sys.start_drive =>

[2] * not @sys.stop_drive @sys.clk
else dut_error("Drive Rule 1: ",
m_error(DRV_SHORT));

expect @sys.start_drive =>
{[..5];@sys.stop_drive}@sys.clk
else dut_error("Drive Rule 1: ",
m_error(DRV_LONG));

m_error(err_id: watcher_errors):string is {
case err_id {

DRV_LONG: {
result = "Driving strobe too long";
sys.error_count += 1;

};
DRV_SHORT: {

result = "Driving strobe too short";
sys.error_count += 1;

};
default: { result = "No error"; };

};
};

};
'>

See Also

� Chapter 9, �Temporal Expressions�, in particular, �=>� on page 342
This is an unapproved IEEE Standards Draft, subject to change.
363

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
364 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
11 Time-Consuming Actions

This chapter contains the following sections:

� �Synchronization Actions� on page 365
� �Concurrency Actions� on page 368

See Also

� �Invoking Methods� on page 474
� Chapter 8, �Events�
� Chapter 9, �Temporal Expressions�
� Chapter 10, �Temporal Struct Members�

11.1 Synchronization Actions

The following actions are used to synchronize temporal test activities within an e program and between the
DUT and the e program:

� �sync� on page 365
� �wait� on page 367

11.1.1 sync

Purpose

Synchronize an executing TCM

Category

Action

Syntax

sync [temporal-expression]

Syntax example:

sent_data_tcm();
sync;

Parameters

Description

Suspends execution of the current TCM until the temporal expression succeeds. Evaluation of the temporal
expression starts immediately when the sync action is reached. If the temporal expression succeeds within
the current tick, the execution continues immediately.

temporal-expression A temporal expression that specifies what the TCM synchronizes to.
This is an unapproved IEEE Standards Draft, subject to change.
365

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
If no temporal expression is provided, the TCM synchronizes to its default sampling event. The TCM sus-
pends until the occurrence of its sampling event, or continues immediately if the sampling event succeeds in
the current tick.

You can use the sync action after a call to another TCM to align the continuation of the calling TCM with its
sampling event when the called TCM returns.

Execution of a thread is atomic: it cannot be interrupted except by a sync action or a wait action. When one
of those actions is encountered, control can be passed from the TCM to other TCMs.

The sync action is similar to the wait action, except that a wait action always requires at least one cycle of
the TCM�s sampling event before execution can continue. With a sync action, execution can continue in the
same tick.

Example

In the following example, the wait action in the �driver()� TCM causes at least a one-cycle delay, since the
true() temporal expression is evaluated for the first time at the next occurrence of the sampling event. The
wait consumes one occurrence of the �clk� event, and then execution of the TCM continues at the second
occurrence of �clk�.

On the other hand, the sync action in the �shadow()� TCM does not result in a delay if its true temporal
expression succeeds immediately. Execution of the TCM continues at the next occurrence of the �clk� event.

<'
struct data_drive {

event clk is rise('top.clk') @sim;
data: list of int;
driver() @clk is {

for each in data {
wait true('top.data_ready'== 1);
// Will not fall through, even if the condition
// holds when the wait is reached.
'top.in_reg' = it;

};
stop_run();

};
shadow() @clk is {

while TRUE {
sync true('top.data_ready' == 0);
// If the condition holds, the sync falls through.
out("Shadow read ", 'top.in_reg');
wait cycle;
// This wait is necessary to prevent
// an infinite loop.

};
};
run() is also {

start driver();
start shadow();

};
};
'>

See Also

� �event� on page 305
366 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �Sampling Events Overview� on page 308
� Chapter 9, �Temporal Expressions�
� �wait� on page 367

11.1.2 wait

Purpose

Wait until a temporal expression succeeds

Category

Action

Syntax

wait [[until] temporal-expression]

Syntax example:

wait [3]*cycle;

Parameters

Description

Suspend execution of the current time-consuming method until a given temporal expression succeeds. If no
temporal expression is provided, the TCM waits for its default sampling event. The until option is for users
who find that it clarifies what the wait action does. The option has no effect on the results of the action.

When a VHDL or Verilog simulator is linked to an e program, the syntax wait delay(exp) can be used to
wait for a specific simulation time period. Because not all simulators support delay values greater than 32
bits, the value of the expression in wait delay(exp) cannot exceed 32 bits. A wait delay(exp) is influenced
by the timescale. See �verilog time� on page 803 and �vhdl time� on page 829 for more information on how
the e program determines the timescale.

The TCM cannot continue during the same cycle in which it reaches a wait, unless the temporal expression
evaluates to 0. That is, if the temporal expression evaluates to �[0] * something�, execution can continue in
the same cycle.

If the wait action�s temporal expression contains a variable subexpression, such as �wait [var1 + var2] *
cycle�, the subexpression is only evaluated once, when the wait is encountered. Any changes in the value of
the subexpression during subsequent cycles are ignored.

Execution of a thread is atomic: it cannot be interrupted except by a wait action or a sync action. When one
of those actions is encountered, control can be passed from the TCM to other TCMs.

The wait action is similar to the sync action, except that a wait action always requires at least one cycle of
the TCM�s sampling event before execution can continue (unless a wait of zero is specified). With a sync
action, execution can continue immediately upon encountering the sync, if the temporal expression succeeds
at that time See�sync� on page 365 for an example comparing the behavior of sync and wait.

temporal-expression A temporal expression that specifies what the TCM is to wait for.
This is an unapproved IEEE Standards Draft, subject to change.
367

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� The cycle-based simulator SpeedSim does not support the wait delay(exp) action.

Example 1

Several examples of temporal expressions for wait actions are shown below:

wait [3]*cycle;
// Continue on the fourth cycle from now

wait delay(30);
// Wait 30 simulator time units

wait [var1 + var2]*cycle;
// Calculate the number of cycles to wait

wait until [var1 + var2]*cycle;
// Same as wait [var1 + var2]*cycle

wait true(sys.time >= 200);
// Continue when sys.time is greater than or equal to 200

wait cycle @sys.reset;
// Continue on reset even if it is not synchronous with
// the TCMs default sampling event

wait @sys.reset;
// Continue on the next default sampling event after reset

Example 2

In the following example, the wait action in the �driver()� TCM causes a one-cycle delay even if the true
temporal expression succeeds immediately. The wait consumes one occurrence of the �clk� event, and then
execution of the TCM continues at the second occurrence of �clk�.

<'
struct data_drive {

event clk is rise('top.clk') @sim;
data: list of int;
driver() @clk is {

for each in data {
wait true('top.data_ready'== 1);
'top.in_reg' = it;

};
stop_run();

};
run() is also {

start driver();
};

};
'>

See Also

� �event� on page 305
� �Sampling Events Overview� on page 308
� Chapter 9, �Temporal Expressions�
� �sync� on page 365

11.2 Concurrency Actions

The actions that control concurrent execution of time-consuming methods are described in this section:
368 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �all of� on page 369
� �first of� on page 370

Both of these actions create parallel action blocks which might start or call TCMs. The first action awaits
completion of all �branches�, while the second terminates at the first completion of any �branch�.

Control of individual branches or TCMs can also be accomplished using predefined methods of the pre-
defined scheduler struct.

11.2.1 all of

Purpose

Execute action blocks in parallel

Category

Action

Syntax

all of {{action; ...}; ... }

Syntax example:

all of { {block_a}; {block_b}; };

Parameters

Description

Execute multiple action blocks concurrently, as separate branches of a fork. The action following the all of
action will be reached only when all branches of the all of have been fully executed. All branches of the fork
are automatically joined at the termination of the all of action block.

Example 1

Execute the following three TCMs concurrently, and continue after they all have finished:

all of {
{check_bus_controller();};
{check_memory_controller();};
{wait cycle; check_alu();};

};

Example 2

The all of construct can be used to wait for several events, no matter what order they arrive in. This can be
used as an AND relation between events as shown below.

{action; ...}; ... Action blocks that are to execute concurrently. Each action block is a separate
branch.
This is an unapproved IEEE Standards Draft, subject to change.
369

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
<'
extend sys {

event aclk is @any;
event a;
event b;
detect_all() @aclk is {

all of {
{ wait @a; };
{ wait @b; };

};
out("Both a and b occurred");

};
};
'>

See Also

� �first of� on page 370

11.2.2 first of

Purpose

Execute action blocks in parallel

Category

Action

Syntax

first of {{action; ...}; ... }

Syntax example:

first of { {wait [3]*cycle@ev_a}; {wait @ev_e; }; };

Parameters

Description

Execute multiple action blocks concurrently, as separate branches of a fork. The action following the first of
action will be reached when any of the branches in the first of has been fully executed. All branches of the
fork are automatically joined at the termination of the first of action block.

The parallel branches can be thought of as racing each other until one completes. Once one branch termi-
nates, the e program terminates the execution of each of the other branches.

When two branches finish executing during the same cycle, it is not possible to determine which will pre-
vail. One will complete successfully and the other will terminate.

{action; ...}; ... Action blocks that are to execute concurrently. Each action block is a separate
branch.
370 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

The first of construct can be used in order to wait for one of several events. This can be used as an OR rela-
tion between events:

<'
extend sys {

event c;
event d;
event fclk is @any;
detect_first() @fclk is {

first of {
{ wait @c; };
{ wait @d; };

};
out("Either c or d occurred");

};
};
'>

Example 2

The all of and first of actions can be used together to combine wait actions. In the following, the first of
action block terminates when �event2� is seen:

<'
struct tcm_struct {

event clk is @sys.any;
event event1;
event event2;
main() @clk is {

all of {
{wait [10] * cycle;
emit event1;
emit event2;
out("Branch #1 done");};
{first of {

{wait @event1; out("Branch #2-1 done"); };
{wait @event2; out("Branch #2-2 done"); };
// One of the branches will never print
};

};
};
stop_run();

};
};
'>

Example 3

In the following example, first of is used to create two branches, one of which continues after a �sys.reset�
event, and the other of which calls a method named �sys.pdata()� and then waits one cycle. The number of
cycles required by the �pdata()� method is the main factor in determining which branch finishes first.

<'
struct mv_data {

data: int;
This is an unapproved IEEE Standards Draft, subject to change.
371

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
mdata() @sys.clk is {
first of {

{wait cycle @sys.reset;};
{sys.pdata(); wait cycle;};

};
stop_run();

};
run() is also {

start mdata();
};

};
'>

See Also

� �all of� on page 369
372 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
12 Coverage Constructs

This chapter contains the following sections:

� �Defining Coverage Groups: cover� on page 373
� �Defining Basic Coverage Items� on page 378
� �Defining Cross Coverage Items� on page 396
� �Defining Transition Coverage Items� on page 403
� �Defining External Coverage Groups� on page 407
� �Extending Coverage Groups� on page 412
� �Extending Coverage Items� on page 416
� �Coverage API Methods� on page 421

12.1 Defining Coverage Groups: cover

Purpose

Define a coverage group

Category

Struct member

Syntax

cover event-type [using coverage-group-option, ...] is {coverage-item-definition; ...};

cover event_type is empty;

Syntax example:

cover inst_driven is {
item opcode;
item op1;
cross opcode, op1;

};
This is an unapproved IEEE Standards Draft, subject to change.
373

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters
event-type The name of the group. This must be the name of an event type defined pre-

viously in the struct. The event must not have been defined in a subtype.

The event is the sampling event for the coverage group. Coverage data for
the group is collected every time the event occurs.

The full name of the coverage group is struct-exp.event-name. The full
name must be specified for the coverage methods.

coverage-group-
option

The coverage group options listed in Table 12-1 can be specified with the
using keyword.

Each coverage group can have its own set of options. The options can
appear in any order after the using keyword.

coverage-item-
definition

The definition of a coverage item. Coverage items are described in �Defin-
ing Basic Coverage Items� on page 378.

is also See �Extending Coverage Groups� on page 412.
is empty The empty keyword can be used to define an empty coverage group that

will be extended later, using a cover is also struct member with the same
name.

Table 12-1�Coverage Group Options

Option Description

no_collect This coverage group is not displayed in coverage reports and is not saved
in the coverage files. This option enables tracing of coverage information
and enables event viewing with echo event, without saving the coverage
information.

count_only This option reduces memory consumption because the data collected for
this coverage group is reduced. You cannot do interactive, post-process-
ing cross coverage of items in count_only groups. The coverage configu-
ration option count_only sets this option for all coverage groups.

text=string A text description for this coverage group.

This can only be a quoted string, not a variable or expression. The text is
shown at the beginning of the information for the group in the coverage
report.

when=bool-exp The coverage group is sampled only when bool-exp is TRUE. The bool-
exp is evaluated in the context of the parent struct.

global A global coverage group is a group whose sampling event is expected to
occur only once. If the sampling event occurs more than once, a DUT
error is issued. If items from a global group are used in interactive cross
coverage, no timing relationships exist between the items.
374 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Defines a coverage group. A coverage group is struct member that contains a list of data items for which
data is collected over time.

NOTE� Unless you turn on coverage mode, no coverage results are collected even if cover groups
and items are defined. Use the cover configuration option to turn on coverage, as in the following
example.

extend sys {
 setup() is also {
 set_config(cover, mode, on_interactive);
 };
};

Once coverage items have been defined in a coverage group, you can use them to define special coverage
group items called transition and cross items. See �Defining Transition Coverage Items� on page 403 and
�Defining Cross Coverage Items� on page 396 for information about those coverage items.

The is keyword is used to define a new coverage group. See �Extending Coverage Groups� on page 412 for
information on using is also to extend an existing coverage group.

All basic items in a coverage group are enabled for echo event.

Coverage groups should not be initially defined in when constructs, although they can be extended in when
constructs.

If you extend a coverage group in a when construct by adding a per_instance item, then the instances refer
only to the when subtype. If you define a per_instance item in a base type and then add additional items
under when construct, then the cover group instances refer to the base type, and the cover item values refer
to the when subtype. See �Coverage Per Instance� on page 384.

radix=DEC|HEX|BIN Buckets for items of type int or uint are given the item value ranges as
names.This option specifies which radix the bucket names are displayed
in.

The global print radix option does not affect the bucket name radix.

Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary).
The value must be in upper case letters.

If the radix is not used, int or uint bucket names are displayed in deci-
mal.

weight=uint This option specifies the grading weight of the current group relative to
other groups. It is a nonnegative integer with a default of 1.

Table 12-1�Coverage Group Options (continued)

Option Description
This is an unapproved IEEE Standards Draft, subject to change.
375

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

A coverage group named �inst_driven� is defined in the example below. The sampling event �inst_driven� is
declared earlier in the same struct. The coverage group contains definitions of three basic coverage items
named �opcode�, �op1�, and �op2�.

type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [reg0, reg1, reg2, reg3];
struct inst {

opcode: cpu_opcode;
op1: cpu_reg;
op2: byte;
event inst_driven;
cover inst_driven is {

item opcode;
item op1;
item op2;

};
};

Example 2

The code below contains examples of the coverage group options.

type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [reg0, reg1, reg2, reg3];
struct inst {

cache: c_mem;
opcode: cpu_opcode;
event info;
event data_change;
cover data_change using no_collect is {

item data: uint(bits:16) = cache.data;
};
cover info is {

item opcode;
};

};
type memory_mode: [full, partial];
type cpu_state: [START, FETCH1, FETCH2, EXEC];
struct cpu {

memory: memory_mode;
init_complete: bool;
event state_change;
event reset_event;
cover state_change using text = "Main state-machine",

when = (init_complete == TRUE) is {
item st: cpu_state = 'top.cpu.main_cur_state';

};
cover reset_event using global is {

item memory;
};

};

The effects of the options in the example above are:
376 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� no_collect option: For the �data_change� group, do not save coverage data, but provide data for
show event.

� text option: The text �Main state machine� appears at the beginning of the data for the group in the
ASCII coverage report.

� when option: Coverage is collected for �st� when the �state_change� event occurs and
�init_complete� is TRUE.

� global option: The �reset_event� is expected to occur only once. If it occurs more than once, a DUT
error is issued.

Example 3

The code below shows the radix coverage group option.

cover done using radix = HEX is {
item len: uint (bits: 3) = sys.len;
item data: byte = data using

ranges = {range([0..0xff], "", 4)},
radix = HEX;

item mask: uint (bits: 2) = sys.mask using radix = BIN;
};

For the �len� item, the bucket names are: 0x0, 0x1, ... 0x7 (using the HEX radix specified for the group).

For the �data� item, the bucket names are: [0x0..0x03], [0x04..0x07], ... [0xfc..0xff] (using the HEX radix
specified for the item).

For the �mask� item, the bucket names are 0b00, 0b01, 0b10, and 0b11 (since the radix = BIN option is
used for this item to override the group�s HEX radix.)

Example 4

The code below shows the weight coverage group option.

cover done using weight = 3 is {
item len: uint (bits: 3) = sys.len;
item data: byte = data;
item mask;

};

The �done� coverage group is assigned a weight of 3. If there are 10 other coverage groups that all have
default weights of 1, the �done� group contributes (3/13)*grading(done) to the �all� grade.

Example 5

The code below shows how to use the empty coverage group keyword.

<’
struct inst {

cover done is empty;
};
’>
<’
extend inst {

cover done is also {
item len: uint (bits: 3) = sys.len;
item data: byte = data;
This is an unapproved IEEE Standards Draft, subject to change.
377

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
item mask;
};

};
’>

Example 6

The code below shows how to define coverage items in a when construct, by extending a coverage group
defined previously but initially left empty.

<’
struct inst {

size: [WIDE, REG];
event done;
cover done is {};

};
’>
<’
extend inst {

when WIDE inst {
cover done is also {

item len: uint (bits: 3) = sys.len;
item data: byte = data;
item mask;

};
};

};
’>

See Also

� �Defining Basic Coverage Items� on page 378
� �Defining Cross Coverage Items� on page 396
� �Defining Transition Coverage Items� on page 403
� �Extending Coverage Groups� on page 412
� Chapter 8, �Events�
� Chapter 4, �Structs, Fields, and Subtypes�
� The coverage option of �set_config()� on page 766

12.2 Defining Basic Coverage Items

12.2.1 Overview

The item constuct is used to

12.2.2 item

Purpose

Define a coverage item

Category

Coverage group item
378 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

item item-name[:type=exp] [using coverage-item-option, ...]

Syntax example:

cover inst_driven is {
item op1;
item op2;
item op2_big: bool = (op2 >= 64);
item hdl_sig: int = 'top.sig_1';

};

Parameters
item-name The name you assign to the coverage item.

If you do not specify the optional type=exp, the value of the field named
item-name is used as the coverage sample value. The field may be a scalar
not larger than 32 bits, or a string.

If you specify the optional type=exp, the value of the expression is used as
the coverage sample value.

type The type of the item. The type expression must evaluate to a scalar not larger
than 32 bits, or a string.

exp The expression is evaluated at the time the whole coverage group is sampled.
This value is used for the item.

coverage-item-
option

Coverage item options are listed in Table 12-2. The options can appear in
any order after the using keyword.

Table 12-2�Coverage Item Options

Option Description

per_instance Coverage data is collected and graded for all the other items in a separate
listing for each bucket of this item. This option can only be used for basic
items (not for cross or transition items, or items whose ranges are not
known at generation time).

no_collect This coverage item is not displayed in coverage reports and is not saved
in the coverage files. This option enables tracing of coverage information
and enables event viewing with echo event, without saving the coverage
information.

text=string A text description for this coverage item. This can only be a quoted
string, not a variable or expression. In the ASCII coverage report the text
is shown along with the item name at the top of the coverage information
for the item.
This is an unapproved IEEE Standards Draft, subject to change.
379

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is eval-
uated in the context of the parent struct.

The sampling is done at run time.

at_least=num The minimum number of samples for each bucket of the item. Anything
less than num is considered a hole.

This option cannot be used with string items or for unconstrained integer
items (items that do not have specified ranges).

You cannot specify a negative number. The default is 1.

Table 12-2�Coverage Item Options (continued)

Option Description
380 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
ranges =
{range(parame-
ters);�}

Create buckets for this item�s values or ranges of values. This option can-
not be used for string items.

The range() has up to four parameters. The parameters specify how the
values are separated into buckets. The first parameter, range, is required.
The other three are optional. The syntax for range options is:

range(range: range, name: string, every-count: int,
at_least-num: int)

The parameters are:

� range

The range for the bucket. It must be a literal range such as
�[1..5]�, of the proper type. Even a single value must be specified
in brackets (for example �[7]�). If you specify ranges that over-
lap, values in the overlapping region go into the first of the over-
lapping buckets. The specified range for a bucket is the bucket
name. That is, the buckets above are named �[1..5]� and �[7]�.

� name

A name for the bucket.
If you use the name parameter, you cannot use an every-count
value. You must enter UNDEF for the every-count parameter.

� every-count

The size of the buckets to create within the range.
If you use the every-count parameter, you cannot use a name.
You must enter an empty string (��) as a placeholder for the
name parameter.

� at-least-num

A number that specifies the minimum number of samples
required for a bucket. If the item occurs fewer times than this, a
hole is marked. This parameter overrides the global at_least
option and the per-item at_least option. The value of at-least-
num can be set to zero, meaning �do not show holes for this
range�.

Table 12-2�Coverage Item Options (continued)

Option Description
This is an unapproved IEEE Standards Draft, subject to change.
381

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
ignore=item-bool-exp Define values that are to be completely ignored. They do not appear in
the statistics at all. The expression is a boolean expression that can con-
tain a coverage item name and constants.

The boolean expression is evaluated in a global context, not in instances
of the struct. In other words, the expression must be valid at all times,
even before generation. Therefore, you can only use constants and the
item itself in the expression. In a cross, that means any of the participat-
ing items. In a transition, that means the item or prev__item.

For example, if �i� is a coverage item and �j� is a reference to a struct
field, the expression �i > 5� is a valid expression, but �i > me.j� is not
legal.

If the ignore expression is TRUE when the data is sampled, the sampled
value is ignored (that is, not added to the bucket count).

If you want to achieve the first effect (ignore specific samples), but you
do not want to hide buckets containing holes and you want the grade to
reflect all generated values, use the when option instead.

illegal=item-bool-exp Define values that are illegal. An illegal value causes a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE,
the DUT error occurs during the check_test phase of the test. If that con-
figuration option is TRUE, the DUT error occurs immediately (on the
fly). Note that checking illegal values immediately has a significant neg-
ative impact on e program performance.

See �illegal Example� on page 388 for an example of how to set the error
effect of this check to WARNING instead of ERROR.

The boolean expression is evaluated in a global context, not in instances
of the struct. In other words, the expression must be valid at all times,
even before generation. Therefore, you can only use constants and the
item itself in the expression. In a cross, that means any of the participat-
ing items. In a transition, that means the item or prev__item.

For example, if �i� is a coverage item and �j� is a reference to a struct
field, the expression �i > 5� is a valid expression, but �i > me.j� is not
legal.

If you want the coverage grades to reflect all bucket contents, use the
when option instead to specify the circumstances under which a given
value is counted.

Table 12-2�Coverage Item Options (continued)

Option Description
382 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Defines a new basic coverage item with an optional type. Options specify how coverage data is collected
and reported for the item. The item can be an existing field name, or a new name. If you use a new name for
a coverage item, you must specify the item�s type and the expression that defines it.

If a value for an item falls outside all of the buckets for the item, that value does not count toward the item�s
grade. The ranges option determines the number and size of buckets into which values for the item will be
placed. If ranges is not specified, the default number of buckets is 16 (set by the max_int_buckets coverage
configuration option). If buckets are not created for all possible values of the item, the values for which
buckets do not exist are ungradeable. Those values are given goals of 0, and do not affect the grade for the
item. For example, a randomly generated item of type uint has 232 -1 possible values. If no ranges are spec-
ified for a uint item, then buckets are created by default for only the first 16 possible values (0 through 15).
Since the odds that a uint value will be less than 16 are very small, it is almost certain that none of the values
will fall into one of the 0 to 15 buckets, which are the only buckets for which a grade is calculated. This
means that the item will not receive a grade, and will not contribute to the grade for the group.

By default, basic items are enabled for echo event. You can use the no_trace option to disable tracing for an
item.

Below are some general examples of coverage item definitions. For examples of each of using the coverage
item options, see �Coverage Item Options Examples� on page 386.

radix=DEC|HEX|BIN For items of type int or uint, specifies the radix used in coverage reports
for implicit buckets. If the ranges option is not used to create explicit
buckets for an item, a bucket is created for every value of the item that
occurs in the test. Each different value sampled gets its own bucket, with
the value as the name of the bucket. These are called implicit buckets.

Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary).
The value must be in upper case letters. If the radix is not used, int or
uint bucket names are displayed in decimal.

The global print radix option does not affect the bucket name radix.

If no radix is specified for an item, but a radix is specified for the item�s
group, the group�s radix applies to the item.

no_trace This item will not be traced by the simulator. Use this option to collect
data for echo event.

weight=uint Specifies the weight of the current item relative to other items in the
same coverage group. It is a non-negative integer with a default of 1.

name Assign an alternative name for a cross or transition item. For example:

transition len using name = t_len;
transition ptype using name = t_ptype;
cross t_len, t_ptype;

This option cannot be modified by using also.

Table 12-2�Coverage Item Options (continued)

Option Description
This is an unapproved IEEE Standards Draft, subject to change.
383

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� Unless you turn on coverage mode, no coverage results are collected even if cover groups
and items are defined. Use the cover configuration option to turn on coverage, as in the following
example.

extend sys {
 setup() is also {
 set_config(cover, mode, on_interactive);
 };
};

Coverage Per Instance

The coverage per instance feature (per_instance option) allows you to collect coverage information for sep-
arate instances of structs or units, and to see the coverage data and grade associated with each particular
instance.

When you use the per_instance option in a cover item definition, that item becomes a �per_instance item�.
Each bucket of that item gets its own coverage grade and is shown separately in the coverage report. For
example, if a struct has a field named packet_type and the value of the packet_type field can be either Ether-
net or ATM, then making that field a per_instance item results in a grade and a coverage report listing for
Ethernet instances and a separate grade and coverage report listing for ATM instances.

Typically, you use per-instance coverage on one item and transition or cross coverage on other items to see
transitions or crosses of values within the different subtypes determined by the per_instance item. See
Example 5 on page 391 and Example 6 on page 394.

An instance is created for every valid bucket of the per_instance item. Any instance that is not sampled is
marked as a hole.

Along with the per_instance item data, coverage data is also collected for the original, per_type item as if it
were not a per_instance item. This coverage data for the per_type item is the accumulated information for
all the instances, using the coverage options defined for the item.

Grading is calculated for each instance separately. The grade of the cover group is the weighted grades of all
the per_instance items. The per_type item receives the same grade it would get if there were no
per_instance items.

An instance item name is the name of the per_type item followed by �==� and the name of the instance
bucket. For example, the instance item names for the case above are:

packet_type==Ethernet
packet_type==ATM

An item my_b of type boolean will have the following instance names:

my_b==TRUE
my_b==FALSE

An item my_u of type uint(bits:2) will have the following instance names:

my_u==0
my_u==1
my_u==2
my_u==3
384 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
An item my_num of type uint with ranges={range([0], �Zero�); range, [1..1000], ��, 500)} will have the fol-
lowing instance names:

my_num==Zero
my_num==[1..500]
my_num==[501..1000]
my_num==others

where others is the bucket for all uint values higher than 1000.

For integer instances, the decimal radix is used regardless of what the radix is for the cover group.

You can define more than one per_instance item in the same cover group. In this case, the total number of
instances is the sum of all valid buckets for all the per_instance items plus one (the per_instance bucket).

If a per_instance item definition is changed in an extension, then the coverage data for the original
per_type item might not accurately reflect nor agree with the coverage data collected per instance.

You cannot define a per_instance item under a specific instance.

You can define items with the same name under two different instances, with the condition that they must
have the same definition (type and expression).

If a per_instance item is participating in a cross item or a transition item, then the cross or transition item is
not added to the instances created by the per_instance item.

You can use the ignore option to ignore a particular instance or the illegal option to define a particular
instance as illegal. For example, if an item named port_id has a bucket PORT_3, you can use �ignore =
port_id == PORT_3�.

To cancel per instance coverage collection in an extension, use the also per_instance = FALSE option. For
example: item my_item using also per_instance = FALSE.

Per_Instance Item Errors

Table 12-3 lists errors that might occur when coverage per instance is used.

Table 12-3�Coverage Per Instance Errors

Error Description

Using a non-gradeable item as a
per_instance item

User defines a per_instance item option for a non-grade-
able item.

Runtime error, �Items used with per_instance option must
be gradable�.

Using a cross or transition item as a
per_instance item

User defines a per_instance item for a cross item or a tran-
sition item.

Load fails with the message �Not supported�.
This is an unapproved IEEE Standards Draft, subject to change.
385

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Coverage Item Options Examples

Examples of all the coverage item options are shown below. More examples of coverage item definitions are
shown in �Additional Examples� on page 390.

per_instance Example

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
event stimulus;
cover stimulus is {

item alu using per_instance;
item opcode;

};
};

For alu bucket ALU_0, coverage information is collected and graded for all other items, and listed under
instance stimulus(alu==ALU_0) in the coverage report. Likewise, for ALU_1, coverage is collected and
graded for all other items and listed under stimulus(alu==ALU_1) in the report.

no_collect Example

struct sm {
cpu: top_cpu;
event cs;
cover cs is {

item cb: bit = cpu.carry using no_collect;
};

};

Trying to extend an invalid instance User tries to extend (using cover ... is also) a group instance
that does not exist.

Load fails.

Recursively split instances User defines a per_instance item option for an instance
group extension.

Load fails with the message �Not supported�.

Trying to extend specific instances
without using is also

User tries to extend a specific group instance using is
instead of is also.

Trying to define multiple items with
the same name but different defini-
tions under different instances

User tries to define an item with the same name under two
different instances.

Specifying an invalid instance name User specifies an invalid instance name (possibly using wild
cards). No matching instance is found.

Command is ignored.

Table 12-3�Coverage Per Instance Errors (continued)

Error Description
386 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Coverage information is not collected for item �cb�, but the item can be used in cross coverage, and Verilog
tracing can be done on it.

text Example

type state_name: [S1, S2];
struct sm {

st: state_name;
event state_change;
cover state_change is {

item st using text = "The CPU state";
};

};

The text is displayed with the data for item �st� in the coverage report.

when Example

type state_name: [S1, S2];
struct sm {

cpu: top_cpu;
st: state_name;
event state_change;
cover state_change is {

item st using when = (cpu.init_complete == TRUE);
};

};

Coverage information is collected for item �st� only when the boolean expression is TRUE at the time the
�state_change� event occurs.

at_least Example

type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
struct inst {

opcode: cpu_opcode;
op1: byte;
op2: byte;
event inst_driven;
cover inst_driven is {

item op1;
item op2;

};
when JMP inst {

op3: byte;
cover inst_driven is also {

item op3 using ranges =
{range([0..255], "", 16)}, at_least = 10;

};
};

};

The ranges option creates a bucket for each set of 16 values (0-15, 16 -31, ... , 240-255) for item �op3�. Any
of those buckets for which fewer than 10 samples is collected is a hole.

ranges Example

struct pcc {
pc_on_page_boundary: uint (bits: 15);
This is an unapproved IEEE Standards Draft, subject to change.
387

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
pc: uint (bits: 15);
stack_change: byte;
event pclock;
cover pclock is {

item pc_on_page_boundary using
ranges = {

range([0], "0"); range([4k], "4k");
range([8k], "8k"); range([12k], "12k");
range([16k], "16k"); range([20k], "20k");
range([24k], "24k"); range([28k], "28k");
range([0..32k-1], "non-boundary");

};
item pc using radix = HEX,
ranges = {

range([0..4k-1], "page_0", UNDEF, 4);
range([4k..32k-1], "", 8k, 2);

};
item stack_change using

ranges = { range([0..32], "", 1); };
};

};

The range specifications in this example create the following buckets:

� Item pc_on_page_boundary:
Bucket names: 0, 4k, 8k, 12k, 16k, 20k, 24k, 28k
Each of these buckets will hold the given value.
Bucket name: non-boundary:
This bucket will hold all values from 0 to 32k-1 that are not put into one of the buckets above.

� Item pc:
Bucket name: page_0
This bucket will hold values from 0 to 4095, and must contain at least four samples (because
at_least_num is 4).
Bucket names: 0x1000..ex2fff, 0x3000..0x4fff, 0x5000..0x6fff, 0x7000..0x7cff
Each of these buckets will hold values in the given range and must contain at least two samples
(because every_count is 8k, and at_least_num is 2).

� Item stack_change:
Bucket names: 0, 1, 2, ... , 32
Each of these buckets will hold the given value (because every_count is 1).

ignore Example

struct packet {
len: uint (bytes: 2);
event xfer;
cover xfer is {

item len using ignore = (len > 32k);
};

};

Any �len� value greater than 32,768 is ignored.

illegal Example

struct packet {
packet_len: uint (bits: 12);
event rcv_clk;
388 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
cover rcv_clk is {
item len: uint (bits: 12) = packet_len using

ranges = {
range([16..255], "small");
range([256..3k-1], "medium");
range([3k..4k], "big");

},
illegal = (len < 16 or len > 4000);

};
};

Any �len� value less than 16 or greater than 4,096 is illegal. If an illegal �len� value occurs, a DUT error is
issued during the check_test phase of the test. The ranges option creates buckets for values from 16 to
4,096.

radix Example

cover done is {
item len: uint (bits: 3) = packet_len;
item data: byte = data using

ranges = {range([0..0xff], "", 16)};
item mask: uint (bits: 2) = mask using radix = BIN;

};

For the �len� item, the bucket names are: 0, 1, ... 7 (using the default decimal radix).

For the �data� item, the bucket names are: [0..15], [16..31], ... [240..255] (using the default decimal radix).

For the �mask� item, the bucket names are 0b00, 0b01, 0b10, and 0b11 (using the radix = BIN option spec-
ified for this item).

weight Example

cover done is {
item len: uint (bits: 3) = packet_len;
item data: byte = data;
item mask using weight = 2;

};

The �mask� item is assigned a weight of 2. Since there are two other items, �len� and �data�, with default
weights of 1, the �mask� item contributes (2/4)*grading(done) to the grade for the group.

no_trace Example

struct packet {
event done;
mask: uint (bits: 2);
packet_data: byte;
cover done is {

item data: byte = packet_data;
item mask using no_trace;

};
};

The �done� event is marked for tracing, but the �mask� item in the �done� coverage group is marked
no_trace, so it is not traced in the simulator and is not displayed by echo event.
This is an unapproved IEEE Standards Draft, subject to change.
389

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Additional Examples

Example 1

The following example uses type=exp to define coverage for a list element. In the b0 item definition, the
type is byte and exp is b_list[0]. This collects coverage data for the value of the first byte in b_list.

This example also shows a predefined list method, b_list.size(), used in the item definition expression.

struct mem {
b_list: list of byte;
keep b_list.size() in [2..16];
event mem_ch;
cover mem_ch is {

item b0: byte = b_list[0];
item b_list_size: uint (bits: 4) = b_list.size();

};
};

Example 2

The following example uses the type=exp parameter in the mem_mode item definition to define coverage
for a struct field which is instantiated through a hierarchy of struct instances. The type is memory_type. The
exp is the hierarchical path sys.config.mem_type.

struct mem {
event mem_ch;
cover mem_ch is {

item mem_mode: memory_mode = sys.config.mem_mode;
};

};
struct config {

mem_mode: memory_mode;
keep mem_mode == 'top.mem_mode';

};

Example 3

The following example demonstrates a way to cover different combinations of values for particular bits of
an item. It uses type=exp and the when coverage item option to collect coverage for bit 14 = 0, bit 15 = 0
versus bit 14 = 0, bit 15 = 1 of a 16-bit unit item named opcode.

struct inst {
opcode: uint (bits: 16);
len: int [1..3];
event fetch;
cover fetch is {

item opcode using radix = BIN;
item opcode0: uint (bits: 2) = opcode

using when = (opcode[15:14] == 2’b00);
item opcode1: uint (bits: 2) = opcode

using when = (opcode[15:14] == 2’b01);
item len;

};
run() is also {
390 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
emit fetch;
};

};

Example 4

In the following example, coverage data is collected for a field generated on the fly. The field is addr_tmp,
which has been added just to serve as a coverage item. The addr_tmp values replace the addr field values in
a previously generated list of packets structs.

For each addr_tmp value generated in the for loop, the cov_addr event is emitted to take a coverage sample
of the addr_tmp value. The the new addr_tmp value is then placed in the addr field in the current packet
instance.

The ranges option is used in the addr_tmp coverage item definition to create four buckets, for values from 0
to 63, 64 to 127, 128 to 191, and 192 to 255. The at_least option is also used, to specify that any bucket that
does not get at least three values is a hole.

struct packet {
%addr: byte;
%len: uint (bytes: 2);
%data[len]: list of byte;

};
struct pkts {

packets: list of packet;
keep packets.size() == 12;

};
extend pkts {

addr_tmp: byte;
add_addr()@sys.clk is {

for i from 0 to packets.size() - 1 do {
gen addr_tmp;
emit cov_addr;
packets[i].addr = addr_tmp;
wait cycle;

};
stop_run();

};
event cov_addr;
cover cov_addr is {

item addr_tmp using ranges = {range([0..255], "", 64)},
at_least = 3;

};
run() is also {

start add_addr();
};

};

Example 5

The following example specifies that the alu item is a per_instance item. For each of the buckets of the alu
item, ALU_0 and ALU_1, coverage data will be collected and grades will be calculated for the opcode,
operand1, and operand2 items in each of the two alu buckets. The coverage report follows the sample code.

struct instruction {
alu: [ALU_0, ALU_1];
This is an unapproved IEEE Standards Draft, subject to change.
391

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item alu using per_instance;
item opcode;
item operand1 using

 ranges = { range([0..15]); range([16..0xff]); };
};

};

Output

The following is coverage data for Example 5 on page 391.

Coverage report
===============

Command: show cover -kind = full instruction.*.*
Grading_formula: linear
At least multiplier: 1
Show mode: both
Number of tests: 1
Note: %t is a percent from total, %p is a percent from parent

Cover group: instruction.stimulus
=================================

Grade: 0.83 Weight: 1

** alu **
Samples: 26 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t alu

 1.00 1 12 1 46 ALU_1

** opcode **
Samples: 26 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t opcode

 1.00 1 4 1 15 ADD
 1.00 1 7 1 27 SUB
 1.00 1 6 1 23 AND
 1.00 1 9 1 35 XOR

** operand1 **
Samples: 26 Tests: 1 Grade: 0.50 Weight: 1

grade goal samples tests %t operand1

392 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 0.00 1 0 0 0 [0..15]
 1.00 1 26 1 100 [16..255]

Cover group: instruction.stimulus(alu==ALU_0)
===

Grade: 0.75 Weight: 1

** opcode **
Samples: 12 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t opcode

 1.00 1 1 1 8 ADD
 1.00 1 3 1 25 SUB
 1.00 1 3 1 25 AND
 1.00 1 5 1 42 XOR

** operand1 **
Samples: 12 Tests: 1 Grade: 0.50 Weight: 1

grade goal samples tests %t operand1

 0.00 1 0 0 0 [0..15]
 1.00 1 12 1 100 [16..255]

Cover group: instruction.stimulus(alu==ALU_1)
===

Grade: 0.75 Weight: 1

** opcode **
Samples: 14 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t opcode

 1.00 1 3 1 21 ADD
 1.00 1 4 1 29 SUB
 1.00 1 3 1 21 AND
 1.00 1 4 1 29 XOR

** operand1 **
Samples: 14 Tests: 1 Grade: 0.50 Weight: 1

grade goal samples tests %t operand1

 0.00 1 0 0 0 [0..15]
 1.00 1 14 1 100 [16..255]
This is an unapproved IEEE Standards Draft, subject to change.
393

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 6

The example below shows the ignore option used to ignore particular instances, that is, alu==ALU_0 of the
alu item. The coverage report shows grades for alu overall and all ALU_1 instances. The output, shown fol-
lowing the code, does not contain any data for instances where alu is ALU_0.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item alu using per_instance, ignore = (alu==ALU_0);
item opcode;
item operand1 using

 ranges = { range([0..15]); range([16..0xff]); };
};

};

Output

The following is coverage data for Example 6 on page 394.

Coverage report
===============

Command: show cover -kind = full instruction.*.*
Grading_formula: linear
At least multiplier: 1
Show mode: both
Number of tests: 1
Note: %t is a percent from total, %p is a percent from parent

Cover group: instruction.stimulus
=================================

Grade: 0.83 Weight: 1

** alu **
Samples: 14 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t alu

 1.00 1 14 1 100 ALU_1

** opcode **
Samples: 26 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t opcode

 1.00 1 4 1 15 ADD
 1.00 1 7 1 27 SUB
 1.00 1 6 1 23 AND
394 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 1.00 1 9 1 35 XOR

** operand1 **
Samples: 26 Tests: 1 Grade: 0.50 Weight: 1

grade goal samples tests %t operand1

 0.00 1 0 0 0 [0..15]
 1.00 1 26 1 100 [16..255]

Cover group: instruction.stimulus(alu==ALU_1)
===

Grade: 0.75 Weight: 1

** opcode **
Samples: 14 Tests: 1 Grade: 1.00 Weight: 1

grade goal samples tests %t opcode

 1.00 1 3 1 21 ADD
 1.00 1 4 1 29 SUB
 1.00 1 3 1 21 AND
 1.00 1 4 1 29 XOR

** operand1 **
Samples: 14 Tests: 1 Grade: 0.50 Weight: 1

grade goal samples tests %t operand1

 0.00 1 0 0 0 [0..15]
 1.00 1 14 1 100 [16..255]

Example 7

The example below shows the illegal option used with a per_instance item.

define MAX_PORTS 4;
type port_id_kind: [PORT_0, PORT_1, PORT_2, PORT_3];
struct port {

port_id: port_id_kind;
status: uint(bits:2);
event pkt_ended;
cover pkt_ended is {

item port_id using per_instance,
illegal = (port_id.as_a(int) < MAX_PORTS);

item status;
};

};
This is an unapproved IEEE Standards Draft, subject to change.
395

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 8

The example below shows an extension of the stimulus cover group in Example 6 on page 394, to add the
at_least option to the opcode item. For additional information about extending coverage items, see.
�Extending Coverage Items� on page 416.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item alu using per_instance, ignore = (alu==ALU_0);
item opcode;
item operand1 using

 ranges = { range([0..15]); range([16..0xff]); };
};

};

extend instruction {
cover stimulus is also {

item opcode using also at_least = 4;
};

};

See Also

� �Defining Coverage Groups: cover� on page 373
� �Defining Cross Coverage Items� on page 396
� �Defining Transition Coverage Items� on page 403
� �Extending Coverage Items� on page 416
� �Defining Structs: struct� on page 118

12.3 Defining Cross Coverage Items

12.3.1 Overview

Cross items are combinations of items from the same coverage group. The cross coverage construct is used
to define cross items.

12.3.2 cross

Purpose

Define a cross coverage item

Category

Coverage group item
396 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

cross item-name-1, item-name-2, ... [using coverage-item-option, ...]

Syntax example:

cover inst_driven is {
item opcode;
item op1;
cross opcode, op1;

};

Parameters
item-name-1, item-
name-2, ...

Each item name must be one of the following.

� the name of an item defined previously in the current coverage group.

� the name of a transition item defined previously in the current
coverage group

� the name of a cross item defined previously in the current coverage
group

coverage-item-
option

An option for the cross item. The options are listed in Table 12-4.

Table 12-4�Cross Coverage Item Options

Option Description

name=label Specifies a name for a cross coverage item. No white spaces are allowed in
the label. The default is cross__item-a__item-b.

text=string A text description for this coverage item. This can only be a quoted string,
not a variable or expression. The text is shown along with the item name at
the top of the coverage information for the item.

when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is evalu-
ated in the context of the parent struct.

at_least=num The minimum number of samples for each bucket of the item. Anything
less than num is considered a hole.

This option cannot be used with string items or for unconstrained integer
items (items that do not have specified ranges).

You cannot specify a number less than 1. The default is 1.
This is an unapproved IEEE Standards Draft, subject to change.
397

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Defines cross coverage between items in the same coverage group. Creates a new item with a name speci-
fied using a name option, or with a default name of �cross__item-name-1__item-name-2�� (with two
underscores separating the parts of the name). This shows every combination of values of the first and sec-

ignore=item-bool-exp Define values that are to be completely ignored. They do not appear in the
statistics at all. The expression is a boolean expression that can contain a
coverage item name and constants.

The boolean expression is evaluated in a global context, not in instances of
the struct. In other words, the expression must be valid at all times, even
before generation. Therefore, you can only use constants and the item itself
in the expression. In a cross, that means any of the participating items. In a
transition, that means the item or prev__item.

For example, if �i� is a coverage item and �j� is a reference to a struct field,
the expression �i > 5� is a valid expression, but �i > me.j� is not legal.

If the ignore expression is TRUE when the data is sampled, the sampled
value is ignored (that is, not added to the bucket count).

If you want to achieve the first effect (ignore specific samples), but you do
not want to hide buckets containing holes and you want the grade to reflect
all generated values, use the when option instead.

illegal=item-bool-exp Define values that are illegal. An illegal value causes a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE, the
DUT error occurs during the check_test phase of the test. If that configura-
tion option is TRUE, the DUT error occurs immediately (on the fly). Note
that checking illegal values immediately has a significant negative impact
on e program performance.

See �illegal Example� on page 388 for an example of how to set the error
effect of this check to WARNING instead of ERROR.

The boolean expression is evaluated in a global context, not in instances of
the struct. In other words, the expression must be valid at all times, even
before generation. Therefore, you can only use constants and the item itself
in the expression. In a cross, that means any of the participating items.

For example, if �i� is a coverage item and �j� is a reference to a struct field,
the expression �i > 5� is a valid expression, but �i > me.j� is not legal.

If you want the coverage grades to reflect all bucket contents, use the when
option instead to specify the circumstances under which a given value is
counted.

weight=uint Specifies the weight of the current cross item relative to other items in the
same coverage group. It is a non-negative integer with a default of 1.

Table 12-4�Cross Coverage Item Options (continued)

Option Description
398 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
ond items, and every combination of the third item and the first item, the third item and the second item, and
so on.

You can cross any combination of basic coverage items, cross items and transitions defined in the same cov-
erage group.

When there is a hole in one of the items of a cross, the whole branch of samples that is spawned under the
hole is, by default, omitted from the coverage report. To see the full report, including all the holes, set the
coverage configuration show_sub_holes to TRUE.

Example 1

In the following example, cross coverage is collected for the three coverage items �op1�, �op2�, and
�opcode�. Constraints are applied to limit �opcode� values to either ADD or SUB, to limit �op1� values to
reg0 or reg1, and to limit �op2� values to the range 1 to 24.

The coverage group is named �inst_driven�. The �inst_driven� event is emitted elsewhere in the code when-
ever an instruction is generated.

The �op2� coverage item definition uses the ranges option with a range of 1 to 16 and �every-count� equal
to 4. This creates a bucket for values 1 to 16, which is divided into four smaller buckets for values from 1 to
4, 5 to 8, 9 to 12, and 13 to 16. Values from 17 to 24 go into the default �others� bucket, since they are not in
the specified range.

The coverage report will show holes for all instances of �opcode� that are not �ADD� or �SUB�, and for all
instances of �op1� that are not �reg0� or �reg1�.

type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [reg0, reg1, reg2, reg3];
struct inst {

opcode: cpu_opcode;
keep opcode in [ADD, SUB];
op1: cpu_reg;
keep op1 in [reg0, reg1];
op2: byte;
keep op2 in [1..24];
event inst_driven;
cover inst_driven is {

item opcode;
item op1;
item op2 using ranges = {range([1..16], "", 4)};
cross opcode, op1, op2 using name = opcode_op1_op2;

};
};

The cross of opcode, op1, and op2 shows all the combinations of values for those three items, sorted first by
opcode value, by op1 under each opcode value, and by op2 under each op1 value.

For a sample test in which 10 instances of the �inst� struct were generated, the item values are shown in Fig-
ure 12-1 on page 400, and a chart of the cross coverage information is shown in Figure 12-2 on page 400.
This is an unapproved IEEE Standards Draft, subject to change.
399

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 12-1�Description of Generated Instances of �inst�

Figure 12-2�Cross Coverage Sample Results

Example 2

The example below shows the name option. For all occurrences of the �opcode� item together with the
�op1� item, the coverage report shows the cross item name and its definition, �code_and_reg (cross opcode,

instance opcode op1 op2

1 SUB reg0 18
2 SUB reg0 18
3 ADD reg0 17
4 ADD reg0 1
5 SUB reg1 6
6 ADD reg0 14
7 ADD reg1 16
8 SUB reg0 13
9 SUB reg1 4
10 ADD reg1 1

op2 in 1-4 (1 time, value: 1)
op2 in 5-8 (0 times)

op1=reg0 (3 times) op2 in 9-12 (0 times)
op2 in 13-16 (1 time, value: 14)
op2 in 17-24 (1 time, value: 17)

opcode=ADD (5 times)
op2 in 1-4 (1 time, value: 1)
op2 in 5-8 (0 times)

op1=reg1 (2 times) op2 in 9-12 (0 times)
op2 in 13-16 (1 time, value: 16)
op2 in 17-24 (0 times)

op2 in 1-4 (0 times)
op2 in 5-8 (0 times)

op1=reg0 (3 times) op2 in 9-12 (0 times)
op2 in 13-16 (1 time, value: 13)
op2 in 17-24 (2 times, values: 18, 18)

opcode=SUB (5 times)
op2 in 1-4 (1 time, value: 4)
op2 in 5-8 (1 time, value: 6)

op1=reg1 (2 times) op2 in 9-12 (0 times)
400 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
op1)�.

type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [reg0, reg1, reg2, reg3];
struct inst {

opcode: cpu_opcode;
op1: cpu_reg;
event inst_driven;
cover inst_driven is {

item opcode;
item op1;
cross opcode, op1 using name = code_and_reg;

};
};

Example 3

The example below shows how to define cross coverage for two items sampled at different events. The
events named request and grant are driven by HDL signals of the same names. The event named
cov_req_ack occurs whenever a grant event follows a request event by any number of cycles in which
request does not occur. Upon a request event, the request_type field is assigned the value of the HDL
req_type signal, by the exec expression. Thus, the request_type field gets its value upon occurrence of the
request event. This can be thought of as sampling request_type on the request event.

Since the cover_req_ack event occurs when grant occurs (when the sequence in the cov_req_ack definition
succeeds), the items in the cov_req_ack group are sampled upon the occurrence of grant. Thus the
request_type item depends on both the request event and the grant event, and the burst_mode item depends
on the grant event. This has the effect of sampling request_type on the request event, and sampling
burst_mode on the grant event.

struct monitor {
request_type: uint;
event request is rise(’top.request’)@sim;
event grant is rise(’top.grant’)@sim;
event cov_req_ack is {

@request exec {request_type = ’top.req_type’;};
[..]* not @request;
@grant;

} @sys.clk;
cover cov_req_ack is {

item request_type using
ranges = {

range([0..3], "", 1);
range(others, "invalid")

};
item burst_mode: bool = ’top.burst_mode’;

cross request_type, burst_mode;
};

};

Example 4

The example below shows cross coverage per instance. The alu item is defined as a per_instance item, so
coverage is collected for the cross of opcode and operand1 when alu==ALU_0 and when alu==ALU_1.
This is an unapproved IEEE Standards Draft, subject to change.
401

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item alu using per_instance;
item opcode;
item operand1;
cross opcode, operand1;

};
};

Example 5

The example below shows how to extend a cross coverage item. In this case, the cross item, �cross opcode,
operand1�, is initially defined without the name option, so the default name, �cross__opcode_operand1�, is
required in the extension. If the cross item is initially defined using the name option, the given name is used
in place of the default name. For additional information about extending coverage items, see �Extending
Coverage Items� on page 416.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item opcode;
item operand1;
cross opcode, operand1;

};
};

extend instruction {
cover stimulus is also {

item cross__opcode__operand1 using also text =
"Cross of opcode and operand1";

};
};

Example 6

The example below shows a cross of two cross items. The items alu and operand1 are crossed, and the items
opcode and operand2 are crossed, and then those two cross items are crossed.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;
402 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
event stimulus;
cover stimulus is {

item alu;
item opcode;
item operand1;
item operand2;
cross alu, operand1 using name=x_alu_op1;
cross opcode, operand2 using name=x_opc_op2;
cross x_alu_op1, x_opc_op2;

};
};

See Also

� �Defining Coverage Groups: cover� on page 373
� �Defining Basic Coverage Items� on page 378
� �Coverage Item Options Examples� on page 386
� �Extending Coverage Items� on page 416
� The coverage option of �set_config()� on page 766

12.4 Defining Transition Coverage Items

12.4.1 Overview

Transition items are items for which value changes are collected in the coverage data. The transition cover-
age group item is used to define transition items.

12.4.2 transition

Purpose

Define a coverage transition item

Category

Coverage group item

Syntax

transition item-name [using coverage-item-option, ...]

Syntax example:

cover state_change is {
item st: cpu_state = 'top.cpu.main_cur_state';
transition st;

};
This is an unapproved IEEE Standards Draft, subject to change.
403

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters
item-name A coverage item defined previously in the current coverage group.
coverage-item-
option

The coverage item options are listed in Table 12-5.

Table 12-5�Transition Coverage Item Options

Option Description

name=string Specifies a name for a transition coverage item. The default name is
transition__item-name (where two underscores separate �transition� and
�item-name�).

text=string A text description for this coverage item. This can only be a quoted string,
not a variable or expression. The text is shown along with the item name at
the top of the coverage information for the item.

when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is evalu-
ated in the context of the parent struct.

at_least=num The minimum number of samples for each bucket of each of the transition
items. Anything less than num is considered a hole.

This option cannot be used with string items or for unconstrained integers
(items that have no specified ranges).

You cannot specify a negative number. The default is 1.

ignore=item-bool-exp Define values that are to be completely ignored. They do not appear in the
statistics at all. The expression is a boolean expression that can contain a
coverage item name and constants.

The previous value can be accessed as prev_item-name. The prev prefix is
predefined for this purpose.

The boolean expression is evaluated in a global context, not in instances of
the struct. In other words, the expression must be valid at all times, even
before generation. Therefore, you can only use constants and the item itself
in the expression. In a cross, that means any of the participating items. In a
transition, that means the item or prev__item.

For example, if �i� is a coverage item and �j� is a reference to a struct field,
the expression �i > 5� is a valid expression, but �i > me.j� is not legal.

If the ignore expression is TRUE when the data is sampled, the sampled
value is ignored (that is, not added to the bucket count).

If you want to achieve the first effect (ignore specific samples), but you do
not want to hide buckets containing holes and you want the grade to reflect
all generated values, use the when option instead.
404 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Defines coverage for changes from one value to another of a coverage item. If no name is specified for the
transition item with the name option, it gets a default name of �transition__item-name� (with two under-
scores between �transition� and �item-name�). If item-name had n samples during the test, then the transi-
tion item has n-1 samples, where each sample has the format previous-value, value.

Example 1

Any change from the previous value of �st� to the current value of �st� that is not one of the listed changes is
illegal and causes a DUT error during check_test. This example uses the prev_item-name syntax, which
refers to the previous value of the item (�st� in this case).

type cpu_state: [START, FETCH1, FETCH2, EXEC];
struct cpu {

st: cpu_state;
event state_change is

change('top.cpu.main_cur_state') @sim;
cover state_change is {

item st;
transition st using illegal =

not ((prev_st == START and st == FETCH1)
or (prev_st == FETCH1 and st == FETCH2)
or (prev_st == FETCH1 and st == EXEC)
or (prev_st == FETCH2 and st == EXEC)
or (prev_st == EXEC and st == START));

illegal=item-bool-exp Define values that are illegal. An illegal value causes a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE, the
DUT error occurs during the check_test phase of the test. If that configura-
tion option is TRUE, the DUT error occurs immediately (on the fly). Note
that checking illegal values immediately has a significant negative impact
on e program performance.

See �illegal Example� on page 388 for an example of how to set the error
effect of this check to WARNING instead of ERROR.

The boolean expression is evaluated in a global context, not in instances of
the struct. In other words, the expression must be valid at all times, even
before generation. Therefore, you can only use constants and the item itself
in the expression. In a transition, that means the item or prev__item.

For example, if �i� is a coverage item and �j� is a reference to a struct field,
the expression �i > 5� is a valid expression, but �i > me.j� is not legal.

If you want the coverage grades to reflect all bucket contents, use the when
option instead to specify the circumstances under which a given value is
counted.

weight=uint Specifies the weight of the current transition item relative to other items in
the same coverage group. It is a non-negative integer with a default of 1.

Table 12-5�Transition Coverage Item Options (continued)

Option Description
This is an unapproved IEEE Standards Draft, subject to change.
405

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
};

Example 2

The example below shows the name option. For all transitions of the �st� item, the coverage report shows
the item name and its definition, �st_change (transition st)�.

type cpu_state: [START, FETCH1, FETCH2, EXEC];
struct cpu {

st: cpu_state;
event state_change is

change('top.cpu.main_cur_state') @sim;
cover state_change is {

item st;
transition st using name = st_change;

};
};

Example 3

The example below shows transition coverage of a cross coverage item (see �Defining Cross Coverage
Items� on page 396).

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item alu;
item opcode;
item operand1;
item operand2;
cross opcode, operand1 using name=x_opc_op1;
transition x_opc_op1;

};
};

Example 4

The example below shows transition coverage per instance. The alu item is defined as a per_instance item,
so coverage is collected for the opcode transitions when alu==ALU_0 and when alu==ALU_1.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {
406 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
item alu using per_instance;
item opcode;
transition opcode;

};
};

Example 5

The example below shows how to extend a transition coverage item. In this case, the transition item, �transi-
tion opcode�, is initially defined without the name option, so the default name, �transition__opcode�, is
required in the extension. If the transition item is initially defined using the name option, the given name is
used in place of the default name. For additional information about extending coverage items, see �Extend-
ing Coverage Items� on page 416.

struct instruction {
alu: [ALU_0, ALU_1];
opcode: [ADD, SUB, AND, XOR];
operand1 : byte;
operand2 : byte;

event stimulus;
cover stimulus is {

item opcode;
item operand1;
transition opcode;

};
};

extend instruction {
cover stimulus is also {

item transition__opcode using also at_least = 2;
};

};

See Also

� �Defining Coverage Groups: cover� on page 373
� �Defining Basic Coverage Items� on page 378
� �Coverage Item Options Examples� on page 386
� �Extending Coverage Items� on page 416

12.5 Defining External Coverage Groups

12.5.1 Overview

You can import code coverage data from Verisity�s SureCov product into e and view the integrated data in
ASCII reports. The code-coverage grades for each SureCov cover group and cover item are imported, and
these grades are factored into the overall test grade.

To import SureCov data into an e program, you have to create a SureCov coverage group in e. For informa-
tion on how to do this, see �cover ... using external=surecov� on page 408.
This is an unapproved IEEE Standards Draft, subject to change.
407

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
For information on how to enable and disable the import and display of SureCov coverage groups, see
�set_external_cover()� on page 707.

12.5.2 cover ... using external=surecov

Purpose

Create a customized SureCov cover group

Category

Struct member

Syntax

cover group-name using external=surecov [,agent_options=SureCov-options]
[, e-options] is {

item item-name using [,agent_options=SureCov-options] [, e-options] ;
...

};

Parameters
group-name The group-name is informational and can be any name you want�except that it

cannot be an event name.
using external =
surecov

Identifies SureCov as the external coverage tool to integrate with e .

item-name The item-name is informational and can be any name you want
408 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
SureCov-options The SureCov-options are the same for both the cover group definition and the
item definitions. SureCov concatenates the cover group SureCov-options with
each cover item SureCov-options to define the coverage parameters.

In general:

� The cover group SureCov-options are intended to define whether you
want module or instance coverage

� The cover item SureCov-options are intended to define which type of
code coverage to import.

However, you can mix the two, as described below and as shown in the exam-
ples:

� Options specified for the cover group apply to all items in the group.

� Options specified for a cover item apply for that item only.

You must include one of the following either in the group definition or in each
item definition:

module[=Verilog_module_name]
instance[=absolute_Verilog_instance_path]

If you specify a particular instance (with a path), you can also enter the follow-
ing option to ask for coverage statistics for the entire subdesign rooted at that
instance (rather than for coverage statistics for the instance alone):

hier

If you specify module or instance without a name, data is collected for all Ver-
ilog modules or all Verilog instances. (The data for a given module consists of
the cumulative data for all the instances of that module.) If you specify a module
name or instance path without hier, data is collected for that particular module
or instance only.

You must also include at least one of the following either in the group definition
or in each item definition to define the type of code coverage you want to
import:

block
arc
state
trans
expr
event
toggle
This is an unapproved IEEE Standards Draft, subject to change.
409

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Defines a SureCov coverage group.

The mechanism for integrating SureCov with e is e code that defines SureCov coverage groups. If you want
to import all types of code coverage for all Verilog modules and instances, you can create this e code auto-
matically when you invoke SureCov to instrument the Verilog HDL design description.

You should manually create the SureCov coverage groups if you want to

� Limit the import of SureCov data to particular Verilog modules or instances or to particular kinds of
code coverage

� Associate the SureCov coverage group definition with a particular struct or unit.
� Supply a descriptive text string or set the weight for a SureCov coverage group or item.

Notes

� You can define as many SureCov coverage groups as you want under any struct or unit that you
want.

� You cannot extend a SureCov coverage group using the is also syntax.
� To disable or enable the importing of SureCov data, use the set_external_cover() routine.

Cover Group Examples

Importing data for all modules:

cover sv_data using external=surecov, agent_options="module" is...

Importing data for all instances:

cover sv_data using external=surecov, agent_options="instance" is ...

Importing data for the ALU module only:

cover sv_data using external=surecov, agent_options="module=ALU" is ...

Importing data for the ALU_0 instance only:

cover sv_data using external=surecov, agent_options="instance=top.ALU_0" is ...

Importing data for the ALU module only and specifying a grading weight of 4 for the current group relative
to other groups:

e- options The e-options are also the same for both the cover group definition and the
cover item definitions.

The legal e-options are the regular cover text option and weight option:

text=string
weight=uint

Set the weight for a given cover group or item to reflect the risk associated with
low coverage for that group or item compared to other cover groups or items. If
the risk is higher, set the weight higher.
410 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
cover sv_data using external=surecov, agent_options="module=ALU", weight=4 is ...

Importing block and arc data for all modules. The following example shows the entire cover group defini-
tion. Note that this example gives you one combined grade for block and arc data. To get a separate grade for
each type of coverage, you must define the types of coverage individually in item definitions:

cover sv_data using external=surecov, agent_options="module, block, arc" is
{
item sv_block_arc;

};

Cover Item Examples

Importing block and arc data for all modules:

cover sv_data using external=surecov, agent_options="module" is
{

item sv_block using agent_options="block";
item sv_arc using agent_options="arc";

};

Importing block and arc data for all modules�this example is exactly the same as the previous example:

cover sv_data using external=surecov is //Note that no module or
//instance is specified.

{
item block using agent_options="block, module";
item arc using agent_options="arc, module";

};

Importing block and arc data for the ALU_0 instance and importing state and trans data for the ALU_1
instance:

cover sv_data using external=surecov is
{

item block using agent_options="block,instance=top.ALU_0";
item arc using agent_options="arc, instance=top.ALU_0";
item state using agent_options="state, instance=top.ALU_1";
item arc using agent_options="trans, instance=top.ALU_1";

};

Importing block and arc data for the ALU_0 instance and importing state and trans data for the ALU mod-
ule:

cover sv_data using external=surecov is
{

item block using agent_options="block, instance=top.ALU_0";
item arc using agent_options="arc, instance=top.ALU_0";
item state using agent_options="state, module=ALU";
item arc using agent_options="trans, module=ALU";

};

See Also

� �Defining Coverage Groups: cover� on page 373
� �Defining Basic Coverage Items� on page 378
This is an unapproved IEEE Standards Draft, subject to change.
411

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
12.6 Extending Coverage Groups

12.6.1 Overview

The using also and is also clauses are used to extend existing coverage groups.

12.6.2 cover ... using also ... is also

Purpose

Extend a coverage group

Category

Struct member

Syntax

cover event-type using also cover-option, ...[is also {coverage-item-definition; ... }]

Syntax examples:

cover rclk is also {
item rflag;

};

cover rclk using also text = “RX clock”;

cover rclk using also no_collect is also {
item rvalue;

};

Parameters

Description

The using also clause changes, overrides, or extends options previously defined for the coverage group. The
is also clause adds new items to a previously defined coverage group, or can be used to change the options
for previously defined items. See �Extending Coverage Items� on page 416.

Options for coverage-item-definition are listed in Table 12-1.

If a coverage group is defined under a when subtype, it can only be extended under that subtype.

If you have defined per_instance coverage (see �Coverage Per Instance� on page 384), you can extend a
particular cover group instance to complement or override options set in the base type cover group. To
change an item�s options in particular instance, enter the instance name in the cover is also construct. For

event-type The name of the coverage group. This must be an event defined previously
in the struct. The event is the sampling event for the coverage group.

coverage-item-
definition

The definition of a coverage item.
412 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
example, if a cover group named done contains a cover item named packet which has buckets named Ether-
net and ATM, use �cover done(packet==ATM) is also {...}� to extend the cover group in ATM instances.

If you extend an instance that never gets created (due to an ignore or illegal option), a warning is issued and
no information for the extension is put in the coverage data.

If you change the coverage options of an instance, the coverage data for the per_type item might no longer
reflect or agree with the per-instance coverage data.

If, in an extension of a cover group, you override a cover group when option, then the overriding condition
is only considered after the condition in the base group is satisfied. That is, sampling of the item is only per-
formed when the logical AND of the cover group when options is true.

When you use using also to extend or change a when, illegal, or ignore option, a special variable named
prev is automatically created. The prev variable holds the results of all previous when, illegal, or ignore
options, so you can use it as a shorthand to assert those previous options combined with a new option value.
For example, if a base struct cover group definition has �when = size == 5�, and an extension has �using also
when = (prev and size <= 10)�, the result is the same as �when = (size == 5 and size <= 10)�.

Example 1

The following example extends a coverage group named �info� by adding two cover items, �op2� and
�cross op1, op2�.

struct op_st {
op1: byte;
op2: byte;
event info;
cover info is {

item op1;
};

};
extend op_st {

cover info is also {
item op2;
cross op1, op2;

};
};

Example 2

In the following example, the cover done extension in the inst struct extension adds text to the cover group
named done, and adds a new item named interrupt to the group for instances of cpu_id==CPU_1:

type cpu_type: [CPU_1, CPU_2];
struct inst {

cpu_id: cpu_type;
cpu_on: bool;
interrupt: uint(bits:2);
event done;
cover done is {

item cpu_id using per_instance;
item cpu_on;

};
run() is also {
This is an unapproved IEEE Standards Draft, subject to change.
413

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
emit done;
};

};
extend inst {

cover done(cpu_id==CPU_1) using also text="CPU #1" is also {
item interrupt;

};
};

Example 3

In the following example, the using also is used to cancel the global option:

struct packet{
len: uint (bits: 4);
kind: bool;
a: int (bits: 4);
event packet_gen;
cover packet_gen using global is {

item len;
item kind;
cross len, kind using text = "cross_l_k";

};
};
extend packet {

cover packet_gen using also global = FALSE;
};

Example 4

The following example show how to use using also to override and to narrow a when option:

// Original definition:
struct packet{

len: uint (bits: 4);
kind: bool;
event packet_gen;
cover packet_gen using when = len >= 3 is {

item len;
};

};

// Overriding the when definition:
extend packet {

cover packet_gen using also when = len == 4;
};

// Narrowing the when definition:
extend packet {

cover packet_gen using also when = (prev and len <= 7);
};

Example 5

This example uses using also to extend the original definition of the cover done group by adding �when = id
> 64�, and then uses is also to add new coverage item, port, to the coverage group. Since the coverage group
414 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
is initially defined under a when subtype, the coverage group extensions can only be done in an extension of
that subtype.

<’
struct packet {

len: uint (bits: 4);
ptype: [ATM, Eth];
good: bool;
id: byte;
port: uint (bits: 2);
event done;
when good packet {

cover done is {
item len;
item ptype;

};
};

};
’>
<’
extend good packet {

cover done using also when = id > 64 is also {
item port;

};
};
’>

Example 6

The following example uses uses using also to set the weight of the per_type cover instance to zero so it will
not affect the overall grade.

type cpu_type: [CPU_1, CPU_2];
struct inst {

cpu_id: cpu_type;
cpu_on: bool;
event done;
cover done is {

item cpu_id using per_instance;
item cpu_on;

};
run() is also {

emit done;
};

};
extend inst {

cover done(per_type) using also weight = 0;
};

See Also

� �Defining Coverage Groups: cover� on page 373
� �Defining Basic Coverage Items� on page 378
This is an unapproved IEEE Standards Draft, subject to change.
415

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
12.7 Extending Coverage Items

12.7.1 Overview

The using also clause is used to extend existing coverage items.

12.7.2 item ... using also

Purpose

Change or extend the options on a cover item.

Category

Coverage group item

Syntax

item item-name using also coverage-item-option, ...

Syntax example:

item len using also radix = HEX;

Parameters

Description

Cover item extensibility allows you to extend, change, or override a previously defined coverage item. Cov-
erage item options are listed in Table 12-2.

To extend a coverage item, you must also use �is also� for its coverage group: �cover event-type is also {
item item-name using also ...};�. See �Extending Coverage Groups� on page 412.

If a coverage item is originally defined under a when subtype, it can only be extended in the same subtype of
the base type.

When you extend an item, you must refer to the item by its full name. If an item with that name does not
exist, an error is issued.

item-name The name you assign to the coverage item.

If you do not specify the optional type=exp, the value of the field named
item-name is used as the coverage sample value.

type The type of the item. The type expression must evaluate to a scalar not larger
than 32 bits, or a string.

exp The expression is evaluated at the time the whole coverage group is sampled.
This value is used for the item.

coverage-item-
option

Coverage item options are listed in Table 12-2. The options can appear in
any order after the using keyword.
416 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
For example, if an item �cross a, b� was defined previously without the name option, then you extend it by
creating a new item with the cross item�s default name, cross__a__b:

item cross__a__b using also ... // Cross item was defined with no name

If a cross item was defined using the name option, such as �cross a, b using name = c_a_b�, then you extend
it by creating a new item using the name �c_a_b�:

item c_a_b using also ... // Cross item was defined with a name

Similarly, for a transition item that was defined without the name option, such as �transition b�, you extend
it by creating a new item with the transition item�s default name, transition__b:

item transition__b using also ...// Transition item was defined with no name

If a transition item was defined using the name option, such as �transition b using name = t_b�, then you
extend it by creating a new item using the name �t_b�:

item t_b using also ... // Transition item was defined with a name

If an item is defined with an expression assigned to it, do not include the expression when you extend the
item:

item b: bool = f(a,c) ... // Item was defined with expression f(a,c)

item b using also ... // Omit the type and expression in the extension

When you use using also to extend or change a when, illegal, or ignore option, a special variable named
prev is automatically created. The prev variable holds the results of all previous when, illegal, or ignore
options, so you can use it as a shorthand to assert those previous options combined with a new option value.
For example, if an original coverage item definition has �when = size == 5�, and an extension has �using
also when = (prev and size <= 10)�, the result is the same as �when = (size == 5 and size <= 10)�.

Example 1

In this example, an item named len is defined in the base type, then a new option, radix = HEX, is added, and
finally the option is redefined to radix = BIN.

<'
struct packet {

len: uint (bits: 4);
event done;
cover done is {

item len;
};

};
'>
<'
extend packet {

cover done is also {
item len using also radix = HEX;

};
};
'>
<'
extend packet {
This is an unapproved IEEE Standards Draft, subject to change.
417

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
cover done is also {
item len using also radix = BIN;

};
};
'>

Example 2

In this example, an item named good_short is defined using an expression involving two other fields in the
struct. The good_short coverage item is then extended by adding an at_least option. Note that the �: bool =
(good == TRUE and len < 4)� part of the original item definition is left out of the extension.

<'
struct packet {

len: uint (bits: 4);
good: bool;
event done;
cover done is {

item good_short: bool = (good == TRUE and len < 4);
};

};
'>
<'
extend packet {

cover done is also {
item good_short using also at_least = 4;

};
};
'>

Example 3

In this example, the automatic prev variable is used to combine the coverage item option in the original cov-
erage group definition with a narrower definition in the coverage item extension. The combined result is that
coverage is collected for the logical AND of (len < 8 and len > 4).

<'
struct packet {

len: uint (bits: 4);
good: bool;
event done;
cover done is {

item good using when = (len < 8), at_least = 10;
};

};
'>
<'
extend packet {

cover done is also {
item good using also when = (prev and len > 4);

};
};
'>
418 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 4

This example extends the done coverage group in the good packet subtype, to restrict the sampling of the len
item to when the port item is either 0 or 1.

<'
struct packet {

len: uint (bits: 4);
good: bool;
port: uint (bits: 2);
event done;
when good packet {

cover done is {
item len;

};
};

};
'>
<’
extend good packet {

cover done is also {
item len using also when = port in [0,1];

};
};
’>

Example 5

The following shows several examples of coverage group and coverage item extensions, with comments
explaining what each one does.

<'
struct packet {

len: uint (bits: 6);
kind: bool;
port: int (bits: 4);
event packet_gen;
// Original group and item definition:
cover packet_gen using global, text = "Packet info" is {

item len using ranges = {range([0..63], "", 16)}, at_least = 5;
item kind;
cross len, kind using name = l_k;

};
run() is also {emit packet_gen;};

};
'>
<’
extend packet {

// Cancel the global option:
cover packet_gen using also global = FALSE;

};
’>
<’
extend packet {

// Add a new illegal option to the cross item:
cover packet_gen is also {

item l_k using also illegal = len == 3;
This is an unapproved IEEE Standards Draft, subject to change.
419

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
};
’>
<’
extend packet {

// Override the previous illegal option of the cross item:
cover packet_gen is also {

item l_k using also illegal = len == 4;
};

};
’>
<’
extend packet {

// Extend the illegal option, combining the previous definition
// (prev) with a new condition (len > 10):
cover packet_gen is also {

item l_k using also illegal = prev or (len > 10);
};

};
’>
<’
extend packet {

// Override the text option of the group, and add a weight option
// to the kind item:
cover packet_gen using also text = "Packet Information " is also {

item kind using also weight = 10;
};

};
’>
<’
extend packet {

// Add a new per_instance item to the packet_gen cover group:
cover packet_gen is also {

item port using per_instance;
};

};
’>
<’
extend packet {

// Exclude instances where the port number is 0:
cover packet_gen is also {

item port using also ignore = (port == 0);
};

};
’>
<'
extend sys {

packet_list[10]: list of packet;
};
extend global {

setup_test() is also {
set_config(cover, mode, on_interactive);

};
};
'>

See Also

� �Defining Coverage Groups: cover� on page 373
420 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �Defining Basic Coverage Items� on page 378

12.8 Coverage API Methods

This section contains descriptions of the following predefined methods:

� �scan_cover()� on page 421
� �start_group()� on page 422
� �start_instance()� on page 423
� �start_item()� on page 424
� �scan_bucket()� on page 424
� �end_item()� on page 425
� �end_instance()� on page 426
� �end_group()� on page 427

12.8.1 scan_cover()

Purpose

Activate the Coverage API and specify items to cover

Category

Method

Syntax

scan_cover(item-names: string): int;

Syntax example:

num_items = cover_info.scan_cover("cpu.inst_driven.*");

Parameters

Description

The scan_cover() method initiates the coverage data-scanning process. It goes through all the items in all
the groups specified in the item-names parameter in the order that groups and items have been defined.

For each group, scan_cover() calls start_group(). For each instance in the group, scan_cover() calls
start_instance() . For each item in the current instance, scan_cover() calls start_item(). Then for each
bucket of the item, it calls scan_bucket(). After all of the buckets of the item have been processed, it calls
end_item(). After all items of the instance have been processed, it calls end_instance(). After all instances
in the group have been processed, it calls end_group().

Before each call to any of the above methods, the relevant fields in the user_cover_struct are updated to
reflect the current item (and also the current bucket for scan_bucket()).

item-names The names of the coverage items that should be scanned by scan_cover(). This is a
string of the form struct-name.group-name.item-name (for example,
�inst.start.opcode�). Wild cards are allowed.
This is an unapproved IEEE Standards Draft, subject to change.
421

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The scan_cover() method returns the number of coverage items actually scanned.

NOTE� The scan_cover() method cannot be extended. The methods called by scan_cover() �
start_group()), start_instance(), start_item(), scan_bucket(), end_item(), end_instance() and
end_group() � are initially empty and are meant to be extended.

Example

<'
struct simple_cover_struct like user_cover_struct {
};
extend sys {

!cover_info: simple_cover_struct;
simple_cover_report() is {

var num_items: int;
num_items = cover_info.scan_cover("cpu.inst_driven.*");

};
};
'>

12.8.2 start_group()

Purpose

Process coverage group information according to user preferences

Category

Method

Syntax

start_group();

Syntax example:

start_group() is {
if group_text != NULL {out("Description: ", group_text)};

};

Description

When the scan_cover() method initiates the coverage data scanning process for a group, it updates the
group-related fields within the containing user_cover_struct and then calls the start_group() method. The
start_group() method is called for every group to be processed by scan_cover(). For every instance within
a group, scan_cover() calls the start_instance() method.

The start_group() method is originally empty. It is meant to be extended to process group data according to
user preferences.

NOTE� start_group(), start_instance() and scan_cover() are all methods of the
user_cover_struct.
422 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
struct simple_cover_struct like user_cover_struct {

start_group() is {
if group_text != NULL {out("Description: ", group_text)};

};
};
'>

12.8.3 start_instance()

Purpose

Process coverage instance information according to user preferences.

Category

Method

Syntax

start_instance();

Syntax example:

start_instance() is {
if instance_text != NULL {out("Description: ", instance_text)};

};

Description

When the scan_cover() method initiates the coverage data scanning process for an instance, it updates the
instance-related fields within the containing user_cover_struct and then calls the start_instance() method.
The start_instance() method is called for every instance to be processed by scan_cover().

The start_instance() method is originally empty. It is meant to be extended to process instance data accord-
ing to user preferences.

NOTE� start_instance() and scan_cover() are methods of the user_cover_struct.

Example

<'
struct simple_show_cover_struct like user_cover_struct {

start_instance() is {
out("instance ", struct_name, ".", group_name, ".",

instance_name, ":");
if instance_text != NULL {out("Description: ", instance_text)};

};
};
'>
This is an unapproved IEEE Standards Draft, subject to change.
423

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
12.8.4 start_item()

Purpose

Process coverage item information according to user preferences

Category

Method

Syntax

start_item();

Syntax example:

start_item() is {
if item_text != NULL {out("Description: ", item_text)};

};

Description

When the scan_cover() method initiates the coverage data scanning process for an item, it updates the item-
related fields within the containing user_cover_struct and then calls the start_item() method. The
start_item() method is called for every item to be processed by scan_cover().

The start_item() method is originally empty. It is meant to be extended to process item data according to
user preferences.

NOTE� start_item() and scan_cover() are methods of the user_cover_struct.

Example

<'
struct simple_show_cover_struct like user_cover_struct {

start_item() is {
out("item ", struct_name, ".", group_name, ".",

item_name, ":");
if item_text != NULL {out("Description: ", item_text)};

};
};
'>

12.8.5 scan_bucket()

Purpose

Process coverage item information according to user preferences

Category

Method
424 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

scan_bucket();

Syntax example:

scan_bucket() is {
out(count, " ", percent, "% ", bucket_name);

};

Description

When the scan_cover() method processes coverage data, then for every bucket of the item it updates the
bucket-related fields within the containing user_cover_struct and calls scan_bucket().

The scan_bucket() method is originally empty. It is meant to be extended to process bucket data according
to user preferences.

NOTE� scan_bucket() and scan_cover() are methods of the user_cover_struct.

Example

<'
struct simple_show_cover_struct like user_cover_struct {

scan_bucket() is {
out(str_repeat(" ", cross_level), count, " - ",

percent, "% - ", status, " - ", bucket_name);
};

};
'>

12.8.6 end_item()

Purpose

Report end of item coverage information according to user preferences

Category

Method

Syntax

end_item();

Syntax example:

end_item() is {
out("finished item ", item_name, "\n");

};

Description

When the scan_cover() method completes the processing of coverage data for an item, it calls the
end_item() method to report the end of item information according to user preferences.
This is an unapproved IEEE Standards Draft, subject to change.
425

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
When all items in the current group have been processed, scan_cover() calls the start_instance() method
for the next instance.

The end_item() method is originally empty. It is meant to be extended so as to process item data according
to user preferences.

NOTE� end_item(), start_instance() and scan_cover() are all methods of the
user_cover_struct.

Example

<'
struct simple_show_cover_struct like user_cover_struct {

end_item() is {
out("end of item ", item_name, "\n");

};
};
'>

12.8.7 end_instance()

Purpose

Process end of instance coverage information according to user preferences.

Category

Method

Syntax

end_instance();

Syntax example:

end_instance() is {
out("finished instance ", instance_name, "\n");

};

Description

When the scan_cover() method completes the processing of coverage data for an instance, it calls the
end_instance() method to report the end of instance information according to user preferences.

When all instances in the current group have been processed, scan_cover() calls the start_group() method
for the next group.

The end_instance() method is originally empty. It is meant to be extended so as to process instance data
according to user preferences.

NOTE� end_instance(), start_group() and scan_cover() are all methods of the
user_cover_struct.
426 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
struct simple_show_cover_struct like user_cover_struct {

end_instance() is {
out("end of instance ", instance_name, "\n");

};
};
'>

12.8.8 end_group()

Purpose

Report end of group coverage information according to user preferences

Category

Method

Syntax

end_group();

Syntax example:

end_group() is {
out("finished group", group_name, "\n");

};

Description

When the scan_cover() method completes the processing of coverage data for a group, it calls the
end_group() method to report the end of group information according to user preferences.

The end_group() method is originally empty. It is meant to be extended so as to process item data according
to user preferences.

NOTE� end_group() and scan_cover() are both methods of the user_cover_struct.

Example

<'
struct simple_show_cover_struct like user_cover_struct {

end_group() is {
out("end of group", group_name, "\n");

};
};
'>
This is an unapproved IEEE Standards Draft, subject to change.
427

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
428 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
13 Macros

This chapter describes the constructs used to create and debug e macros. Macro definitions specify a name
or a pattern that is to be replaced by e code text. The constructs for defining and debugging macros are:

� �define as� on page 429
� �define as computed� on page 436

See Also

� �#define� on page 630
� Chapter 20, �Preprocessor Directives�
� Chapter 21, �Importing e Files�

13.1 define as

Purpose

Define a simple replacement macro

Category

Statement

Syntax

define <macro-name'nonterminal-type> match-string as {�replacement�}

Syntax example:

define <largest’action> "largest <exp> <num>" as {
if <num> > <exp> then {<exp> = <num>};

};
This is an unapproved IEEE Standards Draft, subject to change.
429

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters
macro-name, non-
terminal-type

A name you give to the macro and the syntactic type for the macro. The macro
can be used wherever it is legal to use the nonterminal-type. The macro-name
and nonterminal-type together form a unique internal macro name. They must
be separated by an apostrophe (').

The e nonterminal types are shown in Table 13-1.

The combination macro-name'nonterminal-type must be unique over all
e modules. For example, it is possible to have both a <do_it�statement> and a
<do_it�action>, but there cannot be two <do_it�action> macros.

match-string A quoted string containing text and parsing elements. It may be an expression.
Items represented by parsing elements in the match-string are passed to corre-
sponding parsing elements in the replacement.

Parsing elements for both match-string and replacement are shown in
Table 13-2. Parsing elements must be used exactly as shown in the table,
including the angle brackets (<>). They may be preceded by an identifier and
apostrophe (for example, <num> or <big�num>).

replacement A string containing text and parsing elements, all of which must be legal types
in a construct of the nonterminal-type. Each parsing element in the replace-
ment corresponds to a parsing element of the same name in the match-string.

When the macro is used in the e code, the match-string parsing elements are
passed to the replacement.

The replacement can contain replacement terms in angle brackets. If there are
any replacement terms in the replacement string, they represent items for
which corresponding items exist in the match-string. When the macro is used,
the items provided with the macro are substituted for the replacement terms in
the replacement.

Forms for replacement terms are shown in Table 13-3. You can combine the
forms in replacement terms.

Table 13-1�e Language Nonterminal Types

Nonterminal Type Description

statement The basic element type of e.

action A procedural element.

struct_member A part of a struct definition.

exp A construct that has a value.

type A type.

block A series of actions enclosed in curly braces ({}).

num A number.
430 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
file A file name.

Table 13-2�e Language Parsing Elements

Parsing Element Description

<statement> Any legal statement.

<action> An action.

<command> A command.

<struct_member> A struct member (event, field, method, coverage group, when struct
member, or constraint definition).

<exp> An expression.

<name> A legal name: it must start with a letter, and consist of letters, digits,
underscores (_) and single quotes (').

<file> A file name.

<num> A number.

<block> A series of actions enclosed by {}.

<Type> A type name: this can be used any place in the replacement where a type
is expected.

<any> Anything: any text can be entered for this item when the macro is used;
<any> items in the match-string must have corresponding <any> items in
the replacement.

[] Items enclosed in square brackets are optional.

| Items separated by | (OR bar) are alternatives.

() Parentheses group items for associativity or for readability.

Table 13-3�Replacement Term Syntax for define as

Replacement
Notation What it Represents Examples

<x_string> A string matching <x_string> in the input. <exp> <b'exp>

<x_string|y_string> The y_string is the default value if no match is found for
the x_string in the input. This notation can be used only in
the replacement, not in the match-string.

<num|0>
<big'num|100>

Table 13-1�e Language Nonterminal Types (continued)

Nonterminal Type Description
This is an unapproved IEEE Standards Draft, subject to change.
431

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

You can use replacement macros to extend the e language, by defining new syntactic elements (actions,
commands, and so on). The define as statement creates a new syntactic element for the e parser.

You assign a macro name and an e nonterminal type (see Table 13-1, �e Language Nonterminal Types�, on
page 430) to a string pattern. When the e parser finds a string that matches the pattern, it replaces that string
with the replacement string. The replacement specifies what is to be done each time the parser finds the
string pattern.

To find a definition of a macro it currently is parsing, the e parser searches definitions having the desired
nonterminal type, starting with the most recent definitions.

Notes

� A define as computed macro takes precedence over a define as macro when the match string satis-
fies either one, regardless of the order in which the macro definitions appear in the code. For exam-
ple, the command �find least� matches either of the following macros:

define <my_first’command> "find least" as {

 action; ...

};

define <my_second’command> "find <any>" as computed {

 action; ...

};

However, the second macro, the define as computed macro, will always be the one that is applied
when �find least�, or �find anything�, is executed.

� The maximum number of replacement terms you can us in a replacement string is 14. (For some
replacement term types, this number may be exceeded, but the results of exceeding 14 replacement
terms are unpredictable, and doing so is not recommended.)

<n> The number of the nth substring in the input string. Each
<x_string> is a substring, and thus can be represented by a
number using this syntax. Similarly, each term enclosed in
square brackets ([]), parentheses (()), or curly braces ({}) is
a substring that can be represented by a number using this
syntax.

<1>
<2>

<?> A character sequence of the form __n__, where n is a num-
ber that is unique over all expansions of this macro. This is
useful for creating unique variable names that will not col-
lide in the various places this macro will be used.

var a<?>: int;

Table 13-3�Replacement Term Syntax for define as

Replacement
Notation What it Represents Examples
432 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

Define a new command with the internal name �dir_lis� that executes the UNIX ls command with any of its
flags. The new command is invoked by �lis� with a list of flags. It executes the UNIX ls command with
those flags:

define <dir_lis'command> "lis[<any>]" as {
print output_from("ls <any>") using items=UNDEF;

};

You can enter the following commands, for example, which list files in the current directory. The �-lt� flags
and the �*.e� syntax are the same as for the UNIX ls command:

> lis
> lis -lt *.e

Example 2

Define a macro that creates a new action with the internal name �simple_frame� to generate a frame with
specified field values, and call a method named �send()�:

define <simple_frame’action> "send simple frame \
<dest_addr’num> <source_addr’num> <size’num>" as {

var f: frame;
gen f keeping {

.kind not in [SRAM,DUT];

.size == <size’num>;

.dest_address == <dest_addr’num>;

.source_address == <source_addr’num>;
};
start f.send();

};

Example of using the �send simple frame� macro:

extend sys {
run() is also { send simple frame 0x00fe 0x0010 0xff };

};

Example 3

Define a new action with the internal name �configure_frame� to generate a frame of a specified �kind� and
with an optional �dest_address� value, and call the �send()� method. The �name� element in the match
string will be replaced by �.kind� when the macro is used, and the �dest_addr'num� element will be replaced
by �.dest_address� if one is entered. If no �dest_address� is given with the macro, a generated value is used:

<’
define <configure_frame'action>

"<name> config frame[<dest_addr’num>]" as {
var f: frame;
if str_empty("<dest_addr’num>") {

gen f keeping {
.kind == <name>;
.size == 64;

};
This is an unapproved IEEE Standards Draft, subject to change.
433

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
} else {
gen f keeping {

.kind == <name>;

.dest_address == <dest_addr’num|0>;

.size == 64;
};

};
f.send();

};
type frame_kind: [SRAM, DUT];
struct frame {

kind: frame_kind;
size: uint (bits: 16);
data: byte;
dest_address: uint;
send() is {
'top.frame.addr' = me.dest_address;
'top.frame.data' = me.data;
};

};
extend sys {

run() is also {
SRAM config frame;
DUT config frame 0x1001;

};
};
’>

In the �else� block above, the �| 0� following �dest_addr'num� is required, even though this is the condition
where a �dest_address� is provided when the macro is used. This is because, even though it is in the else
block that is only used when a �dest_address� is provided, the line parses to the following for the case where
the optional �dest_addr'num� string is empty:

.dest_address == ;

Because that syntax is not allowed by the e parser, writing just �<dest_addr'num>� in this line of the macro
definition results in an illegal action error at load time. A default number must be included. It can be any
value that is legal for �dest_address�.

Example 4

Define a new action named �issue_struct�, which generates a struct and calls a method named �send()�.
Constraints may optionally be entered for struct members. In the sys extension the macro is used four times,
to generate four �transaction� structs, with constraints specified for the last two.

The Type nonterminal represents �transaction� structs. The <?> element attaches �__n__� to the �x� vari-
able, where n is a number that is unique for every usage of the macro. The <2> parsing element, which is
replaced by the second element of the match string, is determined by counting "<", "[" and "(" characters,
starting from the left-most element. Thus, the <2> parsing element in this example is �keeping <block>� and
the second element of the match string must have the form �keeping {constraint;�};�.

<'
define <issue_struct’action>

"issue <Type>[keeping <block>]" as {
var x<?>: <Type>;
gen x<?> <2>;
x<?>.send();
434 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
type command_type: [opA, opB, opC];
struct transaction {

command: command_type;
value: int;
send() is {

out("\t command: ", command, ", value: ", value, "\n");
};

};
extend sys {

!transaction;
post_generate() is also {

issue transaction;
issue opA transaction;
issue transaction keeping {.command==opB; .value==5};
issue opC transaction keeping {.value == 6};

};
};
'>

To see how �x<?>� is expanded when the macro is parsed, the trace reparse command is entered before the
example file is loaded. The following is a printout of the results. For each call to the macro, the <?> element
is replaced by a unique number.

D> <issue_struct’action> ’issue transaction’
D> reparsed as: ’{var x__14841__: transaction;gen x__14841__

;x__14841__.send()}’
D> <issue_struct’action> ’issue opA transaction’
D> reparsed as: ’{var x__14842__: opA transaction;gen x__14842__

;x__14842__.send()}’
D> <issue_struct’action> ’issue transaction keeping {...}’
D> reparsed as: ’{var x__14843__: transaction;gen x__14843__ keeping

{...};x__14843__.send()}’
D> <issue_struct’action> ’issue opC transaction keeping {...}’
D> reparsed as: ’{var x__14844__: opC transaction;gen x__14844__ keeping

{...};x__14844__.send()}’
D> esb_reparse: <outf’exp> reparsed as ’out(...)’
D> esb_reparse: <out’exp> reparsed as ’append(...)’

Example 5

The following is a definition of an action with the internal name �swap_var�. The match string contains two
parsing element items, �<var1'exp>� and �<var2'exp>�, so the �<1>� in the third line corresponds to
�<var1'exp>�, the first parsing element in the match string. The notation �<2>� could likewise be used for
�<var2'exp>�. Thus, the third line could be written as �<1> = <2|z>�.

<'
define <swap_var’action> "swap <var1’exp>[<var2’exp>]" as {

var tmp<?> := <var1’exp>;
<1> = <var2’exp|z>;
<var2’exp|z> = tmp<?>;

};
extend sys {

run() is also {
var a:= 5;
var b:= 9;
var z:= 13;
This is an unapproved IEEE Standards Draft, subject to change.
435

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
swap a b; // a becomes 9, b becomes 5
print a, b, z;
swap a; // a becomes 13, z becomes 9
print a, b, z;

};
};
'>

See Also

� �#define� on page 630
� �define as computed� on page 436

13.2 define as computed

Purpose

Define an advanced replacement macro

Category

Statement

Syntax

define <macro-name`nonterminal-type> match-string as computed {action; �}

Syntax example:

<’
define <time_command’action> "time <string>" as computed {

if <1> == "on" {
return("{tprint = TRUE; print sys.time;}");

} else if <1> == "off" {
return("tprint = FALSE");

} else {
out("Usage: time [on|off]");

};
};
’>
436 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters
macro-name, non-
terminal-type

A name you give to the macro, and the syntactic type for the macro. The
macro-name and nonterminal-type together form a unique internal name for
the macro. They must be separated by an apostrophe (').

The macro can be used wherever it is legal to use the nonterminal-type. The
e nonterminal types are shown in Table 13-1, �e Language Nonterminal
Types�, on page 430.

The combination macro-name'nonterminal-type must be unique over all
e modules. For example, it is possible to have both a <do_it�statement> and a
<do_it�action>, but there cannot be two <do_it�action> macros.

match-string A double-quoted string consisting of text and parsing elements. It may be an
expression. Items represented by parsing elements in the match-string are
passed to corresponding parsing elements in the replacement.

Parsing elements for both match-string and replacement are shown in
Table 13-2, �e Language Parsing Elements�, on page 431, with the exception
that <string> and <num> cannot be used in the define as computed replace-
ment string. Parsing elements must be used exactly as shown in the table,
including the angle brackets (<>). They may be preceded by an identifier and
apostrophe (for example, <exp> or <big�exp>).

action; ... A block of actions that are executed each time match-string is found. The
action block is treated by the parser as the body of a method. Thus you can use
the result variable or the return action to return a result from the action block.

The action block can contain replacement terms in angle brackets which repre-
sent items that will actually be input to the macro when it is used. When the
macro is used, the items provided with the macro are substituted for the
replacement terms in the action block.

Legal forms for the replacement terms are shown in Table 13-4.

You cannot use explicit syntactic parameters such as <name> or <string> in the
action block or the computed replacement text.

Table 13-4�Replacement Term Syntax for define as computed

Replacement
Notation What it Represents Examples

<n> The number of the nth substring in the input string. Each
<x_string> is a substring, and thus can be represented by a num-
ber using this syntax. Similarly, each term enclosed in square
brackets ([]), parentheses (()), or curly braces ({}) is a substring
that can be represented by a number using this syntax.

<1> <2>

<?> A character sequence of the form __n__, where n is a number that
is unique over all expansions of this macro. This is useful for cre-
ating unique variable names that will not collide in the various
places this macro will be used.

var a<?>:
int;
This is an unapproved IEEE Standards Draft, subject to change.
437

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

This statement creates a new syntactic element that constructs a block of actions based on the inputs to the
macro. These actions are executed like a method when the macro is encountered. The actions produce an
output string that replaces the match string. The output string is a set of actions that are executed as e code.

For simple text replacement, use the define as statement rather than define as computed.

Space Removal in String Patterns

The preprocessor first compresses all sequences of blanks and tabs into a single blank, before initial match-
ing is done, except that blanks and tabs inside double quotes are not compressed.

Finding Submatches

The same text may be part of more than one match. For example, � exp� matches both � exp� and �exp�.
Thus, � +sim� matches � +sim� and �+sim�. If you are not interested in the outer match, you can ignore it.

Expanding Matches

Anything that is in �{}�, �()�, �[]�, or inside double quotes is replaced during preprocessing by a notation of
the form �_number_�. If you want to further parse the match, use str_expand_dots() to expand it back to its
actual string form.

Notes

� The returned string cannot contain any newline (\n) characters.
� If the returned string contains more than one action, the actions must be grouped into an action block

by enclosing it in curly braces ({}). That is also true of statements and other kinds of struct mem-
bers: Any semicolon-separated list of constructs in the return string must be enclosed in curly
braces.

� The define as computed construct actually creates a method that is called during parsing. This
method extension does not understand types because the parsing is done before types are identified.
For this reason, notations such as <string> and <num> cannot appear in the replacement-string.

� define as computed macros cannot be used in event declarations that use @sim.
� define as computed macros cannot be used in the same file they are defined in. To use a computed

macro in a loaded file, you must also load the file that contains the define as computed statement.
See the next paragraph for the procedure for using computed macros in compiled files.

� When a file needs to be compiled that uses a define as computed macro, first compile the file that
defines the macro. The result of the compilation (the executable that includes the macro definition)
can then be used to compile any file that uses this newly defined syntactic element.

� When preprocessing define as computed macros, the preprocessor might return syntactic blocks in a
compressed notation, with dots as placeholders for substrings. If you need to expand these place-
holders, use the str_expand_dots() routine described in the section on String Routines.

� A define as computed macro takes precedence over a define as macro when the match string satis-
fies either one, regardless of the order in which the macro definitions appear in the code. For exam-
ple, the command �find least� matches either of the following macros:

define <my_first’command> "find least" as {

action; ...

};

define <my_second’command> "find <any>" as computed {
438 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
action; ...

};

However, the second macro, the define as computed macro, will always be the one that is applied
when �find least�, or �find anything�, is executed.

� The maximum number of replacement terms you can us in a replacement string is 14. (For some
replacement term types, this number may be exceeded, but the results of exceeding 14 replacement
terms are unpredictable, so doing so is not recommended.)

Example

The macro in this example defines a new �add to list� statement. The statement adds a given number to the
list named �num_list� in sys, if the number is not already in the list. (A duplicate keyed list is used to check
whether the number is already in num_list.) If the given number is already in the list, the macro returns with-
out error.

// def_add_to_list.e module:
<’

extend sys {
 !keyed_list: list (key: it) of string;
 adder() is empty;
 !num_list: list of int (bits: 5);
 run() is also {
 adder();
 print num_list;
 };
};

define <num_adder’statement> "add <exp> to list" as computed {
 if sys.keyed_list.key_exists(<1>) { return("{}");}
 else {
 sys.keyed_list.add(<1>);
 result = append("extend sys { adder() is also \

{num_list.add(",<1>,")};}");
 };
};

’>

The following is an example of using this macro:

1) Load the �def_add_to_list.e� module.
2) Load a module that contains one or more �add n to list� statements, such as the following:

// use_add_to_list.e module:

<'

add 3 to list;

add 5 to list;

add 7 to list;

add 3 to list;

add 11 to list;
This is an unapproved IEEE Standards Draft, subject to change.
439

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
'>

3) Execute the program.
The list will contain four items.

num_list = (4 items, dec):

 11 7 5 3 .0

See Also

� �#define� on page 630
� �define as� on page 429
440 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
14 Checks and Error Handling

The e language has many constructs that check for errors in the DUT or add exception handling and diag-
nostics to an e program. This chapter covers these topics:

� �Handling DUT Errors� on page 441
� �Handling User Errors� on page 450
� �Handling Programming Errors� on page 456

14.1 Handling DUT Errors

There are several constructs you can use to perform data or protocol checks on the DUT and to specify how
you want to handle any errors that occur:

� �check that� on page 441
� �dut_error()� on page 443
� �dut_error_struct� on page 444
� �set_check()� on page 448

14.1.1 check that

Purpose

Perform a data comparison and, depending on the results, print a message

Category

Action

Syntax

check [that] bool-exp [else dut_error(message: exp, ...)]

Syntax example:

check_count(i:int) is {
check that i == expected_count else

dut_error("Bad i: ", i);
};

NOTE� Keep in mind that check that, as with all actions, must be associated with a method.
Checks are also created implicitly from expect struct members.
This is an unapproved IEEE Standards Draft, subject to change.
441

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Performs a data comparison and, depending on the results, prints a message. The following example.

check_hard_error() is {
check that 'top.hard_error'== 1 else

dut_error("Error-5 -- Hard error not asserted");
};

displays an error message like this one:

*** Dut error at time 0
 Checked at line 4 in check2.e
 In sys-@0.check_hard_error():

Error-5 -- Hard error not asserted

Will stop execution immediately (check effect is ERROR)

 *** Error: A Dut error has occurred

Using check that allows you to:

� Manipulate the response to failed checks with the set checks command.
� Show which checks have failed with the show checks command.
� Track the number of failed checks with predefined session fields.

Omitting the else Clause

If you omit the else dut_error clause, the e program uses the check that clause as the error message. For
example,

check_a() is {
check that a < b;

};

displays an error message like this one:

*** Dut error at time 0
 Checked at line 6 in check3.e
 In sys-@0.check_a():

check that a < b

Will stop execution immediately (check effect is ERROR)

 *** Error: A Dut error has occurred

bool-exp Boolean expression that performs a data comparison.
message String or an expression that can be converted to a string. If the bool-exp is FALSE, the

message expressions are converted to strings, concatenated, and printed to the screen
(and to the log file if it is open).
442 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

check_count(i:int) is {
check that i == expected_count else

dut_error("Bad i: ", i);
};

Result

*** Dut error at time 0
 Checked at line 6 in check4.e
 In sys-@0.check_count():

Bad i: 4

Will stop execution immediately (check effect is ERROR)

 *** Error: A Dut error has occurred

14.1.2 dut_error()

Purpose

Specify a DUT error message string

Category

Action

Syntax

dut_error(message: exp, ...)

Syntax example:

if 'data_out' != 'data_in' then
{dut_error("DATA MISMATCH: Expected ", 'data_in')};

Parameters

Description

Specifies a DUT error message string. This action is usually associated with an if action, a check that
action, or an expect struct member. If the boolean expression in the associated action or struct member eval-
uates to TRUE, then the error message string is displayed.

Calling dut_error() directly is exactly equivalent to:

check that FALSE else dut_error();

message String or an expression that can be converted to a string. The message expressions
are converted to strings, concatenated, and printed to the screen (and to the log file
if it is open).
This is an unapproved IEEE Standards Draft, subject to change.
443

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� When you call dut_error() directly (not within a check that or an expect), there is no
way to see that a check was successfully performed. session.check_ok is always FALSE after a
direct call to dut_error().

Example

<'
extend sys {

m() is {
if 'data_out' != 'data_in' then

{dut_error("DATA MISMATCH: Expected ", 'data_in')};
 };
};
'>

Result

*** Dut error at time 0
 Checked at line 4 in /tests/check6.e
 In sys-@0.m():

DATA MISMATCH: Expected 1

Will stop execution immediately (check effect is ERROR)

 *** Error: A Dut error has occurred

14.1.3 dut_error_struct

Purpose

Define DUT error response

Category

Predefined struct

Syntax

struct dut_error_struct {
message: string;
source_struct(): any_struct;
source_location(): string;
source_struct_name(): string;
source_method_name(): string;
check_effect(): check_effect;
set_check_effect(effect:check_effect);
write();
pre_error() is empty;

};

Syntax example:

extend dut_error_struct {
write() is also {

if source_struct() is a XYZ_packet (p) then {
444 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
print p.parity_calc();
};

};
};

Struct Members

Description

The predefined struct dut_error_struct defines the DUT error response. To modify the error response,
extend either write() or pre_error().

Only the write() and pre_error() methods are called directly by e programs, but you can use the other fields
and predefined methods of dut_error_struct when you extend write() or pre_error().

NOTE� Do not use dut_error_struct.write() to change the value of the check effect. Use
pre_error() instead.

Example 1

The following code implements a parity checker using DUT error checks. dut_error_struct.write() has
been extended to print additional information.

<'
type XYZ_kind_type : [good, bad] ;

struct XYZ_packet {
kind : XYZ_kind_type ;

message The message that was defined by the temporal or data DUT check and
is printed by dut_error_struct.write().

source_struct() Returns a reference to the struct where the temporal or data DUT check
is defined.

source_location() Returns a string giving the line number and source module name, for
example, �At line 13 in @checker�.

source_struct_name() Returns a string giving the name of the source struct, for example,
�packet�.

source_method_name() Returns a string giving the name of the method containing the DUT
data check, for example, �done()�.

check_effect() Returns the check effect of that DUT check, for example,
ERROR_AUTOMATIC.

set_check_effect() Sets the check effect in this instance of the dut_error_struct. You can
call this method from pre_error() to change the check effect of
selected checks.

pre_error() The first method that is called when a DUT error occurs, unless the
check effect is IGNORE. This method is defined as empty, unless
extended by the user. Extending this method lets you modify error han-
dling for a particular instance or set of instances of a DUT error.

write() The method that is called after dut_error_struct.pre_error() is called
when a DUT error happens. This method causes the DUT message to
be displayed, unless the check effect is IGNORE. You can extend this
method to perform additional actions.
This is an unapproved IEEE Standards Draft, subject to change.
445

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
%addr : uint (bits : 2) ;
%len : uint (bits : 6) ;
%data [len] : list of byte ;
%parity : byte ;

parity_calc() : byte is {

result = addr | (len << 2) ;
for each (item) in data do {

result ^= item ;
};

};

parity_check(p: XYZ_packet) is {
p.kind = ('data' == p.parity_calc()) ? good : bad;
if (p.kind == good) then {

check that 'err' == 0 else
dut_error ("Err != 0 for good pkt");

}
else {

check that 'err' == 1 else
dut_error ("Err != 1 for bad pkt");

};
};

};

extend dut_error_struct {
write() is also {

if source_struct() is a XYZ_packet (p) then {
print p.parity_calc();

};
};

};

extend sys {
packets[10]: list of XYZ_packet;

check_packets() is {
for each XYZ_packet (p) in packets {

p.parity_check(p);
};

};

setup() is also {
set_check("...Err...pkt...", ERROR_CONTINUE);

};

run() is also {
check_packets();

};

};
'>

Result

In this test, 9 DUT errors occur.

446 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 *** Dut error at time 0
 Checked at line 24 in check8.e
 In XYZ_packet-@0.parity_check():

Err != 1 for bad pkt
 p.parity_calc() = 228

Will continue execution (check effect is ERROR_CONTINUE)

...

No actual running requested.
Checking the test ...
Checking is complete - 9 DUT errors, 0 DUT warnings.

Example 2

This example extends Example 1, extending pre_error() so that no more than 3 parity errors will be dis-
played.

<'
extend sys {

num_parity_errors: uint;
keep num_parity_errors == 0;

};
extend dut_error_struct {

pre_error() is also {
if source_struct() is a XYZ_packet then {

sys.num_parity_errors = sys.num_parity_errors +1;
if sys.num_parity_errors > 3 then {

set_check_effect(IGNORE);
};

};
};

};
'>

Result

 *** Dut error at time 0
 Checked at line 25 in @checking8
 In XYZ_packet-@0.parity_check():

Err != 1 for bad pkt
 p.parity_calc() = 228

Example 3

This example shows how error messages can be handled within units. (See �Units Overview� on page 157
for a description of units and modular verification.)

To print some unit status information upon any error happening within a unit, you could extend
dut_error_struct.write() as shown below. The call to try_enclosing_unit() returns NULL if not called
from within a MIPS unit. If called from within a MIPS unit, the status of that MIPS unit is printed.
This is an unapproved IEEE Standards Draft, subject to change.
447

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
<'
extend dut_error_struct {

write() is also {
var MIPS:= source_struct().try_enclosing_unit(MIPS);

if MIPS != NULL then {
out("-- Status of ", MIPS.e_path(),

" at time of error: --");
MIPS.show_status();

};
};

};
'>

14.1.4 set_check()

Purpose

Set check severity

Category

Predefined routine

Syntax

set_check(static-match: string, check-effect: keyword)

Syntax example:

<'
extend sys {

setup() is also {
set_check("...", WARNING);

};
};
'>
448 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Sets the severity or the check effect of specific DUT checks, so that failing checks will produce errors or
warnings.

NOTE� This routine affects only checks that are currently loaded.

� If a DUT check�s check effect is ERROR and a configure run -error_command option is specified,
the error command actions are also executed.

Example

Loading the following extension changes the check effect of all currently defined checks to WARNING dur-
ing the setup phase.

<'
extend sys {

setup() is also {
set_check("...", WARNING);

};
};
'>

Result

static-match A regular expression enclosed in double quotes. Only checks whose
message string matches this regular expression are modified. The
match string must use either the native e syntax or an AWK-like syn-
tax. See �String Matching� on page 51.

NOTE� You must enclose AWK-like syntax in forward
slashes, for example, �/Vio/�. Also, the * character in native
e syntax matches only non-white characters. Use ... to match
white or non-white characters.

check-effect is one of the following:
ERROR Issues an error message, increases num_of_dut_errors, breaks the

run immediately and returns to the simulator prompt.
ERROR_BREAK_RUN Issues an error message, increases num_of_dut_errors, breaks the

run at the next cycle boundary.
ERROR_AUTOMATIC Issues an error message, increases num_of_dut_errors, breaks the

run at the next cycle boundary, and performs the end of test checking
and finalization of test data that is normally performed when
stop_run() is called.

ERROR_CONTINUE Issues an error message, increases num_of_dut_errors, and contin-
ues execution.

WARNING Issues a warning, increases num_of_dut_warnings and continues
execution.

IGNORE Issues no messages, does not increase num_of_dut_errors or
num_of_dut_warnings, and continues execution.
This is an unapproved IEEE Standards Draft, subject to change.
449

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Defined checks =

0. check @sn_cover in simulator.error_from_simulator (WARNING)
count=0 Error from simulator: ...

1. check @sn_cover_misc in covers.cover_dut_error (WARNING)
count=0 Illegal value for cover item ...

2. check @sn_coverage in scheduler.handle_event (WARNING)
count=0 event ... which has a global cover group, occurred
more than once

3. check @check8 in XYZ_packet.parity_check (WARNING) count=0
Err != 0 for good pkt

4. check @check8 in XYZ_packet.parity_check (WARNING) count=0
Err != 1 for bad pkt

14.2 Handling User Errors

The e language has several constructs that help you handle user errors, such as file I/O errors or semantic
errors. This section describes the constructs used for handling these kinds of errors:

� �warning()� on page 450, which issues a warning message when a given error occurs.
� �error()� on page 451, which issues an error message and exits when a given error is detected.
� �fatal()� on page 452, which issues an error message and exits to the OS prompt when a given error

is detected.
� �try� on page 454, which defines an alternative response for fixing or bypassing an error.

NOTE� Errors handled by these constructs do not increase the session.num_of_dut_errors and
session.num_of_dut_warnings fields that are used to track DUT errors. In addition, the error
responses defined with these constructs are not influenced by modifications to the
dut_error_struct.write() method.

14.2.1 warning()

Purpose

Issue a warning message

Category

Action

Syntax

warning(message: string, ...)

Syntax example:

warning("len exceeds 50");
450 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameter

Description

Issues the specified warning error message. Does not halt the methods being currently run.

Example

check_size() is {
if (pkt.size != LARGE) {

warning("packet size is ", pkt.size);
};

};

Result

*** Warning: packet size is SMALL

See Also

� �error()� on page 451
� �fatal()� on page 452
� �try� on page 454
� The run option of �set_config()� on page 766

14.2.2 error()

Purpose

Issue an error message

Category

Action

Syntax

error(message: string, ...)

Syntax example:

check_size() is {
if (pkt.size != LARGE) {

error("packet size is ", pkt.size);
};

};

message String or an expression that can be converted to a string. When the warning
action is executed, the message expressions are converted to strings, concate-
nated, and printed to the screen.
This is an unapproved IEEE Standards Draft, subject to change.
451

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameter

Description

Issues the specified error message, halts all methods being currently run. The only exception to this is if the
error action appears inside the first action block given in a try action. In that case, the e program jumps to
the else action block within the try action and continues running.

Example

<'
type size : [SMALL, LARGE];

struct packet {
size;

};

extend sys {
pkt: packet;

check_size() is {
if (pkt.size != LARGE) {

error("packet size is ", pkt.size);
};

};
};
'>

Result

*** Error: packet size is SMALL

See Also

� �warning()� on page 450
� �fatal()� on page 452
� �try� on page 454
� The run option of �set_config()� on page 766

14.2.3 fatal()

Purpose

Issue error message and exit to the OS prompt

Category

Action

Syntax

fatal(message: string, ...)

message String or an expression that can be converted to a string. When the error action is
executed, the message expressions are converted to strings, concatenated, and
printed to the screen.
452 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

fatal("Run-time error - exiting");

Parameter

Description

Issues the specified error message, halts all activity, exits immediately, and returns to the OS prompt.

fatal() returns a non-zero status to the OS shell.

Using fatal with config run error_command

You can use fatal() with the -error_command option of the config run command to automatically stop
simulation completely when an error occurs. For example, the following code creates the �error_actions()�
method, which is called when any error occurs:

extend sys {
setup() is also {

set_config(run, error_command, "sys.error_actions()");
};

};

And the following code defines �sys.error-actions()� to exit with the fatal() action when an error occurs:

extend sys {
error_actions() is {

-- .. Maybe perform other error actions here
fatal("Run-time error - exiting");

};
};

Example

The following code shows the use of warning(), error(), fatal(), and try. The code is intended to open a log
file. If the log file cannot be opened, the simulation issues a warning and tries to open a temporary log file. If
the temporary log file cannot be opened and if the simulation is in batch, it issues an error message and exits
to the OS prompt. If the simulation is interactive, it issues an error message only.

open_checking_log_file(file_name:string) is {
try {

var my_file :file = files.open(file_name, "w",
"Log file");

} else {
warning("Could not open ", file_name,

"; opening temporary log file sim.log");
try {

var my_file :file = files.open("sim.log", "w",
"Temp Log file");

} else {
close_stimulus_log_files();

message String or an expression that can be converted to a string. When the fatal()
action is executed, the message expressions are converted to strings, concate-
nated, and printed to the screen.
This is an unapproved IEEE Standards Draft, subject to change.
453

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
if interactive == FALSE {
fatal("Could not open temp file sim.log.\n\n",

"Please check write permissions on current",
" directory, sim.log, and ", file_name,
".\n\nError level is ", error_level, ".");

} else {
error("Could not open temp file sim.log.\n\n",

"Please check write permissions on current",
" directory, sim.log, and ", file_name,
".\n\nError level is ", error_level, ".");

};
};

};
};

See Also

� �warning()� on page 450
� �error()� on page 451
� �try� on page 454
� The run of �set_config()� on page 766

14.2.4 try

Purpose

Define an alternative response for fixing or bypassing an error

Category

Action

Syntax

try {action; ...} [else {action; ...}]

Syntax example:

try {
var my_file :file = files.open(file_name, "w",

"Log file");
} else {

warning("Could not open ", file_name,
"; opening temporary log file sim.log");

};
454 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Executes the action block following try. If an error occurs, executes the action block specified in the else
clause, in which the error can be fixed or handled. If no error occurs, the else clause is skipped.

If you do not specify an else clause, execution after errors continues normally from the first action following
the try block.

Example

The following code example shows the use of warning(), error(), fatal(), and try. The code is intended to
open a log file. If the log file cannot be opened, the simulation issues a warning and tries to open a temporary
log file. If the temporary log file cannot be opened and if the simulation is in batch, it issues an error mes-
sage and exits to the OS prompt. If the simulation is interactive, it issues an error message only.

open_checking_log_file(file_name:string) is {
try {

var my_file :file = files.open(file_name, "w",
"Log file");

} else {
warning("Could not open ", file_name,

"; opening temporary log file sim.log");
try {

var my_file :file = files.open("sim.log", "w",
"Temp Log file");

} else {
close_stimulus_log_files();
if interactive == FALSE {

fatal("Could not open temp file sim.log.\n\n",
"Please check write permissions on current",
" directory, sim.log, and ", file_name,
".\n\nError level is ", error_level, ".");

} else {
error("Could not open temp file sim.log.\n\n",
"Please check write permissions on current",
" directory, sim.log, and ", file_name,
".\n\nError level is ", error_level, ".");

};
};

};
};

See Also

� �warning()� on page 450
� �error()� on page 451
� �fatal()� on page 452
� The run option of �set_config()� on page 766

action; ... A series of zero or more actions enclosed in curly braces and separated by semico-
lons.

The first action block (following try) cannot include the fatal() action. Subsequent
action blocks (following else) can.
This is an unapproved IEEE Standards Draft, subject to change.
455

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
14.3 Handling Programming Errors

14.3.1 Overview

The e language has a special construct, the assert action, to help you handle programming errors, such as
internal contradictions or invalid parameters.

14.3.2 assert

Purpose

Check the e code for correct behavior

Category

Action

Syntax

assert bool-exp [else error(message: string, ...)]

Syntax example:

assert a < 20;

Parameters

Description

Checks the e code for correct behavior. Use this action to catch coding errors. When an assert fails, it prints
the specified error message plus the line number and name of the file in which the error occurred. If you
omit the else error clause, assert prints a global error message.

NOTE� When an error is encountered, assert stops the method being executed.

Example

<'
extend sys {

a: uint;

m() is {
assert a < 20 else error("The value of a is ", a);
out("Should never get here if a is 20 or more");

};
};
'>

bool-exp Boolean expression that checks the behavior of the code.
message String or an expression that can be converted to a string. If the bool-exp is FALSE,

the message expressions are converted to strings, concatenated, and printed to the
screen (and to the log file if it is open).
456 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result*** Error: Assertion failed (a programming error):

The value of a is 1840385568
In ’sys.m()’ at line 6 in check22.e

See Also

� �warning()� on page 450
� �error()� on page 451
� �fatal()� on page 452
� �try� on page 454
� The run option of �set_config()� on page 766
This is an unapproved IEEE Standards Draft, subject to change.
457

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
458 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
15 Methods

e methods are similar to C functions, Verilog tasks, and VHDL processes. An e method is an operational
procedure containing actions that define its behavior. A method can have parameters, local variables, and a
return value. You can define a method only within a struct and you must create an instance of the struct
before you can execute the method. When a method is executed, it can manipulate the fields of that struct
instance.

You can define methods that execute within a single point of simulation time (within zero time) or methods
that execute over multiple cycles. The first type of method is referred to as a regular method. The second
type is called a time consuming method or TCM. TCMs are used to synchronize processes in an e program
with processes or events in the DUT. Within a single e program, multiple TCMs can execute either in
sequence or concurrently, along parallel but separate threads. A TCM can also have internal branches, which
are multiple action blocks executing concurrently.

Methods defined in one module can later be overwritten, modified or enhanced in subsequent modules using
the extend mechanism. See �Rules for Defining and Extending Methods� on page 459 for information on
how to define and extend methods.

Implementing an e method is usually done in e. However, you might want to write a C routine and convert it
into an e method. You can do this by declaring an e method that is implemented in C.

See Also

� �Rules for Defining and Extending Methods� on page 459
� �Invoking Methods� on page 474
� �Parameter Passing� on page 484

15.1 Rules for Defining and Extending Methods

There are two phases in the declaration of regular methods and time-consuming methods (TCMs):

� Introduction
� Extension

You must introduce a method before you extend it. The introduction can be in the same struct as the exten-
sion or in any struct that this struct inherits from, but it must precede the extension during file loading.

To introduce a method, you can use:

� is [C routine]
� is undefined | empty

To extend a method, you can use:

� is also | first | only
� is only C routine

You can also use is to extend a method in the following cases:

� The method was previously introduced with is undefined or is empty and has not been previously
extended in this struct or in any struct that inherits from this struct.
This is an unapproved IEEE Standards Draft, subject to change.
459

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� The method was previously introduced (and perhaps extended) in a struct that this struct inherits
from, as long as the method has not already been extended in this struct or in any struct that inherits
from this struct using like.

In these cases, using is after is or after is also | first | only in a when or like child is similar to using is only in
this context except that an error message is generated if child is extended more than once or if a child is
extended after any of its like grandchild are extended. The advantage of using is instead of is only is that you
will see an error if the method extensions do not occur in the order you expect.

NOTE� As you might expect, if you use is after is or after is also | first | only in a when or like
child or in one of their descendents, you cannot subsequently use is to redefine the method in the
parent.

 Table 15-1, �Rules for Method Extension�, on page 460 summarizes the rules for introducing and extending
methods. Please keep in mind the following:

� The �none� heading in the table indicates that the method has not been introduced yet.
� The only heading represents is also, is first, and is only.
� The �+� character indicates �is allowed�.
� The �-� character indicates �is not allowed�.
� The �C� character indicates �is allowed� only in a like child, a when child, or one of its descendents.

Notes

The following restrictions apply to all methods:

� The maximum number of parameters you can declare for a method is 14.
You can work around this restriction by passing a compound parameter such as a struct or a list.

� You cannot define methods with variable argument lists.
You can work around this restriction by passing a list, which can have variable lengths, or a struct,
which can have conditional fields. For example, the following method accepts a list of structs, and
performs appropriate operations on each struct in the list, depending on its type:

 m(l: list of any_struct) is {

 for each (s) in l do {

 if s is a packet (p) then {};

 if s is a cell (c) then {};

Table 15-1�Rules for Method Extension

Previous Declaration

none undefined empty is only

Extending by

undefined + - - - -

empty + - - - -

is + + + C C

only - + + + +
460 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 };

 };

This method can then be called as follows:

m({my_cell; my_packet});

Example 1

The following example shows that you can use is to extend a method in a child after the method has been
introduced with is in the parent. However, extending a child more than once with is generates an error.
Extending a child (B) with is after extending its descendant (C) also generates an error.

struct A {my_type() is {out("I am type A")}};

struct B like A {};

struct C like B {my_type() is {out("I am type C, grandchild of A")}};

--extending a child more than once with 'is' gives an error
--extend C {my_type() is {out("This extension is not allowed!")}};

--extending a child with 'is' after extending a descendant gives an error
--extend B {my_type() is {out("I am type B, child of A")}};

Example 2

This example shows that extending a method in a child (FALSE'bye A) is allowed, even though the method
has been extended in a sibling�s descendant (stop bye A).

struct A {
 bye:bool;
 greetings() is empty;
};

extend bye A {
 stop:bool;

 when stop bye A{
 greetings() is {out("when bye and stop are TRUE, A says bye")};
 };
};

--this extension of a method in a child is allowed, even
--though the method has been extended in a sibling
extend FALSE'bye A {greetings() is {out("when bye is FALSE, A says hi")}};

Example 3

This example shows that if you use is after is or after is also | first | only in a when or like child or in one of
their descendents, you cannot subsequently use is to redefine the method in the parent. The last line in the
following example generates an error:

struct A {
 bye:bool;
 greetings() is empty;
This is an unapproved IEEE Standards Draft, subject to change.
461

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

extend bye A {
 stop:bool;

 when stop bye A{
 greetings() is {out("when bye and stop are TRUE, A says bye")};
 };
};

--this extension of a method in the parent generates an error
--extend A {greetings() is {out("A says hello")}};

Changing the last line to

extend A {greetings() is only {out("A says hello")}};

removes the error, but overrides the method definition in all A�s subtypes as well.

The following sections describe the syntax for defining and extending methods:

� �method is [inline]� on page 462
� �method @event is� on page 464
� �method [@event] is also | first | only | inline only� on page 467
� �method [@event] is undefined | empty� on page 472

See Also

� �Extending Methods in When Subtypes� on page 136
� �Restrictions on Like Inheritance� on page 149

15.1.1 method is [inline]

Purpose

Declare a regular method

Category

Struct member

Syntax

method-name ([parameter-list]) [: return-type] is [inline] {action;...}

Syntax example:

struct print {
 print_length() is { out("The length is: ", length); };
};
462 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

An e method is an operational procedure containing actions that define its behavior. A method can have
parameters, local variables, and a return value. You can define a method only within a struct, and you must
create an instance of the struct before you can execute the method. When a method is executed, it can manip-
ulate the fields of that struct instance.

Defining a method as inline requires the e program to generate code that enables the C compiler to inline the
method. The C compiler to place all the code for the method at each point in the code where the method is
called. This inline expansion allows the compiler to optimize the inline method code for the best perfor-
mance. Methods that are frequently called and involve computation, such as the one shown below, are good
candidates for inline definition. This method takes two integers as arguments and returns an integer:

struct meth {
get_free_area_size(size: int, taken: int): int is inline {

result = size - taken;
};

};

Notes

In addition to the restrictions on all regular methods (see �Notes� in �Rules for Defining and Extending
Methods� on page 459), the following restrictions apply to inline methods:

� The Gnu C compiler can inline most methods declared as inline without any additional flags. For the
Sun native C compiler, you might need to use the -xO4 flag; for the HP native compiler, the +O3
flag.

� A method originally defined as inline cannot be redefined using is only, is first, or is also.
� Methods defined in when conditional struct members cannot be inline.
� Time-consuming methods (TCMs) cannot be inline.

method-name A legal e name. See Chapter 2, �e Basics� for more information on names.
parameter-list A list composed of zero or more parameter declarations of the form param-

name: [*]param-type separated by commas. The parentheses around the
parameter list are required even if the parameter list is empty.
param-name A legal e name. See Chapter 2, �e Basics� for more informa-

tion on names.
* When an asterisk is prefixed to a scalar parameter type, the

location of the parameter, not its value, is passed. When an
asterisk is prefixed to a list or struct type, the method can
completely replace the struct or list. See �Parameter Passing�
on page 484 for more information.

param-type Specifies the parameter type.
return-type For methods that return values, specifies the data type of the return value. See

Chapter 3, �Data Types� for more information.
inline Defines a new inline method and allows the compiler to optimize the inline

method code for the best performance.
action;... A list of zero or more actions. Actions that consume time are illegal in the

action block of a regular method. For information on actions, see �Actions� on
page 14.
This is an unapproved IEEE Standards Draft, subject to change.
463

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� You cannot set a breakpoint on an inline method when there are compiled files that call the method.

Example

This example shows a method that adds two parameters and returns the result. result is an implicit variable
of the declared return type int.

sum(a: int, b: int): int is {
result = a + b;

};

It is legal to assign to the result variable implicitly by using the following alternate syntax:

sum(a: int, b: int): int is {
return a + b;

};

See Also

� �method @event is� on page 464
� �method [@event] is also | first | only | inline only� on page 467
� �method [@event] is undefined | empty� on page 472
� �Rules for Defining and Extending Methods� on page 459
� �Invoking Methods� on page 474
� �Parameter Passing� on page 484
� Chapter 23, �Predefined Methods Library�
� Chapter 2, �e Basics� (in particular, �Actions� on page 14)

15.1.2 method @event is

Purpose

Declare a time-consuming method

Category

Struct member

Syntax

method-name ([parameter-list]) [: return-type]@event is {action;...}

Syntax example:

struct meth {
main() @pclk is {

wait @ready;
wait [2];
init_dut();
emit init_complete;

};
};
464 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Defines a new time consuming method (TCM). e methods are similar to C functions, Verilog tasks, and
VHDL processes. An e method is an operational procedure containing actions that define its behavior. A
method can have parameters, local variables, and a return value. You can define a method only within a
struct and you must create an instance of the struct before you can execute the method. When a method is
executed, it can manipulate the fields of that struct instance.

TCMs can execute over multiple cycles and are used to synchronize processes in an e program with pro-
cesses or events in the DUT. TCMs can contain actions that consume time, such as wait, sync, and state
machine, and can call other TCMs. Within a single e program, multiple TCMs can execute either in
sequence or in parallel, along separate threads. A TCM can also have internal branches, which are multiple
action blocks executing concurrently.

The �main()� TCM shown here waits two �pclk� cycles after the event �ready� occurs. It calls a method to
initialize the DUT and emits an event when the initialization is complete.

struct meth {
event pclk is rise('top.pclk')@sim;
event ready is rise('top.ready')@sim;
event init_complete;
init_dut() is empty;
main() @pclk is {

wait @ready;
wait [2];
init_dut();
emit init_complete;

method-name A legal e name. See �Chapter 2, �e Basics� for more information on names.
parameter-list A list composed of zero or more parameter declarations of the form param-

name: [*]param-type separated by commas. The parentheses around the
parameter list are required even if the parameter list is empty.
param-name A legal e name. See �Chapter 2, �e Basics� for more information

on names.
* When an asterisk is prefixed to a scalar parameter type, the loca-

tion of the parameter, not its value, is passed. When an asterisk
is prefixed to a list or struct type, the method can completely
replace the struct or list. See �Parameter Passing� on page 484
for more information.

param-type Specifies the parameter type.
return-type For methods that return values, specifies the data type of the return value. See

Chapter 3, �Data Types� for more information.
@event Specifies a default sampling event that determines the sampling points of the

TCM. This event must be a defined event in e and serves as the default sam-
pling event for the time consuming method itself as well as for time consuming
actions, such as wait, within the TCM body. Other sampling points can also be
added within the TCM. See Chapter 9, �Temporal Expressions� for informa-
tion on defining default sampling events.

action;... A list of zero or more actions, either time-consuming actions or regular
actions. For information on actions, see �Actions� on page 14.
This is an unapproved IEEE Standards Draft, subject to change.
465

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
};

A TCM can specify events other than the default event as sampling points for actions. For example, adding
the �@ready� sampling event to the �wait [2]� causes the TCM to wait two �ready� cycles rather than two
pclk cycles:

main() @pclk is {
wait @ready;
wait [2] @ready;
init_dut();
emit init_complete;

};

For more information on sampling events, see Chapter 8, �Events�. For more information on temporal
expressions, see Chapter 9, �Temporal Expressions�.

Notes

The following restrictions apply to all TCMs:

� The maximum number of parameters you can declare for a TCM is 14.
You can work around this restriction by passing a compound parameter such as a struct or a list.

� You cannot define methods with variable argument lists.
You can work around this restriction by passing a list, which can have variable lengths, or a struct,
which can have conditional fields. For example, the following TCM accepts a list of structs, and per-
forms appropriate operations on each struct in the list, depending on its type:

 m(l: list of any_struct)@send_data is {

 for each (s) in l do {

 if s is a packet (p) then {};

 if s is a cell (c) then {};

 };

 };

This method can then be called as follows:

start m({my_cell; my_packet});

Example

The �init_dut� TCM shown has two branches running in parallel. The first branch is waiting for a �reset�
event. The second branch waits for two cycles of �cclk� and then launches three methods that check the state
of the DUT. If all three checking methods complete before a reset occurs, then the �Checking is complete...�
message is displayed, and the branch that is waiting for the reset event terminates. If the reset occurs before
the checking methods have completed, they are terminated and the message �A reset has happened...� is dis-
played. The �cclk� event and the �reset� event are defined as events in the DUT.

event mready;
event reset is rise('top.reset')@sim;
event cclk is rise('top.cclk')@sim;

init_dut() @cclk is {
466 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
first of {
{

wait @reset;
out("A reset has happened...");

};
{

wait [2];
all of {

{check_bus_controller()};
{check_memory_controller()};
{check_alu()};

};
out("Checking is complete...");
emit mready;

};
};

};

See Also

� �method is [inline]� on page 462
� �method [@event] is also | first | only | inline only� on page 467
� �method [@event] is undefined | empty� on page 472
� �Rules for Defining and Extending Methods� on page 459
� �Invoking Methods� on page 474
� �Parameter Passing� on page 484
� Chapter 9, �Temporal Expressions�
� Chapter 10, �Temporal Struct Members�
� Chapter 11, �Time-Consuming Actions�
� �start tcm()� on page 477
� �Semaphore Methods� on page 680
� �event� on page 305

15.1.3 method [@event] is also | first | only | inline only

Purpose

Extend a regular method or a TCM

Category

Struct member

Syntax

method-name ([parameter-list]) [: return-type] [@event-type] is
[also|first|only|inline only] {action;...}

Syntax example:

struct meth {
run() is also {

out("Starting main...");
start main();

};
This is an unapproved IEEE Standards Draft, subject to change.
467

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

Parameters

Description

Replaces or extends the action block in the original method declaration with the specified action block. The
following example extends the struct�s predefined method �run()� to start a user-defined TCM. (A TCM is a
time-consuming method that is distinguished from a regular method by the presence of @event and can use
time-consuming actions such as sync and wait.)

run() is also {
out("Starting main...");
start main();

};

This example extends the �init_dut()� TCM to start another user-defined TCM, �load_mem�. This TCM is
called after all the checking methods in the original method have completed successfully.

extend check_all {
load_mem() @cclk is {out("Loading memory...");};

init_dut() @cclk is also {
wait @mready;
start load_mem();

};
};

Notes

� Methods that were originally defined as inline cannot be extended or redefined.
� The original method and its extensions share the me and result variables. No other local variables

can be shared across extensions.
� The following rules apply for return actions in extended methods, as illustrated in Figure 15-1 on

page 469, Figure 15-2 on page 470 and Figure 15-3 on page 470:
� When an extension issues a return, any actions following that return within the extension itself are

not executed.

method-name The name of the original method.
parameter-list Specifies the same parameter list as defined in the original method, or a com-

pile-time error is issued.
return-type Specifies the same return value as defined in the original method, or a compile-

time error is issued.
@event-type Specifies the same sampling event as defined in the original method or a com-

pile-time error is issued.
also The new action block is appended to the end of the original action block.
first The new action block is inserted before the original action block.
only The new action block overrides the original action block.
inline only Replaces the original method definition with an inline definition. The original

method must be a regular method, not a TCM.
action;... A list of zero or more actions. Actions that consume time are illegal in the

action block of a regular method. For information on actions, see �Actions� on
page 14.
468 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� When a method is extended with is also, the extension starts executing right after the older version of
the method completes execution.

� is also extensions are executed regardless of whether the older version of the method issues a return
or not.

� When a method is extended with is first, the older version of the method is never executed if the
extension issues a return.

� When a method is extended with is only, the older version of the method is never executed, whether
the extension issues a return or not.

Figure 15-1 on page 469 shows how a method with an is also extension is executed. The older version exe-
cutes first and then the is also extension. Notice that the �This is also2...� statement is not executed because
it follows a return.

Figure 15-1�Execution of is also Method Extension

Figure 15-2 on page 470 shows the same method extended again, this time with is first. If a return state-
ment is included in the is first extension, the older version of the method (the original method definition and
the is also extension) do not execute. If the return statement is deleted, the is first extension executes and
then the older version of the method executes.

is also

older ver-
sion of
method

module methods1.e
<'
struct meth {

m() is {
out("This is...");

};
};

extend sys {
mi:meth;

};

extend meth {
m() is also {

out("This is also...");
return;
out("This is also2...");

};
};

Result

This is...
This is also...
This is an unapproved IEEE Standards Draft, subject to change.
469

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Figure 15-2�Execution of is first Method Extension

Figure 15-3 on page 470 shows another extension with is also. Notice that this new extension executes,
regardless of whether there is a return in the older version of the method or not.

Figure 15-3�Execution of is first Method Extension

Example 1

This example redefines the �increment_cnt()� method as an inline method.

return?

is first

yes

no

older ver-
sion of
method

module methods2.e
<'
import methods1.e;
extend meth {

m() is first {
out("This is first...");
return;

};
};
'>
Result with a return in is first

This is first...

Result with no return in is first

This is first...
This is...
This is also...

module methods3.e
<'
import methods2.e;
extend meth {

m() is also {
out("This is also3...");

};
};
'>

Result with a return in is first

This is first...
This is also3...

Result with no return in is first

This is first...
This is...
This is also...
This is also3...

is also

older ver-
sion of
method
470 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend meth {
increment_cnt (cnt: *int) is inline only {

cnt = cnt + 1;
};

};

Example 2

In this example, the �show()� method is defined originally to identify the kind of packet. The �show()�
method extension displays a different version of the message when the packet has an error.

type packet_kind: [ETH, ATM] (bits:8);

struct packet {
kind: packet_kind;
has_error: bool;

show() is {
out("Packet kind is...", kind);

};

when has_error packet{
show() is only {

out("This packet has an error...");
};

};
};

Example 3

This example extends the �execute()� method to return immediately if the �top.interrupt� signal is active,
without executing any of the actions in the original method. Note that the parameter list in the extension is
the same as the parameter list in the original method definition, and the sampling event must also be
repeated for the extension. Similarly, when the original method definition has a return type, it must be
repeated in the method extension.

struct ctrl_stub {
execute(cmd: ctrl_cmd) @cclk is {

out(appendf("Executing a %s (addr %s) control command",
cmd.kind, cmd.addr));

case cmd.kind {
RD: {

wait [2];
};
WR: {

wait [2];
};

};
};

};

extend ctrl_stub {
execute(cmd: ctrl_cmd) @cclk is first {

if ('top.interrupt' == 1) then {
return;
This is an unapproved IEEE Standards Draft, subject to change.
471

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
};

};

See Also

� �method is [inline]� on page 462
� �method @event is� on page 464
� �method [@event] is undefined | empty� on page 472
� �Rules for Defining and Extending Methods� on page 459
� �Extending Methods in When Subtypes� on page 136

15.1.4 method [@event] is undefined | empty

Purpose

Declare an abstract method

Category

Struct member

Syntax

method-name ([parameter-list]) [: return-type] [@event-type] is [undefined|empty]

Syntax example:

struct packet {
show() is undefined;

};
472 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Declares an abstract regular method or an abstract TCM with no defined functionality. Abstract methods are
place holders that you can extend at a later point. A TCM is a time-consuming method that is distinguished
from a regular method by the presence of @event and can use time-consuming actions such as sync and
wait.

Notes

The following restrictions apply to all abstract methods:

� The maximum number of parameters you can declare for a TCM is 14.
You can work around this restriction by passing a compound parameter such as a struct or a list.

� You cannot define methods with variable argument lists.
You can work around this restriction by passing a list, which can have variable lengths, or a struct,
which can have conditional fields.

Example

Undefined or empty methods are often used in base types. This example declares an abstract method
�show()� in the base struct �packet� and defines the appropriate functionality in the �Ethernet packet� and
�IEEE packet� subtypes.

type packet_protocol: [Ethernet, IEEE, foreign];

method-name A legal e name. See �Chapter 2, �e Basics� for more information on names.
parameter-list A list composed of zero or more parameter declarations of the form param-

name: [*]param-type separated by commas. The parentheses around the
parameter list are required even if the parameter list is empty.
param-name A legal e name. See Chapter 2, �e Basics� for more infor-

mation on names.
* When an asterisk is prefixed to a scalar parameter type, the

location of the parameter, not its value, is passed. When an
asterisk is prefixed to a list or struct type, the method can
completely replace the struct or list. See �Parameter Pass-
ing� on page 484 for more information.

param-type Specifies the parameter type.
return-type For methods that return values, specifies the data type of the return value. See

Chapter 3, �Data Types� for more information.
@event-type Specifies a default sampling event that determines the sampling points of the

TCM. This event must be a defined event in e and serves as the default sam-
pling event for the TCM itself as well as for time consuming actions, such as
wait, within the TCM body. Other sampling points can also be added within
the TCM.

undefined No action block is defined for the method yet; an action block must be defined
in a subsequent module before this method is called. A runtime error is issued
if it is called before it is defined.

empty The action block is empty, but no error is issued if it is called. Empty value-
returning methods return the default value for the type.
This is an unapproved IEEE Standards Draft, subject to change.
473

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct packet {
protocol: packet_protocol;
size: int [0..1k];
data[size]: list of byte;

show() is undefined;
};

extend Ethernet packet {
e_field: int;

show() is {out("This is an Ethernet packet")};
};

extend IEEE packet {
i_field: int;

show() is {out("This is an IEEE packet")};
};

extend sys {
a: foreign packet;
b: Ethernet packet;
c: IEEE packet;

run() is also {
a.show();
b.show();
c.show();
};

};

Result

Notice that no message is printed by the foreign packet.

This is an Ethernet packet
This is an IEEE packet
No actual running requested.
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.

See Also

� �method is [inline]� on page 462
� �method @event is� on page 464
� �method [@event] is also | first | only | inline only� on page 467
� �Rules for Defining and Extending Methods� on page 459

15.2 Invoking Methods

Before invoking a method, you must create an instance of the struct that contains it. The call must conform
to the proper syntax and must be made from an appropriate context, as described below.

The following sections describe the two ways to invoke a TCM:
474 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �tcm()� on page 475
� �start tcm()� on page 477

The following sections describe how you can call regular methods:

� �method()� on page 478
� �compute method()� on page 480

The last section describes the return action:

� �return� on page 481

See Also

� �Rules for Defining and Extending Methods� on page 459
� �Parameter Passing� on page 484

15.2.1 tcm()

Purpose

Call a TCM

Category

Action or expression

Syntax

[[struct-exp].]method-name([parameter-list])

Syntax example:

init_dut();
This is an unapproved IEEE Standards Draft, subject to change.
475

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

You can call a TCM only from another TCM.

A TCM that does not return a value can be started (see �start tcm()� on page 477) or called. A call of a TCM
that does not return a value is syntactically an action.

A call of a TCM that does return a value is an expression, and the return type of the TCM must conform to
the type of the variable or field it is assigned to.

A called TCM begins execution either when its sampling event occurs or immediately, if the sampling event
has already occurred for the current tick.

The calling TCM waits until the called TCM returns before continuing execution. For this reason, a called
TCM is considered a subthread of the calling TCM and shares the same thread handle (thread ID) with the
calling TCM. In contrast, a started TCM runs in parallel with the TCM that started it, on a separate thread.

NOTE� You cannot call a TCM from a regular method. To invoke a TCM from within a regular
method, use start.

Example

This example shows how to call a TCM from another TCM.

struct meth {
event pclk is rise('top.pclk')@sim;
event ready is rise('top.ready')@sim;
event init_complete;
init_dut() @pclk is empty;
main() @pclk is {

wait @ready;
wait [2];
init_dut();
emit init_complete;

struct-exp The pathname of the struct that contains the method. If the struct expression is
missing, the implicit variable it is assumed. If both struct expression and the
period (.) are missing, the method name is resolved according to the scoping
rules. In other words,

� .init_dut() means it.init_dut()

� init_dut() means me.init_dut(), or if that does not exist, global.init_dut()

See �Chapter 2, �e Basics� for more information on naming resolution.
method-name The method name as specified in the method definition.
parameter-list A list of zero or more parameters separated by commas, one parameter for each

parameter in the parameter list of the method definition. Parameters are passed
by their relative position in the list, so the name of the parameter being passed
does not have to match the name of the parameter in the method definition. The
parentheses around the parameter list are required even if the parameter list is
empty.
476 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

See Also

� �start tcm()� on page 477
� Chapter 11, �Time-Consuming Actions�
� �Struct Hierarchy and Name Resolution� on page 19
� �Invoking Methods� on page 474
� �Rules for Defining and Extending Methods� on page 459
� �Parameter Passing� on page 484

15.2.2 start tcm()

Purpose

Start a TCM

Category

Action

Syntax

start [[struct-exp].]method-name([parameter-list])

Syntax example:

start main();

Parameters

Description

You can use a start action within another method, either a TCM or a regular method. A started TCM begins
execution either when its sampling event occurs or immediately, if the sampling event has already occurred
for the current tick.

A started TCM runs in parallel with the TCM that started it on a separate thread. A started TCM has a unique
thread handle (thread ID) that is assigned to it automatically by the scheduler. You can retrieve this handle
using one of the predefined methods of the scheduler.

struct-exp The pathname of the struct that contains the method. If the struct expression is
missing, the implicit variable it is assumed. If both struct expression and the
period (.) are missing, the method name is resolved according to the scoping
rules. See �Chapter 2, �e Basics� for more information on naming resolution.

method-name The method name as specified in the method definition.
parameter-list A list of zero or more parameters separated by commas, one parameter for each

parameter in the parameter list of the method definition. Parameters are passed
by their relative position in the list, so the name of the parameter being passed
does not have to match the name of the parameter in the method definition. The
parentheses around the parameter list are required even if the parameter list is
empty.
This is an unapproved IEEE Standards Draft, subject to change.
477

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The recommended way to start an initial TCM, which can then invoke other TCMs, is to extend the related
struct�s predefined run() method.

NOTE� A TCM that has a return value cannot be started with a start action.

Example

This example shows how to extend a struct�s run() method to start a TCM. Note that the start syntax omits
the default sampling event.

struct meth {
event clk is rise('top.clk');
run() is also {

out("Starting main...");
start main();

};
};

See Also

� �The run() Method of sys� on page 646
� Chapter 11, �Time-Consuming Actions�
� �Struct Hierarchy and Name Resolution� on page 19
� �Invoking Methods� on page 474
� �Rules for Defining and Extending Methods� on page 459
� �Parameter Passing� on page 484

15.2.3 method()

Purpose

Call a regular method

Category

Action or expression

Syntax

[[struct-exp].]method-name([parameter-list])

Syntax example:

tmp1 = get_free_area_size(size, taken);
478 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

The proper context for calling a regular method depends on whether the method returns a value or not.

� If the method returns a value, it is an expression and can be called from any context where an expres-
sion is valid.

� If the method does not return a value, it is an action and can be called from any context where an
action is valid.

Example 1

Two common contexts for calling value-returning methods are shown below.

m() is {
var tmp1: int;
tmp1 = get_free_area_size(size, taken);
print tmp1;

};
keep length <= get_free_area_size(size, taken);

When placed on the right-hand side of an assignment operator, the method�s return value type must conform
to the type of the variable or field it is assigned to.

Example 2

In some cases you may want to call a value-returning method without using the value that is returned. To do
this, you can use the compute action. In the example shown below, the �m()� method increments the
�counter� variable, but does not use the value returned.

inc_counter() : int is {
counter += 1;
result = counter;

};
m() is {

if 'top.b' > 15 {compute inc_counter();};
};

struct-exp The pathname of the struct that contains the method. If the struct expression is
missing, the implicit variable it is assumed. If both struct expression and the
period (.) are missing, the method name is resolved according to the scoping
rules. See Chapter 2, �e Basics�, for more information about naming resolution.

method-name The method name as specified in the method definition.
parameter-list A list of zero or more parameters separated by commas, one parameter for each

parameter in the parameter list of the method definition. Parameters are passed
by their relative position in the list, so the name of the parameter being passed
does not have to match the name of the parameter in the method definition. The
parentheses around the parameter list are required even if the parameter list is
empty.
This is an unapproved IEEE Standards Draft, subject to change.
479

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 3

You can call regular methods that do not return values either from other methods, including TCMs, from
action blocks associated with other constructs, as shown below.

event alu_watcher is {rise('inst_start') exec {
var i: inst;
i = new;
instructions.add(i);
};

};

See Also

� �compute method()� on page 480
� �Struct Hierarchy and Name Resolution� on page 19
� �Rules for Defining and Extending Methods� on page 459
� �Parameter Passing� on page 484

15.2.4 compute method()

Purpose

Compute a regular method

Category

Action

Syntax

compute [[struct-exp].]method-name([parameter-list])

Syntax example:

if 'top.b' > 15 {compute inc_counter();};
480 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

In some cases you may want to call a value-returning method without using the value that is returned. To do
this, you can use the compute action.

Example

In the example shown below, the �m()� method increments the �counter� variable, but does not use the value
returned.

inc_counter() : int is {
counter += 1;
result = counter;

};
m() is {

if 'top.b' > 15 {compute inc_counter();};
};

See Also

� �method()� on page 478
� �Struct Hierarchy and Name Resolution� on page 19
� �Rules for Defining and Extending Methods� on page 459
� �Parameter Passing� on page 484

15.2.5 return

Purpose

Return from regular method or a TCM

Category

Action

Syntax

return [exp]

Syntax example:

struct-exp The pathname of the struct that contains the method. If the struct expression is
missing, the implicit variable it is assumed. If both struct expression and the
period (.) are missing, the method name is resolved according to the scoping
rules. See Chapter 2, �e Basics�, for more information about naming resolution.

method-name The method name as specified in the method definition.
parameter-list A list of zero or more parameters separated by commas, one parameter for each

parameter in the parameter list of the method definition. Parameters are passed
by their relative position in the list, so the name of the parameter being passed
does not have to match the name of the parameter in the method definition. The
parentheses around the parameter list are required even if the parameter list is
empty.
This is an unapproved IEEE Standards Draft, subject to change.
481

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
return i*i;

Parameters

Description

Returns immediately from the current method to the method that called it. The execution of the calling
method then continues.

It is not always necessary to provide a return action. When a value returning method ends without a return
action, the value of result is returned.

Notes

� The return action must be used carefully in method extensions. See �method [@event] is also | first
| only | inline only� on page 467 for more information.

� Any actions that follow a return action in the method definition are ignored.
� Actions placed in a method extension are performed before the return is executed.

Example 1

This example shows return in a value-returning expression.

<'
extend sys {

sqr(i: uint): uint is {
return i*i;

};
};
'>

Example 2

This example shows return in a non-value-returning method named �start_eng()�.

<'
struct eng_str {

on: bool;
};

struct st_eng {
engine: eng_str;
start_eng(e: eng_str) is {

if e.on then {
out("engine is already on");
return;

};
e.on = TRUE;
out("engine has been turned on");

};
};
'>

exp In value-returning methods, an expression specifying the return value is required in each
return action. In non-value-returning methods, expressions are not allowed in return
actions.
482 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 3

For value-returning methods, instead of a return, the special variable result can be assigned and its value is
returned. In the example below, if �t� is less than 100, the �sqr_1()� method exits, returning �t�. Otherwise,
it returns 101.

<'
extend sys {

sqr_1(i: uint): uint is {
var t := i*i;
if t < 100 then {

return t;
};
result = 101;

};
};
'>

Example 4

This example illustrates that any actions following a return action in a method definition or in a method
extension are ignored:

<'
extend sys {

m1(): int is {
return 5;
result = 0;
out ("FAIL");

};
m1():int is also {

return result + 7;
out ("FAIL");

};
};
'>

Result

print sys.m1() using dec
sys.m1() = 12

Example 5

The following example shows a method that has a compound type as a return value. In the get_alpha_num()
method, the return action calls another method, select_list(), which has an index, slctr, which can have a
value from 0 to 3.

The select_list() method returns a list of strings (�a0�, �a1�, �a2�, �a3�, for example), which is determined
by the value (A, B, C, or D) of the ALPHA field.

In the call to select_list(), the slctr value is used as an index into the list of strings returned from the case
action by select_list(). Thus, the get_alpha_num() method, called in run() in sys, returns the string with
index = slctr from the list for case = ALPHA.

<'
This is an unapproved IEEE Standards Draft, subject to change.
483

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
type a_type: [A, B, C, D, E];
struct top {

ALPHA: a_type;
slctr: uint (bits: 2);
select_list() :list of string is {

case ALPHA {
A : { return {"a0"; "a1"; "a2"; "a3"}; };
B : { return {"b0"; "b1"; "b2"; "b3"}; };
C : { return {"c0"; "c1"; "c2"; "c3"}; };
D : { return {"d0"; "d1"; "d2"; "d3"}; };
E : { return {"e0"; "e1"; "e2"; "e3"}; };

};
};

get_alpha_num(slctr: uint): string is {
return select_list()[slctr];

};
};

extend sys {
top;
run() is also {

print top.ALPHA;
print top.slctr;
var an_strng: string;
an_strng = top.get_alpha_num(top.slctr);
print an_strng;

};
};
'>

Result

Running the test ...
top.ALPHA = A
top.slctr = 2
an_strng = "a2" // "a2" is the string with index 2 in list A

See Also

� �method [@event] is also | first | only | inline only� on page 467

15.3 Parameter Passing

How a parameter is passed depends on whether the parameter is scalar or compound, as described in these
sections:

� �Scalar Parameter Passing� on page 484
� �Compound Parameter Passing� on page 485
� �Notes on Passing by Reference� on page 486

15.3.1 Scalar Parameter Passing

Scalar parameters include numeric, boolean, and enumerated types. When you pass a scalar parameter to a
method, by default the value of the parameter is passed. This is called �passing by value�. Any change to the
value of that parameter by the method applies only within that method instance and is lost when the method
484 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
returns. For example, the �increment()� method defined below increments the value of the parameter passed
to it.

increment (cnt: int) is {
cnt = cnt + 1;

};
m() is {

var tmp: int = 7;
increment(tmp);
print tmp;

};

However, since �cnt� is passed by value, the variable �tmp� retains its original value, and the print statement
displays:

tmp = 7

To allow a method to modify the parameter, prefix the parameter type with an asterisk. This is called �pass-
ing by reference�. If you modify the �increment() �method as follows:

increment (cnt: *int) is {
cnt = cnt + 1;

};
m() is {

var tmp: int = 7;
increment(tmp);
print tmp;

};

�tmp� has the value 8 after the method returns. Note that the asterisk is used only in the method definition,
not in the method call.

15.3.2 Compound Parameter Passing

Compound parameters are either structs or lists. Passing a struct or a list to a method allows the method to
modify the struct fields and the list items. This is called �passing by reference�. Thus, if you modify the
�increment()� method to accept a list:

increment_list (cnt: list of int) is {
for each in cnt {

cnt[index] = cnt[index] + 1;
};

};

and pass a list of integers to it, each item in the list reflects its incremented value after the method returns.

Placing an asterisk in front of the list or struct type allows the method to completely replace the struct or list.
For example, the �create_if_illegal()� method accepts a struct instance of type packet. If it determines that
the �legal� field of struct instance is FALSE, it allocates a new struct instance of type �packet�.

create_if_illegal(pkt: *packet) is {
if pkt.legal == FALSE then {

pkt = new;
};

};
This is an unapproved IEEE Standards Draft, subject to change.
485

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
15.3.3 Notes on Passing by Reference

There are several restrictions that apply when you pass parameters by reference:

� There is no automatic casting to a reference parameter. Thus, if you try to pass a variable that is
declared as a type other than a 32-bit int to the �increment()� method, you get a compile-time error.

� You cannot pass a list element by reference. Thus, if a variable �tmp� is declared as a list of int, it is
illegal to pass �tmp[index]� to �increment()�, as defined above.

� An expression that cannot be placed on the left-hand-side of an assignment cannot be passed by ref-
erence.

� Called TCMs can accept reference parameters, but started TCMs cannot.
486 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
16 Creating and Modifying e Variables

The following sections describe how to create and assign values to e variables:

� �About e Variables� on page 487
� �var� on page 487
� �=� on page 489
� �op=� on page 491
� �<=� on page 493

16.1 About e Variables

An e variable is a named data object of a declared type. e variables are declared and manipulated in methods.
They are dynamic; they do not retain their values across subsequent calls to the same method.

The scope of an e variable is the action block that encloses it. If a method contains nested action blocks,
variables in the inner scopes hide the variables in the outer scopes. Variable scoping is described in more
detail in �Struct Hierarchy and Name Resolution� on page 19.

Some e actions create implicit variables. They are described in more detail in �Implicit Variables� on
page 24.

The following sections describe the actions that create and modify e variables explicitly:

� �var� on page 487
� �=� on page 489
� �op=� on page 491

16.2 var

Title

Variable declaration

Category

Action

Syntax

var name [: [type] [= exp]]

Syntax example:

var a: int;
This is an unapproved IEEE Standards Draft, subject to change.
487

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Declares a new variable with the specified name as an element or list of elements of the specified type, and
having an optional initial value.

The var action is legal in any place that an action is legal, and the variable is recognized from that point on.
e variables are dynamic; they do not retain their values across subsequent calls to the same method.

The scope of an e variable is the action block that encloses it. If a method contains nested action blocks,
variables in the inner scopes hide the variables in the outer scopes. Variable scoping is described in more
detail in �Struct Hierarchy and Name Resolution� on page 19.

Example 1

This example shows the declaration of two variables, one with an assigned initial value:

<'
extend sys {

m() is {
var a: int;
var m: int = 2 + a;

};
};
'>

Example 2

This example shows the keywords list of used to create a list.

<'
struct packet {

protocol: [atm, eth, other];
len: uint [0..10];
data[len]: list of byte;

};

extend sys {
m() is {

var packets: list of packet;
};

};
'>

name A legal e name.
type A declared e type. The type can be omitted if the variable name is the same as the name

of a struct type or if the variable is assigned a typed expression.
exp The initial value of the variable. If no initial value is specified, the variables are initial-

ized to 0 for integer types, NULL for structs, FALSE for boolean types, and lists as
empty.
488 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 3

This example shows a variable declarations with the type omitted. The variable �packet� is assumed to be of
type �packet�.

<'
struct packet {

protocol: [atm, eth, other];
len: uint [0..10];
data[len]: list of byte;

};

extend sys {
m() is {

var packet;
};

};
'>

Example 4

In this example, �p� gets type packet, because that is the type of �my_packets[3]�, and �z� gets type int,
because 5 has type int.

<'
extend sys {

my_packets: list of packet;
m() is {

var p := my_packets[3];
var z := 5;

};
};
'>

16.3 =

Purpose

Simple assignment

Category

Action

Syntax

lhs-exp=exp

Syntax example:

sys.u = 0x2345;
This is an unapproved IEEE Standards Draft, subject to change.
489

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Assigns the value of the right-hand-side expression to the left-hand-side expression.

NOTE� There are two other places within the e language which make use of the equal sign. These
are a double equal sign (==) for specifying equality in boolean expression, and a triple equal sign
(===) for the Verilog-like identity operator. These two operators should not be confused with the
single equal sign (=) assignment operator.

Example 1

This example shows the operators that are allowed in the left-hand-side expression.

<'
struct n {

m() is {
var i: int (bits:16);
var j: int (bits:16);
var lint: list of int = {15;31;63;127};

sys.u = 0x2345;
print sys.u;
lint[0] = 0x98765432;
print lint[0];
i[1:0] = 3;
print i;
%{i,j} = lint[0];
print i, j;

 };
};

extend sys {
u:uint;
ni:n;
};
'>

Result

sys.ni.m()
sys.u = 0x2345
lint[0] = 0x98765432
i = 0x0003
i = 0x9876
j = 0x5432

lhs-exp A legal e expression that evaluates to a variable of a method, a global variable, a field of
a struct, or an HDL object. The expression can contain the list index operator [n], the bit
access operator [i:j], or the bit concatenation operator %{}.

exp A legal e expression, either an untyped expression (such as an HDL object) or an
expression of the same type as the left-hand-side expression.
490 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

This example shows the assignment operator used in initialization.

<'
struct packet {
 good : bool;
 size : [small, medium, large];

length : int;
};
extend sys {
 post_generate() is also {

var p : packet = new;
print p;
var q : packet = new good large packet;
print q;
var x := new packet (p) with {

p.length = 5;
print p;

};
};

};
'>

See Also

� �Untyped Expressions� on page 87
� �Assignment Rules� on page 89
� �Precision Rules for Numeric Operations� on page 93
� �Automatic Type Casting� on page 96

16.4 op=

Purpose

Compound assignment

Category

Action

Syntax

lhs-exp op=exp

Syntax example:

sys.c.count1 += 5;
This is an unapproved IEEE Standards Draft, subject to change.
491

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Performs the specified operation on the two expressions and assigns the result to the left-hand-side expres-
sion.

Example 1

This example shows the compound assignment operator used with arithmetic operators.

<'
struct counter {

count1: uint;
mult: uint;

keep count1 == 0;
keep mult == 2;

};

extend sys {
c: counter;
m() is {

var i: int = 2;
sys.c.count1 += 5;
sys.c.mult *= i;
print sys.c.count1, sys.c.mult;

};
};
'>

Result

sys.m()
 sys.c.count1 = 0x5
 sys.c.mult = 0x4

Example 2

This example shows the compound assignment operator used with the shift operator.

<'
extend sys {

m() is {
print 'top.address';
'top.address' <<= 4;
print 'top.address';

};
};
'>

lhs-exp A legal e expression that evaluates to a variable of a method, a global variable, a field of
a struct, or an HDL object.

exp A legal e expression of the same type as the left-hand-side expression.
op A binary operator, including binary bitwise operators (except ~), the boolean operators

and and or, and the binary arithmetic operators.
492 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

sys.m()
 'top.address' = 0xff
 'top.address' = 0xff0

Example 3

This example shows the compound assignment operator used with a boolean operator.

<'
extend sys {

m() is {
var is_ok: bool = TRUE;
var is_legal: bool;
is_ok or= is_legal;
print is_ok;

};
};
'>

Result

sys.m()
is_ok = TRUE

16.5 <=

Purpose

Delayed assignment

Category

Action

Syntax

[struct-exp.]field-name <= exp

Syntax examples:

da <= da+1;
This is an unapproved IEEE Standards Draft, subject to change.
493

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

The delayed assignment action assigns a struct field just before the next @sys.new_time after the action.
The purpose is to support raceless coding in e by providing the same results regardless of the evaluation
order of TCMs and temporal expressions. (See �Simulation Time and Ticks� on page 312 for a description
of @sys.new_time.)

Both expressions are evaluated immediately (not delayed) in the current context. The assignment is not con-
sidered a time-consuming action, so you can use it in both TCMs and in regular methods, in on action blocks
and in exec action blocks.

If a field has multiple delayed assignments in the same cycle, they are performed in the specified order. The
final result is taken from the last delayed assignment action.

Unlike in HDL languages, the delayed assignment in e does not emit any events; thus, zero delay iterations
are not supported.

NOTE� The left-hand-side expression in the delayed assignment action can only be a field.
Unlike the assignment action, the delayed assignment action does not accept assignment to any of
the following:

� A variable of a method
� A list item
� A bit
� A bit slice
� A bit concatenation expression

Example

The following example shows how delayed assignment provides raceless coding. In this example there is
one incrementing() TCM, which repeatedly increments the sys.a and sys.da fields, and one observer() TCM,
which observes their value.

<'
extend sys {

!a : int;
!da : int;

incrementing()@any is {
for i from 1 to 5 {

a = a+1;
da <= da+1;
wait cycle;

};
stop_run();

struct-exp A legal e expression that evaluates to a struct. The default
is me.

field-name A field of the struct referenced by struct-exp.
exp A legal e expression, either an untyped expression (such

as an HDL object) or an expression of the same type as
the left-hand-side expression.
494 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};

observer()@any is {
while (TRUE) {

out("observing 'a' as ", a, " observing 'da' as ", da);
wait cycle;

};
};

run() is also {
start observer();
start incrementing();

};
};
'>

Result

From the results you can see that the value of sys.a observed by the observer() TCM is order-dependent,
depending whether observer() is executed before or after incrementing(). The observed value of sys.da, how-
ever, is independent of the execution order. Even if incrementing() runs first, sys.da gets its incremented
value just before the next new_time event and thus is not be seen by observer().

If observer() runs before incrementing():

observing 'a' as 0 observing 'da' as 0

observing 'a' as 1 observing 'da' as 1

observing 'a' as 2 observing 'da' as 2

observing 'a' as 3 observing 'da' as 3

observing 'a' as 4 observing 'da' as 4

If incrementing() runs before observer():

observing 'a' as 1 observing 'da' as 0

observing 'a' as 2 observing 'da' as 1

observing 'a' as 3 observing 'da' as 2

observing 'a' as 4 observing 'da' as 3

observing 'a' as 5 observing 'da' as 4

This is an unapproved IEEE Standards Draft, subject to change.
495

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
496 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
17 Packing and Unpacking

Packing performs concatenation of scalars, strings, list elements, or struct fields in the order that you specify.
Unpacking performs the reverse operation, splitting a single expression into multiple expressions.

As part of the concatenation or splitting process, packing and unpacking also perform type conversion
between any of the following:

� scalars
� strings
� lists and list subtypes (same type but different width)

For type conversion, e provides additional techniques. Here are some general recommendations on when to
use each technique:

This chapter contains the following sections

� �Basic Packing� on page 497
� �Advanced Packing� on page 505
� �Constructs for Packing and Unpacking� on page 516

17.1 Basic Packing

Packing and unpacking operate on scalars, strings, lists and structs. The following sections show how to per-
form basic packing and unpacking of these data types using two of thee basic packing tools, the pack() and
unpack() methods.

� �A Simple Example of Packing� on page 498
� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Structs� on page 502
� �Packing and Unpacking Lists� on page 503

For information on two other basic tools for packing, see:

� �%{... , ...}� on page 62
� �swap()� on page 524

as_a() Recommended for converting a single scalar to another scalar type, for
example, from a 32-bit integer to an 8-bit integer. It is also recommended
for conversion between strings and lists of ASCII bytes. For more infor-
mation, see �as_a()� on page 104.

sublisting with [..] Recommended for converting a single scalar to a list of bit. For more
information, see Chapter 2, �e Basics�.

bit extraction with [:] Recommended for converting a list of bit into a single scalar. For more
information, see Chapter 2, �e Basics�.

unpacking Recommended for converting from a list of bit to strings, lists, structs, or
multiple scalars.

packing Recommended for all other purposes.
This is an unapproved IEEE Standards Draft, subject to change.
497

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �Advanced Packing� on page 505
� �Constructs for Packing and Unpacking� on page 516

17.1.1 A Simple Example of Packing

This example shows how packing converts data from a struct into a stream of bits. An �instruction� struct is
defined as:

struct instruction {
%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

!data_packed_high : list of bit;
!data_packed_low : list of bit;

keep opcode == 0b100;
keep operand == 0b11001;
keep address == 0b00001111;

};

The post_generate() method of this struct is extended to pack the �opcode� and the �operand� fields into
two variables. The order in which the fields are packed is controlled with the packing.low and packing.high
options:

data_packed_low = pack(packing.low, opcode, operand);
data_packed_high = pack(packing.high, opcode, operand);

With the packing.low option, the least significant bit of the first expression in pack(), �opcode�, is placed at
index [0] in the resulting list of bit. The most significant bit of the last expression, �operand�, is placed at the
highest index in the resulting list of bit. Figure 17-1 on page 499 shows this packing order.

packing.low is the default packing order.
498 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Figure 17-1�Simple Packing Example Showing packing.low

With packing.high, the least significant bit of the last expression, �operand�, is placed at index [0] in the
resulting list of bit. The most significant bit of the first expression, �opcode�, is placed at the highest index
in the resulting list of bit. Figure 17-2 shows this packing order.

Figure 17-2�Simple Packing Example Showing packing.high

Pack expressions, like the ones shown in the example above, are untyped expressions. In many cases, as in
this example, the e program can deduce the required type from the context of the pack expression. See
�Untyped Expressions� on page 87 for more information.

See Also

� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Structs� on page 502
� �Packing and Unpacking Lists� on page 503

The �instruction� struct with two fields:

opcode == 0x4

operand == 0x19

1

1 0 0

1 1 10 0

1 001 10 0

The two fields packed into a bit stream, using the default ordering

opcode operand

list of bit list of bit

The �instruction� struct with two fields:

opcode == 0x4

operand == 0x19

0

1 0 0

1 1 10 0

011 0 0 11

The two fields packed into a bit stream, using the packing.high ordering

opcode operand

list of bit list of bit
This is an unapproved IEEE Standards Draft, subject to change.
499

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
17.1.2 A Simple Example of Unpacking

This example shows how packing fills the fields of a struct instance with data from a bit stream. An �instruc-
tion� struct is defined as:

struct instruction {
%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

};

The extension to post_generate() shown below unpacks a list of bits, �packed_data�, into a variable �inst�
of type �instruction� using the packing.high option. The results are shown in Figure 17-3.

extend sys {
post_generate() is also {

var inst : instruction;
var packed_data: list of bit;
packed_data = {1;1;1;1;0;0;0;0;1;0;0;1;1;0;0;1};

unpack(packing.high, packed_data, inst);
};

};

Figure 17-3�Simple Unpacking Example Showing packing.high

In this case, the expression that provides the value, �packed_data�, is a list of bits. When a value expression
is not a list of bit, the e program uses implicit packing to store the data in the target expression. See �Implicit
Packing and Unpacking� on page 515 for more details.

See Also

� �A Simple Example of Packing� on page 498
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Structs� on page 502
� �Packing and Unpacking Lists� on page 503

The packed data

1 1 10 0 10 0

The result of unpacking the data with pack-

0 010 1 11 0

opcode == 0x4

operand == 0x19

1 0 0

1 1 10 0

address == 0x0f 1 110 0 10 0
500 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
17.1.3 Packing and Unpacking Scalar Expressions

Packing a scalar expression creates an ordered bit stream by concatenating the bits of the expression
together. Unpacking a bit stream into a scalar expression fills the scalar expression, starting by default by
putting the lowest bit of the bit stream into the lowest bit of the scalar expression.

Packing and unpacking of a scalar expression is performed using the expression�s inherent size, except when
the expression contains a bit slice operator. Missing bits are assumed to be zero, and extra bits are allowed
and ignored. See �Overview of e Data Types� on page 75 for information on how the size of a scalar expres-
sion is determined. See also �Bit Slice Operator and Packing� on page 514.

Example

The example below packs two integers, �int_5� and �int_2� and then unpacks a new list of bit �lob� into the
same two integers. In the unpack action, the first five bits of �lob� are assigned to �int_5� and the next two to
�int_2�. The remaining bits in �lob� are not used.

var int_5: int(bits:5) = 3;
var int_2: int(bits:2);
print pack(packing.low, int_5, int_2) using bin;
var lob:list of bit = {1;1;1;1;1;1;0;0;0;0;1;0;0;};
unpack(packing.low,lob,int_5,int_2);
print int_5, int_2;

Result

pack(packing.low, int_5, int_2) = (7 items, bin):
 0 0 0 0 0 1 1 .0

int_5 = 31
int_2 = 1

NOTE�

If you unpack a list into one or more scalar expressions and there are not enough bits in the list to put a value
into each scalar, a runtime error is issued.

See Also

� �A Simple Example of Packing� on page 498
� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Structs� on page 502
� �Packing and Unpacking Lists� on page 503

17.1.4 Packing and Unpacking Strings

Packing a string creates an ordered bit stream by concatenating each ASCII byte of the string together from
left to right ending with a byte with the value zero (the final NULL byte). Unpacking a string places the
bytes of the string into the target expression, starting with the first ASCII byte in the string up to and includ-
ing the first byte with the value zero.

To obtain different results, you can use the as_a() method, which converts directly between the string and
list of byte types. See �as_a()� on page 104 for more information.
This is an unapproved IEEE Standards Draft, subject to change.
501

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

In this example, the packed string is implicitly unpacked into a list of byte.

The last byte is zero since it is the final NULL byte.

var my_string: string = "ABC";
print pack(packing.low, my_string);

var my_list_of_byte: list of byte = pack(packing.low, my_string);
print my_list_of_byte using hex;

Result

pack(packing.low,my_string) = (32 items, hex):
 0 0 4 3 4 2 4 1 .0

my_list_of_byte = (4 items, hex):
 00 43 42 41 .0

See Also

� �A Simple Example of Packing� on page 498
� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Structs� on page 502
� �Packing and Unpacking Lists� on page 503

17.1.5 Packing and Unpacking Structs

Packing a struct creates an ordered bit stream from all the physical fields (marked with %) in the struct, start-
ing by default, with the first physical field declared. Other fields (called virtual fields) are ignored by the
packing process. If a physical field is of a compound type (struct or list) the packing process descends recur-
sively into the struct or list.

Unpacking a bit stream into a struct fills the physical fields of the struct, starting by default with the first
field declared and proceeding recursively through all the physical fields of the struct. Unpacking a bit stream
into a field that is a list follows some additional rules described in �Packing and Unpacking Lists� on
page 503.

Unpacking a struct that has not yet been allocated (with new) causes the e program to allocate the struct and
run the struct�s init() method. Unlike new, the struct�s run() method is not called.

A struct is packed or unpacked using its predefined methods do_pack() and do_unpack(). It is possible to
modify these predefined methods for a particular struct. See �do_pack()� on page 526 and �do_unpack()� on
page 529 for more information.

Example

This example packs the two physical fields in �my_struct� into the variable �ms�. The resulting bit stream is
14 bits, which is exactly the combination of both the physical fields. The virtual field �int_15� does not par-
ticipate in the pack process at all.

struct my_struct{
%int_4: int(bits:4);
502 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
%int_10: int(bits:10);
int_15: int(bits:15);
init() is also {

int_4 = 3;
int_10 = 15;

};
};

struct pac {
m() is {

var ms: my_struct = new;
print pack(packing.low, ms) using hex;

};
};

Result

pack(packing.low,ms) = (14 items, bin):
 0 0 0 0 0 0 1 1 1 1 0 0 1 1 .0

See Also

� �A Simple Example of Packing� on page 498
� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Lists� on page 503

17.1.6 Packing and Unpacking Lists

Packing a list creates a bit stream by concatenating the list items together, starting by default with the item at
index 0.

Unpacking a bit stream into a list fills the list item by item, starting by default with the item at index zero.
The size of the list that is unpacked into is determined by whether the list is sized and whether it is empty:

� Unpacking into an empty list expands the list as needed to contain all the available bits.
� Unpacking into a non-empty list unpacks only until the existing list size is reached.
� Unpacking to a struct fills the sized lists only to their defined size, regardless of their actual size at

the time.

NOTE� When a struct is allocated, the lists within it are empty. If the lists are sized, unpacking is
performed until the defined size is reached.

See Chapter 2, �e Basics�, for more information on sizing lists.

Example 1

This first example shows the effect of packing a list of integers.

var my_list: list of int(bits:4) = {3;5;7;9;11;13;15};
print pack(packing.low,my_list);

Result

pack(packing.low,my_list) = (28 items, hex):
This is an unapproved IEEE Standards Draft, subject to change.
503

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 f d b 9 7 5 3 .0

Example 2

The list �my_list� is empty, so it is expanded to contain all 32 bits of the integer.

var my_list: list of int(bits:4);
unpack(packing.low,5,my_list);
print my_list using hex;

Result

my_list = (8 items, hex):
 0 0 0 0 0 0 0 5 .0

Example 3

The list was not empty because it was initialized to have four items. Thus it is not expanded and the resulting
list has four items.

var my_list: list of int(bits:4) = {0;0;0;0};
unpack(packing.low,5,my_list);
print my_list using hex;

Result

my_list = (4 items, dec):
 0 0 0 5 .0

Example 4

The �my_list� field is cleared in order to demonstrate that although the procedural code has corrupted the
list�s initial size, it is restored when unpack is performed.

struct my_struct{
%my_list[4]: list of int(bits:4);

};

struct pac {
m() is {

var t:my_struct = new;
t.my_list.clear();
print t.my_list;
unpack(packing.low,5,t);
print t.my_list;

};
};

Result

t.my_list = (empty)
t.my_list = (4 items, hex):
 0 0 0 5 .0
504 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 5

Unpacking into an unsized, uninitialized list causes a runtime error message because the list is expanded as
needed to consume all the given bits. The field �int_1� remains bit-less.

struct my_struct{
%my_list: list of int(bits:4);
%int_1: bit;

};

struct pac {
m() is {

var t:my_struct = new;
unpack(packing.low,5,t);

};
};

Example 6

This example shows the recommended way to get a variable number of list items. The specification order is
important because the �len1� and �len2� values must be set before initializing �data1� and �data2�. Declar-
ing �len1� and �len2� before �data1� and �data2� ensures that the list length is generated first. When
unpacking into a list with a variable number of items, you will have to calculate the number of items in the
list before unpacking. See �do_unpack()� on page 529 for an example of how to do this.

struct packet{
%len1: int;
%len2: int;
%data1[len1]: list of byte;
%data2[len1 + len2]: list of byte;

};

See Also

� �A Simple Example of Packing� on page 498
� �A Simple Example of Unpacking� on page 500
� �Packing and Unpacking Scalar Expressions� on page 501
� �Packing and Unpacking Strings� on page 501
� �Packing and Unpacking Structs� on page 502

17.2 Advanced Packing

The following sections describe how to use the e advanced packing features and provide you with the con-
cepts you need to use them efficiently:

� �Using the Predefined pack_options Instances� on page 506
� �Customizing Pack Options� on page 510
� �Customizing Packing for a Particular Struct� on page 514
� �Bit Slice Operator and Packing� on page 514
� �Implicit Packing and Unpacking� on page 515
� �Untyped Expressions� on page 87
This is an unapproved IEEE Standards Draft, subject to change.
505

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �Basic Packing� on page 497
� �Constructs for Packing and Unpacking� on page 516

17.2.1 Using the Predefined pack_options Instances

Packing and unpacking are controlled using a struct under global named packing. There are five predefined
instances of the pack_options struct that you can use with or without modification to control the way pack-
ing or unpacking is performed. You are probably familiar with two of these pack_options instances, pack-
ing.low and packing.high.

When you call pack(), unpack(), do_pack() or do_unpack() you pass one of the predefined pack_options
instances as the first parameter. In the example below, packing.high is passed as the pack_options instance:

data_packed_high = pack(packing.high, opcode, operand);

The following sections describe the pack_options instances:

� �packing.low� on page 506
� �packing.low_big_endian� on page 507
� �packing.high� on page 508
� �packing.high_big_endian� on page 508
� �packing.network� on page 509
� �packing.global_default� on page 510

See Also

� �Customizing Pack Options� on page 510
� �Customizing Packing for a Particular Struct� on page 514
� �Bit Slice Operator and Packing� on page 514
� �Implicit Packing and Unpacking� on page 515
� �Untyped Expressions� on page 87

17.2.2 packing.low

This pack_options instance traverses the source fields or variables in the order they appear in code, placing
the least significant bit of the first field or list item at index [0] in the resulting list of bit. The most signifi-
cant bit of the last field or list item is placed at the highest index in the resulting list of bit.

<'
struct instruction {

%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

!data_packed_low : list of bit;

keep opcode == 0b100;
keep operand == 0b11001;
keep address == 0b00001111;

post_generate() is also {
data_packed_low = pack(packing.low, me);
print me using bin;
506 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
print data_packed_low using bin;
};

};
'>

Result

me = instruction-@0: instruction
 @packing20
0 %opcode: 0b100
1 %operand: 0b11001
2 %address: 0b00001111
3 !data_packed_low: (16 items)
 data_packed_low = (16 items, bin):
 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 .0

See Also

� �Using the Predefined pack_options Instances� on page 506

17.2.3 packing.low_big_endian

This pack_options instance, like packing.low, traverses the source fields or variables in the order they
appear in code. In addition, for every scalar field or variable, it

� Swaps every byte in each pair of bytes
� Swaps every two bytes in each 32-bit word

NOTE� If the scalar�s width is not a multiple of 16, no swapping is performed

The example below shows the difference between packing.low and packing.low_big_endian.

struct pac {
%opcode: uint (bits:4);
%operand1: uint (bytes:2);
%operand2: uint (bytes:2);

keep opcode == 0xf;
keep operand1 == 0xcc55;
keep operand2 == 0xff00;

m() is {
var i_stream: list of bit;
i_stream = pack(packing.low, opcode,

operand1, operand2);
print i_stream using bin;
i_stream = pack(packing.low_big_endian, opcode,

operand1, operand2);
print i_stream using bin;

};
};

Result

i_stream = (36 items, bin):
 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 .0
 1 1 1 1 1 1 1 1 0 0 0 0 .24
This is an unapproved IEEE Standards Draft, subject to change.
507

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 i_stream = (36 items, bin):
 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 .0
 0 0 0 0 0 0 0 0 1 1 1 1 .24

See Also

� �Using the Predefined pack_options Instances� on page 506

17.2.4 packing.high

This pack_options instance traverses the source fields or variables in the reverse order from the order in
which they appear in code, placing the least significant bit of the last field or list item at index [0] in the
resulting list of bit. The most significant bit of the first field or list item is placed at the highest index in the
resulting list of bit.

<'
struct instruction {

%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

!data_packed_high : list of bit;

keep opcode == 0b100;
keep operand == 0b11001;
keep address == 0b00001111;

post_generate() is also {
data_packed_high = pack(packing.high, opcode, operand);
print me using bin;
print data_packed_high using bin;

};
};
'>

Result

me = instruction-@0: instruction
 @packing18
0 %opcode: 0b100
1 %operand: 0b11001
2 %address: 0b00001111
3 !data_packed_high: (8 items)
 data_packed_high = (8 items, bin):
 1 0 0 1 1 0 0 1 .0

See Also

� �Using the Predefined pack_options Instances� on page 506

17.2.5 packing.high_big_endian

This pack_options instance, like packing.high, traverses the source fields or variables in the reverse order
from the order in which they appear in code. In addition, for every scalar field or variable, it

� Swaps every byte in each pair of bytes
� Swaps every two bytes in each 32-bit word
508 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
NOTE� If the scalar�s width is not a multiple of 16, no swapping is performed.

The example below shows the difference between packing.high and packing.high_big_endian.

struct pac {
%opcode: uint (bits:4);
%operand1: uint (bytes:2);
%operand2: uint (bytes:2);

keep opcode == 0xf;
keep operand1 == 0xcc55;
keep operand2 == 0xff00;

m() is {
var i_stream: list of bit;
i_stream = pack(packing.high, opcode,

operand1,operand2);
print i_stream using bin;
i_stream = pack(packing.high_big_endian, opcode,

operand1,operand2);
print i_stream using bin;

};
};

Result

i_stream = (36 items, bin):
 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 .0
 1 1 1 1 1 1 0 0 1 1 0 0 .24

 i_stream = (36 items, bin):
 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 .0
 1 1 1 1 0 1 0 1 0 1 0 1 .24

See Also

� �Using the Predefined pack_options Instances� on page 506

17.2.6 packing.network

This packing option is the same as packing.high if the total number of bits that will comprise the target is
not a multiple of 8. When it is a multiple of 8, then the target bits of the entire bit stream are byte-order
reversed.

<'
struct instruction {

%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

!data_packed_high : list of bit;
!data_packed_network : list of bit;

keep opcode == 0b100;
keep operand == 0b11001;
keep address == 0b00001111;
This is an unapproved IEEE Standards Draft, subject to change.
509

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
post_generate() is also {
data_packed_high = pack(packing.high, opcode, operand,

address);
data_packed_network = pack(packing.network, opcode,

operand, address);

print me using bin;
print data_packed_high using bin;
print data_packed_network using bin;

};
};
'>

Results

me = instruction-@0: instruction
 -- @packing13
0 %opcode: 0b100
1 %operand: 0b11001
2 %address: 0b00001111
3 !data_packed_high: (16 items)
4 !data_packed_network: (16 items)
 data_packed_high = (16 items, bin):
 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 .0

 data_packed_network = (16 items, bin):
 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 .0

17.2.7 packing.global_default

This pack_options instance is used when the first parameter of pack(), unpack(), do_pack(), or
do_unpack() is NULL. It has the same flags as packing.low.

See Also

� �Using the Predefined pack_options Instances� on page 506

17.2.8 Customizing Pack Options

Each of the predefined instances described in �Using the Predefined pack_options Instances� on page 506 is
an instance of the pack_options struct. The pack_options declaration is as follows:

struct pack_options {
reverse_fields: bool;
reverse_list_items: bool;
final_reorder: list of int;
scalar_reorder: list of int;

};

To customize packing options, you can create an instance of the pack_options struct, modify one or more of
its fields, and pass the struct instance as the first parameter to pack(), unpack(), do_pack(), or
do_unpack().

The following sections describe each field of the pack_options struct:

� �reverse_fields� on page 511
510 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �reverse_list_items� on page 512
� �scalar_reorder� on page 512
� �final_reorder� on page 513

See Also

� �Using the Predefined pack_options Instances� on page 506
� �Customizing Packing for a Particular Struct� on page 514
� �Bit Slice Operator and Packing� on page 514
� �Implicit Packing and Unpacking� on page 515
� �Untyped Expressions� on page 87

17.2.9 reverse_fields

If this flag is set to be FALSE, the fields in a struct are packed in the order they appear in the struct declara-
tion; if TRUE, they are packed in reverse order. The default is FALSE.

Example

When reverse_fields is FALSE, �first� is packed and then �second�. When the flag is set to TRUE, �sec-
ond� is packed before �first�. Thus, the first result is 0b01; the second result is 0b10.

struct my_struct{
%first :int(bits:1); -- value 1
%second :int(bits:1); -- value 0;
init() is also {

first = 1;
};

};

extend sys{
my_struct;
foo() is {

var p1:pack_options = new;
var p2:pack_options = new;
p2.reverse_fields = TRUE;
my_struct = new;
print pack(p1,my_struct);
print pack(p2,my_struct);

};
};

Result

pack(p1,my_struct) = (2 items, hex):
1 .0

pack(p2,my_struct) = (2 items, hex):
2 .0

See Also

� �Customizing Pack Options� on page 510
This is an unapproved IEEE Standards Draft, subject to change.
511

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
17.2.10 reverse_list_items

If this flag is set to be FALSE, the items in a list are packed in ascending order; if TRUE, they are packed in
descending order. The default is FALSE.

Example

The second print statement shows that �my_list� is packed in reverse order.

var my_list:list of int(bits:1) = {1;0;0};
var p1:pack_options = new;
var p2:pack_options = new;
p2.reverse_list_items = TRUE;
print pack(p1,my_list) using bin;
print pack(p2,my_list) using bin;

Result

pack(p1,my_list) = (3 items, bin):
0 0 1 .0

pack(p2,my_list) = (3 items, bin):
1 0 0 .0

See Also

� �Customizing Pack Options� on page 510

17.2.11 scalar_reorder

You can perform one or more swap() operations on each scalar before packing using the scalar_reorder
field.

The list in the scalar_reorder field must include an even number of items. Each pair of items in the list is
the parameter list of a swap() operation (see �swap()� on page 524). By entering multiple pairs of parame-
ters, you can perform multiple swaps, using each pair of parameters as a pair of swap parameters.

Unlike swap(), if the large parameter is not a factor of the number of bits in the list, scalar_reorder ignores
it, while swap() gives an error.

Example 1

The bits in �mid� and �sma� are swapped using 4 and 2 as parameters. See �swap()� on page 524. Thus,
within every four bits the first two bits and the last two are swapped.

var p1:pack_options = new;
var mid:int(bits:8) = 0xcc;
var sma:int(bits:4) = 0x6;
print pack(p1,mid) using bin;
print pack(p1,sma) using bin;
p1.scalar_reorder = {2;4};
print pack(p1,mid) using bin;
print pack(p1,sma) using bin;
512 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

pack(p1,mid) = (8 items, bin):
1 1 0 0 1 1 0 0 .0

pack(p1,sma) = (4 items, bin):
0 1 1 0 .0

pack(p1,mid) = (8 items, bin):
0 0 1 1 0 0 1 1 .0

pack(p1,sma) = (4 items, bin):
1 0 0 1 .0

Example 2

The bits in �midb� are swapped, first using 8 and 4 as parameters, and then using 16 and 8 as parameters.
See �swap()� on page 524. Thus, within every eight bits the first four bits and the last four are swapped, and
then within the entire 16-bit number, the first eight bits and the last eight bits are swapped.

var p1:pack_options = new;
var midb:int(bits:16) = 0xc5fd;
print pack(p1,midb) using bin;
p1.scalar_reorder = {4;8;8;16};
print pack(p1,midb) using bin;

Result

pack(p1,midb) = (16 items, bin):
1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 .0

pack(p1,midb) = (16 items, bin):
1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 .0

See Also

� �Customizing Pack Options� on page 510

17.2.12 final_reorder

After packing each element in the packing expression you can perform final swapping on the resulting bit
stream, using the final_reorder field.

The list in the final_reorder field must include an even number of items. Each pair of items in the list is the
parameter list of a swap() operation (see �swap()� on page 524). By entering multiple pairs of parameters,
you can perform multiple swaps, using each pair of parameters as a pair of swap parameters.

Unlike swap(), if the large parameter is not a factor of the number of bits in the list, final_reorder ignores it,
while swap() gives an error.

Example 1

After performing the second pack, a swap is performed using 4 and 8 as parameters, thus reversing the order
of nibbles in every byte. See �swap()� on page 524.

var p1:pack_options = new;
var int__4: int(bits:4) = 0x7;
This is an unapproved IEEE Standards Draft, subject to change.
513

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var int__12: int(bits:12) = 0x070;
print pack(p1,int__4,int__12) using bin;
p1.final_reorder = {4;8};
print pack(p1,int__4,int__12) using bin;

Result

pack(p1,int__4,int__12) = (16 items, bin):
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 .0

pack(p1,int__4,int__12) = (16 items, bin):
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 .0

Example 2

The bits in �midb� are swapped, first using 8 and 4 as parameters, and then using 16 and 8 as parameters.
See �swap()� on page 524. Thus, within every eight bits the first four bits and the last four are swapped, and
then within the entire 16-bit number, the first eight bits and the last eight bits are swapped.

var p1:pack_options = new;
var midb:int(bits:16) = 0xc5fd;
print pack(p1,midb) using bin;
p1.scalar_reorder = {4;8;8;16};
print pack(p1,midb) using bin;

Result

pack(p1,midb) = (16 items, bin):
1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 .0

pack(p1,midb) = (16 items, bin):
1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 .0

See Also

� �Customizing Pack Options� on page 510

17.2.13 Customizing Packing for a Particular Struct

You can customize packing for a particular struct by modifying the do_pack() or do_unpack() methods of
the struct. These methods are called automatically whenever data is packed from or unpacked into the struct.
See �do_pack()� on page 526 and �do_unpack()� on page 529 for more information.

See Also

� �Using the Predefined pack_options Instances� on page 506
� �Customizing Pack Options� on page 510
� �Bit Slice Operator and Packing� on page 514
� �Implicit Packing and Unpacking� on page 515
� �Untyped Expressions� on page 87

17.2.14 Bit Slice Operator and Packing

You can use the bit slice operator [:] to select a subrange of an expression to be packed or unpacked. The
bit slice operator does not change the type of the pack or unpack expression.
514 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

In the following example, the result of the first print statement is 20 bits long. However, the pack expression,
which extracts only 2 bits of �int_20�, is only 2 bits long.

var int_20: int(bits:20) = 7;
print int_20[1:0] using bin;
print pack(packing.low,int_20[1:0]) using bin;

Result

int_20[1:0] = 0b00000000000000000011
pack(packing.low,int_20[1:0]) = (2 items, bin):

1 1 .0

Example 2

�int_5� did not consume five bits as its type suggests. Because of the bit slice operator, it consumed only two
bits. Thus �int_1� gets the third bit from �lob� and remains 0.

var int_5: int(bits:5);
var int_1: bit;
var lob: list of bit = {1;1;0;1;1;1;1};
unpack(packing.low, lob, int_5[1:0], int_1);
print int_5, int_1 using bin;

Result

int_5 = 0b00011
int_1 = 0b0

See Also

� �Using the Predefined pack_options Instances� on page 506
� �Customizing Pack Options� on page 510
� �Customizing Packing for a Particular Struct� on page 514
� �Implicit Packing and Unpacking� on page 515
� �Untyped Expressions� on page 87

17.2.15 Implicit Packing and Unpacking

Implicit packing and unpacking is always performed using the parameters of packing.low and takes place in
the following cases:

� When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked before
it is assigned.

var my_list: list of int = {1;2;3};

var int_10: int(bits:10);

my_list = 'top.foo';

int_10 = pack(NULL, 5);

Untyped expressions include HDL signals, pack expressions and bit concatenations. See �Untyped
Expressions� on page 87 for more information.
This is an unapproved IEEE Standards Draft, subject to change.
515

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� Implicit packing and unpacking is not supported for strings, structs, or lists of non-
scalar types. As a result, the following causes a load-time error if �i� is a string, a struct, or a list
of a non-scalar type:

i = pack(packing.low, 5); // Load-time error

� When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned:

'top.foo' = {1;2;3};

� When the value expression of an unpack action is other than a list of bit, it is implicitly packed before
it is unpacked:

unpack(packing.low,5,my_list);

See Also

� �Using the Predefined pack_options Instances� on page 506
� �Customizing Pack Options� on page 510
� �Customizing Packing for a Particular Struct� on page 514
� �Bit Slice Operator and Packing� on page 514
� �Untyped Expressions� on page 87

17.3 Constructs for Packing and Unpacking

The following sections describe the constructs used in packing and unpacking:

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_pack()� on page 526
� �do_unpack()� on page 529

See Also

� �Basic Packing� on page 497
� �Advanced Packing� on page 505

17.3.1 pack()

Purpose

Perform concatenation and type conversion

Category

Pseudo-method

Syntax

pack(option:pack option, item: exp, ...): list of bit

Syntax example:
516 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
i_stream = pack(packing.high, opcode, operand1, operand2);

Parameters

Description

Performs concatenation of items, including items in a list or fields in a struct, in the order specified by the
pack options parameter and returns a list of bits. This method also performs type conversion between any of
the following:

� scalars

� strings

� lists and list subtypes (same type but different width)

Packing is commonly used to prepare high-level e data into a form that can be applied to a DUT. For other
uses, see �Packing and Unpacking� on page 497.

Packing operates on scalar or compound (struct, list) data items. For more information and examples of how
packing operates on different data types, see �Basic Packing� on page 497.

Pack expressions are untyped expressions. In many cases, the e program can deduce the required type from
the context of the pack expression. See �Untyped Expressions� on page 87 for more information.

NOTE� You cannot pack an unbounded integer.

Example 1

The extension to post_generate() shown below packs the �opcode� and the �operand� fields of the �instruc-
tion� struct from the low bit of the last field defined (�operand�) to the high bit of the first field defined
(�opcode�) into the �data_packed_high� field. It also packs all the physical fields into �data_packed_low�
using the packing.low option. The results are shown in Figure 17-4 on page 519.

<'
struct instruction {

%opcode : uint (bits : 3);

option For basic packing, this parameter is one of the following. See �Using the Pre-
defined pack_options Instances� on page 506 for information on other pack
options.

packing.high Places the least significant bit of the last physical field declared or the highest
list item at index [0] in the resulting list of bit. The most significant bit of the
first physical field or lowest list item is placed at the highest index in the
resulting list of bit.

packing.low Places the least significant bit of the first physical field declared or lowest list
item at index [0] in the resulting list of bit. The most significant bit of the last
physical field or highest list item is placed at the highest index in the resulting
list of bit.

NULL If NULL is specified, the global default is used. This global default is set ini-
tially to packing.low.

item A legal e expression that is a path to a scalar or a compound data item, such as
a struct, field, list, or variable.
This is an unapproved IEEE Standards Draft, subject to change.
517

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
%operand : uint (bits : 5);
%address : uint (bits : 8);

!data_packed_high : list of bit;
!data_packed_low : list of bit;

keep opcode == 0b100;
keep operand == 0b11001;
keep address == 0b00001111;

post_generate() is also {
data_packed_high = pack(packing.high,

opcode,operand);
data_packed_low = pack(packing.low, me);
print me using bin;
print data_packed_low using bin;
print data_packed_high using bin;

};
};
'>
518 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Figure 17-4�Packed Instruction Data

Example 2

In this example, post_generate() is extended to pack the packet data. The �header� field of the �packet�
struct is a struct itself, so this is a recursive pack. The results are shown in Figure 17-5 on page 520.

<'
struct packet {

%header : header;
%payload : list of byte;

!data_packed_low : list of byte;

keep payload.size() == 6;
keep for each in payload {

it == index;
};

post_generate() is also {
data_packed_low = pack(packing.low, me);
out("payload: ", payload);
out("data packed low: ", data_packed_low);

};
};

struct header {
%dest : int (bits : 8);

The �instruction�

opcode == 0x4

operand == 0x19

1

1 0 0

1 1 10 0

1 001 10 0

The fields �opcode� and �operand� packed, using pack-

opcode operand

list of bit list of bit

0011 0 0 11

opcode operand

address == 0x0f 1 110 0 10 0

The instruction packed, using pack-

0 00 1 10 1 1

address

list of bit list of bit [0]
This is an unapproved IEEE Standards Draft, subject to change.
519

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
%version : int (bits : 2);
%type : uint (bits : 6);

keep dest == 0x55;
keep version == 0x0;
keep type == 0x3f;
post_generate() is also {

print me;
};

};
'>

Result

Note that the �out()� action displays the bytes from least significant to most significant (from left to right),
whereas the print action displays the bytes from most significant to least significant (from left to right).

me = header-@0: header
--- @pack23

0 %dest: 0x55
1 %version: 0x0
2 %type: 0x3f
payload : 0x00 0x01 0x02 0x03 0x04 0x05
packet packed low: 0x55 0xfc 0x00 0x01 0x02 0x03 0x04 0x05

Figure 17-5�Packed Packet Data

See Also

� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_pack()� on page 526

0 000 0 00 0

payload

The �packet� struct:
Header:

dest

version

type

111 0 0 10 0

0 000 0 00 0

0 0

1 11 1 1 1

Payload

1 000 0 10 0

111 0 0 10 0

0 0

The �packet� data packed, using packing.low

destversion

1 11 1 1 1

type

list of bit list of bit
.....
520 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �do_unpack()� on page 529

17.3.2 unpack()

Purpose

Unpack a bit stream into one or more expressions

Category

Pseudo-method

Syntax

unpack(option: pack option, value: exp, target1: exp [, target2: exp, ...])

Syntax example:

unpack(packing.high, lob, s1, s2);

Parameters

Description

Converts a raw bit stream into high level data by storing the bits of the value expression into the target
expressions.

If the value expression is not a list of bit, it is first converted into a list of bit by calling pack() using pack-
ing.low. (See �Implicit Packing and Unpacking� on page 515 for more information.) Then the list of bit is
unpacked into the target expressions.

The value expression is allowed to have more bits than are consumed by the target expressions. In that case,
if packing.low is used, the extra high-order bits are ignored; if packing.high is used, the extra low-order
bits are ignored.

Unpacking is commonly used to convert raw bit stream output from the DUT into high-level e data.

option For basic packing, this parameter is one of the following. See �Using the Pre-
defined pack_options Instances� on page 506 for information on other pack
options.

packing.high Places the most significant bit of the list of bit at the most significant bit of the
first field or lowest list item. The least significant bit of the list of bit is placed
into the least significant bit of the last field or highest list item.

packing.low Places the least significant bit of the list of bit into the least significant bit of
the first field or lowest list item. The most significant bit of the list of bit is
placed at the most significant bit of the last field or highest list item.

NULL If NULL is specified, the global default is used. This global default is set ini-
tially to packing.low.

value A scalar expression or list of scalars that provides a value that is to be
unpacked.

target1, target2 One or more expressions separated by commas. Each expression is a path to a
scalar or a compound data item, such as a struct, field, list, or variable.
This is an unapproved IEEE Standards Draft, subject to change.
521

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Unpacking operates on scalar or compound (struct, list) data items. For more information and examples of
how packing operates on different data types, see �Basic Packing� on page 497.

Example 1

The extension to post_generate() shown below unpacks a list of bits into a variable �inst�. The results are
shown in Figure 17-6 on page 522.

extend sys {
post_generate() is also {

var inst : instruction;
var packed_data: list of bit;
packed_data = {1;1;1;1;0;0;0;0;1;0;0;1;1;0;0;1};

unpack(packing.high, packed_data, inst);

print packed_data using bin;
out("the result of unpacking it: ");
print inst using bin;

};
};

struct instruction {
%opcode : uint (bits : 3);
%operand : uint (bits : 5);
%address : uint (bits : 8);

};

Figure 17-6�Unpacked Instruction Data

Example 2

The extension to post_generate() shown below unpacks a list of bytes into a variable �pkt� using pack-
ing.low. This is a recursive unpack because the �header� field of �packet� is a struct itself. The results are
shown in Figure 17-7 on page 523.

extend sys {
post_generate() is also {

The packed data

1 1 10 0 10 0

The result of unpacking the data with packing.high:

0 010 1 11 0

opcode == 0x4

operand == 0x19

1 0 0

1 1 10 0

address == 0x0f 1 110 0 10 0
522 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var pkt : packet;
var packed_data : list of byte;
packed_data =

{0x55;0xfc;0x00;0x01;0x02;0x03;0x04;0x05};

unpack(packing.low, packed_data, pkt);

print packed_data;
out("the unpacked struct:");
print pkt.header, pkt.payload;

};
};

struct packet {
%header : header;
%payload : list of byte;

};

struct header {
%dest : int (bits : 8);
%version : int (bits : 2);
%type : int (bits : 6);

};

Figure 17-7�Unpacked Packet Data

Example 3

This example uses unpack() sequentially to set up virtual fields that are required for the full unpack.

struct packet {
%header: header;
len : uint;
%data[len] : list of byte;

000 0 0 00 0 1 11 1 0 01 1 1 000 1 10 1

The packed data

.....

The unpacked struct

Header:

dest

version

type

0 000 0 00 0

0 0

Payload

1 000 0 10 0

111 0 0 10 0

1 11 1 1 1
This is an unapproved IEEE Standards Draft, subject to change.
523

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
struct header {

%code : uint;
};
extend sys {

m() is {
var DUT_bytes: list of byte = {0x11;0xff;0x22;
0xee;0x33;0xdd;0x44;0xcc;0x55;0xbb;0x66};
var p : packet = new;
unpack(packing.low, DUT_bytes, p.header);
if p.header.code > 1500 {

p.len = 10;
} else {

p.len = 20;
};
unpack(packing.low, DUT_bytes,p);
print p;
print p.data;

};
};

See Also

� �pack()� on page 516
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_pack()� on page 526
� �do_unpack()� on page 529

17.3.3 swap()

Purpose

Swap small bit chunks within larger chunks

Category

Pseudo-method

Syntax

list-of-bit.swap(small: int, large: int): list of bit

Syntax example:

s2 = s1.swap(2, 4);
524 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

This predefined list method accepts a list of bits, changes the order of the bits, and then returns the reordered
list of bits. This method is often used in conjunction with pack() or unpack() to reorder the bits in a bit
stream going to or coming from the DUT.

Notes

� If large is not a factor of the number of bits in the entire list, an error message results.
� If small is not a factor of large, you will see an error message. The only exception is if large is

UNDEF and small is not a factor, no swap is performed and no error is issued.

Example 1

This example shows two swaps. The first swap reverses the order of nibbles in every byte. The second swap
reverses the whole list.

Example 2

This example shows swap() used with unpack() to reorder the bits before unpacking them.

extend sys {
post_generate() is also {

var num1 : uint (bits : 32);
var num2 : uint (bits : 32);
num1 = 0x12345678;

unpack(NULL, pack(NULL, num1).swap(16, -1), num2);
print num2;
unpack(NULL, pack(NULL, num1).swap(8, -1), num2);
print num2;

};
};

small An integer that is a factor of large.
large An integer that is either UNDEF or a factor of the number of bits in the entire list. If

UNDEF, the method reverses the order of small chunks within the entire list. Thus,
�lob.swap(1, UNDEF)� is the same as �lob.reverse()�.

0 000 1 00 1 1 001 1 11 1

my_list

1 000 0 10 0 1 110 1 10 1

my_list.swap(4, 8)

1 111 0 11 0 0 110 0 00 0

my_list.swap(1, UNDEF)
This is an unapproved IEEE Standards Draft, subject to change.
525

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Results

num2 = 0x56781234
num2 = 0x78563412

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �do_pack()� on page 526
� �do_unpack()� on page 529

17.3.4 do_pack()

Purpose

Pack the physical fields of the struct

Category

Predefined method of any struct

Syntax

do_pack(options:pack options, l: *list of bit)

Syntax example:

do_pack(options:pack_options, l: *list of bit) is only {
var L : list of bit = pack(packing.low, operand2,

operand1,operand3);
l.add(L);

};

Parameters

Description

The do_pack() method of a struct is called automatically whenever the struct is packed. This method
appends data from the physical fields (the fields marked with %) of the struct into a list of bits according to
flags determined by the pack options parameter. The virtual fields of the struct are skipped. The method
issues a runtime error message if this struct has no physical fields.

For example, the following assignment to �lob�

lob = pack(packing.high, i_struct, p_struct);

makes the following calls to the do_pack method of each struct, where tmp is an empty list of bits:

options This parameter is an instance of the pack options struct. See �Using the Pre-
defined pack_options Instances� on page 506 for information on this struct.

l An empty list of bits that is extended as necessary to hold the data from the
struct fields.
526 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
i_struct.do_pack(packing.high, *tmp)
p_struct.do_pack(packing.high, *tmp)

You can extend the do_pack() method for a struct in order to create a unique packing scenario for that struct.
You should handle variations in packing that apply to many structs by creating a custom pack_options
instance. See �Customizing Pack Options� on page 510 for information on how to do this.

Notes

� Do not call the do_pack() method of any struct directly, for example �my_struct.do_pack()�. Instead
use pack(), for example �pack(packing.high, my_struct)�.

� Do not call pack(me) in the do_pack() method. This causes infinite recursion. Call pack-
ing.pack_struct(me) instead. You can call pack() within the do_pack() method to pack objects
other than me.

� Do not forget to append the results of any pack operation within do_pack() to the empty list of bits
referenced in the do_pack() parameter list.

� If you modify the do_pack() method and then later add physical fields in an extension to the struct,
you may have to make adjustments in the modifications to do_pack().

Example 1

This example shows how to override the do_pack() method for a struct called �cell�. The extension to
do_pack() overrides any packing option passed in and always uses packing.low. It packs �operand2� first,
then �operand1� and �operand3�.

<'
struct cell {

%operand1: uint(bytes:2);
%operand2: uint(bytes:2);
%operand3: uint(bytes:2);

};

extend cell {
do_pack(options:pack_options, l: *list of bit) is only {

var L : list of bit = pack(packing.low, operand2,
operand1,operand3);

l.add(L);
};

};

Result

sys.pi = cell-@0: cell
-- @pack33

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var L : list of bit = pack(packing.high, sys.pi)

L = (48 items, bin):
0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 .0
0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 .24
This is an unapproved IEEE Standards Draft, subject to change.
527

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

In the following example, the do_pack() method for �cell� is overwritten to use the low_big_endian pack-
ing option by default.

struct cell {
%operand1: uint(bytes: 2);
%operand2: uint(bytes: 2);
%operand3: uint(bytes: 2);

};

extend cell {
do_pack(options: pack_options, l: *list of bit) is only {

if (options == NULL) then {
packing.pack_struct(me,

packing.low_big_endian,l);
} else {

packing.pack_struct(me, options, l);
};

};
};

extend sys {
pi: cell;

};

Result

sys.pi = cell-@0: cell
-- @pack34

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var M : list of bit = pack(NULL, sys.pi)

M = (48 items, bin):
0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 .0
1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 .24

Example 3

This example swaps every pair of bits within each 4-bit chunk after packing with the packing options speci-
fied in the pack() call.

struct cell {
%operand1: uint(bytes: 2);
%operand2: uint(bytes: 2);
%operand3: uint(bytes: 2);

};

extend cell {
do_pack(options:pack_options, l: *list of bit) is only {

var L1 : list of bit;
packing.pack_struct(me, options, L1);
var L2 : list of bit = L1.swap(2,4);
l.add(L2);

};
528 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};

Result

sys.pi = cell-@0: cell
-- @pack35

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var M : list of bit = pack(NULL, sys.pi)

M = (48 items, bin):
1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 .0
0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 .24

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_unpack()� on page 529

17.3.5 do_unpack()

Purpose

Unpack a packed list of bit into a struct

Category

Predefined method of any struct

Syntax

do_unpack(options:pack options, l: list of bit, from: int): int

Syntax example:

do_unpack(options:pack_options, l: list of bit, from: int):int is only {
var L : list of bit = l[from..];
unpack(packing.low, L, op2, op1, op3);
return from + 8 + 5 + 3;

};
This is an unapproved IEEE Standards Draft, subject to change.
529

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

The do_unpack() method is called automatically whenever data is unpacked into the current struct. This
method unpacks bits from a list of bits into the physical fields of the struct. It starts at the bit with the speci-
fied index, unpacks in the order defined by the pack options, and fills the current struct�s physical fields in
the order they are defined.

For example, the following call to unpack()

unpack(packing.low, lob, c1, c2);

makes the following calls to the do_unpack method of each struct:

c1.do_unpack(packing.low, lob, index);
c2.do_unpack(packing.low, lob, index);

The method returns an integer, which is the index of the last bit unpacked into the list of bits.

The method issues a runtime error message if the struct has no physical fields. If at the end of packing there
are leftover bits, it is not an error. If more bits are needed than currently exist in the list of bits, a runtime
error is issued (�Ran out of bits while trying to unpack into struct_name�).

You can extend the do_unpack() method for a struct in order to create a unique unpacking scenario for that
struct. You should handle variations in unpacking that apply to many structs by creating a custom
pack_options instance. See �Customizing Pack Options� on page 510 for information on how to do this.

Notes

� Do not call the do_unpack() method of any struct directly, for example �my_struct.do_unpack()�.
Instead use unpack(), for example �unpack(packing.high, lob, my_struct)�.

� When you modify the do_unpack() method, you need to calculate and return the index of the last bit
in the list of bits that was unpacked. In most cases, you simply add the bit width of each physical
field in the struct to the starting index parameter. If you are unpacking into a struct that has condi-
tional physical fields (physical fields defined under a when, extend, or like construct), this calcula-
tion is a bit tricky. See the Verification Advisor�s patterns on packing for an example of how to do
this.

Example 1

This first example shows how to modify do_unpack() to change the order in which the fields of a struct are
filled. In this case, the order is changed from �op1�, �op2�, �op3� to �op2�, �op1�, �op3�. You can see also
that do_unpack() returns the bit widths of the three physical fields, �op1�, �op2�, and �op3�, to the starting
index, �from�.

options This parameter is an instance of the pack options struct. See
�Using the Predefined pack_options Instances� on page 506 for
information on this struct.

l A list of bits containing data to be stored in the struct fields.
from An integer that specifies the index of the bit to start unpacking.
int (return value) An integer that specifies the index of the last bit in the list of bits

that was unpacked.
530 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct cell {
%op1: uint(bytes:1);
%op2: uint(bits:5);
%op3: uint(bits:3);

};

extend cell {
do_unpack(options:pack_options, l: list of bit,

from: int) :int is only {
var L : list of bit = l[from..];
unpack(packing.low, L, op2, op1, op3);
return from + 8 + 5 + 3;

};
};

Result

var P : list of bit
{0;0;0;0;1;1;0;1;1;1;0;0;0;0;1;0;};

unpack(NULL, P, sys.pi)

sys.pi = cell-@0: cell
-- @pack36
0 %op1: 0b00011101
1 %op2: 0b10000
2 %op3: 0b010

Example 2

This example modifies the do_unpack method of the �frame� struct to first calculate the length of the �data�
field. The calculation uses �from�, which indicates the last bit to be unpacked, to calculate the length of
�data�.

extend sys {
!packet1 : packet;
!packet2 : packet;

post_generate() is also {
var raw_data : list of byte;
for i from 0 to 39 {

raw_data.add(i);
};
unpack(packing.low, raw_data, packet1);
print packet1.header, packet1.frame.data,

packet1.frame.crc;
unpack(packing.high, raw_data, packet2);
print packet2.header, packet2.frame.data,

packet2.frame.crc;
};

};

struct packet {
%header : int (bits : 16);
%frame : frame;

};

struct frame {
%data[len] : list of byte;
This is an unapproved IEEE Standards Draft, subject to change.
531

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
%crc : int (bits : 32);
len : int;

do_unpack(options :pack_options, l :list of bit,
from :int):int is first {

if options.reverse_fields then {
len = (from - 32 + 1) / 8;

} else {
len = (l.size() - from - 32) / 8;

};
};

};

Results

packet1.header = 256
packet1.frame.data = (34 items, dec):
 13 12 11 10 9 8 7 6 5 4 3 2 .0
 25 24 23 22 21 20 19 18 17 16 15 14 .12
 35 34 33 32 31 30 29 28 27 26 .24

packet1.frame.crc = 656811300
packet2.header = 10022
packet2.frame.data = (34 items, dec):
 26 27 28 29 30 31 32 33 34 35 36 37 .0
 14 15 16 17 18 19 20 21 22 23 24 25 .12
 4 5 6 7 8 9 10 11 12 13 .24

packet2.frame.crc = 50462976

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_pack()� on page 526
532 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
18 Control Flow Actions

The following sections describe the control flow actions:

� �Conditional Actions� on page 533
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.1 Conditional Actions

The following conditional actions are used to specify code segments that will be executed only if a certain
condition is met:

� �if then else� on page 533
� �case labeled-case-item� on page 534
� �case bool-case-item� on page 536

18.1.1 if then else

Purpose

Perform an action block based on whether a given boolean expression is TRUE

Category

Action

Syntax

if bool-exp [then] {action; ...} [else if bool-exp [then] {action; ...}] [else {action; ...}]

Syntax example:

if a > b {print a, b;} else {print b, a};

Notes

� Because the if then else clause comprises one action, the semicolon comes at the end of the clause
and not after each action block within the clause. (Do not put a semicolon between the closing curly
bracket for the action block and the else keyword.)

� You can repeat the else if clause multiple times.
This is an unapproved IEEE Standards Draft, subject to change.
533

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

If the first bool-exp is TRUE, the then action block is executed. If the first bool-exp is FALSE, the else if
clauses are executed sequentially: if an else if bool-exp is found that is TRUE, its then action block is exe-
cuted; otherwise the final else action block is executed.

The else if then clauses are used for multiple boolean checks (comparisons). If you require many else if
then clauses, you might prefer to use a case bool-case-item action.

Example 1

Following is the syntax example expressed as a multi-line example rather than a single-line example.

if a > b then {
print a, b;

}
else {

print b, a;
};

Example 2

The following example includes an else if clause:

if a_ok {
print x;

}
else if b_ok {

print y;
}
else {

print z;
};

See Also

� �case labeled-case-item� on page 534
� �case labeled-case-item� on page 534
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.1.2 case labeled-case-item

Purpose

Execute an action block based on whether a given comparison is true

bool-exp A boolean expression.
action; ... A series of zero or more actions separated by semicolons and enclosed in curly

braces.
534 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Action

Syntax

case case-exp {labeled-case-item; ... [default: {default-action; ...}]}

Syntax example:

case packet.length {
64: {out("minimal packet")};
[65..256]: {out("short packet")};
[257..512]: {out("long packet")};
default: {out("illegal packet length")};

};

Parameters

Description

Evaluates the case-exp and executes the first action-block for which label-exp matches the case-exp. If no
label-exp equals the case-exp, executes the default-action block, if specified.

After an action-block is executed, the e program proceeds to the line that immediately follows the entire
case statement.

Example

struct m {
 counter: uint;
 kind: [small, medium, large, xlarge, xxlarge];
 c_meth() is {
 case me.kind {
 small: {print "SMALL"};
 [large, medium]: { print "LARGE or MEDIUM";
 me.counter += 1;
 };
 default: {print "OTHER"};
 };

case-exp A legal e expression.
labeled-case-item label-exp[:] action-block

Where

� label-exp is a value or a range

� action-block is a list of zero or more actions separated by semicolons
and enclosed in curly braces. Syntax: {action;...}

Note that the entire labeled-case-item is repeatable, not just the action-
block related to the label-exp.

default-action; ... A sequence of zero or more default actions separated by semicolons and
enclosed in curly braces.
This is an unapproved IEEE Standards Draft, subject to change.
535

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 };
};

See Also

� �if then else� on page 533
� �case bool-case-item� on page 536
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.1.3 case bool-case-item

Purpose

Execute an action block based on whether a given boolean comparison is true

Category

Action

Syntax

case {bool-case-item; ... [default {default-action; ...}]}

Syntax example:

case {
packet.length == 64 {out("minimal packet"); };
packet.length in [65..255] {out("short packet"); };
default {out("illegal packet"); };

};

Parameters

Description

Evaluates the bool-exp conditions one after the other; executes the action-block associated with the first
TRUE bool-exp. If no bool-exp is TRUE, executes the default-action-block, if specified.

bool-case-item bool-exp[:] action-block

Where

� bool-exp is a boolean expression.

� action-block is a list of zero or more actions separated by semicolons
and enclosed in curly braces. Syntax: {action;...}

Note that the entire bool-case-item is repeatable, not just the action-block
related to the bool-exp.

default-action; ... A sequence of zero or more actions separated by semicolons and enclosed
in curly braces.
536 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
After an action-block is executed, the e program proceeds to the line that immediately follows the entire
case statement.

Each of the bool-exp conditions is independent of the other bool-exp conditions, and there is no main case-
exp to which all cases refer (unlike the �case labeled-case-item� on page 534).

This case action has the same functionality as a single if then else action in which you enter each bool-case-
item as a separate else if then clause.

Example

The bool-exp conditions are totally independent, and can refer to many arbitrary fields and attributes (not
only to a single field as in the example above). For example, here is a set of independent boolean conditions:

case {
kind == small { // condition 1: relates to kind

print "SMALL";
};
a > b { // condition 2: relates to a and b

print "a > b";
var temp := a;
a = b;
b = temp;

};
a < b && kind == large {

// condition 3: relates to a,b,kind
print "a < b && kind == large";

};
default {print "OTHER"};

// condition 4: default
};

See Also

� �if then else� on page 533
� �case labeled-case-item� on page 534
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.2 Iterative Actions

This section describes the following iterative actions, which are used to specify code segments that will be
executed in a loop, multiple times, in a sequential order:

� �while� on page 538
� �repeat until� on page 539
� �for each in� on page 540
� �for from to� on page 543
� �for� on page 544
This is an unapproved IEEE Standards Draft, subject to change.
537

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
18.2.1 while

Purpose

Execute a while loop

Category

Action

Syntax

while bool-exp [do] {action; ...}

Syntax example:

while a < b {a += 1;};

Parameters

Example 1

The while loop in the following example adds 10 to �ctr� as many times as it takes it to get from 100 to the
value of SMAX in steps of 1.

ctr_assn() is {
var i: uint;
i = 100;
while (i <= SMAX) {

ctr = ctr + 10;
i+=1;

};
};

Example 2

The while loop in the following example assigns �top.inc� to �ctr� every two cycles, as long as �done�
remains FALSE.

lp_read()@clk is {
while (!done) {

wait [2]*cycle;
ctr = top.inc;

};
};

bool-exp A boolean expression.
action; ... A sequence of zero or more actions separated by semicolons and enclosed in curly

braces.
538 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 3

The while loop in the following example assigns �top.inc� to �ctr� every two cycles, in an endless loop. It
loops until the test run is stopped.

lp_read()@clk is {
while TRUE {

wait [2]*cycle;
ctr = top.inc;

};
};

Description

Executes the action block repeatedly in a loop while bool-exp is TRUE. You can use this construct to set up
a perpetual loop as �while TRUE {}�.

See Also

� �repeat until� on page 539
� �for each in� on page 540
� �for from to� on page 543
� �for� on page 544
� �Conditional Actions� on page 533
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.2.2 repeat until

Purpose

Execute a repeat until loop

Category

Action

Syntax

repeat {action; ...} until bool-exp

Syntax example:

repeat {i+=1;} until i==3;

Parameters

Description

Execute the action block repeatedly in a loop until bool-exp is TRUE.

action; ... A sequence of zero or more actions separated by semicolons and enclosed in curly
braces.

bool-exp A boolean expression.
This is an unapproved IEEE Standards Draft, subject to change.
539

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� A repeat until action performs the action block at least once. A while action might not
perform the action block at all.

Example

repeat {
i+=1;
print i;

} until i==3;

See Also

� �while� on page 538
� �for each in� on page 540
� �for from to� on page 543
� �for� on page 544
� �Conditional Actions� on page 533
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.2.3 for each in

Purpose

Execute a for each loop

Category

Action

Syntax

for each [type] [(item-name)] [using index (index-name)]
in [reverse] list-exp [do] {action; ...}

Syntax example:

for each transmit packet (tp) in sys.pkts do {print tp};
// "transmit packet" is a type
540 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

For each item in list-exp, if its type matches type, execute the action block. Inside the action block, the
implicit variable it (or the optional item-name) refers to the matched item, and the implicit variable index
(or the optional index-name) reflects the index of the current item. If reverse is specified, list-exp is tra-
versed in reverse order, from last to first. The implicit variable index (or the optional index-name) starts at
zero for regular loops, and is calculated to start at �(list.size() - 1)� for reverse loops.

The it and index Implicit Variables

Each for each in action defines two new local variables for the loop, named by default it and index. Keep
the following in mind:

� If loops are nested one inside the other, the local variables of the internal loop hide those of the exter-
nal loop. To overcome this hiding, specify the item-name and index-name with unique names.

� Within the action block, you cannot assign a value to it or index�or to item-name or index-name.

Example 1

<'
extend sys {

do_it() is {
var numbers := {1; 2; 3};
for each in numbers {

print it;
};
var sum: int;
for each (n) in numbers {

sum += n;
print sum;

};
};
run() is also {

do_it();
};

};

type A type of the struct comprising the list specified by list-exp. Elements in the list
must match this type to be acted upon.

item-name A name you give to specify the current item in list-exp.

If you do not include this parameter, the item is referred to with the implicit vari-
able �it�. We recommend that you explicitly name the item to avoid confusion
about the contents of �it�.

index-name A name you give to specify the index of the current list item.

If you do not include this parameter, the item is referred to with the implicit vari-
able �index�. We recommend that you explicitly name the item to avoid confusion
about the contents of �index�.

list-exp An expression that results in a list.
action; ... A sequence of zero or more actions separated by semicolons and enclosed in curly

braces.
This is an unapproved IEEE Standards Draft, subject to change.
541

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
'>

Example 2

for each in reverse pktList do {
// Traverse in reverse order

print it; // "it" can refer to the various subtypes
};

Example 3

This example has two for each loops, each of which invokes a method and an out() routine for the particular
subtype (ATM cell or IP cell).

<’
type cell_t: [ATM,IP];
struct cell{

kind: cell_t;
when ATM cell {

meth() is {
outf("ATM cell: ");

};
};
when IP cell {

meth() is {
outf("IP cell: ");

};
};

};

extend sys {
cell_l[20] : list of cell;
run () is also {

for each ATM cell (a) in cell_l {
a.meth();
out(index);

};
for each IP cell (a) in cell_l {

a.meth();
out(index);

};
}

};
'>

See Also

� �while� on page 538
� �repeat until� on page 539
� �for from to� on page 543
� �for� on page 544
� �Implicit Variables� on page 24
� �Conditional Actions� on page 533
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547
542 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
18.2.4 for from to

Purpose

Execute a for loop for the number of times specified by from to

Category

Action

Syntax

for var-name from from-exp [down] to to-exp [step step-exp] [do] {action; ...}

Syntax example:

for i from 5 down to 1 do {out(i);}; // Outputs 5,4,3,2,1

Parameters

Description

Creates a temporary variable var-name of type int, and repeatedly executes the action block while incre-
menting (or decrementing if down is specified) its value from from-exp to to-exp in interval values specified
by step-exp (defaults to 1).

In other words, the loop is executed until the value of var-name is greater than the value of to-exp. For
example, the following line of code prints �in� one time:

for j from 1 to 1 {out("in");};

NOTE� The temporary variable var-name is visible only within the for from to loop in which it
is created.

Example

for i from 2 to 2 * a do {
out(i);

};
for i from 1 to 4 step 2 do {

out(i);
}; // Outputs 1,3
for i from 4 down to 2 step 2 do {

out(i);
}; // Outputs 4,2

var-name A temporary variable of type int.
from-exp, to-exp, step-
exp

Valid e expressions that resolve to type int.

The default value for step-exp is one.
action; ... A sequence of zero or more actions separated by semicolons and enclosed

in curly braces.
This is an unapproved IEEE Standards Draft, subject to change.
543

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �while� on page 538
� �repeat until� on page 539
� �for each in� on page 540
� �for� on page 544
� �Conditional Actions� on page 533
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.2.5 for

Purpose

Execute a C-style for loop

Category

Action

Syntax

for {initial-action; bool-exp; step-action} [do] {action; ...}

Syntax example:

for {i=0; i<=10; i+=1} do {out(i);};

Parameters

Description

The for loop works similarly to the for loop in the C language. This for loop executes the initial-action
once, and then checks the bool-exp. If the bool-exp is TRUE, it executes the action block followed by the
step-action. It repeats this sequence in a loop for as long as bool-exp is TRUE.

Notes

� You must enter an initial-action.
� If you use a loop variable within a for loop, you must declare it before the loop (unlike the temporary

variable of type int automatically declared in a for from to loop).
� Although this action is similar to a C-style for loop, keep in mind that the initial-action and step-

action must be e style actions. For example, the following syntax won�t run:

for {i=0,j=0; i < 10; i += 1} //incorrect syntax

While the following syntax will run:

for {{i=0;j=0}; i < 10; i += 1} //correct syntax

initial-action An action.
bool-exp A boolean expression
step-action An action.
action; ... A sequence of zero or more actions separated by semicolons and enclosed

in curly braces.
544 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

var i: int;
var j: int;
for {i = 0; i < 10; i += 1} do {

if i % 3 == 0 then {
continue;

};
j = j + i;
if j > 100 then {

break;
};

};

See Also

� �while� on page 538
� �repeat until� on page 539
� �for each in� on page 540
� �for from to� on page 543
� �Conditional Actions� on page 533
� �File Iteration Actions� on page 545
� �Actions for Controlling the Program Flow� on page 547

18.3 File Iteration Actions

This section describes the following two loop constructs, which are used to manipulate general ASCII files:

� �for each line in file� on page 545
� �for each file matching� on page 546

18.3.1 for each line in file

Purpose

Iterate a for loop over all lines in a text file

Category

Action

Syntax

for each [line] [(name)] in file file-name-exp [do] {action; ...}

Syntax example:

for each line in file "signals.dat" do {'(it)' = 1};
// Reads a list of signal names and
// assigns to each the value 1
This is an unapproved IEEE Standards Draft, subject to change.
545

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Executes the action block for each line in the text file file-name. Inside the block, it (or optional name)
refers to the current line (as string) without the final �\n� (the final new line character, CR).

Example

This example reads each line of a file and prints the line if it is not blank. String matching is used to see if the
line is blank: �l !~ "/^$/"� means �l does not match the beginning of a line, ^, followed immediately by the
end of a line, $�.

for each line (l) in file "test.dat" {
// Print all the nonblank lines in the file
if l !~ "/^$/" then { print l; };
};

If the file cannot be opened, an error message similar to the following appears.

for each line in file "er_file" {print it};
*** Error: Cannot open input file 'er_file' for reading

See Also

� �for each file matching� on page 546
� �Conditional Actions� on page 533
� �Iterative Actions� on page 537
� �Actions for Controlling the Program Flow� on page 547

18.3.2 for each file matching

Purpose

Iterate a for loop over a group of files

Category

Action

Syntax

for each file [(name)] matching file-name-exp [do] {action; ...}

Syntax example:

for each file matching "*.e" {out(it);}
//lists the e files in the current directory

name Variable referring to the current line in the file.
file-name-exp A string expression that gives the name of a text file.
action; ... A sequence of zero or more actions separated by semicolons and enclosed

in curly braces.
546 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

For each file (in the file search path) whose name matches file-name-exp execute the action block. Inside
the block, it (or optional name) refers to the matching file name.

Example

for each file (f_name) matching "*.txt" do {
for each line in file f_name{

if it ~ "/error/" then {out(it);
};

};
};

See Also

� �for each line in file� on page 545
� �Conditional Actions� on page 533
� �Iterative Actions� on page 537
� �Actions for Controlling the Program Flow� on page 547

18.4 Actions for Controlling the Program Flow

The actions described in this section are used to alter the flow of the program in places where the flow would
otherwise continue differently. The e language provides the following actions for controlling the program
flow:

� �break� on page 547
� �continue� on page 548

18.4.1 break

Purpose

Break the execution of a loop

Category

Action

Syntax

break

Syntax example:

name Variable referring to the current line in the file.
file-name-exp A string expression giving a file name.
action; ... A sequence of zero or more actions separated by semicolons and enclosed

in curly braces.
This is an unapproved IEEE Standards Draft, subject to change.
547

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
break

Description

Breaks the execution of the nearest enclosing iterative action (for or while). When a break action is encoun-
tered within a loop, the execution of actions within the loop is terminated, and the next action to be executed
is the first one following the loop.

You cannot place break actions outside the scope of a loop (the compiler will report an error).

Example

for each (p) in packet_list do {
// ... other code
if p.len == 0 then {
break; // Get out of this loop
};
// ... other code

};

See Also

� �continue� on page 548
� �Conditional Actions� on page 533
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545

18.4.2 continue

Purpose

Stop executing the current loop iteration and start executing the next loop iteration

Category

Action

Syntax

continue

Syntax example:

continue

Description

Stops the execution of the nearest enclosing iteration of a for or a while loop, and continues with the next
iteration of the same loop. When a continue action is encountered within a loop, the current iteration of the
loop is aborted, and execution continues with the next iteration of the same loop.

You cannot place continue actions outside the scope of a loop (the compiler will report an error).
548 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

for each (p) in packet_list do {
if p.len == 1 then {

continue; // Go to next iteration, skip "print p"
};
print p;

};

See Also

� �break� on page 547
� �Conditional Actions� on page 533
� �Iterative Actions� on page 537
� �File Iteration Actions� on page 545
This is an unapproved IEEE Standards Draft, subject to change.
549

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
550 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
19 List Pseudo-Methods Library

This chapter describes pseudo-methods used to work with lists. It contains the following sections:

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551
� �Pseudo-Methods to Modify Lists� on page 552
� �General List Pseudo-Methods� on page 570
� �Sublist Pseudo-Methods� on page 603
� �Math and Logic Pseudo-Methods� on page 608
� �List CRC Pseudo-Methods� on page 614
� �Keyed List Pseudo-Methods� on page 618
� �Restrictions on Keyed Lists� on page 624

19.1 Pseudo-Methods Overview

A pseudo-method is a type of method unique to the e language. Pseudo-methods are e macros that look like
methods. They have the following characteristics:

� Unlike methods, pseudo-methods are not restricted to structs.
� They can be applied to any expression, including literal values, scalars, and compound arithmetic

expressions.
� You cannot extend pseudo-methods.
� You can define your own pseudo-methods using �define as� on page 429 or �define as computed� on

page 436.
� List pseudo-methods are associated with list data types, as opposed to being within the scope of a

struct.

See Also

� �e Data Types� on page 75
� �list.method()� on page 66
� �in� on page 49
� Chapter 23, �Predefined Methods Library�

19.2 Using List Pseudo-Methods

Once a list field or variable has been declared, you can operate on it with a list pseudo-method by attaching
the pseudo-method name, preceded by a period, to the list name. Any parameters required by the pseudo-
method go in parentheses after the pseudo-method name.

Many of the list pseudo-methods take expressions as parameters, an operate on every item in the list.

For example, the following calls the apply() pseudo-method for the list named �p_list�, with the expression
�.length + 2� as a parameter. The pseudo-method returns a list of numbers found by adding 2 to the �length�
field value in each item in the list.

n_list = p_list.apply(.length + 2);

It is important to put a period (.) in front of field names being accessed by pseudo-methods, as in �.length
+2�, above.
This is an unapproved IEEE Standards Draft, subject to change.
551

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
In pseudo-methods that take expressions as parameters, the it variable can be used in the expression to refer
to the current list item, and the index variable can be used to refer to the current item�s list index number.

Pseudo-methods that return values can only be used in expressions.

See Also

� �Pseudo-Methods Overview� on page 551
� �e Data Types� on page 75
� �list.method()� on page 66

19.3 Pseudo-Methods to Modify Lists

This section describes the pseudo-methods that change one or more items in a list.

The pseudo-methods in this section are:

� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �clear()� on page 557
� �delete()� on page 558
� �fast_delete()� on page 560
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �pop()� on page 563
� �pop0()� on page 564
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551

19.3.1 add(item)

Purpose

Add an item to the end of a list

Category

Pseudo-method

Syntax

list.add(item: list-type)

Syntax example:
552 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var i_list: list of int;
i_list.add(5);

Parameters

Description

Adds the item to the end of the list.

If the item is a struct, no new struct instance is generated, a pointer to the existing instance of the struct is
simply added to the list. For information about creating new structs, use the new, gen, copy(), deep_copy(),
and unpack() links in the �See Also� list below.

Example 1

The following adds 2 to the end of the list named �i_list� (that is, to index position 3).

var i_list: list of int = {3; 4; 6};
i_list.add(2);

Result

print i_list
 i_list =
0. 3
1. 4
2. 6
3. 2

Example 2

The following generates an instance of a �packet� struct and adds it to the list of packets named �p_lst�.

struct p_l {
!packet_i: packet;
!p_lst: list of packet;
mk_lst()@sys.clk is {

gen packet_i;
p_lst.add(packet_i);
stop_run();

};
};

See Also

� �new� on page 69
� �gen� on page 296
� �The copy() Method of any_struct� on page 647
� �deep_copy()� on page 713
� �unpack()� on page 521

list A list.
item An item of the same type as the list type, which is to be added to the list. The item is added

at index list.size(). That is, if the list contains five items, the last item is at index list.size() -
1, or 4. Adding an item to this list places it at index 5.
This is an unapproved IEEE Standards Draft, subject to change.
553

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.2 add(list)

Purpose

Add a list to the end of another list

Category

Pseudo-method

Syntax

list_1.add(list_2: list)

Syntax example:

i_list.add(l_list);

Parameters

Description

Adds list_2 to the end of list_1.

Example 1

The following adds �blue�, �green�, and �red� to the list named �colors_1�.

<’
type color: [blue, green, yellow, orange, red];
extend sys {

run() is also {
var colors_1: list of color = {red; red; blue};
var colors_2: list of color = {blue; green; red};
colors_1.add(colors_2);
print colors_1;

};
};
’>

list_1 A list.
list_2 A list of the same type as list_1, which is to be added to the end of list_1. The list is added

at index list.size(). That is, if the list contains five lists, the last list is at index list.size() - 1,
or 4. Adding a list to this list places it at index 5.
554 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

The following example adds the literal list {�blue�; �green�; �red�} to the list named �colors_3�. The
�colors_3� list then contains �red�, �red�, �blue�, �blue�, �green�, �red�.

var colors_3 := {"red"; "red"; "blue"};
colors_3.add({"blue"; "green"; "red"});

See Also

� �add(item)� on page 552
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.3 add0(item)

Purpose

Add an item to the head of a list

Category

Pseudo-method

Syntax

list.add0(item: list-type)

Syntax example:

var l_list: list of int = {4; 6; 8};
l_list.add0(2);

Parameters

Description

Adds a new item to an existing list. The item is placed at the head of the existing list, as the first position
(that is, at index 0). All subsequent items are then reindexed by incrementing their old index by one.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list. For information about generating new struct instances, use the new, gen, and
unpack() links in the "See Also" list below.

list A list.
item An item of the same type as the list items, which is to be added to the head of the list.
This is an unapproved IEEE Standards Draft, subject to change.
555

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

The following example adds 1 to the beginning of the list named �i_list�. The �i_list� then contains 1, 1, 2,
3, 4, 5.

var i_list: list of int = {1;2;3;4;5};
i_list.add0(1);

See Also

� �new� on page 69
� �gen� on page 296
� �The copy() Method of any_struct� on page 647
� �deep_copy()� on page 713
� �unpack()� on page 521
� �add(item)� on page 552
� �add(list)� on page 554
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.4 add0(list)

Purpose

Add a list to the head of another list

Category

Pseudo-method

Syntax

list_1.add0(list_2: list)

Syntax example:

var i_list: list of int = {1; 3; 5};
var l_list: list of int = {2; 4; 6};
i_list.add0(l_list);
556 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Adds a new list to an existing list. The list_2 list is placed at the head of the existing list_1 list, starting at the
first list_1 index. All subsequent items are then reindexed by incrementing their old index by the size of the
new list being added.

Example

The following adds 1, 2, 3, and 4 to the beginning of the list named �b_list�. The �b_list� then contains 1, 2,
3, 4, 5, 6.

var a_list: list of int = {1;2;3;4};
var b_list: list of int = {5;6};
b_list.add0(a_list);

NOTE� b_list.add0(a) returns the same result as a_list.add(b) in the above example, except that
in the example, �b_list� is added into �a_list�, while b_list.add0(a) adds �a_list� into �b_list�.

See Also

� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.5 clear()

Purpose

Delete all items from a list

Category

Pseudo-method

Syntax

list.clear()

Syntax example:

a_list.clear();

list_1 A list.
list_2 A list of the same type as list_1, which is to be added to the beginning of list_1 (at list_1

index 0)
This is an unapproved IEEE Standards Draft, subject to change.
557

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Return Value

None

Description

Deletes all items in the list.

Example

The following removes all items from the list named �l_list�.

l_list.clear();

See Also

� �delete()� on page 558
� �fast_delete()� on page 560
� �resize()� on page 566
� �pop()� on page 563
� �pop0()� on page 564

19.3.6 delete()

Purpose

Delete an item from a list

Category

Pseudo-method

Syntax

list.delete(index: int)

Syntax example:

var l_list: list of int = {2; 4; 6; 8};
l_list.delete(2);

Parameters

Description

Removes item number index from list (indexes start counting from 0). The indexes of the remaining items
are adjusted to keep the numbering correct.

list A list.

list A list.
index The index of the item that is to be deleted from the list.
558 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
If the index does not exist in the list, an error is issued.

Example 1

The following deletes 7 from index position 1 in the list named �y_list�. The list then consists of 5 (index 0)
and 9 (index 1).

var y_list := {5; 7; 9};
y_list.delete(1);

Example 2

Since list.delete() only accepts a single item as its argument, you cannot use it to delete a range of items in
one call. This example shows a way to do that.

The following shows a user-defined method named del_range() which, given a list, a from value, and a to
value, produces a new list (with the same name) of the items in the previous list, minus the items with
indexes in the given range. If the range of values is not legal for the given list, the method fails with an error
message.

<’
extend sys {

my_list: list of byte;
keep my_list.size() == 20;

del_range(in_l:list of byte,from:int,to:int):list of byte
is {

result.add(in_l[..from-1]);
result.add(in_l[to+1..]);

};

post_generate() is also {
my_list = del_range(my_list,5,15);

};
};
’>

See Also

� �clear()� on page 557
� �fast_delete()� on page 560
� �pop()� on page 563
� �pop0()� on page 564
� �resize()� on page 566
� �first_index()� on page 577
� �get_indices()� on page 579
� �last_index()� on page 584
� �max_index()� on page 587
� �min_index()� on page 590
This is an unapproved IEEE Standards Draft, subject to change.
559

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
19.3.7 fast_delete()

Purpose

Delete an item without adjusting all indexes

Category

Pseudo-method

Syntax

list.fast_delete(index: int)

Syntax example:

var l_list: list of int = {2; 4; 6; 8};
l_list.fast_delete(2);

Parameters

Description

Removes item number index from list (indexes start counting from 0). The index of the last item in the list is
changed to the index of the item that was deleted, so all items following the deleted item keep their original
indexes except that the original last index is removed.

If the index does not exist in the list, an error is issued.

Example

The following deletes �C� from index position 2 in the list named �y_list�, and changes the index of the last
item from 4 to 2. The new �y_list� is �A�, �B�, �E�, �D�.

<’
extend sys {

run() is also {
var y_list := {"A"; "B"; "C"; "D"; "E"};
y_list.fast_delete(2);
for i from 0 to 3 do {

print y_list[i];
};

};
};
’>

See Also

� �clear()� on page 557
� �delete()� on page 558
� �pop()� on page 563
� �pop0()� on page 564

list A list.
index The index that is to be deleted from the list.
560 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �resize()� on page 566
� �first_index()� on page 577
� �get_indices()� on page 579
� �last_index()� on page 584
� �max_index()� on page 587
� �min_index()� on page 590

19.3.8 insert(index, item)

Purpose

Insert an item in a list at a specified index

Category

Pseudo-method

Syntax

list.insert(index: int, item: list-type)

Syntax example:

var l_list := {10; 20; 30; 40; 50};
l_list.insert(3, 99);

Parameters

Description

Inserts the item at the index location in the list. If index is the size of the list, then the item is simply added
at the end of the list. All indexes in the list are adjusted to keep the numbering correct.

If the number of items in the list is smaller than index, an error is issued.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list. For information about generating new struct instances, use the new, gen, and
unpack() links in the �See Also� list below.

Example

In the following example, 10 is first inserted into position 2 in �s_list�, and then 77 is inserted into position
1. The resulting list contains 5, 77, 1, 10.

var s_list := {5; 1};
s_list.insert(2,10);
s_list.insert(1,77);

list A list.
index The index in the list where the item is to be inserted.
item An item of the same type as the list.
This is an unapproved IEEE Standards Draft, subject to change.
561

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �new� on page 69
� �gen� on page 296
� �The copy() Method of any_struct� on page 647
� �deep_copy()� on page 713
� �unpack()� on page 521
� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.9 insert(index, list)

Purpose

Insert a list in another list starting at a specified index

Category

Pseudo-method

Syntax

list_1.insert(index: int, list_2: list)

Syntax example:

var l_list := {10; 20; 30; 40; 50};
var m_list := {11; 12; 13};
l_list.insert(1, m_list);

Parameters

Description

Inserts all items of list_2 into list_1 starting at index. The index must be a positive integer. The size of the
new list size is equal to the sum of the sizes of list_1 and list_2.

If the number of items in list_1 is smaller than index, an error is issued.

Example

In the following example, �blue�, �green�, and �red� are inserted after �red� in the �colors_1� list. The
�colors_l� list is then �red�, �blue�, �green�, �red�, �green�, �blue�.

list_1 A list.
index The index of the position in list_1 where list_2 is to be inserted.
list_2 A list that is to be inserted into list_1.
562 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var colors_14 := {"red"; "green"; "blue"};
var colors_15 := {"blue"; "green"; "red"};
colors_14.insert(1, colors_15);

See Also

� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �push()� on page 565
� �push0()� on page 565
� �resize()� on page 566

19.3.10 pop()

Purpose

Remove and return the last list item

Category

Pseudo-method

Syntax

list.pop(): list-type

Syntax example:

var i_list:= {10; 20; 30};
var i_item: int;
i_item = i_list.pop();

Parameters

Description

Removes the last item (the item at index list.size() - 1) in the list and returns it. If the list is empty, an error is
issued.

NOTE� Use list.top() to return the last item in list without removing it from the list.

Example

In the following example, the �s_item� variable gets �d�, and the �s_list� becomes �a�, �b�, �c�.

var s_item: string;
var s_list := {"a"; "b"; "c"; "d"};
s_item = s_list.pop();

list A list.
This is an unapproved IEEE Standards Draft, subject to change.
563

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �pop0()� on page 564
� �delete()� on page 558
� �top()� on page 600

19.3.11 pop0()

Purpose

Remove and return the first list item

Category

Pseudo-method

Syntax

list.pop0(): list-type

Syntax example:

var i_list:= {10; 20; 30};
var i_item: int;
i_item = i_list.pop0();

Parameters

Description

Removes the first item (the item at index 0) from the list and returns it. Subtracts 1 from the index of each
item remaining in the list. If the list is empty, an error is issued.

NOTE� Use list.top0() to return the first item in list without removing it from the list.

Example

In the following example, the �s_item� variable gets �a� and �s_list� becomes �b�, �c�, �d�.

var s_item: string;
var s_list := {"a"; "b"; "c"; "d"};
s_item = s_list.pop0();

See Also

� �delete()� on page 558
� �pop()� on page 563
� �top0()� on page 601

list A list.
564 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
19.3.12 push()

Purpose

Add an item to the end of a list (same as �add(item)� on page 552)

Category

Pseudo-method

Syntax

list.push(item: list-type)

Syntax example:

var i_list: list of int;
i_list.push(5);

Parameters

Description

This pseudo-method performs the same function as �add(item)� on page 552.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list. For information about generating new struct instances, use the new, gen, and
unpack() links in the "See Also" list below.

See Also

� �new� on page 69
� �gen� on page 296
� �The copy() Method of any_struct� on page 647
� �deep_copy()� on page 713
� �unpack()� on page 521
� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push0()� on page 565

19.3.13 push0()

Purpose

Add an item to the head of a list (same as �add0(item)� on page 555)

list A list.
item An item of the same type as the list type, which is to be added to the list. The item is added

at index list.size(). That is, if the list contains five items, the last item is at index list.size() -
1, or 4. Adding an item to this list places it at index 5.
This is an unapproved IEEE Standards Draft, subject to change.
565

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.push0(item: list-type)

Syntax example:

var l_list: list of int = {4; 6; 8};
l_list.push0(2);

Parameters

Description

This pseudo-method performs the same function as �add0(item)� on page 555.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list. For information about generating new struct instances, use the new, gen, and
unpack() links in the "See Also" list below.

See Also

� �new� on page 69
� �gen� on page 296
� �The copy() Method of any_struct� on page 647
� �deep_copy()� on page 713
� �unpack()� on page 521
� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565

19.3.14 resize()

Purpose

Change the size of a list

Category

Pseudo-method

Syntax

list.resize(size: int [, full: bool, filler: exp, keep_old: bool])

list A list.
item An item of the same type as the list items, which is to be added to the head of the list.
566 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

var r_list := {2; 3; 5; 6; 8; 9};
r_list.resize(10, TRUE, 1, TRUE);

Parameters

Description

Allocates a new list of declared size, or resizes an old list if keep_old is TRUE. If full is TRUE, sets all new
items to have filler as their value.

If only the first parameter, size, is used, this method allocates a new list of the given size and all items are
initialized to the default value for the list type.

If any of the three parameters after size are used, all three of them must be used.

To resize and list and keep its old values, set both full and keep_old to TRUE. If the list is made longer, addi-
tional items with the value of filler are appended to the list.

Following is the behavior of this method for all combinations of full and keep_old.

� full is FALSE, keep_old is FALSE:
An empty list (that is, a list of zero size) is created, and memory is allocated for a list of the given
size.

� full is TRUE, keep_old is FALSE:
The list is resized to size, and filled completely with filler.

� full is FALSE, keep_old is TRUE:

� If size is greater than the size of the existing list, the list is enlarged to the new size, and the new
positions are filled with the default value of the list type.

� If size is less than or equal to the size of the existing list, the list is shortened to the new size, and all
of the existing values up to that size are retained.

� full is TRUE, keep_old is TRUE:

� If size is greater than the size of the existing list, the list is enlarged to the new size, and the new
positions are filled with filler.

� If size is less than or equal to the size of the existing list, the list is shortened to the new size, and all
of the existing values up to that size are retained.

Example 1

The following example puts 200 NULL �packet� instances into �q_list�. The initial size of the list is 0 when
it is created by the var action. The packets are NULL because that is the default value for a struct instance.

list A list.
size A positive integer specifying the desired size.
full A boolean value specifying all items will be filled with filler. Default: TRUE.
filler An item of the same type of the list items, used as a filler when FULL is TRUE.
keep_old A boolean value specifying whether to keep existing items already in the list. Default:

FALSE.
This is an unapproved IEEE Standards Draft, subject to change.
567

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
<’
struct packet {

len: uint;
addr: byte;

};
extend sys {

run() is also {
var q_list: list of packet;
print q_list.size();
q_list.resize(200);
print q_list.size();

};
};
’>

Result

q_list.size() = 0
q_list.size() = 200

Example 2

The following example puts 20 NULL strings in �r_list�. The initial size of the list is 0 when it is created by
the var action.

var r_list: list of string;
r_list.resize(20, TRUE, NULL, FALSE);
print r_list.size();
print r_list;

Result

 r_list.size() = 20
 r_list =
0. ""
1. ""
2. ""
3. ""
4. ""
5. ""
6. ""
7. ""
8. ""
9. ""
10. ""
11. ""
12. ""
13. ""
14. ""
15. ""
16. ""
17. ""
18. ""
19. ""
568 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 3

The following example makes �s_list� an empty list, but allocates space for it to hold 20 integers. The initial
size of the list is 0 when it is created by the var action, since �full� is FALSE.

var s_list: list of int;
s_list.resize(20, FALSE, 0, FALSE);
print s_list.size();
print s_list;

Result

s_list.size() = 0
s_list = (empty)

Example 4

The following example adds four items to an existing list.

var r_list := {2; 3; 5; 6; 8; 9};
r_list.resize(10, TRUE, 1, TRUE);
print r_list.size();
print r_list;

Result

r_list.size() = 10
r_list =

0. 2
1. 3
2. 5
3. 6
4. 8
5. 9
6. 1
7. 1
8. 1
9. 1

Example 5

This example shortens an existing list.

var r_list := {2; 3; 5; 6; 8; 9};
r_list.resize(4, TRUE, 7, TRUE);
print r_list.size();
print r_list;

Result

 r_list.size() = 4
 r_list =
0. 2
1. 3
2. 5
3. 6
This is an unapproved IEEE Standards Draft, subject to change.
569

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �add(item)� on page 552
� �add(list)� on page 554
� �add0(item)� on page 555
� �add0(list)� on page 556
� �insert(index, item)� on page 561
� �insert(index, list)� on page 562
� �push()� on page 565
� �push0()� on page 565
� �max_index()� on page 587
� �size()� on page 594

19.4 General List Pseudo-Methods

This section describes the syntax for pseudo-methods that perform various operations on lists.

The pseudo-methods in this section are:

� �apply()� on page 571
� �copy()� on page 572
� �count()� on page 573
� �exists()� on page 574
� �field� on page 575
� �first()� on page 576
� �first_index()� on page 577
� �get_indices()� on page 579
� �has()� on page 579
� �is_a_permutation()� on page 581
� �is_empty()� on page 582
� �last()� on page 583
� �last_index()� on page 584
� �max()� on page 585
� �max_index()� on page 587
� �max_value()� on page 588
� �min()� on page 589
� �min_index()� on page 590
� �min_value()� on page 591
� �reverse()� on page 593
� �size()� on page 594
� �sort()� on page 595
� �sort_by_field()� on page 596
� �split()� on page 597
� �top()� on page 600
� �top0()� on page 601
� �unique()� on page 602

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551
570 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
19.4.1 apply()

Purpose

Perform a computation on each item in a list

Category

Pseudo-method

Syntax

list.apply(item: exp): list

Syntax example:

var p_list:= {1; 3; 5};
var n_list: list of int;;
n_list = p_list.apply(it*2);

Parameters

Description

Applies the exp to each item in the list and returns the changed list.

NOTE� The expression �list.apply(it.field)� is the same as �list.field� when field is a scalar type.
For example, the following expressions both return a concatenated list of the �addr� field in each
packet item:

packets.apply(it.addr)
sys.packets.addr

The two expressions are different, however, if the field not scalar. For example, assuming that �data� is a list
of byte, the first expression returns a list containing the first byte of �data� of each packet item. The second
expression is a single item, which is the first item in the concatenated list of all �data� fields in all packet
items.

packets.apply(it.data[0])
packets.data[0]

Example 1

In the following example, the �n_list� in the sys struct gets a list of integers resulting from adding 1 to each
�len� value in the list of packets.

<’
struct packet {

len: uint;
addr: byte;

list A list.
item Any expression. The it variable can be used to refer to the current list item, and the index

variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
571

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
data: list of bit;
!%crc: uint;

};
extend sys {

p_list: list of packet;
!n_list: list of uint;
run() is also {

n_list = p_list.apply(it.len + 1);
};

};
’>

Example 2

In the following example, the �packet� struct contains a �get_crc()� method that calls the predefined
�crc_32()� on page 615. The �crc_plus� list gets the values returned by applying the �get_crc()� method to
every packet in the �p_list� list.

<’
struct packet {

%len: uint;
%addr: byte;
%data: list of byte;
!%crc: int;
get_crc(): int is {

return data.crc_32(0, data.size());
};

};
extend sys {

p_list: list of packet;
!crc_plus: list of int;
post_generate() is also {

crc_plus = p_list.apply(it.get_crc());
};

};
’>

Example 3

In the following example, the �ind_list� gets the indexes (0, 1, 2) of the items in the �l_list�.

var l_list: list of int = {5; 7; 9};
var ind_list: list of int = l_list.apply(index);
print ind_list;

See Also

� �field� on page 575
� �all()� on page 604

19.4.2 copy()

Purpose

Make a shallow copy of a list
572 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Predefined method of any struct or unit

Syntax

list.copy(): list

Syntax example:

var strlist_1: list of string = {"A"; "B"; "C"};
var strlist_2: list of string;
strlist_2 = strlist_1.copy();

Description

This is a specific case of exp.copy(), where exp is the name of a list. See �The copy() Method of any_struct�
on page 647 for additional information and examples.

19.4.3 count()

Purpose

Return the number of items that satisfy a given condition

Category

Pseudo-method

Syntax

list.count(exp: bool): int

Syntax example:

var ct: int;
ct = instr_list.count(it.op1 > 200);

Parameters

Description

Returns the number of items for which the exp is TRUE.

NOTE� The syntax list.all(exp).size() returns the same result as the list.count(exp) pseudo-
method, but list.all(exp).size() creates a new list and is faster.

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
573

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

The following example prints 3, since there are three items in �l_list� with values greater than 3.

var l_list: list of int = {2; 3; 4; 5; 6};
print l_list.count(it > 3)

Example 2

The following example prints the number of �packet� struct instances in the �packets� list that have a
�length� field value smaller than 5.

<’
struct packet {

length: uint (bits: 4);
};
extend sys {

packets: list of packet;
post_generate() is also {

var pl: int;
pl = packets.count(.length < 5);
print pl;

};
};
’>

See Also

� �has()� on page 579
� �all()� on page 604
� �all_indices()� on page 605
� �key()� on page 619
� �key_exists()� on page 623

19.4.4 exists()

Purpose

Check if an index exists in a list

Category

Pseudo-method

Syntax

list.exists(index: int): bool

Syntax example:

var i_chk: bool;
i_chk = packets.exists(5);
574 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Returns TRUE if an item with the index number exists in the list, or returns FALSE if the index does not
exist.

Example

The first print action in the following prints TRUE, because the �int_list� contains an item with an index of
1. The second print action prints FALSE, because there is no item with index 7 in the list.

<’
extend sys {

run() is also {
var int_lst: list of int = {1; 2; 3; 4; 5};
var ind_ex: bool;
ind_ex = int_lst.exists(1);
print ind_ex;
ind_ex = int_lst.exists(7);
print ind_ex;

};
};
’>

See Also

� �first_index()� on page 577
� �all_indices()� on page 605

19.4.5 field

Purpose

Specifying a field from all items in a list

Category

Pseudo-method

Syntax

list.field-name

Syntax example:

s_list.fld_nm

list A list.
index An integer expression representing an index to the list.
This is an unapproved IEEE Standards Draft, subject to change.
575

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns a list containing the contents of the specified field-name for each item in the list. If the list is empty,
it returns an empty list. This syntax is the same as list.apply(field).

An error is issued if the field name is not the name of a struct or if the struct type does not have the specified
field

Example

The following prints the values of the �length� fields in all the items in the �packets� list.

<’
struct packet {

length: uint;
};
extend sys {

packets: list of packet;
run() is also {

print packets.length;
};

};
’>

See Also

� �apply()� on page 571

19.4.6 first()

Purpose

Get the first item that satisfies a given condition

Category

Pseudo-method

Syntax

list.first(exp: bool): list-type

Syntax example:

var i_item: instr;
i_item = instr_list.first(it.op1 > 15);

list A list of structs.
field-name A name of a field or list in the struct type.
576 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Returns the first item for which exp is TRUE. If there is no such item, the default for the item�s type is
returned (see �e Data Types� on page 75).

For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a
value found, it is safer to use list.first_index() for lists of scalars.

Example 1

The first line below creates a list of five integers. The second line prints the first item in the list smaller than
5 (that is, it prints 3).

var i_list :list of int = {8;3;7;3;4};
print i_list.first(it < 5);

Example 2

In the following example, the list.first.() pseudo-method is used to make sure all items in the �packets� list
contain non-empty �cells� lists.

<’
struct cell {

data: list of byte;
};
struct packet {

cells: list of cell;
};
extend sys {

packets: list of packet;
post_generate() is also {

check that sys.packets.first(.cells is empty) == NULL;
};

};
’>

See Also

� �first_index()� on page 577
� �has()� on page 579
� �last()� on page 583

19.4.7 first_index()

Purpose

Get the index of the first item that satisfies a given condition

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
577

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.first_index(exp: bool): int

Syntax example:

var i_item: int;
i_item = instr_list.first_index(it.op1 > 15);

Parameters

Description

Returns the index of the first item for which exp is TRUE or return UNDEF if there is no such item.

Example 1

The first line below creates a list of five integers. The second line prints 1, which is the index of the first item
in the list smaller than 5.

var i_list :list of int = {8;3;7;3};
print i_list.first_index(it < 5);

Example 2

In the following example, the list.first_index.() pseudo-method is used to make sure all items in the �pack-
ets� list contain non-empty �cells� lists.

<’
struct cell {

data: list of byte;
};
struct packet {

cells: list of cell;
};
extend sys {

packets: list of packet;
post_generate() is also {

check that
 packets.first_index(.cells is empty) == UNDEF;

};
};
’>

See Also

� �first()� on page 576
� �has()� on page 579

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
578 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �last_index()� on page 584

19.4.8 get_indices()

Purpose

Return a sublist of another list

Category

Pseudo-method

Syntax

list.get_indices(index-list: list of int): list-type

Syntax example:

var i_list: list of packet;
i_list = packets.get_indices({0; 1; 2});

Parameters

Description

Copies the items in list that have the indexes specified in index-list and returns a new list containing those
items. If the index-list is empty, an empty list is returned.

Example

The following example puts �green� and �orange� in the list named �o_list�.

var c_list := {"red"; "green"; "blue"; "orange"};
var o_list := c_list.get_indices({1;3});

See Also

� �first_index()� on page 577
� �has()� on page 579
� �last_index()� on page 584
� �all_indices()� on page 605

19.4.9 has()

Purpose

Check that a list has at least one item that satisfies a given condition

list A list.
index-list A list of indexes within the list. Each index must exist in the list.
This is an unapproved IEEE Standards Draft, subject to change.
579

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.has(exp: bool): bool

Syntax example:

var i_ck: bool;
i_ck = sys.instr_list.has(it.op1 > 31);

Parameters

Description

Returns TRUE if the list contains at least one item for which the exp is TRUE, or returns FALSE if the
expression is not TRUE for any item.

Example 1

The first line below creates a list containing the integers 8, 3, 7, and 3. The second line checks that the list
contains 7, and prints TRUE.

var l: list of int = {8;3;7;3};
print l.has(it == 7);

Example 2

The line below checks that there is no packet in the �packets� list that contains an empty �cells� list.

<’
struct cell {

data: list of byte;
};
struct packet {

cells: list of cell;
};
extend sys {

packets: list of packet;
post_generate() is also {

check that not sys.packets.has(.cells is empty);
};

};
’>

See Also

� �first()� on page 576
� �last()� on page 583
� �max()� on page 585

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
580 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �min()� on page 589
� �all()� on page 604

19.4.10 is_a_permutation()

Purpose

Check that two lists contain exactly the same items

Category

Pseudo-method

Syntax

list_1.is_a_permutation(list_2: list): bool

Syntax example:

var lc: bool;
lc = packets_1a.is_a_permutation(packets_1b);

Parameters

Description

Returns TRUE if list_2 contains the same items as list_1, or FALSE if any items in one list are not in the
other list. The order of the items in the two lists does not need to be the same, but the number of items must
be the same for both lists. That is, items that are repeated in one list must appear the same number of times in
the other list.

Notes

� If the lists are lists of structs, list_1.is_a_permutation(list_2) compares the addresses of the struct
items, not their contents.

� This pseudo-method can be used in a keep constraint to fill list_1 with the same items contained in
the list_2, although not necessarily in the same order.

Example 1

In the following example, the �l_comp� variable is TRUE because the two lists contain the same items.

<’
extend sys {

run() is also {
var l_1 := {1;3;5;7;9};
var l_2 := {1;9;7;3;5};
var l_comp: bool;
l_comp = l_1.is_a_permutation(l_2);
print l_comp;

};

list_1 A list.
list_2 A list that is to be compared to list_1. Must be the same type as list_1.
This is an unapproved IEEE Standards Draft, subject to change.
581

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};
’>

Example 2

In the following example, the keep constraint causes the list named �l_2� have the same items the generator
puts in the list named �l_1�. Since �l_1� will have the same number of items as �l_2�, there is an implicit
constraint that �l_2� will be the same size at �l_1�. To constrain the size of the two lists, you can specify a
keep constraint on the size of either �l_1� or �l_2�. Using a keep soft constraint to try to constrain the size
of �l_2� is an error.

<’
extend sys {

l_1: list of int;
l_2: list of int;
keep l_2.is_a_permutation(l_1);

};
’>

See Also

� �keep� on page 270
� �has()� on page 579

19.4.11 is_empty()

Purpose

Check if a list is empty

Category

Pseudo-method

Syntax

list.is_empty(): bool

Syntax example:

var no_l: bool;
no_l = packets.is_empty();

Parameters

Description

Returns TRUE if list is empty, or FALSE if the list is not empty.

NOTE� You can use �list is empty� as a synonym for �list.is_empty()�.

Similarly, you can use �list is not empty� to mean �not(list.is_empty())�.

list A list.
582 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 1

In the following example, the first print action prints TRUE because the �int_lst� is initially empty. After an
item is added, the second print action prints TRUE because the list is not empty.

<’
extend sys {

int_list: list of int;
run() is also {

var emp: bool;
emp = int_list.is_empty();
print emp;
int_list.add(3);
emp = int_list is not empty;
print emp;

};
};
’>

Example 2

The following gives the same result as the �ck_instr()� method in the previous example.

ck_instr() is {
if int_list is not empty {

print int_list;
}
else {

outf("list is empty\n");
return;

};
};

See Also

� �clear()� on page 557
� �exists()� on page 574
� �size()� on page 594

19.4.12 last()

Purpose

Get the last item that satisfies a given condition

Category

Pseudo-method

Syntax

list.last(exp: bool): list-type

Syntax example:

var i_item: instr;
This is an unapproved IEEE Standards Draft, subject to change.
583

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
i_item = sys.instr_list.last(it.op1 > 15);

Parameters

Description

Returns the last item in the list that satisfies the boolean expression. If there is no such item, the default for
the item�s type is returned (see �e Data Types� on page 75).

For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a
found value, it is safer to use list.last_index() for lists of scalars.

Example 1

The first line below creates a list containing the integers 8, 3, 7, 3, and 4. The second line prints 4.

var l :list of int = {8;3;7;3;4};
print l.last(it < 5);

Example 2

The check that line below checks that there is no packet in the �packets� list that contains an empty �cells�
list.

<’
struct cell {

data: list of byte;
};
struct packet {

cells: list of cell;
};
extend sys {

packets: list of packet;
post_generate() is also {

check that sys.packets.last(.cells is empty) == NULL;
};

};
’>

See Also

� �first()� on page 576
� �has()� on page 579
� �last_index()� on page 584
� �all()� on page 604

19.4.13 last_index()

Purpose

Get the index of the last item that satisfies a given condition

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
584 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Pseudo-method

Syntax

list.last_index(exp: bool): int

Syntax example:

var i_item: int;
i_item = instr_list.last_index(it.op1 > 15);

Parameters

Description

Returns the index of the last item for which exp is TRUE, or returns UNDEF if there is no such item.

Example 1

The first lilne below creates a list containing the integers 8, 3, 7, 3, and 4. The second line prints 3.

var l: list of int = {8;3;7;3;4};
print l.last_index(it == 3);

Example 2

The code below checks that every packet in the �packets� list has a non-empty �cells� list: if the index of the
last packet that has a non-empty �cells� list is one less than the size of the list, the check succeeds.

check that
sys.packets.last_index(.cells is not empty) ==
sys.packets.size() - 1;

See Also

� �first_index()� on page 577
� �has()� on page 579
� �last()� on page 583
� �all_indices()� on page 605

19.4.14 max()

Purpose

Get the item with the maximum value of a given expression

list A list.
exp A boolean expression. The it variable can be used to refer to the current list

item, and the index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
585

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.max(exp: int): list-type

Syntax example:

var high_item: item_instance;
high_item = item_list.max(it.f_1 + it.f_2);

Parameters

Description

Returns the item for which the exp evaluates to the largest value. If more than one item results in the same
maximum value, the item latest in the list is returned.

If the list is empty, an error is issued.

Example

In the example below, the �high_item� variable gets the �instr� instance that has the largest value of the sum
of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() > 5;
post_generate() is also {

var high_item: instr;
high_item = instr_list.max(.op1 + .op2);

};
};
’>

See Also

� �has()� on page 579
� �max_index()� on page 587
� �max_value()� on page 588
� �min()� on page 589
� �all()� on page 604

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
586 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
19.4.15 max_index()

Purpose

Get the index of the item with the maximum value of a given expression

Category

Pseudo-method

Syntax

list.max_index(exp: int): int

Syntax example:

var item_index: index;
item_index = sys.item_list.max_index(it.f_1 + it.f_2);

Parameters

Description

Returns the index of the item for which the exp evaluates to the largest value. If more than one item results
in the same maximum value, the index of the item latest in the list is returned.

If the list is empty, and error is issued.

Example

In the example below, the �high_indx� variable gets the index of the �instr� instance that has the largest
value of the sum of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() > 5;
post_generate() is also {

var high_indx: int;
high_indx = instr_list.max_index(.op1 + .op2);

};
};
’>

See Also

� �first_index()� on page 577

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
587

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �has()� on page 579
� �last_index()� on page 584
� �max()� on page 585
� �max_value()� on page 588
� �min_index()� on page 590
� �all_indices()� on page 605

19.4.16 max_value()

Purpose

Return the maximum value found by evaluating a given expression for all items

Category

Pseudo-method

Syntax

list.max_value(exp: int): (int | uint)

Syntax example:

var item_val: int;
item_val = sys.item_list.max_value(it.f_1 + it.f_2);

Parameters

Description

Returns the largest integer value found by evaluating the exp for every item in the list. If more than one item
results in the same maximum value, the value of the expression for the item latest in the list is returned.

For lists of integer types, one of the following is returned if the list is empty:

Example 1

The example below prints the largest absolute value in the list of integers named �i_list�.

<’
extend sys {

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.

List Item Type Value Returned by list.max_value()

signed integer MIN_INT (see �Predefined Constants� on page 8)

unsigned integer zero

long integer error
588 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
i_list: list of int;
post_generate() is also {

print i_list.max_value(abs(it));
};

};
’>

Example 2

In the example below, the �high_val� variable gets the �instr� instance that has the largest value of the sum
of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() < 10;
post_generate() is also {

var high_val: int;
high_val = instr_list.max_value(.op1 + .op2);
print high_val;

};
};
’>

See Also

� �has()� on page 579
� �max()� on page 585
� �max_index()� on page 587
� �min_value()� on page 591

19.4.17 min()

Purpose

Get the item with the minimum value of a given expression

Category

Pseudo-method

Syntax

list.min(exp: int): list-type

Syntax example:

var low_item: item_instance;
low_item = sys.item_list.min(it.f_1 + it.f_2);
This is an unapproved IEEE Standards Draft, subject to change.
589

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns the item for which the exp evaluates to the smallest value. If more than one item results in the same
minimum value, the item latest in the list is returned.

Example

In the example below, the �low_item� variable gets the �instr� instance that has the smallest value of the
sum of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() < 10;
post_generate() is also {

var low_item: instr;
low_item = instr_list.min(.op1 + .op2);

};
};
’>

See Also

� �first()� on page 576
� �has()� on page 579
� �last()� on page 583
� �max()� on page 585
� �min_index()� on page 590
� �min_value()� on page 591
� �all()� on page 604

19.4.18 min_index()

Purpose

Get the index of the item with the minimum value of a given expression

Category

Pseudo-method

Syntax

list.min_index(exp: int): int

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
590 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

var item_index: index;
item_index = sys.item_list.min_index(it.f_1 + it.f_2);

Parameters

Description

Return the index of the item for which the specified exp gives the minimal value. If more than one item
results in the same minimum value, the index of the item latest in the list is returned.

If the list is empty, an error is issued.

Example

In the example below, the �low_indx� variable gets the index of the �instr� instance that has the smallest
value of the sum of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() < 10;
post_generate() is also {

var low_indx: int;
low_indx = instr_list.min_index(.op1 + .op2);

};
};
’>

See Also

� �first_index()� on page 577
� �has()� on page 579
� �last_index()� on page 584
� �max_index()� on page 587
� �min()� on page 589
� �min_value()� on page 591
� �all_indices()� on page 605

19.4.19 min_value()

Purpose

Return the minimum value found by evaluating a given expression for all items

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
591

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.min_value(exp: int): (int | uint)

Syntax example:

var item_val: int;
item_val = sys.item_list.min_value(it.f_1 + it.f_2);

Parameters

Description

Returns the smallest integer value found by evaluating the exp for every item in the list. If more than one
item results in the same minimum value, the value of the expression for the item latest in the list is returned.

For lists of integer types, one of the following is returned if the list is empty:

Example

In the example below, the �low_val� variable gets the �instr� instance that has the smallest value of the sum
of �op1� and �op2�.

<’
struct instr {

op1: int;
op2: int;

};
extend sys {

instr_list: list of instr;
keep instr_list.size() < 10;
post_generate() is also {

var low_val: int;
low_val = instr_list.min_value(.op1 + .op2);
print low_val;

};
};
’>

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.

List Item Type Value Returned

signed integer MAX_INT (see �Predefined Constants� on page 8)

unsigned integer zero

long integer error
592 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �has()� on page 579
� �max_value()� on page 588
� �min()� on page 589
� �min_index()� on page 590

19.4.20 reverse()

Purpose

Reverse the order of a list

Category

Pseudo-method

Syntax

list.reverse(): list

Syntax example:

var s_list := {"A"; "B"; "C"; "D"};
var r_list := s_list.reverse();

Parameters

Description

Returns a new list of all the items in list in reverse order.

Example 1

In the following example the �r_packets� field gets a list that contains all the items in the �packets� list, but
in reverse order.

<’
struct cell {

data: list of byte;
};
struct packet {

cells: list of cell;
};
extend sys {

packets: list of packet;
r_packets: list of packet;
post_generate() is also {

r_packets = sys.packets.reverse();
};

};
’>

list A list.
This is an unapproved IEEE Standards Draft, subject to change.
593

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

The following example prints 2, 1, 2, 4.

var i_list: list of int = {4; 2; 1; 2};
var r_list: list of int = i_list.reverse();
print r_list;

See Also

� �sort()� on page 595
� �sort_by_field()� on page 596

19.4.21 size()

Purpose

Return the size of a list

Category

Pseudo-method

Syntax

list.size(): int

Syntax example:

print packets.size();

Parameters

Description

Returns an integer equal to the number of items in the list.

A common use for this method is in a keep constraint, to specify an exact size or a range of values for the list
size. The default maximum list size for generated lists is 50, set by the default_max_list_size generation
configuration option. Generated lists have a random size between 0 and that number. You can control the list
size using a construct like �keep list.size() == n�, where n is an integer expression.

The list[n] index syntax is another way to specify an exact size of a list, when you use it in the list declara-
tion, such as �p_list[n]: list of p�.

See �List Size� on page 264 for more information about constraining the size of lists.

Example 1

In the following example, the �lsz� variable gets the number of items in the list named �s_list�.

<’

list A list.
594 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend sys {
s_list: list of string;
keep s_list == {"Aa"; "Ba"; "Cc"};
post_generate() is also {

var lsz: int;
lsz = sys.s_list.size();
print lsz;

};
};
’>

Example 2

In the following example, a list of packets named p_list will be generated. A keep constraint is used to set
the size of the list to exactly 10 packets.

<’
extend sys {

p_list: list of packet;
keep p_list.size() == 10;

};
’>

See Also

� �resize()� on page 566
� �count()� on page 573
� �keep� on page 270
� �[]� on page 54

19.4.22 sort()

Purpose

Sort a list

Category

Pseudo-method

Syntax

list.sort(sort-exp: exp): list

Syntax example:

var s_list: list of packet;
s_list = packets.sort(it.f_1 + it.f_2);
This is an unapproved IEEE Standards Draft, subject to change.
595

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns a new list of all the items in list, sorted in increasing order of the values of the sort-exp.

If the sort-exp is a scalar value, the list is sorted by value. If the sort-exp is a nonscalar, the list is sorted by
address.

Example 1

The following example prints 1, 2, 2, 4.

var sl: list of int = {4; 2; 1; 2};
print sl.sort(it);

Example 2

In the following example, the �s_list� variable gets the items in the �packets� list, sorted in increasing value
of the product of the �length� and �width� fields.

<’
struct packet {

length: uint;
width: uint;

};
extend sys {

packets: list of packet;
post_generate() is also {

var s_list: list of packet;
s_list = packets.sort(.length * .width);

};
};
’>

See Also

� �reverse()� on page 593
� �sort_by_field()� on page 596

19.4.23 sort_by_field()

Purpose

Sort a list of structs by a selected field

Category

Pseudo-method

list A list of integers, strings, enumerated items, or boolean values to sort.
sort-exp A scalar or nonscalar expression. The expression may contain references to fields or

structs. The it variable can be used to refer to the current list item.
596 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

struct-list.sort_by_field(field: field-name): list

Syntax example:

var s_list: list of packet;
s_list = sys.packets.sort_by_field(length);

Parameters

Description

Returns a new list of all the items in struct-list, sorted in increasing order of their field values.

NOTE� The list.sort() pseudo-method returns the same value as the list.sort_by_field() pseudo-
method, but list.sort_by_field() is more efficient.

Example

In the following example, the �sf_list� variable gets the items in the �packets� list, sorted in increasing value
of the �ptype� field (first �ATM�, then �ETH�, then �foreign�).

<’
type pkt_type: [ATM, ETH, foreign];
struct packet {

length: uint;
width: uint;
ptype: pkt_type;

};
extend sys {

packets: list of packet;
post_generate() is also {

var sf_list: list of packet;
sf_list = packets.sort_by_field(ptype);
print sf_list;

};
};
’>

See Also

� �reverse()� on page 593
� �sort()� on page 595

19.4.24 split()

Purpose

Splits a list at each point where an expression is true

struct-list A list of structs.
field The name of a field of the list�s struct type. Enter the name of the field only, with no

preceding �.� or �it.�.
This is an unapproved IEEE Standards Draft, subject to change.
597

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Pseudo-method

Syntax

list.split(split-exp: exp): list, ...

Syntax example:

var sl_hold := s_list.split(it.f_1 == 16);

Parameters

Description

Splits the items in list into separate lists, each containing consecutive items in list which evaluate to the same
exp value.

Since e does not support lists of lists, this pseudo-method returns a list of type struct-list-holder. The struct-
list-holder type is a struct with a single field, �value: list of any-struct;�. A struct-list-holder is a list of
structs, with each struct containing a list of items of the original list type.

Each struct-list-holder in the returned list contains consecutive items from the list that have the same split-
exp value.

NOTE� Fields used in the expression must be defined in the base type definition, not in when
subtypes.

Example 1

Suppose �packets� is a list that contains packet instances that have the following �length� values:

3; 5; 5; 7; 7; 7; 5;

The �packets.split(.length)� pseudo-method in the following creates a list of four lists by splitting the �pack-
ets� list at each point where the �length� value changes, that is, between 3 and 5, between 5 and 7, and
between 7 and 5.

<’
struct packet {

length: uint;
};
extend sys {

packets: list of packet;
post_generate() is also {

var sl_hold := packets.split(.length);
print sl_hold[2].value;
print sl_hold.value[4];

};
};

list A list of type struct-list-holder.
split-exp An expression. The it variable can be used to refer to the current list item, and the index

variable can be used to refer to its index number.
598 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
’>

The struct-list-holder variable �sl_hold� then contains four lists:

3
5, 5
7, 7, 7
5

The �print sl_hold[2].value� action prints the third list, which is the one containing three items whose
�length� values are 7.

The print sl_hold.value[4]� action prints the fifth item in the �sl_hold� list, which is the same as the fifth
item in the �packets� list.

Example 2

In the following example, the �length� field values used in Example 1 on page 598, are assigned to a list of
seven �packet� structs. The list.split() pseudo-method is then called to split the list of packets on the
�length� values. This creates the following four lists in the �sl_hold� struct list holder variable:

list sl_hold[1] : length value 3
list sl_hold[2] : length values 5, 5
list sl_hold[3] : length values 7, 7, 7
list sl_hold[4] : length value 5

The �sl_hold� list values are then printed in the for loop.

<’
struct packet {

address: byte;
length: uint;

};
extend sys {

packets: list of packet;
keep packets.size() == 7;
post_generate() is also {

packets[0].length = 3;
packets[1].length = 5;
packets[2].length = 5;
packets[3].length = 7;
packets[4].length = 7;
packets[5].length = 7;
packets[6].length = 5;
var sl_hold: list of struct_list_holder;
sl_hold = packets.split(.length);
for i from 0 to sl_hold.size() - 1 do {

print sl_hold[i].value;
};

};
};
’>

The output of the �print sl_hold[i].value� loop is shown below. The �length� field values for the �packet�
items are in the column on the right.
This is an unapproved IEEE Standards Draft, subject to change.
599

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 p[i].value =
item type
0. packet 112 3

 p[i].value =
item type
0. packet 32 5
1. packet 78 5

 p[i].value =
item type
0. packet 172 7
1. packet 172 7
2. packet 25 7

 p[i].value =
item type
0. packet 70 5

Example 3

The following splits the list in the preceding example at each point where the value of the expression
�.length > 5� changes, that is, between 5 and 7 and between 7 and 5.

var sl_hold := sys.packets.split(.length > 5);

The struct-list-holder variable �sl_hold� then contains three lists:

3, 5, 5
7, 7, 7
5

Example 4

To sort the list before you split it, you can use the following syntax.

var sl_hold := sys.packets.sort(.length).split(.length);

See Also

� �get_indices()� on page 579
� �has()� on page 579
� �all()� on page 604

19.4.25 top()

Purpose

Return the last item in a list

Category

Pseudo-method
600 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

list.top(): list-item

Syntax example:

var pk: packet;
pk = sys.packets.top();

Parameters

Description

Returns the last item in the list without removing it from the list. If the list is empty, an error is issued.

Example

The following example prints the contents of the last packet in the �packets� list.

print sys.packets.top();

See Also

� �pop()� on page 563
� �top0()� on page 601

19.4.26 top0()

Purpose

Return the first item of a list

Category

Pseudo-method

Syntax

list.top0(): list-item

Syntax example:

var pk: packet;
pk = sys.packets.top0();

Parameters

Description

Returns the first item in the list without removing it from the list. If the list is empty, an error is issued.

list A list.

list A list.
This is an unapproved IEEE Standards Draft, subject to change.
601

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
This pseudo-method can be used with pop0() to emulate queues.

Example

The following example prints the contents of the first packet in the �packets� list.

print sys.packets.top0();

See Also

� �pop0()� on page 564
� �top()� on page 600

19.4.27 unique()

Purpose

Collapse consecutive items that have the same value into one item

Category

Pseudo-method

Syntax

list.unique(select-exp: exp): list

Syntax example:

var u_list: list of l_item;
u_list = sys.l_list.unique(it.f_1);

Parameters

Description

Returns a new list of all the distinct values in list. In the new list, all consecutive occurrences of items for
which the value of exp are the same are collapsed into one item.

Example 1

In the following example, the list.unique() pseudo-method collapses the consecutive 5s and the consecutive
7s in �i_list� into a single 5 and a single seven. The example prints 3, 5, 7, 5.

var i_list := {3; 5; 5; 7; 7; 7; 5};
var pl: list of int;
pl = i_list.unique(it);
print pl;

list A list.
select-exp An expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
602 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

Suppose the �packets� list contains seven packets with the following �length� field values: 3, 5, 5, 7, 7, 7, 5.
The list.unique() pseudo-method collapses the consecutive packets with lengths of 5 into a single item, and
collapses the consecutive items with lengths of 7 into a single item. The �pl� list gets four packets, with
lengths of 3, 5, 7, and 5.

var pl: list of packet;
pl = packets.unique(.length);

Example 3

In the following example, the list.unique() pseudo-method removes any packet items with repeated �length�
values from the �packets� list before the list is sorted using the list.sort() pseudo-method.

<’
struct packet {

length: uint (bits: 8);
width: uint (bits: 8);

};
extend sys {

packets: list of packet;
post_generate() is also {

var s_list: list of packet;
s_list= packets.sort(.length).unique(.length);
print s_list;

};
};
’>

See Also

� �count()� on page 573
� �size()� on page 594
� �sort()� on page 595
� �sort_by_field()� on page 596
� �all()� on page 604

19.5 Sublist Pseudo-Methods

This section describes the syntax for pseudo-methods that construct a new list from all the items in another
list that satisfy specified conditions.

The pseudo-methods in this section are:

� �all()� on page 604
� �all_indices()� on page 605

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551
� �Type Conversion Between Scalars and Strings� on page 104
This is an unapproved IEEE Standards Draft, subject to change.
603

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
19.5.1 all()

Purpose

Get all items that satisfy a condition

Category

Pseudo-method

Syntax

list.all(exp: bool): list

Syntax example:

var l_2: list of packet;
l_2 = sys.packets.all(it.length > 64);

Parameters

Description

Returns a list of all the items in list for which exp is TRUE. If no items satisfy the boolean expression, an
empty list is returned.

Example 1

The following example prints 7, 9, 11, since those are the values in �l_list� that are greater than 5.

var l_list: list of int = {1; 3; 5; 7; 9; 11};
print l_list.all(it > 5);

Example 2

The following example creates a list named �pl� of all packets that have a �length� field value less than 5,
and prints the �pl� list.

<’
type packet_type: [ETH, ATM];
struct packet {

length: uint (bits: 4);
ptype: packet_type;

};
extend sys {

packets: list of packet;
post_generate() is also {

var pl: list of packet;
pl = packets.all(.length < 5);
print pl;

};

list A list.
exp A boolean expression. The it variable can be used to refer to the current item, and the index

variable can be used to refer to its index number.
604 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
’>

Example 3

The following creates a list named �pt� of all packets that have a �ptype� field value of �ETH�, and prints
the �pt� list. This example uses the �it is a type� syntax to specify which subtype of the packet struct to look
for.

<’
type packet_type: [ETH, ATM];
struct packet {

length: uint (bits: 4);
ptype: packet_type;

};
extend sys {

packets: list of packet;
post_generate() is also {

var pt:= packets.all(it is a ETH packet);
print pt;

};
};
’>

See Also

� �is [not] a� on page 67
� �first()� on page 576
� �has()� on page 579
� �last()� on page 583
� �max()� on page 585
� �min()� on page 589
� �all_indices()� on page 605

19.5.2 all_indices()

Purpose

Get indexes of all items that satisfy a condition

Category

Pseudo-method

Syntax

list.all_indices(exp: bool): list of int

Syntax example:

var l_2: list of int;
l_2 = sys.packets.all_indices(it.length > 5);
This is an unapproved IEEE Standards Draft, subject to change.
605

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns a list of all indexes of items in list for which exp is TRUE. If no items satisfy the boolean expres-
sion, an empty list is returned.

Example 1

The following example creates a list name �tl� that contains the index numbers of all the �instr� instances in
the list named �i_list� which have �op1� field values greater than 63.

<’
type op_code: [ADD, SUB, MLT];
struct instr {

op1: int (bits: 8);
op2: int;
opcode: op_code;

};
extend sys {

i_list: list of instr;
post_generate() is also {

var tl: list of int;
tl = i_list.all_indices(it.op1 > 63);
print tl;

};
};
’>

Results

tl =
0. 0
1. 1
2. 2
3. 3
4. 4
5. 8
6. 12
7. 28
8. 29
9. 30
10. 31
11. 33

Example 2

In the following example, the list.all_indices() pseudo-method is used to create a list named �pl� of the
indexes of the �packets� list items that are of subtype �small packet�.

<’
type pkt_type: [small, medium, large];
struct packet {

address: byte;

list A list.
exp A boolean expression.
606 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
ptype: pkt_type;
};
extend sys {

packets: list of packet;
keep packets.size() == 10;
run() is also {

print packets;
var pl: list of int;
pl = packets.all_indices(it is a small packet);
print pl;

};
};
’>

Results

packets =
item type address ptype

0. packet 97 medium
1. packet 66 large
2. packet 10 large
3. packet 180 medium
4. packet 235 small
5. packet 196 small
6. packet 85 large
7. packet 163 small
8. packet 62 large
9. packet 86 large

pl =
0. 4
1. 5
2. 7

Example 3

Using all_indices() on an empty list produces another empty list. Trying to use this result in a gen keeping
constraint can cause a generation contradiction error. To avoid this, you can use a check like �if
!test_ix.is_empty()� in the following example.

<’
struct st_eng {

v_list: list of uint (bits: 7);
ameth(): list of int is {

var test_ix: list of int;
test_ix = v_list.all_indices(it > 100);
var s_index: uint;
if !test_ix.is_empty() {

gen s_index keeping {it in test_ix};
return test_ix;

};
};

};
extend sys {

st_i: st_eng;
s_list: list of int;
run() is also {

s_list = st_i.ameth();
This is an unapproved IEEE Standards Draft, subject to change.
607

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
print s_list;
};

};
’>

Results

s_list =
0. 9
1. 20
2. 21
3. 37
4. 39
5. 44

See Also

� �field� on page 575
� �first_index()� on page 577
� �has()� on page 579
� �last_index()� on page 584
� �max_index()� on page 587
� �min_index()� on page 590
� �all()� on page 604

19.6 Math and Logic Pseudo-Methods

This section describes the syntax for pseudo-methods that perform arithmetic or logical operations to com-
pute a value using all items in a list.

The pseudo-methods in this section are:

� �and_all()� on page 608
� �average()� on page 609
� �or_all()� on page 610
� �product()� on page 611
� �sum()� on page 612

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551

19.6.1 and_all()

Purpose

Compute the logical AND of all items

Category

Pseudo-method
608 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

list.and_all(exp: bool): bool

Syntax example:

var bool_val: bool;
bool_val = m_list.and_all(it >= 1);

Parameters

Description

Returns a TRUE if all values of the exp are true, or returns FALSE if the exp is false for any item in the list.

Example

The following line prints TRUE if the �length� field value of all items in the �packets� list is greater than 63.
If any packet has a length less than or equal to 63, it prints FALSE.

print sys.packets.and_all(it.length > 63);

See Also

� �average()� on page 609
� �or_all()� on page 610
� �product()� on page 611
� �sum()� on page 612

19.6.2 average()

Purpose

Compute the average of an expression for all items

Category

Pseudo-method

Syntax

list.average(exp: int): int

Syntax example:

var list_ave: int;
list_ave = sys.item_list.average(it.f_1 * it.f_2);

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
609

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns the integer average of the exp computed for all the items in the list. Returns UNDEF if the list is
empty.

Example 1

The following example prints 6 ((3 + 5 + 10)/3).

var a_list := {3; 5; 10};
print a_list.average(it);

Example 2

The following example prints the average value of the �length� fields for all the items in the �packets� list.

<’
struct packet {

length: uint (bits: 4);
width: uint (bits: 4);

};
extend sys {

packets: list of packet;
post_generate() is also {

print packets.average(it.length);
};

};
’>

See Also

� �and_all()� on page 608
� �or_all()� on page 610
� �product()� on page 611
� �sum()� on page 612

19.6.3 or_all()

Purpose

Compute the logical OR of all items

Category

Pseudo-method

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
610 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

list.or_all(exp: bool): bool

Syntax example:

var bool_val: bool;
bool_val = m_list.or_all(it >= 100);

Parameters

Description

Returns a TRUE if any value of the exp is true, or returns FALSE if the exp is false for every item in the list.
Returns FALSE if the list is empty.

Example

The following code prints TRUE if the �length� field value of any item in the �packets� list is greater than
150. If no packet has a length greater than 150, it prints FALSE.

<’
struct packet {

length: uint (bits: 4);
width: uint (bits: 4);

};
extend sys {

packets: list of packet;
post_generate() is also {

print packets.or_all(it.length > 150);
};

};
’>

See Also

� �and_all()� on page 608
� �average()� on page 609
� �product()� on page 611
� �sum()� on page 612

19.6.4 product()

Purpose

Compute the product of an expression for all items

Category

Pseudo-method

list A list.
exp A boolean expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
611

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

list.product(exp: int): int

Syntax example:

var list_prod: int;
list_prod = sys.item_list.product(it.f_1);

Parameters

Description

Returns the integer product of the exp computed over all the items in the list. Returns 1 if the list is empty.

Example 1

The following example prints 150 (3 * 5 * 10).

var p_list := {3; 5; 10};
print p_list.product(it);

Example 2

The following example prints the product of the �mlt� fields in all the items in the �packets� list.

<’
struct packet {

mlt: uint (bits: 3);
keep mlt > 0;

};
extend sys {

packets[5]: list of packet;
post_generate() is also {

print packets.product(it.mlt);
};

};
’>

See Also

� �and_all()� on page 608
� �average()� on page 609
� �or_all()� on page 610
� �sum()� on page 612

19.6.5 sum()

Purpose

Compute the sum of all items

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
612 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Pseudo-method

Syntax

list.sum(exp: int): int

Syntax example:

var op_sum: int;
op_sum = sys.instr_list.sum(.op1);

Parameters

Description

Returns the integer sum of the exp computed over all the items in the list. Returns 0 if the list is empty.

The following example prints 18 (3 + 5 + 10).

var s_list := {3; 5; 10};
print s_list.sum(it);

Example

The following example prints the sum of the �length� field values for all the items in the �packets� list.

<’
struct packet {

length: uint (bits: 4);
keep length in [1..5];
width: uint (bits: 4);
keep width in [1..5];

};
extend sys {

packets[5]: list of packet;
post_generate() is also {

print packets.sum(it.length);
};

};
’>

See Also

� �and_all()� on page 608
� �average()� on page 609
� �or_all()� on page 610
� �product()� on page 611

list A list.
exp An integer expression. The it variable can be used to refer to the current list item, and the

index variable can be used to refer to its index number.
This is an unapproved IEEE Standards Draft, subject to change.
613

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
19.7 List CRC Pseudo-Methods

This section describes the syntax for pseudo-methods that perform CRC (cyclic redundancy check) func-
tions on lists.

The pseudo-methods in this section are:

� �crc_8()� on page 614
� �crc_32()� on page 615
� �crc_32_flip()� on page 617

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551

19.7.1 crc_8()

Purpose

Compute the CRC8 of a list of bits or a list of bytes

Category

Pseudo-method

Syntax

list.crc_8(from-byte: int, num-bytes: int): int

Syntax example:

print b_data.crc_8(2,4);

Parameters

Description

Reads the list byte-by-byte and returns the integer value of the CRC8 function of a list of bits or bytes. Only
the least significant byte (LSB) is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is
not in the range of the list, an error is issued.

NOTE� The algorithm for computing CRC8 is specific for the ATM HEC (Header Error Control)
computation. The code used for HEC is a cyclic code with the following generating polynomial:

x**8 + x**2 + x + 1

list A list of bits or bytes.
from-byte The index number of the starting byte.
num-bytes The number of bytes to use.
614 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

In the example below, the �e_crc� variable gets the CRC8 of the bytes 2, 3, 4, and 5 in the list named
�b_data�.

<'
extend sys {
 post_generate() is also {
 var b_data: list of byte =

{0xff;0xaa;0xdd;0xee;0xbb;0xcc};
 print b_data.crc_8(2,4);
 };
};
'>

Results

b_data.crc_8(2,4) = 0x63

See Also

� �crc_32()� on page 615
� �crc_32_flip()� on page 617
� �product()� on page 611
� �sum()� on page 612
� �pack()� on page 516
� �unpack()� on page 521

19.7.2 crc_32()

Purpose

Compute the CRC32 of a list of bits or a list of bytes

Category

Pseudo-method

Syntax

list.crc_32(from-byte: int, num-bytes: int): int

Syntax example:

print b_data.crc_32(2,4);
This is an unapproved IEEE Standards Draft, subject to change.
615

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes.
Only the least significant word is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is
not in the range of the list, an error is issued.

NOTE� The algorithm for computing CRC32 generates a 32-bit CRC that is used for messages
up to 64 kilobytes in length. Such a CRC can detect 99.999999977% of all errors. The generator
polynomial for the 32-bit CRC used for both Ethernet and token ring is:

x**32 + x**26 + x**23 + x**22 + x**16 + x**12 + x**11 + x**10 + x**8 + x**7 + x**5 + x**4
+x**2 + x + 1

Example 1

In the example below, the �b_data� variable gets the packed �packet� struct instance as a list of bytes, and
the CRC32 of bytes 2, 3, 4, and 5 of �b_data� is printed.

<’
struct packet {

%byte_1: byte;
%byte_2: byte;
%byte_3: byte;
%byte_4: byte;
%byte_5: byte;
%byte_6: byte;

};
extend sys {

packet;
post_generate() is also {

var b_data: list of byte = pack(NULL, me.packet);
print b_data.crc_32(2,4);

};
};
’>

Example 2

In the example below, the CRC32 value is calculated for the data field value. The �is_good_crc()� method
checks the value and returns TRUE if it is good, FALSE if it is bad.

<’
struct packet {

%data: list of byte;
!%crc: uint;
packed: list of byte;
post_generate() is also {

list A list of bits or bytes.
from-byte The index number of the starting byte.
num-bytes The number of bytes to use.
616 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
crc = (data.crc_32(0, data.size()) ^ 0xffff_ffff);
packed = pack(packing.low, me);

};
is_good_crc(): bool is {

 result = (packed.crc_32(0, packed.size()) ==
 0xffff_ffff);

};
};
extend sys {

packets: list of packet;
post_generate() is also {

for each in packets {
outf("frame %d ", index);
print it.is_good_crc();

};
};

};
’>

See Also

� �crc_8()� on page 614
� �crc_32_flip()� on page 617
� �product()� on page 611
� �sum()� on page 612
� �pack()� on page 516
� �unpack()� on page 521

19.7.3 crc_32_flip()

Purpose

Compute the CRC32 of a list of bits or a list of bytes, flipping the bits

Category

Pseudo-method

Syntax

list.crc_32_flip(from-byte: int, num-bytes: int): int

Syntax example:

print b_data.crc_32_flip(2,4);
This is an unapproved IEEE Standards Draft, subject to change.
617

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes, with
the bits flipped. Only the least significant word is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is
not in the range of the list, an error is issued.

The bits are flipped as follows:

1) The bits inside each byte of the input are flipped.
2) The bits in the result are flipped.

Example

In the example below, the �tc_crc� variable gets the CRC32 of the bytes 2, 3, 4, and 5 in the list named
�b_data�, with the bits flipped.

<’
struct packet {

%byte_1: byte;
%byte_2: byte;
%byte_3: byte;
%byte_4: byte;
%byte_5: byte;
%byte_6: byte;

};
extend sys {

packet;
post_generate() is also {

var b_data: list of byte = pack(NULL, me.packet);
print b_data.crc_32_flip(2,4);

};
};
’>

See Also

� �crc_8()� on page 614
� �crc_32()� on page 615
� �product()� on page 611
� �sum()� on page 612
� �pack()� on page 516
� �unpack()� on page 521

19.8 Keyed List Pseudo-Methods

This section describes the syntax for pseudo-methods that can be used only on keyed lists.

list A list of bits or bytes.
from-byte The index number of the starting byte.
num-bytes The number of bytes to use.
618 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Keyed lists are list in which each item has a key associated with it. For a list of structs, the key typically is
the name of a particular field in each struct. Each unique value for that field may be used as a key. For a list
of scalars, the key can be the it variable referring to each item.

While creating a keyed list, you must ensure that the key has a unique value for each item.

Keyed lists can be searched quickly, by searching on a key value.

This section contains descriptions of pseudo-methods that can only be used for keyed lists. Using one of
these methods on a regular list results in an error.

The pseudo-methods in this section are:

� �key()� on page 619
� �key_index()� on page 622
� �key_exists()� on page 623

See Also

� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551

19.8.1 key()

Purpose

Get the item that has a particular key

Category

Pseudo-method

Syntax

list.key(key-exp: exp): list-item

Syntax example:

var loc_list_item: location;
var i_key: uint;
i_key = 5;
loc_list_item = locations.key(i_key);

Parameters

Description

Returns the list item that has the specified key, or NULL if no item with that key exists in the list.

For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a
found value, it is not advisable to use zero as a key for scalar lists.

list A keyed list.
key-exp The key of the item that is to be returned.
This is an unapproved IEEE Standards Draft, subject to change.
619

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

The following example uses a list of integers for which the key is the item itself. This example prints 5.

var l_list: list(key: it) of int = {5; 4; 3; 2; 1};
print l_list.key(5);

Example 2

In the following example, the �mklist()� method generates a list of 10 �location� instances with even num-
bered address from 2 to 20. The �locations� list is a list of �location� instances with �address� as its key. The
�l_item� variable gets the �locations� list item that has an �address� value of 6. If there is no item in the list
with an address of 6, the locations.key() pseudo-method returns NULL.

<’
struct location {

address: int;
value: int;

};
struct l_s {

mklist() is {
var l: location;
for i from 1 to 10 do {

gen l keeping {it.address == 2*i};
sys.locations.add(l);

};
};

};
extend sys {

l_s;
!locations: list(key: address) of location;
run() is also {

l_s.mklist();
print locations;
var l_item: location;
l_item = locations.key(6);
print l_item;

};
};
’>

Results

locations =
item type address value

0. location 2 -396796955
1. location 4 1796592623
2. location 6 2081332301
3. location 8 -15822625*
4. location 10 116159091
5. location 12 -15052943*
6. location 14 1128419469
7. location 16 -20275240*
8. location 18 -508036604
9. location 20 116597347

l_item = location-@0: location
620 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
--@kl_2
0 address: 6
1 value: 2081332301

Example 3

The following example shows how to use a keyed list on the lefthand side of assignment. The �mklist()�
method generates a list of 10 �location� instances with even-numbered address values from 2 to 20.

The �locations� list is a list of �location� instances with �address� as its key. The �l_item� variable is a loca-
tion instance which is generated with a constraint to keep its value equal to 100000. That location instance�s
value field is then assigned to the locations list item that has the address key value of 6.

<’
struct location {

address: int;
value: int;

};
struct l_s {

mklist() is {
var l: location;
for i from 1 to 10 do {

gen l keeping {it.address == 2*i};
sys.locations.add(l);

};
};

};
extend sys {

l_s;
!locations: list(key: address) of location;
run() is also {

l_s.mklist();
var l_item: location;
gen l_item keeping {it.value == 100000};
print l_item;
locations.key(6).value = l_item.value;
print locations.key(6);

};
};
’>

Results

l_item = location-@0: location
--@kl_assign_3

0 address: -513087844
1 value: 100000
 locations.key(6) = location-@1: location

--@kl_assign_3
0 address: 6
1 value: 100000

See Also

� �key_index()� on page 622
� �key_exists()� on page 623
This is an unapproved IEEE Standards Draft, subject to change.
621

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
19.8.2 key_index()

Purpose

Get the index of an item that has a particular key

Category

Pseudo-method

Syntax

list.key_index(key-exp: exp): int

Syntax example:

var loc_list_ix: int;
loc_list_ix = locations.key_index(i);

Parameters

Description

Returns the integer index of the item that has the specified key, or returns UNDEF if no item with that key
exists in the list.

Example 1

The following example uses a list of integers for which the key is the item itself. This example prints 1, since
that is the index of the list item with a value of 2.

var l_list: list(key: it) of int = {1; 2; 3; 4; 5};
print l_list.key_index(2);

Example 2

The locations.key_index() pseudo-method in the following gets the index of the item in the �locations� list
that has an address of 9, if any item in the list has that address.

<’
struct location {

address: int;
value: int;

};
extend sys {

!locations: list(key: address) of location;
post_generate() is also {

var l_ix: int;
l_ix = locations.key_index(9);
if l_ix != UNDEF {print locations[l_ix].value}

else {outf("key_index %d does not exist\n", 9)};

list A keyed list.
key-exp The key of the item for which the index is to be returned.
622 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};
’>

See Also

� �key()� on page 619
� �key_exists()� on page 623

19.8.3 key_exists()

Purpose

Check that a particular key is in a list

Category

Pseudo-method

Syntax

list.key_exists(key-exp: exp): bool

Syntax example:

var loc_list_k: bool;
var i:= 5;
loc_list_k = locations.key_exists(i);

Parameters

Description

Returns TRUE if the key exists in the list, or FALSE if it does not.

Example 1

The following example uses a list of integers for which the key is the item itself. The first print action prints
TRUE, since 2 exists in the list. The second print action prints FALSE, since 7 does not exist in the list.

var l_list: list(key: it) of int = {1; 2; 3; 4; 5};
print l_list.key_exists(2);
print l_list.key_exists(7);

Example 2

The locations.key_exists() pseudo-method in the following example returns TRUE to �k� if there is an item
in the �locations� list that has a key value of 30, or FALSE if there is no such item.

<’

list A keyed list.
key The key that is to be searched for.
This is an unapproved IEEE Standards Draft, subject to change.
623

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct location {
address: int;
value: int;

};
extend sys {

!locations: list(key: address) of location;
post_generate() is also {

var k: bool;
k = locations.key_exists(30);
if k {outf("key %d exists\n", 30)}

else {outf("key %d does not exist\n", 30)};
};

};
’>

See Also

� �key()� on page 619
� �key_index()� on page 622

19.9 Restrictions on Keyed Lists

� The following pseudo-methods cannot be used on keyed lists:

� list.resize()

� list.apply()

� list.field

� Keyed lists and regular (unkeyed) lists are different types. Assignment is not allowed between a
keyed list and a regular list.

� Keyed lists cannot be generated. Trying to generate a keyed list results in an error. Therefore, keyed
lists must be defined with the do-not-generate sign, an exclamation mark, as in the example below.

� Some operations are less efficient for keyed lists than for unkeyed lists, because after they change the
list they must also update the keys. The following operations are not recommended on keyed lists:

� list.insert()

� list.delete()

� slice assignment

� list.reverse()

� Prior to using list.insert() or list.delete, you can make the operation more efficient by using one of
the following pseudo-methods to find the desired index or item in a keyed list:

� list.first()

� list.first_index()

� list.has()

For example, the recommended way to delete an item from a keyed list is to check for the existence
of the key first as in the following:

!locations: list (key: address) of location;
624 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
if (locations.key_exists(38)) then {

locations.delete(location.key_index(38));

};

The above example searches for the key in the fastest way, and it updates the keyed list only if the
key exists.

See Also

� �Keyed List Pseudo-Methods� on page 618
� �Pseudo-Methods Overview� on page 551
� �Using List Pseudo-Methods� on page 551
This is an unapproved IEEE Standards Draft, subject to change.
625

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
626 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
20 Preprocessor Directives

This chapter contains the following sections:

� �#ifdef, #ifndef� on page 627. You use these preprocessor directives used to control e processing.
The preprocessor directives check for the existence of a #define for a given name:

� #ifdef directive: if a given name is defined, use the attached code, otherwise, use different code

� #ifndef: if a given name is not defined, use the attached code, otherwise, use different code

The #ifdef and #ifndef directives can be used as statements, struct members, or actions.
� �#define� on page 630, which defines a name macro, also called a replacement macro.
� �#undef� on page 632, which removes the definition of a name macro.

See Also

� Chapter 13, �Macros�
� Chapter 21, �Importing e Files�

20.1 #ifdef, #ifndef

Purpose

Define a preprocessor directive

Category

Statement, struct member, action

Syntax

#if[n]def [`]name then {e-code}
[#else {e-code}]

Syntax example:

#ifdef MEM_LG then {
import mml.e;

};

NOTE� The import statement in the syntax example above must be on a line by itself. The syntax
�#ifdef MEM_LG then {import mml.e};�, where the import statement is part of the #ifdef
statement line, will not work.
This is an unapproved IEEE Standards Draft, subject to change.
627

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

The #ifdef and #ifndef preprocessor directives are used together with define name macros to cause the
e parser to process particular code or ignore it, depending on whether a given name macro has been defined.

� The #ifdef syntax checks whether the name macro has been defined and, if it has, includes the code
following then.

� The #ifndef syntax checks whether the name macro has been defined and if it has not, includes the
code following then.

The optional #else syntax provides an alternative statement when the #ifdef or #ifndef is not true. For
#ifdef, if the name macro has not been defined, the #else code is included. For #ifndef, if the name macro
has been defined, the #else text is included.

NOTE� Except when it is within an #else block, the #ifdef or #ifndef keyword must be the first
keyword on the line.

Example 1

In this example, #ifdef is used as statements. The module named �t_1.e� contains the statement �define
test_C�. Neither �test_A� nor �test_B� is defined anywhere. Thus, only the �t_4.e� module is imported by
the #ifdef statements.

<'
import t_1.e;// defines test_C;
#ifdef test_A then {

import t_2;
}
#else {

#ifdef test_B then {
import t_3;

};
#ifdef test_C then {

import t_4;
};

};
'>

name Without a backtick, a name defined in a define statement. For information about define,
see Chapter 13, �Macros�.

With a backtick (`name), a name defined with a Verilog `define directive, or in a define
statement where the macro is defined in Verilog style.

e-code e code to be included based on whether the name macro has been defined.

� For an #ifdef or #ifndef statement, only e statements can be used in e-code.

� For an #ifdef or #ifndef struct member, only struct members can be used in e-
code.

� For an #ifdef or #ifndef action, only actions can be used in e-code.
628 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

In this example, #ifdef is used as a struct member. The module contains the statement �define test_C�. Nei-
ther �test_A� nor �test_B� is defined anywhere. Thus, only the �keep t_data in [300..399]� constraint is
applied to the generator after the #ifdef statements have been processed.

<'
define test_C;
struct exa_str {

t_data: uint;
#ifdef test_A then {

keep t_data in [100..199];
}
#else {

#ifdef test_B then {
keep t_data in [200..299];

};
#ifdef test_C then {

keep t_data in [300..399];
};

};
};
'>

Example 3

In this example, #ifdef is used as an action. The module contains the statement �define test_C�. Neither
�test_A� nor �test_B� is defined anywhere. Thus, only the �gen t_data keeping it in [300..399]� action is
applied by the #ifdef statements.

<'
define test_C;
struct t_str {

!t_data: int;
t_meth() is {

#ifdef test_A then {
gen t_data keeping {it in [100..199]};

}
#else {

#ifdef test_B then {
gen t_data keeping {it in [200..299]};

};
#ifdef test_C then {

gen t_data keeping {it in [300..399]};
};

};
};

};
'>

See Also

� Chapter 13, �Macros�
� Chapter 21, �Importing e Files�
This is an unapproved IEEE Standards Draft, subject to change.
629

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
20.2 #define

Purpose

Define a name macro

Category

Statement

Syntax

[#]define [`]name [replacement]

Syntax example:

define PLIST_SIZE 100;

Parameters

Notes

� Be sure to use parentheses around the replacement when they are needed to ensure proper associativ-
ity. For example, the effect of:

define LX 2*len+m;

Is different from the effect of:

define LX 2*(len+m);

� In an expression like �lenx = LX�, the first case becomes �lenx = 2*len + m�, while the second case
becomes �lenx = 2*len + 2*m�.

� The leading �#� is shown as optional in the syntax, in order to support the define statement syntax
from previous e releases, in which the # does not appear.

name Any e name.

This is used with no replacement parameter for conditional code processing. An
#ifdef preprocessor directive later in the e code that has the name as its argument
evaluates to TRUE. See �#ifdef, #ifndef� on page 627 for more information.

When a replacement is given, the parser substitutes the replacement for the macro
name everywhere name appears, except inside strings.

The name can be preceded with a backtick, `. This makes the name look like a Ver-
ilog `define name, but it is treated the same as a name without a backtick.

The name is case sensitive: �LEN� is not the same as �len�.
replacement Any syntactic element, for example, an expression or an HDL variable. This

replaces the name wherever the name appears in the e code that follows the define
statement.
630 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

With a replacement, defines a macro that replaces the name wherever it occurs in the e code. With no
replacement, specifies a name that can be used in #ifdef preprocessor directives for conditional code. A sub-
sequent evaluation of an #ifdef that has the name as its argument returns TRUE.

Notes

� A #define statement must be on a line by itself. The following is illegal:

#define BIGMEM; import mod1.e; // Illegal syntax

The correct way to write the above is:

#define BIGMEM;

import mod1.e;

� A define statement only applies to e code that is loaded after the define.
� The replacement must not contain the name. A statement like the following causes a runtime error:

define bus_width top.bus_width; // Run-time error

This causes the parser to recursively replace �bus_width� with �top.bus_width�. That is,
�bus_width� would become �top.bus_width�, as desired, but then �top.bus_width� would become
�top.top.bus_width�, and so on.

Example 1

The following are name macro definitions:

#define OFFSET 5;
#define FIRST (OFFSET + 1);
#define SECOND (FIRST + 1);
#define MULTIPLY_I_J i * j;
#define LG_CASE;
#define ‘bus_width 64;
#define bus_width_1 'top.bus_wire';
#define bus_width_2 top.bus_wire;

Example 2

To use a #define macro, refer to the name. Given the definitions above, you could use them as in the follow-
ing:

struct example {
test_defines() is {

var i: int;
var j: int;
print OFFSET, FIRST, SECOND; // Prints 5, 6, 7
i = 5;
j = 6;
print MULTIPLY_I_J + 3; // Prints 33 (5 * 6 + 3)
#ifdef LG_CASE then {

i = j * 2;
print i; // Prints 12 (6 * 2)

}
#else {

out(“LG_CASE is not defined”);
};
This is an unapproved IEEE Standards Draft, subject to change.
631

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
j = `bus_width * 2;
print j; // Prints 128 (64 * 2)

};
};

See Also

� �#undef� on page 632
� �#define� on page 630
� �define as computed� on page 436

20.3 #undef

Purpose

Undefine a name macro

Category

Statement

Syntax

undef [`]name

Syntax example:

#undef PLIST_SIZE;

Parameters

Description

Removes a name macro that was defined using the #define statement. The #undef statement can appear
anywhere in the e code. The name macro is not recognized from the point where the #undef statement
appears onward. The effect is propagated to all files that are loaded after the #undef statement is encoun-
tered.

name Any e name.

This is used with no replacement parameter for conditional code processing. An
#ifdef preprocessor directive later in the e code that has the name as its argument
evaluates to TRUE. See �#ifdef, #ifndef� on page 627 for more information.

When a replacement is given, the parser substitutes the replacement for the macro
name everywhere name appears, except inside strings.

The name can be preceded with a backtick, `. This makes the name look like a Ver-
ilog `define name, but it is treated the same as a name without a backtick.

The name is case sensitive: �LEN� is not the same as �len�.
632 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Notes

� If the undefined name macro was not previously defined, #undef has no effect � it is not an error.
� A name macro that is undefined in a compiled e module is not accessible to the C interface at any

time.
� A name macro that has been undefined can be redefined later, with any value. The last value is acces-

sible to the C interface.

Example

Say you have two e files, my_design.e and external_code.e, and the following appears in the my_design.e
module:

<'
struct semaphore {

// Contents of the user-defined semaphore struct
};
'>

The following appears in the external_code.e module:

<'
extend sys{

event clk is rise('~/top/clk')@sim;
sem: semaphore; // Uses the built-in e semaphore struct
increment()@clk is {

sem.up()
};

};
'>

In the external_code.e file, the built-in semaphore struct is used. In order to be able to use the built-in sema-
phore struct, you can put the following in a top file, which imports both my_design.e and external_code.e.
This first defines a name macro that replaces �semaphore� with �my_semaphore, and then, after the
my_design.e module is loaded, undefines semaphore so that the built-in semaphore struct is used from that
point on:

<'
#define semaphore my_semaphore;
import my_design.e;
#undef semaphore;
import external_code.e;
'>

See Also

� �#define� on page 630
� �define as� on page 429
� �define as computed� on page 436
This is an unapproved IEEE Standards Draft, subject to change.
633

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
634 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
21 Importing e Files

21.1 Overview

Imports (import statement, verilog import statement) load a given e file or Verilog file This chapter
describes the import statement.

See Also

� �File Structure� on page 3
� �verilog import� on page 799

21.2 import

Purpose

Load other e modules

Category

Statement

Syntax

import file-name, ... | (file-name, ...)

Syntax example:

import test_drv.e;

Parameters

Description

Loads additional e modules before continuing to load the current file.

If a specified module has already been loaded or compiled, the statement is ignored. For modules not already
loaded or compiled, the search sequence is:

1) Directories specified by the PATH environment variable.

file-name, ... The names of files, separated by commas, that contain e modules to be imported. If
no extension is given for a file name, an �.e� extension is assumed.

The (file-name, ...) syntax is for cyclic importing, in which one module references
a field in a second module, and the second module references a field in the first
module.

File names can contain references to environment variables using the UNIX nota-
tion �$name� or �${name}�.

Relative path indicators �./� and �../� can be used in filenames.
This is an unapproved IEEE Standards Draft, subject to change.
635

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2) The current directory.
3) The directory in which the importing module resides.

If you need to refer in struct A to a struct member of struct B, and you also need to refer in struct B to a struct
member of struct A, that is called a cyclic reference. The import statement can handle cyclic references if
you do the following:

1) Before the definition of struct A in module A, add an import of module B in which struct B is
defined.

2) Before the definition of struct B in module B, add an import of module A.

This is called implicit cyclic importing.

Another way to do a cyclic import is to use the import (file-name, ...) syntax, which resolves cycles by
loading the two or more modules as one.

When multiple modules are loaded together, the behavior is as if the files are concatenated.

No module is imported more than once. If an import statement includes a module that has already been
loaded, that module is not imported.

Notes

� Within a given e module, import statements must appear before any other statements except prepro-
cessor directives (#ifdef, etc), define statements, verilog import statements and package state-
ments. (package statements must always precede any other statements.) Any other type of statement
preceding an import statement causes a load-time or compile-time error. See Example 6 on
page 639 for a special case where this restriction also applies to import statements in different
e modules.

� You cannot import modules that reside in different directories but have the same base names, even if
they have different extensions. This is because the e program internally uses only the base name,
without its extension.

� If you do not enter at least one file name after the import keyword, a load or compile-time error is
issued.

� Cyclic importing requires more memory to load multiple modules together than it takes to import
modules singly, and it takes longer, which delays the automatic consistency checking of the e code.

� Cyclic importing can also mask problems with the ability of a module to be used standalone, in
future applications, due to one module relying on another module being loaded.

� Attention must be given to the import order in implicit cyclic importing just as it is in non-cyclic
importing. You cannot reference or extend a struct before it is defined. If module A imports module
B, and if you load A from the command line or import A from another module, the body of module
B is parsed before module A. However, if you use explicit cyclic importing, import (A, B), then the
body of module A is parsed before module B is imported.

Example 1

The following UNIX commands are executed prior to loading the e module shown below:

setenv S_PATH /top
cd /cad/test

All of the import statements in the following e module are legal:

import t_fil_1.e;
// Load /cad/test/t_fil_1.e if it exists, otherwise load
636 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
// $PATH/t_fil_1.e
import ./t_fil_2.e;

// Load /cad/test/t_fil_2.e (relative path)
import ../t_fil_3.e;

// Load /cad/t_fil_3.e (relative path)
import /cad/test/t_fil_4.e;

// Load /cad/test/t_fil_4.e (absolute path)
import $S_PATH/t_fil_5.e;

// Load /top/t_fil_5.e

Example 2

In the following example, a struct named �pci_transaction� is defined in one module, which is then imported
into another module where additional fields and constraints are added in an extension to the struct definition.

<'
// module pci_transaction_definition.e
type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,

MEM_READ=0x6, MEM_WRITE=0x7];
struct pci_transaction {

address: uint;
command: PCICommandType;
bus_id: uint;

};
'>
--
<'
// module pci_transaction_extension.e
import pci_transaction_definition;
extend pci_transaction {

data: list of uint;
num_data_phases: uint;
keep num_data_phases in [0..7];
keep data.size() == num_data_phases;

};
'>

Example 3

In the following example, three modules are involved in cyclic referencing:

� the switch.e module references the packet struct definition in the packet.e module
� the packet.e module references the cell struct definition in the cell.e module
� the cell.e module references the switch struct definition in the switch.e module.

You only need to load the switch.e module. The switch.e module imports the packet.e module, which
imports the cell.e module. Then the cell.e module imports the switch.e module, completing the cycle. This is
implicit cyclic importing, since each import statement imports only one of the other modules.

<’
// module switch.e - needs packet.e for the list of packet
import packet;
struct switch {

packets: list of packet;
};
’>
This is an unapproved IEEE Standards Draft, subject to change.
637

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
--
<’
// module packet.e - needs cell.e for the list of cell
import cell;
struct packet {

!cells: list of cell;
len: uint;

};
’>
--
<’
// module cell.e - needs switch.e for the switch definition
import switch;
struct cell {

parent: switch;
data[20]: list of byte;

};
’>

Example 4

This example shows the explicit cyclic import syntax, import (file-name, ...), using the same modules as
Example 3 on page 637. All three of the modules involved in the cyclic referencing are imported by one
import statement in a fourth module named top_imp.e. You only need to load the top_imp.e module.

<’
// module top_imp.e
import (switch, packet, cell);
’>
--
<’
// module switch.e - needs packet.e for the list of packet
struct switch {

packets: list of packet;
};
’>
--
<’
// module packet.e - needs cell.e for the list of cell
struct packet {

!cells: list of cell;
len: uint;

};
’>
--
<’
// module cell.e - needs switch.e for the switch definition
struct cell {

parent: switch;
data[20]: list of byte;

};
’>

Example 5

This example shows how to load the files in Example 3 on page 637 while avoiding the loss of modularity
that results from cyclic importing.
638 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
In Example 3, the cell.e module relies on a type (switch) that is defined in the switch.e module. This means
that a cell struct cannot be used without also using a switch struct, so that cell.e cannot stand alone.

In this example, the switch struct instance has been moved from the cell.e module to an extension of cell in
the switch.e module, so that the cell.e module does not rely on the presence of the switch.e module.

<’
// module switch.e - needs packet.e for the list of packet
import packet;
struct switch {

packets: list of packet;
};
extend cell {

parent: switch;
};
’>
--
<’
// module packet.e - needs cell.e for the list of cell
import cell;
struct packet {

!cells: list of cell;
len: uint;

};
’>
--
<’
// module cell.e
struct cell {

data[20]: list of byte;
};
’>

Example 6

The case of an import followed by an #ifdef which, in turn, imports another module causes a load error if
the second imported module has a statement other than a macro, preprocessor directive, or another import
preceding one of those types of statements. This is a special case which causes a violation of the statement
order rule given in �Statements� on page 12. The three e modules below illustrate this.

===============
<’
import defs.e;
#ifdef VENUS then {

import venus.e;
};
’>

================
<’
type d_type: [A_DR, X_DR]; // At this location, this causes an error
define VENUS;
’>

=================
<’
extend sys {
This is an unapproved IEEE Standards Draft, subject to change.
639

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
event venus_init_done;
};
’>

Trying to load top.e results in this load error. The type statement preceding the #ifdef statement in the defs.e
module is seen as out of order with respect to the import venus.e statement. The error is shown below:

*** Error: Import Statements should be placed at the top of the file - please
change the statements order, pay attention to the imported module
’venus.e’.

at line 6 in top.e
 import venus.e;

This error can be avoided by simply moving the define VENUS statement above the type statement in the
defs.e module:

// module defs.e
================
<’
define VENUS;
type d_type: [A_DR, X_DR]; // At this location, no error occurs
’>

See Also

� �#define� on page 630
� �#ifdef, #ifndef� on page 627
� �verilog import� on page 799
640 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
22 Encapsulation Constructs

This chapter contains syntax and descriptions of the e statements that are used to create packages and mod-
ify access control. The constructs are:

� �package package-name� on page 641
� �package type-declaration� on page 642
� �package | protected | private struct-member� on page 643

22.1 package package-name

Purpose

Associates a module with a package.

Category

Statement

Syntax

package package-name

Syntax example:

package vr_xb;

Parameters

Description

Only one package statement can appear in a file, and it must be the first statement in the file.

A file with no package statement is equivalent to a file beginning with the statement, package main.

Example

<'
// module vr_xb_top
package vr_xb;
'>

See Also

� �package type-declaration� on page 642
� �package | protected | private struct-member� on page 643

package-
name

A standard e identifier which assigns a unique name to the package. It is
legal for a package name to be the same as a module or type name.
This is an unapproved IEEE Standards Draft, subject to change.
641

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
22.2 package type-declaration

Purpose

Modifies access to a type or a struct.

Category

Statement

Syntax

[package] type-declaration

Syntax example:

package type t: int(bits: 16);

Parameters

Description

The package modifier means that code outside the package files cannot access the defined struct member.
This includes declaring a variable of the type, extending, inheriting, casting using the as_a operator, and all
other contexts in which the name of a type is used. It is equivalent to the default (package) access level for
classes in Java.

NOTE� The package type does not determine the visibility of a package, but only its access
control.

Without the package modifier, the type or struct has no access restriction.

A derived struct (using like inheritance) must be explicitly declared package if its base struct is declared
package. It can be declared package even if its base struct is not.

Definition of a when subtype (using a when or extend clause) does not allow for an access modifier. A when
subtype is public unless either its base struct or one of its determinant fields is declared package.

A when subtype cannot have a private or protected determinant field. Any reference to a when subtype,
even in a context in which the when determinant field is accessible, results in a compilation error.

Example

<'
// module vr_xb_top
package vr_xb;;
package type width: uint(bits: 8);
'>

See Also

� �package package-name� on page 641

type-declaration An e type declaration (for a struct, unit, enumerated list, or other type).
642 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �package | protected | private struct-member� on page 643

22.3 package | protected | private struct-member

Purpose

Modifies access to a struct field, method, or event.

Category

Keyword

Syntax

package struct-member-definition

protected struct-member-definition

private struct-member-definition

Syntax examples:

private f: int;
protected m() is {};
package event e;

Parameters

Description

A struct member declaration may include a package, protected, or private keyword to modify access to the
struct member.

If no access modifier exists in the declaration of a struct member, the struct member has no access restriction
(the default is public).

The package modifier means that code outside the package files cannot access the struct member. It is
equivalent to the default (package) access level for fields and methods in Java.

The protected modifier means that code outside the struct family scope cannot access the struct member. It
is similar (although not equivalent) to the protected semantics in other object-oriented languages.

The private modifier means that only code within both the package and the struct family scope can access
the struct member. This means that code within the extension of the same struct in a different package is out-
side its accessibility scope. It is less restrictive than private attribute of other object-oriented languages in
the sense that methods of derived structs or units within the same package can access a private struct mem-
ber.

struct-
member-
definition

A struct or unit field, method, or event definition. SeeChapter 4,
�Structs, Fields, and Subtypes� for the syntax of struct and unit member
definitions.
This is an unapproved IEEE Standards Draft, subject to change.
643

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
An extension of a struct member can restate the same access modifier as the declaration has, or omit the
modifier altogether. If a different modifier appears, the compiler issues an error.

All references to a struct member outside its accessibility scope result in an error at compile time. Using an
enumerated field�s value as a when determinant is considered such a reference, even if the field name is not
explicitly mentioned.

A field must be declared package or private if its type is package, unless it is a member of struct which is
declared package.

A method must be declared package or private if its return type or any of its parameter types are package,
unless it is a method of a struct which is declared package.

Only fields, methods and events can have access restrictions. There are other named struct members in e,
namely cover groups and named expects, to which access control does not apply - they are completely pub-
lic. However, cover groups and expects are defined in terms of fields, methods and events, and can refer to
other entities in their definitions according to the accessibility rules.

Example

<'
package P1;

struct s1 {
private f: int;
protected m() is {};
package event e;

};
'>

See Also

� �package package-name� on page 641
� �package type-declaration� on page 642
644 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
23 Predefined Methods Library

A significant part of e functionality is implemented as set of predefined methods defined directly under the
global and sys structs.

Furthermore, every struct that is already available to you or is defined by you inherits a set of predefined
methods. Some of these methods can be extended to add functionality, and some of them are empty, allow-
ing you to define their function.

Three other predefined structs, semaphore, locker, and scheduler, provide predefined methods that are use-
ful in controlling TCMs and in controlling resource sharing between TCMs. A third predefined struct, the
simulator struct, has a predefined method that allows access to Verilog macros during a run.

Finally, there are pseudo-methods. Calls to pseudo-methods look like method calls. However, they are asso-
ciated not with struct expressions, but with other kinds of expressions.

The following sections describe the predefined methods:

� �Predefined Methods of sys� on page 645
� �Predefined Methods of Any Struct� on page 647
� �Predefined Methods of Any Unit� on page 662
� �Unit-Related Predefined Methods of Any Struct� on page 670
� �Pseudo-Methods� on page 676
� �Semaphore Methods� on page 680
� �TCM Related Methods� on page 692
� �Coverage Methods� on page 700

See Also

� Chapter 19, �List Pseudo-Methods Library�
� Chapter 24, �Predefined Routines Library�
� Chapter 26, �Predefined File Routines Library�

23.1 Predefined Methods of sys

This section contains descriptions of the extendable methods of sys:

� �The init() Method of sys� on page 645
� �The run() Method of sys� on page 646

It is not recommended to extend sys.generate(). Instead, you should extend the related pre_generate() or
post_generate() method of a particular struct or unit. See �Predefined Methods of Any Struct� on page 647
for more information on these methods.

23.1.1 The init() Method of sys

Purpose

Perform general preparations for the test
This is an unapproved IEEE Standards Draft, subject to change.
645

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Predefined method for sys

Syntax

[sys.]init()

Syntax example:

extend sys {
init() is also {

out("Performing initialization of sys...");
};

};

Description

This method is called when you load an e file or when you invoke an extended executable that contains com-
piled e code.

It is not invoked when you restore an environment from a save file.

You can extend this method to perform general preparations for the test.

See Also

� �The init() Method of any_struct� on page 656

23.1.2 The run() Method of sys

Purpose

Recommended place for starting TCMs

Category

Predefined method for sys

Syntax

[sys.]run()

Syntax example:

run() is also {
start monitor();

};

Description

Can be extended to start user-defined TCMs. The method is initially empty.

NOTE� Starting a TCM before the end of start_test() causes a runtime error.
646 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
extend sys {

id : int;
monitor() @sys.any is {

while (TRUE) {
wait [2] * cycle;
out("cycle ", sys.time,

" Packet id ", id, " is still running");
};

};

run() is also {
start monitor();

};
};
'>

See Also

� �The run() Method of any_struct� on page 661
� �start tcm()� on page 477

23.2 Predefined Methods of Any Struct

The following methods are available for any instantiated user-defined struct or unit.

� �The copy() Method of any_struct� on page 647
� �do_pack()� on page 649
� �do_unpack()� on page 652
� �The do_print() Method of any_struct� on page 655
� �The init() Method of any_struct� on page 656
� �The print_line() Method of any_struct� on page 658
� �The quit() Method of any_struct� on page 659
� �The run() Method of any_struct� on page 661

23.2.1 The copy() Method of any_struct

Purpose

Make a shallow copy

Category

Predefined method of any struct or unit

Syntax

exp.copy(): exp

Syntax example:

var pmv: packet = sys.pmi.copy();
This is an unapproved IEEE Standards Draft, subject to change.
647

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns a shallow, non-recursive copy of the expression. This means that if the expression is a list or a struct
that contains other lists or structs, the second-level items are not duplicated. Instead, they are copied by ref-
erence.

The following list details how the copy is made, depending on the type of the expression:

Notes

� Do not use the assignment operator (=) to copy structs or lists into other data objects. The assignment
operator simply manipulates pointers to the data being assigned and does not create new struct
instances or lists.

� Use the deep_copy() method if you want a recursive copy of a struct or list that contains compound
fields or items.

Example

<'
struct packet {

header: header;
data[10] :list of byte;
type: [ATM, ETH, IEEE];

};

struct header {
code: uint;

};

extend sys {
pmi: packet;

m() is {
var pmv: packet = sys.pmi.copy();
pmv.data[0] = 0xff;
pmv.header.code = 0xaa;
pmv.type = IEEE;
print pmi.data[0], pmi.header.code, pmi.type;
print pmv.data[0], pmv.header.code, pmv.type;

exp Any legal e expression.

scalar The scalar value is simply assigned as in a normal assignment.
string The whole string is copied.
scalar list If exp is a scalar list, a new list with the same size as the original list is allocated.

The contents of the original list is duplicated.
list of structs A new list with the same size as the original list is allocated. The contents of the

list is copied by reference, meaning that each item in the new list points to the cor-
responding item in the original list.

struct If exp is a struct instance, a new struct instance with the same type as the original
struct is allocated. All scalar fields are duplicated. All compound fields (lists or
structs) in the new struct instance point to the corresponding fields in the original
struct.
648 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};
'>

Result

This example shows that any changes in value to lists and structs contained in the copied struct instance
(�pmv�) are reflected in the original struct instance (�pmi�) because these items are copied by reference.

pmi.data[0] = 0xff
pmi.header.code = 0xaa
pmi.type = ATM
pmv.data[0] = 0xff
pmv.header.code = 0xaa
pmv.type = IEEE

See Also

� �deep_copy()� on page 713

23.2.2 do_pack()

Purpose

Pack the physical fields of the struct

Category

Predefined method of any struct

Syntax

do_pack(options:pack options, l: *list of bit)

Syntax example:

do_pack(options:pack_options, l: *list of bit) is only {
var L : list of bit = pack(packing.low, operand2,

operand1,operand3);
l.add(L);

};

Parameters

Description

The do_pack() method of a struct is called automatically whenever the struct is packed. This method
appends data from the physical fields (the fields marked with %) of the struct into a list of bits according to
flags determined by the pack options parameter. The virtual fields of the struct are skipped. The method
issues a runtime error message if this struct has no physical fields.

options This parameter is an instance of the pack options struct. See �Using the Pre-
defined pack_options Instances� on page 506 for information on this struct.

l An empty list of bits that is extended as necessary to hold the data from the
struct fields.
This is an unapproved IEEE Standards Draft, subject to change.
649

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
For example, the following assignment to �lob�

lob = pack(packing.high, i_struct, p_struct);

makes the following calls to the do_pack method of each struct, where tmp is an empty list of bits:

i_struct.do_pack(packing.high, *tmp)
p_struct.do_pack(packing.high, *tmp)

You can extend the do_pack() method for a struct in order to create a unique packing scenario for that struct.
You should handle variations in packing that apply to many structs by creating a custom pack_options
instance. See �Customizing Pack Options� on page 510 for information on how to do this.

Notes

� Do not call the do_pack() method of any struct directly, for example �my_struct.do_pack()�. Instead
use pack(), for example �pack(packing.high, my_struct)�.

� Do not call pack(me) in the do_pack() method. This causes infinite recursion. Call pack-
ing.pack_struct(me) instead. You can call pack() within the do_pack() method to pack objects
other than me.

� Do not forget to append the results of any pack operation within do_pack() to the empty list of bits
referenced in the do_pack() parameter list.

� If you modify the do_pack() method and then later add physical fields in an extension to the struct,
you may have to make adjustments in the modifications to do_pack().

Example 1

This example shows how to override the do_pack() method for a struct called �cell�. The extension to
do_pack() overrides any packing option passed in and always uses packing.low. It packs �operand2� first,
then �operand1� and �operand3�.

<'
struct cell {

%operand1: uint(bytes:2);
%operand2: uint(bytes:2);
%operand3: uint(bytes:2);

};

extend cell {
do_pack(options:pack_options, l: *list of bit) is only {

var L : list of bit = pack(packing.low, operand2,
operand1,operand3);

l.add(L);
};

};

Result

sys.pi = cell-@0: cell
-- @pack33

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var L : list of bit = pack(packing.high, sys.pi)

L = (48 items, bin):
650 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 .0
0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 .24

Example 2

In the following example, the do_pack() method for �cell� is overwritten to use the low_big_endian pack-
ing option by default.

struct cell {
%operand1: uint(bytes: 2);
%operand2: uint(bytes: 2);
%operand3: uint(bytes: 2);

};

extend cell {
do_pack(options: pack_options, l: *list of bit) is only {

if (options == NULL) then {
packing.pack_struct(me,

packing.low_big_endian,l);
} else {

packing.pack_struct(me, options, l);
};

};
};

extend sys {
pi: cell;

};

Result

sys.pi = cell-@0: cell
-- @pack34

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var M : list of bit = pack(NULL, sys.pi)

M = (48 items, bin):
0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 .0
1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 .24

Example 3

This example swaps every pair of bits within each 4-bit chunk after packing with the packing options speci-
fied in the pack() call.

struct cell {
%operand1: uint(bytes: 2);
%operand2: uint(bytes: 2);
%operand3: uint(bytes: 2);

};

extend cell {
do_pack(options:pack_options, l: *list of bit) is only {

var L1 : list of bit;
packing.pack_struct(me, options, L1);
This is an unapproved IEEE Standards Draft, subject to change.
651

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var L2 : list of bit = L1.swap(2,4);
l.add(L2);

};
};

Result

sys.pi = cell-@0: cell
-- @pack35

0 %operand1: 0b0010001000111001
1 %operand2: 0b0001101001110101
2 %operand3: 0b0001001010110010

var M : list of bit = pack(NULL, sys.pi)

M = (48 items, bin):
1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 .0
0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 .24

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_unpack()� on page 529

23.2.3 do_unpack()

Purpose

Unpack a packed list of bit into a struct

Category

Predefined method of any struct

Syntax

do_unpack(options:pack options, l: list of bit, from: int): int

Syntax example:

do_unpack(options:pack_options, l: list of bit, from: int):int is only {
var L : list of bit = l[from..];
unpack(packing.low, L, op2, op1, op3);
return from + 8 + 5 + 3;

};
652 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

The do_unpack() method is called automatically whenever data is unpacked into the current struct. This
method unpacks bits from a list of bits into the physical fields of the struct. It starts at the bit with the speci-
fied index, unpacks in the order defined by the pack options, and fills the current struct�s physical fields in
the order they are defined.

For example, the following call to unpack()

unpack(packing.low, lob, c1, c2);

makes the following calls to the do_unpack method of each struct:

c1.do_unpack(packing.low, lob, index);
c2.do_unpack(packing.low, lob, index);

The method returns an integer, which is the index of the last bit unpacked into the list of bits.

The method issues a runtime error message if the struct has no physical fields. If at the end of packing there
are leftover bits, it is not an error. If more bits are needed than currently exist in the list of bits, a runtime
error is issued (�Ran out of bits while trying to unpack into struct_name�).

You can extend the do_unpack() method for a struct in order to create a unique unpacking scenario for that
struct. You should handle variations in unpacking that apply to many structs by creating a custom
pack_options instance. See �Customizing Pack Options� on page 510 for information on how to do this.

Notes

� Do not call the do_unpack() method of any struct directly, for example �my_struct.do_unpack()�.
Instead use unpack(), for example �unpack(packing.high, lob, my_struct)�.

� When you modify the do_unpack() method, you need to calculate and return the index of the last bit
in the list of bits that was unpacked. In most cases, you simply add the bit width of each physical
field in the struct to the starting index parameter. If you are unpacking into a struct that has condi-
tional physical fields (physical fields defined under a when, extend, or like construct), this calcula-
tion is a bit tricky. See the Verification Advisor�s patterns on packing for an example of how to do
this.

Example 1

This first example shows how to modify do_unpack() to change the order in which the fields of a struct are
filled. In this case, the order is changed from �op1�, �op2�, �op3� to �op2�, �op1�, �op3�. You can see also
that do_unpack() returns the bit widths of the three physical fields, �op1�, �op2�, and �op3�, to the starting
index, �from�.

options This parameter is an instance of the pack options struct. See
�Using the Predefined pack_options Instances� on page 506 for
information on this struct.

l A list of bits containing data to be stored in the struct fields.
from An integer that specifies the index of the bit to start unpacking.
int (return value) An integer that specifies the index of the last bit in the list of bits

that was unpacked.
This is an unapproved IEEE Standards Draft, subject to change.
653

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
struct cell {
%op1: uint(bytes:1);
%op2: uint(bits:5);
%op3: uint(bits:3);

};

extend cell {
do_unpack(options:pack_options, l: list of bit,

from: int) :int is only {
var L : list of bit = l[from..];
unpack(packing.low, L, op2, op1, op3);
return from + 8 + 5 + 3;

};
};

Result

var P : list of bit = {0;0;0;0;1;1;0;1;1;1;0;0;0;0;1;0;};
unpack(NULL, P, sys.pi)
print sys.pi using bin

sys.pi = cell-@0: cell
-- @pack36
0 %op1: 0b00011101
1 %op2: 0b10000
2 %op3: 0b010

Example 2

This example modifies the do_unpack method of the �frame� struct to first calculate the length of the �data�
field. The calculation uses �from�, which indicates the last bit to be unpacked, to calculate the length of
�data�.

extend sys {
!packet1 : packet;
!packet2 : packet;

post_generate() is also {
var raw_data : list of byte;
for i from 0 to 39 {

raw_data.add(i);
};
unpack(packing.low, raw_data, packet1);
print packet1.header, packet1.frame.data,

packet1.frame.crc;
unpack(packing.high, raw_data, packet2);
print packet2.header, packet2.frame.data,

packet2.frame.crc;
};

};

struct packet {
%header : int (bits : 16);
%frame : frame;

};

struct frame {
%data[len] : list of byte;
%crc : int (bits : 32);
654 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
len : int;

do_unpack(options :pack_options, l :list of bit,
from :int):int is first {

if options.reverse_fields then {
len = (from - 32 + 1) / 8;

} else {
len = (l.size() - from - 32) / 8;

};
};

};

Results

packet1.header = 256
packet1.frame.data = (34 items, dec):
 13 12 11 10 9 8 7 6 5 4 3 2 .0
 25 24 23 22 21 20 19 18 17 16 15 14 .12
 35 34 33 32 31 30 29 28 27 26 .24

packet1.frame.crc = 656811300
packet2.header = 10022
packet2.frame.data = (34 items, dec):
 26 27 28 29 30 31 32 33 34 35 36 37 .0
 14 15 16 17 18 19 20 21 22 23 24 25 .12
 4 5 6 7 8 9 10 11 12 13 .24

packet2.frame.crc = 50462976

See Also

� �pack()� on page 516
� �unpack()� on page 521
� �%{... , ...}� on page 62
� �swap()� on page 524
� �do_unpack()� on page 529

23.2.4 The do_print() Method of any_struct

Purpose

Print struct info

Category

Predefined method of any struct or unit

Syntax

[exp.]do_print()

Syntax example:

do_print() is first {
outf("Struct %s :", me.s);

};
This is an unapproved IEEE Standards Draft, subject to change.
655

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Controls the printing of information about a particular struct. You can extend this method to customize the
way information is displayed.

This method is called by the print action whenever you print the struct.

Example

<'
struct a {

i: int;
s: string;
do_print() is first {

outf("Struct %s :", me.s);
};

};
extend sys {

m() is {
var aa := a new a with {

.i = 1;

.s = "AA";
};
print aa;

};
};
'>

Result

sys.m()
 aa = Struct AA :a-@0: a
 -- @predefined_methods5
0 i: 0x1
1 s: "AA"

23.2.5 The init() Method of any_struct

Purpose

Initialize struct

Category

Predefined method of any struct or unit

Syntax

[exp.]init()

Syntax example:

exp An expression that returns a unit or a struct.
656 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
init() is also {
is_ok = TRUE;
list_subs = {320; 330; 340; 350; 360};
list_color = {black; red; green; blue; yellow; white};

};

Parameters

Description

The init() method of a struct is called when a new instance of the struct is created.

You can extend the init() method of a struct to set values for fields that you want to have a different value
than the default value. By default, all fields of scalar type are initialized to zero. The initial value of a struct
or list is NULL, unless the list is a sized list of scalars, in which case it is initialized to the proper size with
each item set to the default value.

You should consider initializing the non-generated fields of a struct, especially fields of an enumerated sca-
lar type or unsized lists. Enumerated scalar types are initialized to zero, even if that is not a legal value for
that type. If the field is sampled before it is assigned, you should initialize it. As for lists, if you intend to fill
a list with data from the DUT, you should either size the list or initialize it. Unpacking data from the DUT
into an unsized, uninitialized list causes a runtime error.

If a field is initialized but not marked as non-generated, the initialization is overwritten during generation.
To mark a field as non-generated, place a ! character in front of the field name.

Example

<'
type color: [black, red, green, blue, yellow, white];
type sub_rang1: int [300..500];
struct pm {

!list_color: list of color;
!list_subs: list of sub_rang1;
!is_ok:bool;

init() is also {
is_ok = TRUE;
list_subs = {320; 330; 340; 350; 360};
list_color = {black; red; green; blue; yellow; white};

};
};

extend sys {
pmi:pm;

};
'>

Result

print sys.pmi.list_color, sys.pmi.list_subs,
sys.pmi.is_ok

 sys.pmi.list_color =
0. black
1. red

exp An expression that returns a unit or a struct.
This is an unapproved IEEE Standards Draft, subject to change.
657

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
2. green
3. blue
4. yellow
5. white
 sys.pmi.list_subs =
0. 320
1. 330
2. 340
3. 350
4. 360
 sys.pmi.is_ok = TRUE

See Also

� �The init() Method of sys� on page 645
� �Packing and Unpacking Lists� on page 503
� �e Data Types� on page 75
� �{... ; ...}� on page 60

23.2.6 The print_line() Method of any_struct

Purpose

Print a struct or a unit in a single line

Category

Predefined method of any struct or unit

Syntax

[exp.]print_line(NULL | struct-type.type())

Syntax example:

sys.pmi[0].print_line(sys.pmi[0].type());
sys.pmi[0].print_line(NULL);

Parameters

Description

You can call this method to print lists of structs of a common struct type in a tabulated table format. Each
struct in the list is printed in a single line of the table.

When printing the structs, there is a limit on the number of fields printed in each line. The first fields that fit
into a single line are printed; the rest are not printed at all. Each field is printed in a separate column, and
there is a limitation on the column width. When a field exceeds this width, it is truncated and an asterisk is
placed as the last character of that field�s value.

exp An expression that returns a struct or a unit.
NULL | struct-
type.type()

To print a row representation of the struct or unit, the parameter is NULL.To
print the header for the list, the parameter is of the form:

struct-type.type()
658 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
struct packet {

protocol: [eth, ieee, atm];
size: int [0..1k];
data[size]: list of byte;

};

extend eth packet {
e: int;

};

extend ieee packet {
i: int;

};
extend atm packet {

a: int;
};

extend sys {
pmi[5]: list of packet;

m() is {
sys.pmi[0].print_line(sys.pmi[0].type());
sys.pmi[0].print_line(NULL);
sys.pmi[1].print_line(NULL);
sys.pmi[2].print_line(NULL);
sys.pmi[3].print_line(NULL);
sys.pmi[4].print_line(NULL);

};
};
'>

Result

item type protocol size data eth'e ieee'i
packet eth 872 (872 item* -481087693
packet eth 830 (830 item* 2019716495
packet eth 834 (834 item* -20064418*
packet ieee 663 (663 item* 1557645288
packet eth 213 (213 item* 1797949675

23.2.7 The quit() Method of any_struct

Purpose

Kill all threads of a struct or unit instance

Category

Predefined method of any struct or unit

Syntax

[exp.]quit()
This is an unapproved IEEE Standards Draft, subject to change.
659

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

packet.quit();

Parameters

Description

Deactivates a struct instance, killing all threads associated with the struct and enabling garbage collection.
The quit() method emits a quit event for that struct instance at the end of the current tick. At the end of the
current tick, the quit() method kills any TCM threads that were started within the struct in which the quit()
method is called. All attached events and expect members of the struct that are still running are also killed.

A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of
the started TCM thread, and the quit() method kills those subthreads, too.

If a struct has more than one started TCM, each TCM runs on a separate, parallel thread. Each thread shares
a unique identifier, or thread handle, with its subthreads. The thread handle is automatically assigned by the
scheduler. You can access threads using the predefined methods of the scheduler.

The quit() method is called by the global.stop_run() method. You can also call it explicitly.

Example

This example shows the quit() method used in conjunction with the stop_run() routine to stop a run cleanly.
When a �packet� struct is generated by the �inject_packets()� method, its TCM �monitor()� is also started.
The TCM monitor checks the status of the �inject_packets()� method. Four cycles after the �packet� is gen-
erated, it is killed by the quit() method. After all packet have been generated and killed, the stop_run()
method is called to stop the simulator.

<'
extend sys {

inject_packets() @sys.any is {
var packet : packet;
for i from 0 to 5 {

wait [1] * cycle;
gen packet;
out("\nInject packet id ", packet.id);
wait [4] * cycle;
packet.quit();

};
stop_run();

};

run() is also {
start inject_packets();

};
};

struct packet {
id : int;
monitor() @sys.any is {

while (TRUE) {
wait [2] * cycle;

exp An expression that returns a unit or a struct.
660 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
out("cycle ", sys.time, " Packet id ", id,
" is still running");

};
};

run() is also {
start monitor();

};
};
'>

Result

Inject packet id 134576642
cycle 3 Packet id 134576642 is still running
cycle 5 Packet id 134576642 is still running

Inject packet id -1767441690
cycle 8 Packet id -1767441690 is still running
cycle 10 Packet id -1767441690 is still running

Inject packet id 1480193010
cycle 13 Packet id 1480193010 is still running
cycle 15 Packet id 1480193010 is still running

Inject packet id 370225594
cycle 18 Packet id 370225594 is still running
cycle 20 Packet id 370225594 is still running

Inject packet id 595104854
cycle 23 Packet id 595104854 is still running
cycle 25 Packet id 595104854 is still running

Inject packet id 631871925
cycle 28 Packet id 631871925 is still running

See Also

� �stop_run()� on page 841
� �kill()� on page 696
� �terminate_branch()� on page 698
� �terminate_thread()� on page 699

23.2.8 The run() Method of any_struct

Purpose

Recommended place for starting TCMs

Category

Method of any struct or unit

Syntax

[exp.]run()
This is an unapproved IEEE Standards Draft, subject to change.
661

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

run() is also {
start monitor();

};

Parameters

Description

Can be extended to start user-defined TCMs. The method is initially empty.

The run() methods of all structs under sys are called, starting from sys in depth-first search order, by the glo-
bal.run_test() method, when you execute a test.

After this initial pass, when any struct is generated (with the gen action) or allocated (with new), its run()
method is also invoked. This ensures that:

� The run() method of each struct instance is called exactly once, thus avoiding multiple instances of
the same started TCM;

� TCMs do not start and events do not occur before the e program is ready to accept them;
� The run() method is called after generation and uses the generated values.

If you run multiple tests in the same session, the run() method is called once for each test in the session. The
init() method is called only once before the first test.

Example

<'
struct packet {

id : int;
monitor() @sys.any is {

while (TRUE) {
wait [2] * cycle;
out("cycle ", sys.time,

" Packet id ", id, " is still running");
};

};

run() is also {
start monitor();

};
};
'>

See Also

� �The run() Method of sys� on page 646
� �start tcm()� on page 477

23.3 Predefined Methods of Any Unit

The following methods are available for any instantiated user-defined unit.

exp An expression that returns a unit or a struct.
662 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �hdl_path()� on page 663
� �full_hdl_path()� on page 664
� �e_path()� on page 666
� �agent()� on page 667
� �get_parent_unit()� on page 669

23.3.1 hdl_path()

Purpose

Return a relative HDL path for a unit instance

Category

Predefined pseudo-method for any unit

Syntax

[unit-exp.]hdl_path(): string

Syntax example:

extend dut_error_struct {
write() is first {

var channel: XYZ_channel =
source_struct().try_enclosing_unit(XYZ_channel);

if (channel != NULL) {
out("Error in XYZ channel: instance ",

channel.hdl_path());
 };
 };
};

Parameters

Description

Returns the HDL path of a unit instance. The most important role of this method is to bind a unit instance to
a particular component in the DUT hierarchy. Binding an e unit or unit instance to a DUT component allows
you to reference signals within that component using relative HDL path names. Regardless of where the
DUT component is instantiated in the final integration, the HDL path names are still valid. The binding of
unit instances to HDL components is a part of the pre-run generation process and must be done in keep con-
straints.

Although absolute HDL paths are allowed, relative HDL paths are recommended if you intend to follow a
modular verification strategy.

This method always returns an HDL path exactly as it was specified in constraints. If, for example, you use
a macro in a constraint string, then hdl_path() returns the original and not substituted string.

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
663

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Notes

� All instances of the same unit must be bound to the same kind of HDL components.
� You cannot constrain the HDL path for sys.

Example 1

This example shows how you can use relative paths in lower-level instances in the unit instance tree. To cre-
ate the full HDL path of each unit instance, its HDL path is prefixed with the HDL path of its parent
instance. In this example, because the HDL path of sys is ��, the full HDL path of �unit_core� is
�top.router_i�. The full HDL path of �extra_channel� is �top.router_i.chan3�.

extend sys {
unit_core: XYZ_router is instance;
keep unit_core.hdl_path() == "top.router_i";

};

extend XYZ_router {
extra_channel: XYZ_channel is instance;
keep extra_channel.hdl_path() == "chan3";

};

Example 2

This example shows how hdl_path() returns the HDL path exactly as specified in the constraint. Thus the
first print action prints �`TOP.router_i�. The second print action, in contrast, accesses �top.router_i.clk�.

verilog import macros.v;
extend sys {

unit_core: XYZ_router is instance;
keep unit_core.hdl_path() == "‘TOP.router_i";
run() is also {

print unit_core.hdl_path();
print '(unit_core).clk';

};
};

Result

unit_core.hdl_path() = "‘TOP.router_i"
'top.router_i.clk' = 0

See Also

� �HDL Paths and Units� on page 159
� �full_hdl_path()� on page 664
� �e_path()� on page 666

23.3.2 full_hdl_path()

Purpose

Return an absolute HDL path for a unit instance
664 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Predefined method for any unit

Syntax

[unit-exp.]full_hdl_path(): string

Syntax example:

out ("Mutex violation in ", get_unit().full_hdl_path());};

Parameters

Description

Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational
messages. Like the hdl_path() method, this method returns the path as originally specified in the keep con-
straint, without making any macro substitutions.

Example

This example uses full_hdl_path() to display information about where a mutex violation has occurred.

extend XYZ_router {
!current_chan: XYZ_channel;

mutex_checker() @pclk is {
while ('packet_valid') {

var active_channel: int = UNDEF;
for each XYZ_channel(current_chan) in channels {

if '(current_chan).valid_out' {
if active_channel != UNDEF then {

out ("Mutex violation in ",
get_unit().full_hdl_path());};

active_channel = index;
};

};
wait cycle;

};
};

};

Result

Mutual exclusion violation in top.router_i

See Also

� �hdl_path()� on page 663
� �e_path()� on page 666

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
665

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
23.3.3 e_path()

Purpose

Returns the location of a unit instance in the unit tree

Category

Predefined method for any unit

Syntax

[unit-exp.]e_path(): string

Syntax example:

out("Started checking ", get_unit().e_path());

Parameters

Description

Returns the location of a unit instance in the unit tree. This method is used mainly in informational mes-
sages.

Example

<'
unit ex_u {

run() is also {
inst = get_unit().e_path();
var inst: string;
inst = get_unit().e_path();
out("ex instance: ", inst);

};
};

unit top_u {
exlist[10]: list of ex_u is instance;

};

extend sys {
top: top_u is instance;

};
'>

Result

ex instance: sys.top.exlist[0]
ex instance: sys.top.exlist[1]
ex instance: sys.top.exlist[2]
ex instance: sys.top.exlist[3]
ex instance: sys.top.exlist[4]

unit-exp An expression that returns a unit instance. If no expression is specified, the current unit
instance is assumed.
666 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
ex instance: sys.top.exlist[5]
ex instance: sys.top.exlist[6]
ex instance: sys.top.exlist[7]
ex instance: sys.top.exlist[8]
ex instance: sys.top.exlist[9]

See Also

� �full_hdl_path()� on page 664
� �hdl_path()� on page 663

23.3.4 agent()

Purpose

Maps the DUT�s HDL partitions into e code

Category

Predefined pseudo-method for any unit

Syntax

keep [unit-exp.]agent() == string;

Syntax example:

router: XYZ_router is instance;
keep router.agent() == "Verilog";

Parameters

Description

Specifying an agent identifies the simulator that is used to simulate the corresponding DUT component.
Once a unit instance has an explicitly specified agent name then all other unit instances instantiated within it
are implicitly bound to the same agent name, unless another agent is explicitly specified.

An agent name may be omitted in a single-HDL environment but it must be defined implicitly or explicitly
in a mixed HDL environment for each unit instance that is associated with a non-empty hdl_path(). If an
agent name is not defined for a unit instance with a non-empty hdl_path() in a mixed HDL environment, an
error message is issued.

unit-exp An expression that returns a unit instance. If no expression is specified,
the current unit instance is assumed.

string One of the following predefined agent names: verilog, vhdl, mti_vlog,
mti_vhdl, ncvlog and ncvhdl. Specifying the agent name as verilog or
vhdl is preferred because it makes the e code portable between simula-
tors. In contrast, if a unit is bound to a specific agent, for example to
mti_vhdl, an error is issued if it is ported to NC Simulator. The pre-
defined names are case-insensitive; in other words, verilog is the same
as Verilog.
This is an unapproved IEEE Standards Draft, subject to change.
667

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Given the hdl_path() and agent() constraints, a correspondence map is established between the unit
instance HDL path and its agent name. Any HDL path below the path in the map is associated with the same
agent unless otherwise specified. This map is further used internally to pick the right adapter for each
accessed HDL object.

It is possible to access Verilog signals from a VHDL unit instance code and vice-versa. Every signal is
mapped to its HDL domain according to its full path, regardless of the specified agent of the unit that the sig-
nal is accessed from.

When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the agent
string is exactly as specified in the corresponding constraint.

Notes

� Agents are bound to unit instances during the generation phase. Consequently, there is no way to
map between HDL objects and agents before generation. As a result of this limitation, HDL objects
in a mixed Verilog/VHDL environment cannot be accessed before generation from sys.setup().

� An unsupported agent name causes an error message during the test phase.

Example 1

In the following example, the driver instance inherits an agent name implicitly from the enclosing router unit
instance.

extend sys {

router: XYZ_router is instance;

keep router.agent() == "Verilog";

keep router.hdl_path() == "top.rout";

};

extend XYZ_router {

driver: XYZ_router_driver is instance;

};

Example 2

In this example, the signal �top.rout.packet_valid� is sampled using the Verilog PLI because the path
�top.rout� is specified as a Verilog path. In contrast, the signal �top.rout.chan.mux.data_out� is sampled
using a VHDL foreign interface because the closest mapped path is �top.rout.chan� and it is mapped as a
VHDL path.

extend sys {

router: XYZ_router is instance;

keep router.agent() == "Verilog";

keep router.hdl_path() == "top.rout";

};
668 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
unit XYZ_router {

channel: XYZ_channel is instance;

keep channel.agent() == "VHDL";

keep channel.hdl_path() == "chan";

run() is also {

print 'packet_valid';

};

};

unit XYZ_channel {

run() is also {

print 'mux.data_out';

};

};

23.3.5 get_parent_unit()

Purpose

Return a reference to the unit containing the current unit instance

Category

Predefined method for any unit

Syntax

[unit-exp.]get_parent_unit(): unit type

Syntax example:

out(sys.unit_core.channels[0].get_parent_unit());

Parameters

Description

Returns a reference to the unit containing the current unit instance.

Example

out(sys.unit_core.channels[0].get_parent_unit())
XYZ_router-@2

unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
This is an unapproved IEEE Standards Draft, subject to change.
669

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �get_unit()� on page 670
� �get_enclosing_unit()� on page 672
� �try_enclosing_unit()� on page 674

23.4 Unit-Related Predefined Methods of Any Struct

The unit-related predefined methods of any struct are:

� �get_unit()� on page 670
� �get_enclosing_unit()� on page 672
� �try_enclosing_unit()� on page 674
� �set_unit()� on page 676

See Also

� �Predefined Methods of Any Unit� on page 662
� �Unit-Related Predefined Routines� on page 732

23.4.1 get_unit()

Purpose

Return a reference to a unit

Category

Predefined method of any struct

Syntax

[exp.]get_unit(): unit type

Syntax example:

out ("Mutex violation in ", get_unit().full_hdl_path());};

Parameters

Description

When applied to an allocated struct instance, this method returns a reference to the parent unit�the unit to
which the struct is bound. When applied to a unit, it returns the unit itself.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is gener-
ated during pre-run generation it inherits the parent unit of its parent struct. If the struct is dynamically allo-
cated by the new or gen action, then the parent unit is inherited from the struct the enclosing method belongs
to. See Example 3 on page 672 for an illustration of this point.

exp An expression that returns a unit or a struct. If no expression is specified, the current struct
or unit is assumed.
670 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
This method is useful when you want to determine the parent unit instance of a struct or a unit. You can also
use this method to access predefined unit members, such as hdl_path() or full_hdl_path(). To access user-
defined unit members, use get_enclosing_unit(). See Example 1 on page 671 for an illustration of this
point.

Example 1

This example shows that get_unit() can access predefined unit members, while get_enclosing_unit() must
be used to access user-defined unit members.

struct instr {
 %opcode : cpu_opcode ;
 %op1 : reg ;
 kind : [imm, reg];

 post_generate() is also {
-- get_unit().print_msg() ; -- COMPILE-TIME ERROR
 get_enclosing_unit(XYZ_cpu).print_msg();
 out("Destination for this instruction is ",

get_unit().hdl_path()) ;
 };
};

unit XYZ_cpu {
 instrs[3] : list of instr;
 print_msg() is {out("Generating instruction for \

XYZ_cpu...");};
};

extend sys {
 cpu1: XYZ_cpu is instance;
 keep cpu1.hdl_path()=="‘TOP/CPU1";
};
'>

Result

Generating the test using seed 1...
Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1
Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1
Generating instruction for XYZ_cpu...
Destination for this instruction is ‘TOP/CPU1

Example 2

The first call to get_unit() below shows that the parent unit of the struct instance �p� is sys. The second call
shows that the parent unit has been changed to �XYZ_router�.

var p: XYZ_packet = new
out(p.get_unit())

sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())

XYZ_router-@1
This is an unapproved IEEE Standards Draft, subject to change.
671

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 3

In this example, the trace_inject() method displays the full HDL path of the �XYZ_dlx� unit (not the
�XYZ_tb� unit) because �instr_list� is generated by the run method of �XYZ_dlx�.

extend sys {
 tb: XYZ_tb is instance;
 keep tb.hdl_path()=="‘TOP/tb";
};
unit XYZ_tb {
 dlx: XYZ_dlx is instance;
 keep dlx.hdl_path()=="dlx_cpu";
 !instr_list: list of instruction;
 debug_mode: bool;
};
unit XYZ_dlx {
 run() is also {
 gen sys.tb.instr_list keeping { .size() < 30;};
 };
};
extend instruction {
 trace_inject() is {
 if get_enclosing_unit(XYZ_tb).debug_mode == TRUE {
 out("Injecting next instruction to ",
 get_unit().full_hdl_path());
 };
 };
};

Result

sys.tb.instr_list[0].trace_inject()
Injecting next instruction to ‘TOP/tb.dlx_cpu

See Also

� �get_parent_unit()� on page 669
� �get_enclosing_unit()� on page 672
� �try_enclosing_unit()� on page 674

23.4.2 get_enclosing_unit()

Purpose

Return a reference to nearest unit of specified type

Category

Predefined pseudo-method of any struct

Syntax

[exp.]get_enclosing_unit(unit-type: exp): unit instance

Syntax example:
672 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
unpack(p.get_enclosing_unit(XYZ_router).pack_config,
'data', current_packet);

Parameters

Description

Returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access
fields of the parent unit in a typed manner.

You can use the parent unit to store shared data or options such as packing options that are valid for all its
associated subunits or structs. Then you can access this shared data or options with the get_enclosing_unit()
method.

Notes

� The unit type is recognized according to the same rules used for the is a operator. This means, for
example, that if you specify a base unit type and there is an instance of a unit subtype, the unit sub-
type is found.

� If a unit instance of the specified type is not found, a runtime error is issued.

Example 1

In the following example, get_enclosing_unit() is used to print fields of the nearest enclosing unit instances
of type �XYZ_cpu� and �tbench�. Unlike get_unit(), which returns a reference only to its immediate parent
unit, get_enclosing_unit() searches up the unit instance tree for a unit instance of the type you specify. A
runtime error is issued unless an instance of type �XYZ_cpu� and an instance of type �tbench� are found in
the enclosing unit hierarchy.

struct instr {
 %opcode : cpu_opcode ;
 %op1 : reg ;
 kind : [imm, reg];

 post_generate() is also {
 out("Debug mode for CPU is ",

get_enclosing_unit(XYZ_cpu).debug_mode);
 out("Memory model is ",

get_enclosing_unit(tbench).mem_model);
 };
};
unit XYZ_cpu {
 instr: instr;

debug_mode: bool;
};
unit tbench {
 cpu: XYZ_cpu is instance;

exp An expression that returns a unit or a struct. If no expression is specified, the current
struct or unit is assumed.

NOTE� If get_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.
This is an unapproved IEEE Standards Draft, subject to change.
673

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 mem_model: [small, big];
};

extend sys {
 tb: tbench is instance;
};

Result

Generating the test using seed 1...
Debug mode for CPU is FALSE
Memory model is small

Example 2

extend XYZ_router {
 pack_config:pack_options;

 keep pack_config == packing.low_big_endian;
};

Result

var p: XYZ_packet = new
print p.data
 p.data = (empty)
out(p.get_unit())
 sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())
 XYZ_router-@1
show unpack(

p.get_enclosing_unit(XYZ_router).pack_config, data, p)
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0| +0
 |
 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0|
 |
 data |

 |5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0| +32
 + |
 |0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0
 + |
 | |

See Also

� �get_unit()� on page 670
� �set_unit()� on page 676
� �try_enclosing_unit()� on page 674
� �get_parent_unit()� on page 669

23.4.3 try_enclosing_unit()

Purpose

Return a reference to nearest unit instance of specified type or NULL
674 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Predefined method of any struct

Syntax

[exp.]try_enclosing_unit(unit-type: exp): unit instance

Syntax example:

var MIPS := source_struct().try_enclosing_unit(MIPS);

Parameters

Description

Like get_enclosing_unit(), this method returns a reference to the nearest higher-level unit instance of the
specified type, allowing you to access fields of the parent unit in a typed manner.

Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified
type is found. Instead, it returns NULL. This feature makes the method suitable for use in extensions to glo-
bal methods such as dut_error_struct.write(), which may be used with more than one unit type.

Example

<'
extend dut_error_struct {

write() is also {
var MIPS := source_struct().try_enclosing_unit(MIPS);
if MIPS != NULL then {

out("Status of ", MIPS.e_path(),
" at time of error:");

MIPS.show_status();
};

};
};
'>

See Also

� �get_unit()� on page 670
� �get_enclosing_unit()� on page 672
� �get_parent_unit()� on page 669

exp An expression that returns a unit or a struct. If no expression is specified, the current
struct or unit is assumed.

NOTE� If try_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.
This is an unapproved IEEE Standards Draft, subject to change.
675

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
23.4.4 set_unit()

Purpose

Change the parent unit of a struct

Category

Predefined method of any struct

Syntax

[struct-exp.]set_unit(parent: exp)

Syntax example:

p.set_unit(sys.unit_core)

Parameters

Description

Changes the parent unit of a struct to the specified unit instance.

NOTE� This method does not exist for units because the unit tree cannot be modified.

Example

var p: XYZ_packet = new
out(p.get_unit())
 sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())
 XYZ_router-@1

23.5 Pseudo-Methods

Pseudo-methods calls look like method calls, but unlike methods they are not associated with structs and are
applied to other types of expressions, such as lists.

Pseudo-methods cannot be changed or extended through use of the is only, is also or is first constructs.

The following sections provide descriptions of the pseudo-methods:

� �declared_type()� on page 677
� �type()� on page 677
� �field()� on page 678
� �unsafe()� on page 678
� �source_location()� on page 679

struct-exp An expression that returns a struct. If no expression is specified, the current struct is
assumed.

parent An expression that returns a unit instance.
676 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �source_method()� on page 680

See Also

� Chapter 19, �List Pseudo-Methods Library�
� Chapter 26, �Predefined File Routines Library�
� Chapter 24, �Predefined Routines Library�

23.5.1 declared_type()

Purpose

Get a handle for the declared type of an expression

Category

Pseudo-method

Syntax

exp.declared_type(): type_descriptor

Syntax example:

if pkt1.declared_type() != pkt1.type() then {out("Got a mismatch!")};

Parameters

Description

Returns a handle for the declared type of an expression

The use of this pseudo-method is strongly discouraged.

23.5.2 type()

Purpose

Get a handle for the type of an expression

Category

Pseudo-method

Syntax

exp.type(): type_descriptor

Syntax example:

if pkt1.type() == pkt2.type() then {out("Got a match!")};

exp Any legal e expression.
This is an unapproved IEEE Standards Draft, subject to change.
677

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns a handle for the type of an expression.

The use of this pseudo-method is strongly discouraged.

23.5.3 field()

Purpose

Get the handle for a field

Category

Pseudo-method

Syntax

struct-exp.field(field-name): field

Parameters

Description

Returns the handle for the specified field.

The use of this pseudo-method is strongly discouraged.

23.5.4 unsafe()

Purpose

Bypass type checking

Category

Pseudo-method

Syntax

exp.unsafe(): type

Parameters

exp Any legal e expression.

struct-exp An expression that returns a struct.

exp Any legal e expression.
678 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Passes the expression with no type checking or auto-casting.

This method should be used only when calling C routines that perform their own type checking.

See Also

� �declared_type()� on page 677
� �type()� on page 677
� �field()� on page 678
� Chapter 3, �Data Types�

23.5.5 source_location()

Purpose

Get source reference string

Category

Pseudo-method

Syntax

source_location(): string

Syntax example:

print source_location();

Description

Returns the source location string. The string describes the line number and the module name in which the
source_location() method was invoked. The format of the string is:

at line line-number in @module-name

Example

<'
extend sys {

m() is {
out("I'm ",source_location());

};
};
'>

Result

sys.m()
 I'm at line 4 in @xxx

See Also

� �dut_error_struct� on page 444
This is an unapproved IEEE Standards Draft, subject to change.
679

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �source_method()� on page 680

23.5.6 source_method()

Purpose

Get name of executing method

Category

Pseudo-method

Syntax

source_method(): string

Syntax example:

print source_method();

Description

Returns the name of the enclosing method. The string describes the line number and the module name in
which the source_method() method was invoked. The format of the string is:

method-name at line line-number in @module-name

Example

<'
extend sys {
 run() is also {
 out("location = '", source_location(),
 "'\nmethod = '", source_method(), "'");
 };
};
'>

Result

run
location = 'at line 4 in @method'
method = 'sys.run() at line 3 in @method'

See Also

� �source_location()� on page 679

23.6 Semaphore Methods

The e language provides three predefined structs that are useful in controlling resource sharing between
TCMs:

� semaphore
680 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
This is the typical semaphore. The maximum value ranges between 1 and MAX_INT. By default, it
is MAX_INT, and the initial value (number of available resources) is 0. (See �Example 1� on
page 683.)

� rdv_semaphore
A rendezvous semaphore is a semaphore with no resources. It requires the meeting of a producer and
a consumer for either to proceed. When they finally proceed, the up() thread always runs first, fol-
lowed immediately by the down(). (See �Example 2� on page 684.)

� locker
The methods of this struct provide a fair, FIFO ordered sharing of resources between multiple com-
peting methods.

A locker is useful when a single entity needs to prevent others from a shared resource. lock() and release()
must be issued by the same entity. A semaphore is more flexible. You could implement the locker function-
ality with semaphore by initializing the semaphore count to 1, then changing all locker.lock() to sema-
phore.down() and all locker.release() to semaphore.up(). You can also use a semaphore when the need is for
a producer and consumer, i.e. one entity �locks� and the other one �releases�. Finally, you could also use a
semaphore if you had more than one shared resource available by initializing the count

Table 23-1 gives a brief description of the predefined methods of the semaphore and rdv_semaphore
structs. Table 23-2 describes the predefined methods of the locker struct.

Table 23-1�Semaphore Methods

Method Description

up() Increments the semaphore's value. Blocks if the value is already the maxi-
mum possible.

down() Decrements the semaphore's value. Blocks if the value is already 0.

try_up() Increments the semaphore's value. If the value is already the maximum pos-
sible, returns without blocking.

try_down() Decrements the semaphore's value. If the value is already 0, returns without
blocking.

set_value() Sets the initial value of the semaphore.

get_value() Returns the current value of the semaphore.

set_max_value() Sets an upper limit to the possible value of the semaphore.

get_max_value() Returns the maximum possible value.

Table 23-2�Locker Methods

Method Description

lock() The first TCM to call the lock() method of a field of type locker gets the
lock and can continue execution. The execution of the other TCMs is
blocked.
This is an unapproved IEEE Standards Draft, subject to change.
681

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �How to Use the Semaphore Struct� on page 682
� �up() and down()� on page 682
� �try_up() and try_down()� on page 685
� �set_value() and get_value()� on page 687
� �set_max_value() and get_max_value()� on page 688
� �lock() and release()� on page 689

23.7 How to Use the Semaphore Struct

A field of type semaphore typically serves as a synchronization object between two types of TCMs: pro-
ducer and consumer.

Any consumer TCM uses the predefined down() time-consuming method of the semaphore to gain control
of a new resource managed by the semaphore. If no resources are available at the time down() is called, the
consumer TCM is blocked until such a resource is available.

Any producer TCM uses the predefined up() time consuming method of the semaphore to increase the
amount of available resources of the semaphore. This resource is made available for consumer TCMs. If the
semaphore already contains the maximum number of resources at the time up() is called, the producer TCM
is blocked until a semaphore resource is consumed.

The amount of available resources is zero by default but can be set otherwise using the set_value() method.
The current amount of available resources can be obtained using the get_value() method.

There is a limit to the possible number of available resources. Typically, the maximum is MAX_INT, but it
can be set to other values between 0 and MAX_INT using the set_max_value() method. The current limit
for available resources can be obtained using the get_max_value() method.

Any producer TCM is blocked if the semaphore already holds the maximum number of available resources.

23.7.1 up() and down()

Purpose

Synchronize producer and consumer TCMs

Category

Predefined TCM of semaphore struct

release() When a TCM that has the lock calls release(), control goes to the next TCM
serviced by the scheduler that is waiting on the locker. The order in which
the lock is granted is by a FIFO (First In First Out) order of client lock()
requests.

Table 23-2�Locker Methods (continued)

Method Description
682 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

semaphore.up()

semaphore.down()

Syntax example:

sem1.up();
sem1.down();

Parameters

Description

The up() time-consuming method increases the number of available resources of the semaphore by 1. If the
number of available resources is already the maximum, the TCM is blocked. Blocked calls to up() are ser-
viced according to their request order (on a First In First Out basis).

The down() time consuming method decreases the number of resources of the semaphore by 1. If no
resources are available, the TCM is blocked. Blocked calls to down() are serviced according to their request
order (on a First In First Out basis).

With an rdv_semaphore, up() and down() are blocked unless they coincide. The down() TCM always
breaks the block first.

Example 1

The following example shows how you can use a semaphore to handle concurrent requests for exclusive
access from multiple clients in an orderly manner. In this example there are two client structs and one server
struct. The server has a semaphore to ensure that all requests are granted and that there are no simultaneous
grants.

When both clients issue a request at the same time the semaphore keeps track of the order of the requesting
TCMs. The first client to issue a request is granted the single resource, making it unavailable to the other cli-
ent. When this client is done with the resource, it uses the up() method of the semaphore to make the
resource available to the other requesting client.

<'
struct server {
 event clk;
 sem: semaphore;

 run() is also {
 sem.set_value(1);
 };
};

struct client {
 id: string;
 s: server;

 handshake()@s.clk is { // A single-cycle delay handshake

semaphore An expression of type semaphore or rdv_semaphore
This is an unapproved IEEE Standards Draft, subject to change.
683

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 out(id,": Starting handshake at time ",sys.time);
 s.sem.down();
 out(id,": Granted at time ",sys.time);
 wait [1];
 out(id,": Releasing at time ",sys.time);
 s.sem.up();
 };

 run()is also {start handshake();};
};

extend sys {
 s: server;
 c1: client; keep {c1.s==s; c1.id=="client 1"};
 c2: client; keep {c2.s==s; c2.id=="client 2"};

 go()@any is {
 for i from 0 to 40 do {
 wait cycle;
 emit s.clk;
 };
 stop_run();
 };
 run()is also {start go()};
};
'>

Result:

client 1: Starting handshake at time 1
client 1: Granted at time 1
client 2: Starting handshake at time 1
client 1: Releasing at time 2
client 2: Granted at time 2
client 2: Releasing at time 3

Example 2

The following example shows how to use an rdv_semaphore to synchronize several reading TCMs that
share a common input source.

In this example there is one writer and two readers. It takes the writer 3 cycles to write its data, and then it
calls the up() method. When a reader appears, it calls the down() method and waits for the data to be ready.
When both the writer and the reader are ready, at the two sides of the channel, the data exchange takes place:
the reader breaks the block first, which allows it to read the data before it is overwritten by the writer. Then
comes the writer and starts preparing for the next data exchange.

<'
extend sys {
 rdv_semaphore;
 reg :int;

 writer(id : int) @any is {
 var v : int = 0;
 while TRUE {
 out(time, " -> writer ", dec(id), ": start preparing data.");
 wait [3];
 v += 1;
684 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 reg = v;
 out(time, " -> writer ", dec(id),

": done writing to register [v = ",hex(v),"].");
 rdv_semaphore.up();
 };
 };

 reader(id : int) @any is {
 while TRUE {
 out(time, " -> reader ", dec(id),

": ready to read from register.");
 rdv_semaphore.down();
 out(time, " -> reader ", dec(id),

": reading from register [reg = ",hex(reg),"].");
 wait [id];
 };
 };

 run() is also {
 start writer(1);
 start reader(2);
 start reader(3);
 };

 event terminate is [10] exec {stop_run();};
};
'>

Result:

0 -> writer 1: start preparing data.
0 -> reader 2: ready to read from register.
0 -> reader 3: ready to read from register.
3 -> writer 1: done writing to register [v = 0x1].
3 -> reader 2: reading from register [reg = 0x1].
3 -> writer 1: start preparing data.
5 -> reader 2: ready to read from register.
6 -> writer 1: done writing to register [v = 0x2].
6 -> reader 3: reading from register [reg = 0x2].
6 -> writer 1: start preparing data.
9 -> reader 3: ready to read from register.
9 -> writer 1: done writing to register [v = 0x3].
9 -> reader 2: reading from register [reg = 0x3].
9 -> writer 1: start preparing data.

See Also

� �How to Use the Semaphore Struct� on page 682
� �try_up() and try_down()� on page 685
� �set_value() and get_value()� on page 687
� �set_max_value() and get_max_value()� on page 688

23.7.2 try_up() and try_down()

Purpose

Synchronize producer and consumer methods
This is an unapproved IEEE Standards Draft, subject to change.
685

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Predefined method of semaphore struct

Syntax

semaphore.try_up(): bool

semaphore.try_down(): bool

Syntax example:

compute sem1.try_up();
compute sem1.try_down();

Parameters

Description

The try_up() and try_down() methods try to increment or decrement the number of available resources by
1, respectively. If the number of available resources is already at its maximum or minimum respectively,
these methods return immediately without any effect (in particular, no blocking). If the number of resources
was changed, the returned value is TRUE. If the number of resources was not changed, the returned value is
FALSE. The FIFO ordered of service of the semaphore is kept even when the try_up() and try_down()
methods are involved. For example, a try_up() will never succeed if there are pending calls to up().

NOTE� Being regular methods (not TCMs), try_up() and try_down() never generate a context
switch.

Example

The following example shows a driver that sends information at each clock. If there is valid data in reg that
is protected by the semaphore reg_sem, it sends its contents. Otherwise, it sends 0.

driver()@any is {
 while TRUE {
 if sem.try_down() {
 send(reg);
 } else {
 send(0);
 };
 wait cycle;
 };
};

See Also

� �How to Use the Semaphore Struct� on page 682
� �up() and down()� on page 682
� �set_value() and get_value()� on page 687
� �set_max_value() and get_max_value()� on page 688

semaphore An expression of type semaphore or rdv_semaphore.
686 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
23.7.3 set_value() and get_value()

Purpose

Set and get the number of available resources of a semaphore

Category

Predefined method of semaphore struct

Syntax

semaphore.set_value(new_value: int)

semaphore.get_value(): int

Syntax example:

sem1.set_value(7);
cur_value = sem1.get_value();

Parameters

Description

The set_value() method sets the number of available resources of the semaphore. By default, a semaphores
are initialized with zero available resources.

The new value must be a non-negative integer, no larger than MAX_INT. If the set_max_value() method of
the struct was used, the new value must also be smaller or equal to the last setting of the maximum number
of resources. If these conditions do not hold, a runtime error is issued.

set_value() cannot be called if either up() or down() was previously called. In such case, an erroris issued.
Setting the value of an rdv_semaphore to something other than zero also results in a runtime error.

The get_value() method returns the current number of available resources of the semaphore.

Example

<'
extend sys {
 sem : semaphore;
 run() is also {
 sem.set_value(5);
 print sem.get_value();
 };
};
'>

Result:

sem.get_value() = 5

new_value An expression of type signed int
This is an unapproved IEEE Standards Draft, subject to change.
687

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �How to Use the Semaphore Struct� on page 682
� �up() and down()� on page 682
� �try_up() and try_down()� on page 685
� �set_max_value() and get_max_value()� on page 688

23.7.4 set_max_value() and get_max_value()

Purpose

Set and get the maximum number of available resources of a semaphore

Category

Predefined method of semaphore struct

Syntax

semaphore.set_max_value(new_value: int)

semaphore.get_max_value(): int

Syntax example:

sem1.set_max_value(17);
cur_max_value = sem1.get_max_value();

Parameters

Description

The set_max_value() method sets the maximum number of available resources of the semaphore. By
default, a semaphore is initialized with a maximum of MAX_INT available resources.

The new value must be a positive integer, no larger than MAX_INT. If set_value() was used, the new value
must not be smaller than the number of available resources. If these conditions do not hold, a runtime error is
issued.

The value of an rdv_semaphore is constantly zero. Therefore its default maximum value is zero, and it can-
not be set to a value other than that. Trying to do so also results in a runtime error.

set_max_value() cannot be called if either up() or down() was previously called. In such case, an error is
issued.

It is safer to invoke the set_max_value() method before any other semaphore method.

The get_max_value() method returns the current limit for available resources of the semaphore.

Example

<'

new_value An expression of type signed int
688 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
extend sys {
 sem : semaphore;
 run() is also {
 sem.set_max_value(5);
 print sem.get_max_value();
 };
};
'>

Result:

sem.get_max_value() = 5

See Also

� �How to Use the Semaphore Struct� on page 682
� �up() and down()� on page 682
� �try_up() and try_down()� on page 685
� �set_value() and get_value()� on page 687

23.7.5 lock() and release()

Purpose

Control access to a shared resource

Category

Predefined TCM of locker struct

Syntax

locker-exp.lock()

locker-exp.release()

Syntax example:

lckr.lock();
lckr.release();

Parameters

Description

locker is a predefined struct with two predefined methods, lock() and release(). These methods are TCMs.

Once a field is declared to be of type locker, that field can be used to control the execution of TCMs by mak-
ing calls from the TCMs to locker.lock() and locker.release().

If you call locker.lock() from multiple TCMs, the first TCM gets the lock and can continue execution. The
execution of the other TCMs is blocked. Thus any resources that are shared between the TCMs will be avail-
able only to the TCM that gets the lock.

locker-exp An expression of type locker.
This is an unapproved IEEE Standards Draft, subject to change.
689

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
When a TCM calls release(), control goes to the next TCM serviced by the scheduler that is waiting on the
locker. The order in which the lock is granted is by a FIFO (First In First Out) order of client lock() requests.

An e program uses non-preemptive scheduling, which means that thread execution is interrupted only when
the executing thread reaches a wait, sync, TCM call, release(), or lock() request. This has two implications:

� You do not need to use locks unless the code to be executed between the lock() and the release() con-
tains a wait, sync, or TCM call.

� Code that is not time-consuming and is used by multiple threads should be put in a regular method so
no locks are needed.

NOTE�

� Calling lock() again before calling release() results in a deadlock. The TCM attempting to acquire
the locker stops and waits for the locker to be released. This TCM never executes because it cannot
release the locker. Naturally none of the other TCMs that wait for the locker is executed.

� The release of the locker must be explicit. If the locking thread ends (either normally or abnormally)
without a call to release(), the locker is not released. Again, none of the other TCMs that wait for the
locked is executed.

Example 1

This example illustrates how the execution of two TCMs are controlled using a field of type locker.

<'
struct foo {

lckr: locker;
tcm1(id: uint) @sys.any is {

all of {
{

lckr.lock();
out("first branch got the lock");
wait [2];
out("first branch releases the lock");
lckr.release();

};
{

lckr.lock();
 out("second branch got the lock");
 wait [2];
 out("second branch releases the lock");
 lckr.release();

};
};
wait [10] * cycle;
out("******After 10 cycles*********");
stop_run();

};
tcm2() @sys.any is {

lckr.lock();
 out("tcm2 got the lock");
 wait [2] * cycle;

out("tcm2 releases the lock");
lckr.release();

};
run() is also {
690 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 start tcm2();
 start tcm1(1);
 };
};

extend sys {
foo_inst: foo;

};
'>

Result

Note that tcm2 gets the lock first, then the first all of branch of tcm1 and finally the last all of branch of
tcm1.

tcm2 got the lock
tcm2 releases the lock
first branch got the lock
first branch releases the lock
second branch got the lock
second branch releases the lock
******After 10 cycles*********

Example 2

<'
struct st {

lckr: locker;
ftcm(id: uint) @sys.any is {

for i from 0 to 2 do {
lckr.lock();
out("Id ", id, " got the resource");
wait cycle;
lckr.release();

};
};
run() is also {

start ftcm(1);
start ftcm(2);

};
};
extend sys {

sti: st;
};
'>

Result

Doing setup ...
Generating the test using seed 1...
Starting the test ...
Running the test ...
Thread 1 got the resource
Thread 2 got the resource
Thread 1 got the resource
Thread 2 got the resource
Thread 1 got the resource
Thread 2 got the resource
This is an unapproved IEEE Standards Draft, subject to change.
691

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.

23.8 TCM Related Methods

The scheduler is a predefined struct containing methods that let you access active TCMs and terminate
them.

A TCM that is invoked with a start action is a thread. If a started TCM calls other TCMs, those TCMs are
considered subthreads of the started TCM thread. If a struct has more than one started TCM, each TCM runs
on a separate, parallel thread. Each thread shares a unique identifier, or thread handle, with its subthreads.
The thread handle is automatically assigned by the scheduler.

The following sections describe how to retrieve the handle for active threads:

� �get_current_handle()� on page 692
� �get_handles_by_name()� on page 693
� �get_handles_by_type()� on page 695

The following sections describe how to terminate active threads:

� �kill()� on page 696
� �terminate_branch()� on page 698
� �terminate_thread()� on page 699

23.8.1 get_current_handle()

Purpose

Obtain the handle of the current TCM

Category

Predefined method

Syntax

scheduler.get_current_handle(): thread handle

Syntax example:

out ("(started) I = ",i," in Thread " ,
scheduler.get_current_handle(),".");

Description

Returns the handle of the currently running TCM. The handle is of the predefined type named
�thread_handle�.

This method must ultimately be invoked from a TCM. You can call it from a non-TCM method, but that
method must, at some point, be called from a TCM. That is, you can call get_current_handle() from a non-
692 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
TCM, which, in turn, is called from another non-TCM, and so on, but at the top of the chain of method calls
must be a TCM.

NOTE� A runtime error is produced if get_current_handle() is called from within a regular (not
time-consuming) method, if that method is not ultimately called from a TCM.

Example

<'
struct sch {

run() is also {
start started_tcm(13);
start started_tcm(29);

};

started_tcm(i:int) @sys.any is {
out ("(started) I = ",i," in Thread " ,

scheduler.get_current_handle(),".");
called_tcm(i);
wait [1];
out ("(cont ..) I = ",i," in Thread " ,
scheduler.get_current_handle(),". (same thread handle)");

};

called_tcm(i:int) @sys.any is {
out ("(called) I = ",i," in Thread " ,
scheduler.get_current_handle(),". (same thread handle)");

};
};

extend sys {

pmi: sch;
};
'>

Result

(started) I = 13 in Thread 1.
(called) I = 13 in Thread 1. (same thread handle)
(started) I = 29 in Thread 2.
(called) I = 29 in Thread 2. (same thread handle)
(cont ..) I = 13 in Thread 1. (same thread handle)
(cont ..) I = 29 in Thread 2. (same thread handle)

See Also

� �get_handles_by_name()� on page 693
� �get_handles_by_type()� on page 695

23.8.2 get_handles_by_name()

Purpose

Get list of thread handles on a struct instance basis
This is an unapproved IEEE Standards Draft, subject to change.
693

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Predefined method

Syntax

scheduler.get_handles_by_name(struct-inst: exp, method-name: string): list of thread handle

Syntax example:

hs = scheduler.get_handles_by_name(a1,"yy");

Parameters

Description

Returns a list of handles of all started TCMs of the specified name associated with the specified struct
instance.

When the struct expression is NULL the resulting list contains handles for all the started TCMs of the given
name. When the method name is NULL, the returned list contains thread handles for all the currently run-
ning threads for the specified struct. In the case when both parameters are NULL, the list of handles for all
currently running threads is returned.

A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of
the started TCM thread. If a struct has more than one started TCM, each TCM runs on a separate, parallel
thread. Each thread shares a unique identifier, or thread handle, with its subthreads. The thread handle is
automatically assigned by the scheduler.

Example

<'
struct a {

xx() @sys.any is {
wait [1]*cycle;

};
yy() @sys.any is {

wait [1]*cycle;
};

};

extend sys {
a1:a;
a2:a;

run() is also {
var hs:list of thread_handle;
start a1.xx();
start a1.yy();
start a2.yy();
hs = scheduler.get_handles_by_name(a1,"yy");

struct-exp NULL, or an expression of type struct that specifies the owning struct instance for
the started TCMs with the specified name.

method-name NULL, or the name of a method in the specified struct, enclosed in double quotes.
694 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
print hs;
print scheduler.get_handles_by_name(NULL,NULL);

};
};
'>

Result

 hs =
0. 2
 scheduler.get_handles_by_name(NULL,NULL) =
0. 1
1. 2
2. 3

See Also

� �get_current_handle()� on page 692
� �get_handles_by_type()� on page 695

23.8.3 get_handles_by_type()

Purpose

Get list of thread handles on a struct type basis

Category

Predefined method

Syntax

scheduler.get_handles_by_type(struct-inst: exp, method-name: string): list of thread handle

Syntax example:

hs = scheduler.get_handles_by_type("a","yy");

Parameters

Description

Returns handles to all TCMs associated with the specified struct type.

When the struct expression is NULL the resulting list contains handles for all the started TCMs of the given
name. When the method name is NULL, the returned list contains thread handles for all the currently run-
ning threads for the specified struct. If both struct expression and method name are NULL, then all handles
of all currently running threads are returned.

struct-exp NULL, or an expression of type struct that specifies the owning struct type for the
top-level TCMs of the specified method.

method-name NULL, or the name of a method in the specified struct, enclosed in double quotes
This is an unapproved IEEE Standards Draft, subject to change.
695

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of
the started TCM thread. If a struct has more than one started TCM, each TCM runs on a separate, parallel
thread. Each thread shares a unique identifier, or thread handle, with its subthreads. The thread handle is
automatically assigned by the scheduler.

Example

<'
struct a {

xx() @sys.any is {
wait [1]*cycle;

};
yy() @sys.any is {

wait [1]*cycle;
};

};

extend sys {
a1:a;
a2:a;

run() is also {
var hs:list of thread_handle;
start a1.xx();
start a2.yy();
start a2.yy();
hs = scheduler.get_handles_by_type("a","yy");
print hs;
print scheduler.get_handles_by_type("a",NULL);

};
};
'>

Result

 hs =
0. 2
1. 3
 scheduler.get_handles_by_type("a",NULL) =
0. 1
1. 2
2. 3

See Also

� �get_current_handle()� on page 692
� �get_handles_by_name()� on page 693

23.8.4 kill()

Purpose

Kill a specified thread

Category

Predefined method
696 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

scheduler.kill(handle: thread handle)

Syntax example:

for each (h) in hs {
{scheduler.kill(h)};

};

Parameters

Description

Kills a started TCM (a thread) and any TCMs that it has called (its subthreads). A killed method cannot be
revived.

Notes

� Killing a method before it releases an active lock can result in a dead lock.
� A thread cannot kill itself. Use �terminate_thread()� on page 699 instead.

Example

<'
struct p_agent {

killer_tcm() @sys.any is {
wait [1]*cycle;
var hs :=

scheduler.get_handles_by_type("p_agent","send");
for each (h) in hs {

out("Killing thread ",h);
{scheduler.kill(h)};

};
};

send() @sys.any is {
wait [5]*cycle;
out ("this line is never executed. ");

};
};

extend sys {
x:p_agent;
run() is also {

start x.killer_tcm();
start x.send();
start x.send();
start x.send();

};
};
'>

handle The handle for the thread, as returned by scheduler.get_current_handle(), sched-
uler.get_handles_by_name(), or scheduler.get_handles_by_type().
This is an unapproved IEEE Standards Draft, subject to change.
697

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Result

Killing thread 2
Killing thread 3
Killing thread 4

See Also

� �terminate_branch()� on page 698
� �terminate_thread()� on page 699

23.8.5 terminate_branch()

Purpose

Terminate a specific branch in a first of action

Category

Predefined method

Syntax

scheduler.terminate_branch()

Syntax example:

scheduler.terminate_branch();

Description

This method can be used only within a first of action to terminate the branch. When a branch is terminated
using this method, the rest of the branches within the first of action remain active.

Example

The TCM �monitor()� in the example below begins several threads. Each waits for a sequence of events.
Under some conditions, some of the sequences should be halted.

<'
extend sys {

monitor() @sys.any is {
wait until rise('top.started');
first of {

{
wait [4] * cycle;
if 'top.out_of_sync' == 1 then {

out("### Went out of sync");
scheduler.terminate_branch();

};
wait until rise('top.ended');
out("Normal end");

};
{

wait until rise('top.aborted');
out("Aborted");
698 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};
// continue monitoring...
stop_run();

};

run() is also {
start monitor();

};
};
extend sys {

drive() @sys.any is {
wait [2] * cycle;
'top.started' = 1;
wait [5] * cycle;
'top.out_of_sync' = 1;

};

run() is also {
start drive();

};
};
'>

Result

Went out of sync

See Also

� �kill()� on page 696
� �terminate_thread()� on page 699

23.8.6 terminate_thread()

Purpose

Terminate the current thread

Category

Predefined method

Syntax

scheduler.terminate_thread()

Syntax example:

scheduler.terminate_thread();

Description

Terminates the current thread immediately, not at the end of the current tick. To terminate the current thread
at the end of the current tick, use quit().
This is an unapproved IEEE Standards Draft, subject to change.
699

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of
the started TCM thread. If a struct has more than one started TCM, each TCM runs on a separate, parallel
thread. Each thread shares a unique identifier, or thread handle, with its subthreads. The thread handle is
automatically assigned by the scheduler.

Example

The TCM inject() in the example below assigns the DUT signals. There are some conditions during the run
that indicate that the injection should stop.

<'
extend sys {

inject() @sys.any is {
'top.data' = 1;
wait [10] * cycle;
// continue reading/writing...
if ('top.status' == 0) then {

out("'top.status' == 0, Stop injection");
scheduler.terminate_thread();

};
// continue reading/writing...

};

run() is also {
start inject();

};
};
'>

Result

'top.status' == 0, Stop injection

See Also

� �The quit() Method of any_struct� on page 659
� �kill()� on page 696
� �terminate_branch()� on page 698

23.9 Coverage Methods

The covers struct is a predefined struct containing methods that you use for coverage and coverage grading.
With the exception of the set_external_cover() and write_cover_file() methods, all of these methods are
methods of the covers struct.

� �include_tests()� on page 701
� �set_weight()� on page 702
� �set_at_least()� on page 702
� �set_cover()� on page 703
� �get_contributing_runs()� on page 705
� �get_unique_buckets()� on page 706
� �set_external_cover()� on page 707
� �write_cover_file()� on page 708
� �get_overall_grade()� on page 709
� �get_ecov_name()� on page 710
700 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �get_test_name()� on page 711
� �get_seed()� on page 711

See Also

The following section describes another predefined method you use for coverage:

� �set_check()� on page 448

23.9.1 include_tests()

Purpose

Specify which test runs coverage information will be displayed for.

Category

Predefined method

Syntax

covers.include_tests(full-run-name: string, bool: exp)

Syntax example:

covers.include_tests("tests_A:run_A_10", TRUE);

Parameters

Description

This method allows you to specify which test runs you want to see coverage information for.

If you are reading in .ecov files to load coverage information, this method should be called only after
the .ecov files have been read.

Example

The following example shows several ways to specify test runs for display by show coverage.

<'
extend sys {

setup() is also {
covers.include_tests("tests_A:...", FALSE);
covers.include_tests("...crc_test", TRUE);
covers.include_tests("/.*crc_test.*/", TRUE);

};
};
'>

full-run-name The name of the test to include or exclude.
bool-exp Set to TRUE to include the specified test, FALSE to exclude it.
This is an unapproved IEEE Standards Draft, subject to change.
701

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
23.9.2 set_weight()

Purpose

Specify the coverage grading weight of a group or item

Category

Predefined method

Syntax

covers.set_weight(entity-name: string, value: int, bool: exp)

Syntax example:

covers.set_weight("inst.done", 4, FALSE);

Parameters

Description

Coverage grading uses weights to emphasize the affect of particular groups or items relative to others. The
weights can be specified in the coverage group or item definitions. This method sets the weights procedur-
ally. It overrides the weights set in the group or item definitions. Weights can be set explicitly, or can be mul-
tiplied by a given value.

If you are reading in .ecov files to load coverage information, this method should be called only after
the .ecov files have been read.

See Also

� �Defining Coverage Groups: cover� on page 373
� �item� on page 378
� �set_at_least()� on page 702

23.9.3 set_at_least()

Purpose

Set the minimum number of samples needed to fill a bucket

Category

Predefined method

entity-name The group or item to set the weight for. May include wild cards.
value The integer weight value to set.
bool When this is FALSE, it changes the weights of all matching groups or items to

value. When this is TRUE, the weights of all matching groups or items are multi-
plied by value.
702 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

covers.set_at_least(entity-name: string, value: int, exp: bool)

Syntax example:

covers.set_at_least("inst.done", 4, FALSE);

Parameters

Description

The minimum number of samples required to fill a bucket can be set in the coverage group or item defini-
tions. This method can be used to set the number procedurally. It overrides the numbers set in the group or
item definitions.

If the entity-name is a coverage group name, all items in the group are affected. If the entity-name matches
items within a coverage group, only those items are affected.

If you are reading in .ecov files to load coverage information, this method should be called only after
the .ecov files have been read.

See Also

� �Defining Coverage Groups: cover� on page 373
� �item� on page 378

23.9.4 set_cover()

Purpose

Turns coverage data collection and display on or off for specified items or events

Category

Predefined method

Syntax

covers.set_cover(item|event: string, bool: exp)

Syntax example:

covers.set_cover("packet.*", FALSE);

entity-name The group or item to set the at_least number for. May include wild
cards.

value The �at-least� integer value to set.
bool When this is FALSE, it sets the �at-least� number for all matching items

to value. When this is TRUE, it multiplies the �at-least� number for all
matching items by value.
This is an unapproved IEEE Standards Draft, subject to change.
703

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

By default, coverage data is collected for all defined coverage items and groups, and for all user-defined
events. This method selectively turns data collection on or off for specified items, groups, or events.

After coverage data has been collected and written by a test or set of tests, this method can be used to selec-
tively turn on or off the display of the coverage data for specified items, groups, or events.

Although this method can be used to filter samples during periods in which they are not valid, for perfor-
mance reasons, filtering should be done using when subtypes instead.

Additionally, if the test ends while coverage collection is turned off by set_cover() for one or more coverage
groups, then set_cover() must be called again to re-enable sampling before the .ecov file is written, in order
to include the previously collected samples for those groups in the .ecov file.

Example 1

The following example turns off coverage data collection for all items in all coverage groups defined in the
�inst� struct, and then turns back on the collection of data for the �len� item in the �done� group in that
struct.

<'
extend sys {
 setup() is also {
 covers.set_cover("inst.*.*", FALSE);
 covers.set_cover("inst.done.len", TRUE);
 };
};
'>

Example 2

The following example turns off coverage data collection for an event named �my_event� defined in the
�inst� struct.

item A string, enclosed in double quotes, specifying the coverage item you want to turn on or
off. This may include wild cards.

event A string, enclosed in double quotes, specifying the event you want to turn on or off. This
may include wild cards.

Enter the name of the event using the following syntax:

session.events.struct_type__event_name

where the struct type and the event name are separated by two underscores. Wild cards
may be used.

If you enter only one name, it is treated as a struct type, and the method affects all
events in that struct type.

bool Set to TRUE to turn on coverage for the item or FALSE to turn coverage off.
704 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
<'
extend sys {
 setup() is also {
 covers.set_cover("session.events.inst__my_event", FALSE);
 };
};
'>

Example 3

The following example turns off coverage data collection for all events in the struct named my_struct:.

<'
extend sys {
 setup() is also {
 covers.set_cover("my_struct", FALSE);
 };
};
'>

23.9.5 get_contributing_runs()

Purpose

Return a list of the test runs that contributed samples to a bucket

Category

Predefined method

Syntax

covers.get_contributing_runs(item-name: string, bucket-name: string): list of string

Syntax example:

bkl=covers.get_contributing_runs("inst.done.len", "[0..4]");

Parameters

Description

This method returns a list of strings that are the full run names of the test runs that placed samples in a spec-
ified bucket. For a cross item, the bucket-name may be a bucket of any level, with the bucket set names sep-
arated by slashes, for example: �ADD/REG1� or �ADD/REG1/[0xC0..0xCF]�.

Example

The following example shows several ways to list test runs that put samples in particular buckets.

item-name A string, enclosed in double quotes, specifying the coverage item
that contains bucket-name.

bucket-name A string, enclosed in double quotes, specifying the bucket for
which contributing test run names are to be listed.
This is an unapproved IEEE Standards Draft, subject to change.
705

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
<'
type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [reg0, reg1, reg2, reg3];
struct inst {

opcode: cpu_opcode;
op1: cpu_reg;
op2: byte;
event done;
cover done is {

item opcode;
item op1;
item op2;
cross opcode, op1 using name = opcode_op1;

};
};
extend sys {

pre_generate() is also {
var bl_1: list of string =

covers.get_contributing_runs("inst.done.opcode",
"ADD");

var bl_2: list of string =
covers.get_contributing_runs("inst.done.opcode_op1",

"ADD/reg2");
var bl_3: list of string =

covers.get_contributing_runs("inst.done.opcode_op1",
"SUB");

};
};
'>

23.9.6 get_unique_buckets()

Purpose

Return a list of the names of unique buckets from specific tests.

Category

Predefined method

Syntax

covers.get_unique_buckets(file-name: string): list of string

Syntax example:

print covers.get_unique_buckets("test_rx")

Parameters

file-name A string, enclosed in double quotes, specifying the coverage database files for
which you want to see unique buckets. You cannot use wild cards in the file
name.
706 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

A unique bucket is a bucket that is covered by only one test. This method reports, for each specified test, the
full names of its unique buckets, if there are any.

NOTE� You must rank the tests with the before calling covers.get_unique_buckets().

Example

The following example shows how to display a list of unique buckets that are covered by a test. The results
of the test ranking show that the test �CPU_tst2_1� has three unique buckets. Passing this test name to cov-
ers.get_unique_buckets() retrieves the names of the buckets.

Coverage Ranking Report
========================

Coverage Test-Ranking report
============================

Command: rank cover -sort_only *.*.*
Grading_formula: linear
Ranking Cost: cpu_time
At least multiplier: 1
Number of tests: 5
Maximal Grade: 0.87
Note: All test grades are given as precentage from Maximal
Grade

The Sorted Test List:

 Cum. Rel. Cum. Abs. Effic-
Num Test name Grade Grade Cost Cost Grade iency UB
--- ------------------------- ------ ------ ----- ----- ---- ------ ----
1 CPU_tst3_7 N/A N/A N/A 7 0.86 0.74 0
2 CPU_tst4_7 N/A N/A N/A 7 0.86 0.74 0
3 CPU_tst8_7 N/A N/A N/A 7 0.86 0.74 0
4 CPU_tst2_1 N/A N/A N/A 7 0.85 0.72 3
5 CPU_tst1_1 N/A N/A N/A 6 0.66 0.66 0
--- --------------------------- ------ ------ ------ ------ ------
covers.get_unique_buckets("CPU_tst2_1")
 covers.get_unique_buckets("CPU_tst2_1") =
0. "instr.start_drv_DUT.cross__opcode__carry: ANDI/1"
1. "instr.start_drv_DUT.cross__opcode__carry: XORI/1"
2. "instr.start_drv_DUT.cross__opcode__carry: NOP/1"

See Also

23.9.7 set_external_cover()

Purpose

Enable or disable the import and display of SureCov data

Category

Predefined method
This is an unapproved IEEE Standards Draft, subject to change.
707

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

set_external_cover(�surecov�, bool);

Syntax example:

covers.set_external_cover("surecov", FALSE);

Parameters

Description

By default, coverage data is collected for all defined SureCov coverage items and groups. This method dis-
ables all import of SureCov data, even if SureCov coverage groups are defined. If disabled, all additional
behavior regarding SureCov is cancelled and the SureCov groups are not displayed.

You can call set_external_cover() at any time during a run.

Example

This example shows how to turn off the import and display of SureCov data.

<'
extend sys {

setup() is also {
covers.set_external_cover("surecov", FALSE);

};
};
’>

See Also

� �cover ... using external=surecov� on page 408

23.9.8 write_cover_file()

Purpose

Write the coverage results during a test

Category

Predefined method

Syntax

write_cover_file();

Syntax example:

write_cover_file();

bool TRUE, the default, enables the import of all SureCov data. FALSE disables
the import.
708 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

This method writes the coverage results .ecov file during a test run. It can only be invoked during a test, not
before the run starts nor after it ends.

The coverage file written by this method does not contain the session.end_of_test or session.events cover-
age groups.

Example

This example writes the current coverage results to the .ecov file whenever the event named sys.cntr is emit-
ted.

<'
struct top {

event wr_cov is @sys.cntr;
on wr_cov {

write_cover_file();
};

};
'>

23.9.9 get_overall_grade()

Purpose

Return the normalized overall coverage grade

Category

Predefined method

Syntax

covers.get_overall_grade(): int;

Syntax example:

grade = covers.get_overall_grade();

Description

This method returns an integer that represents the overall coverage grade for the current coverage results.
Since e does not handle floating point types, the value is a normalized value between 1 and 100M. To obtain
a value equivalent to the overall grade, divide the returned value by 100M.

Example

<'
struct top{

event e;
a: uint(bits: 4);
b: uint(bits: 4);
cover e is {

item a;
This is an unapproved IEEE Standards Draft, subject to change.
709

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
item b;
};
run() is also {emit e;};

};

extend sys {
toplist[10]: list of top;
finalize() is also {

var grade: int;
grade = covers.get_overall_grade();
print grade;

};
};
'>

See Also

� �get_ecov_name()� on page 710
� �get_test_name()� on page 711
� �get_seed()� on page 711

23.9.10 get_ecov_name()

Purpose

Return the name of the .ecov file

Category

Predefined method

Syntax

covers.get_ecov_name(): string;

Syntax example:

ecov_file = covers.get_ecov_name();

Description

This method returns the name of the .ecov file in which the current coverage results will be stored.

Example

<'
extend sys {

finalize() is also {
var ecov_file: string;
ecov_file = covers.get_ecov_name();
print ecov_file;

};
};
'>
710 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �get_overall_grade()� on page 709
� �get_test_name()� on page 711
� �get_seed()� on page 711

23.9.11 get_test_name()

Purpose

Return the name of the current test

Category

Predefined method

Syntax

covers.get_test_name(): string;

Syntax example:

ecov_file = covers.get_test_name();

Description

This method returns the identifier of the current test run.

Example

<'
extend sys {

finalize() is also {
var test_id: string;
test_id = covers.get_test_name();
print test_id;

};
};
'>

See Also

� �get_overall_grade()� on page 709
� �get_ecov_name()� on page 710
� �get_seed()� on page 711

23.9.12 get_seed()

Purpose

Return the value of the seed for the current test

Category

Predefined method
This is an unapproved IEEE Standards Draft, subject to change.
711

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

covers.get_seed(): int

Syntax example:

seed_val= covers.get_seed();

Description

This method returns the current test seed.

Example

<'
extend sys {

finalize() is also {
var test_seed: int;
test_seed = covers.get_seed();
print test_seed;

};
};
'>

See Also

� �get_overall_grade()� on page 709
� �get_ecov_name()� on page 710
� �get_test_name()� on page 711
712 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
24 Predefined Routines Library

Predefined routines are e macros that look like methods. The distinguishing characteristics of predefined
routines are:

� They are not associated with any particular struct
� They share the same name space for user-defined routines and global methods
� They cannot be modified or extended with the is only, is also or is first constructs
� They have no debug information

The following sections describe the predefined routines:

� �Deep Copy and Compare Routines� on page 713
� �Arithmetic Routines� on page 721
� �Bitwise Routines� on page 730
�
� �String Routines� on page 736
� �Output Routines� on page 762
� �Configuration Routines� on page 766
� �OS Interface Routines� on page 785
� �On-the-Fly Garbage Collection Routine: do_otf_gc()� on page 792
� �Calling Predefined Routines: routine()� on page 793

See Also

� �Invoking Methods� on page 474
� Chapter 23, �Predefined Methods Library�
� Chapter 26, �Predefined File Routines Library�

24.1 Deep Copy and Compare Routines

The following routines perform recursive copies and comparisons of nested structs and lists:

� �deep_copy()� on page 713
� �deep_compare()� on page 716
� �deep_compare_physical()� on page 720

24.1.1 deep_copy()

Purpose

Make a recursive copy of a struct and its descendants

Category

Predefined routine

Syntax

deep_copy(struct-inst: exp): struct instance

Syntax example:
This is an unapproved IEEE Standards Draft, subject to change.
713

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var pmv: packet = deep_copy(sys.pmi);

Parameters

Description

Returns a deep, recursive copy of the struct instance. This routine descends recursively through the fields of
a struct and its descendants, copying each field by value, copying it by reference, or ignoring it, depending
on the deep_copy attribute set for that field.

The return type of deep_copy() is the same as the declared type of the struct instance.

The following table details how the copy is made, depending on the type of the field and the deep_copy
attribute (normal, reference, ignore) set for that field. For an example of how field attributes affect
deep_copy(), see �attribute field� on page 139.

struct-inst An expression that returns a struct instance.

Field Type/
Attribute Normal Reference Ignore

scalar The new field holds a
copy of the original
value.

The new field holds a
copy of the original
value.

The new field holds a
copy of the original
value.

string The new field holds a
copy of the original
value.

The new field holds a
copy of the original
value.

The new field holds a
copy of the original
value.

scalar list A new list is allo-
cated with the same
size and same ele-
ments as the original
list.

The new list field
holds a copy of the
original list pointer. *

A new list is allo-
cated with zero size.

struct A new struct instance
with the same type as
the original struct is
allocated. Each field
is copied or ignored,
depending on its
deep_copy attribute.

The new struct field
holds a pointer to the
original struct. *

A new struct instance
is allocated and it is
NULL.

list of
structs

A new list is allo-
cated with the same
number of elements
as the original list.

New struct instances
are also allocated and
each field in each
struct is copied or
ignored, depending
on its deep_copy
attribute.

The new list field
holds a copy of the
original list pointer. *

A new list is allo-
cated with zero size.
714 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Notes

� A deep copy of a scalar field (numeric, boolean, enumerated) or a string field is the same as a shal-
low copy performed by a call to copy().

� A struct or list is duplicated no more than once during a single call to deep_copy().
If there is more than one reference to a struct or list instance, and that instance is duplicated by the
call to deep_copy(), every field that referred to the original instance is updated to point to the new
instance.

� The copy() method of the struct is called by deep_copy().
The struct�s copy() method is called before its descendants are deep copied. If the default copy()
method is overwritten or extended, this new version of the method is used.

� You should apply the reference attribute to fields that store shared data and to fields that are back-
pointers (pointers to the parent struct). Shared data in this context means data shared between
objects inside the deep copy graph and objects outside the deep copy graph. A deep copy graph is
the imaginary directed graph created by traversing the structs and lists duplicated, where its nodes
are the structs or lists, and its edges are deep references to other structs or lists.

Example

<'
struct packet {
 header: header;
 data[10]: list of byte;
 protocol: [ATM, ETH, IEEE];
};
struct header {
 code: uint;
};
extend sys {
 pmi: packet;
 m1() is {
 var pmv: packet = deep_copy(sys.pmi);
 pmv.data[0] = 0xff;
 pmv.header.code = 0xaa;
 pmv.protocol = IEEE;
 print pmi.data[0], pmi.header.code, pmi.protocol;
 print pmv.data[0], pmv.header.code, pmv.protocol;
 };
};
'>

Result

This example shows that any changes in value to lists and structs contained in the copied struct instance
(pmv) are not propagated to the original struct instance (pmi) because the struct has been recursively dupli-
cated.

sys.m()
 pmi.data[0] = 0x1b
 pmi.header.code = 0x43dfc545
 pmi.protocol = ATM
 pmv.data[0] = 0xff

*If the list or struct that is pointed to is duplicated (possibly because another field with a normal attribute is also
pointing to it) the pointer in this field is updated to point to the new instance. This duplication applies only to
instances duplicated by the deep_copy() itself, and not duplications made by the extended/overridden copy()
method.
This is an unapproved IEEE Standards Draft, subject to change.
715

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 pmv.header.code = 0xaa
 pmv.protocol = IEEE

See Also

� �The copy() Method of any_struct� on page 647
� �deep_compare()� on page 716
� �deep_compare_physical()� on page 720
� �attribute field� on page 139

24.1.2 deep_compare()

Purpose

Perform a recursive comparison of two struct instances

Category

Predefined routine

Syntax

deep_compare(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Syntax example:

var diff: list of string = deep_compare(pmi[0], pmi[1], 100);

Parameters

Description

Returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, comparing each field or
ignoring it, depending on the deep_compare attribute set for that field.

The two struct instances are �deep equal� if the returned list is empty.

�Deep equal� is defined as follows:

� Two struct instances are deep equal if they are of the same type and all their fields are deep equal.
� Two scalar fields are deep equal if an equality operation applied to them is TRUE.
� Two list instances are deep equal if they are of the same size and all their items are deep equal.

Topology is taken into account. If two non-scalar instances are not in the same location in the deep compare
graphs, they are not equal. A deep compare graph is the imaginary directed graph created by traversing the
structs and lists compared, where its nodes are the structs or lists, and its edges are deep references to other
structs or lists.

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences you want reported.
716 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The following table details the differences that are reported, depending on the type of the field and the
deep_compare attribute (normal, reference, ignore) set for that field. For an example of how field
attributes affect deep_copy(), see �attribute field� on page 139.

Difference String Format

The difference string is in the following format:

Differences between <inst1-id> and <inst2-id>

<path>: <inst1-value> != <inst2-value>

Field Type/
Attribute Normal Reference Ignore

scalar Their values, if dif-
ferent, are reported.

Their values, if dif-
ferent, are reported.

The fields are not
compared.

string Their values, if dif-
ferent, are reported.

Their values, if dif-
ferent, are reported.

The fields are not
compared.

scalar list Their sizes, if differ-
ent, are reported. All
items in the smaller
list are compared to
those in the longer
list and their differ-
ences are reported.

The fields are equal if
their addresses are
the same. The items
are not compared.

The fields are not
compared.

struct If two structs are not
of the same type,
their type difference
is reported. Also, any
differences in com-
mon fields is
reported. *

If two structs are of
the same type, every
field difference is
reported.

*Two fields are considered common only if the two structs are the same type, if they are both subtypes of the
same base type, or if one is a base type of the other.

The fields are equal if
they point to the
same struct instance.
�

If the fields do not
point to the same
instance, only the
addresses are
reported as different;
the data is not com-
pared.

�If the reference points inside the deep compare graph, a limited topological equivalence check is performed, not
just an address comparison.

The fields are not
compared and no dif-
ferences for them or
their descendants are
reported.

list of
structs

Their sizes, if differ-
ent, are reported. All
structs in the smaller
list are deep com-
pared to those in the
longer list and their
differences are
reported.

The fields are equal if
their addresses are
the same and they
point to the same
struct instance. �

The fields are not
compared and no dif-
ferences for them or
their descendants are
reported.
This is an unapproved IEEE Standards Draft, subject to change.
717

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� The same two struct instances or the same two list instances are not compared more than
once during a single call to deep_compare().

Example

This example uses deep_compare() to show the differences between copying nested structs by reference
(with copy()) and copying nested structs by allocation (with deep_copy()).

<'
struct a {

x: byte;
};
struct b {

as: list of a;
keep as.size() in [2 .. 3];

};
struct c {

bs: list of b;
keep bs.size() in [2 .. 3];

print() is {
var idx: uint;
for each b (b) in bs {

idx = index;
for each a (a) in b.as {

out ("b[",idx,"] - a[",index,"] : ",
hex(bs[idx].as[index].x));

};
};

};
};

extend sys {
c1: c;
post_generate() is also {

var c2: c = new;

path A list of field names separated by periods (.) from (and not including) the struct
instances being compared to the field with the difference.

value For scalar field differences, value is the result of out(field).

For struct field type differences, type() is appended to the path and value is the result of
out(field.type()).

For list field size differences, size() is appended to the path and value is the result of
out(field.size()).

For a shallow comparison of struct fields that point outside the deep compare graph,
value is the struct address.

For a comparison of struct fields that point to different locations in the deep compare
graphs (topological difference), value is struct# appended to an index representing its
location in the deep compare graph.
718 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var c3: c = new;

out("C1:");
c1.print();

// copy by allocation

out("C2:");
c2 = deep_copy(c1);
c2.print();
print deep_compare(c1,c2,20);

// copy by reference

out("C3:");
c3 = c1.copy();
c3.print();
print deep_compare(c1,c3,20);

// demonstrate difference - change original

out("Change C1:");
c1.bs[0].as[0].x = 0;
c1.print();
print deep_compare(c1,c2,20);
print deep_compare(c1,c3,20);

};
};
'>

Result

The results show the differences between the two ways of copying. The c2 instance is copied by
deep_copy(), so when the value of x is changed in the original instance, c1, the value of x in c2 is not
changed. In contrast, the value of x in c3 is changed because c3 was copied by reference. Note that
�deep_compare() = empty� means that the two struct instances are deep equal.

C1:
b[0x0] - a[0x0] : 0x75
b[0x0] - a[0x1] : 0x8a
b[0x1] - a[0x0] : 0x0a
b[0x1] - a[0x1] : 0x2a
C2:
b[0x0] - a[0x0] : 0x75
b[0x0] - a[0x1] : 0x8a
b[0x1] - a[0x0] : 0x0a
b[0x1] - a[0x1] : 0x2a
 deep_compare(c1,c2,20) = (empty)
C3:
b[0x0] - a[0x0] : 0x75
b[0x0] - a[0x1] : 0x8a
b[0x1] - a[0x0] : 0x0a
b[0x1] - a[0x1] : 0x2a
 deep_compare(c1,c3,20) = (empty)
Change C1:
b[0x0] - a[0x0] : 0x00
b[0x0] - a[0x1] : 0x8a
b[0x1] - a[0x0] : 0x0a
This is an unapproved IEEE Standards Draft, subject to change.
719

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
b[0x1] - a[0x1] : 0x2a
 deep_compare(c1,c2,20) =
0. "Differences between c-@0 and c-@1
--"
1. "bs[0x0].as[0x0].x: 0x00 != 0x75"
 deep_compare(c1,c3,20) = (empty)

See Also

� �deep_compare_physical()� on page 720
� �deep_copy()� on page 713
� �attribute field� on page 139

24.1.3 deep_compare_physical()

Purpose

Perform a recursive comparison of the physical fields of two struct instances

Category

Predefined routine

Syntax

deep_compare_physical(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Syntax example:

var diff: list of string = deep_compare_physical(pmi[0],
pmi[1], 100);

Parameters

Description

Returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, ignoring all non-physical
fields and comparing each physical field or ignoring it, depending on the deep_compare_physical attribute
set for that field.

This routine is the same as the deep_compare() routine except that only physical fields (indicated with
the % operator prefixed to the field name) are compared.

The two struct instances are �deep equal� if the returned list is empty.

�Deep equal� is defined as follows:

� Two struct instances are deep equal if they are of the same type and all their fields are deep equal.
� Two scalar fields are deep equal if an equality operation applied to them is TRUE.

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences you want reported.
720 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� Two list instances are deep equal if they are of the same size and all their items are deep equal.

NOTE� Adding a field under a when construct causes the parent type and the when subtype to be
different, even if the field added under the when is a virtual field.

Example

<'
struct packet {
 %header: header;
 %data[10] :list of byte;
 protocol: [ATM, ETH, IEEE];
};
struct header {
 %code: uint;
};
extend sys {
 pmi[2]: list of packet;
 post_generate() is also {
 var diff: list of string = deep_compare_physical(pmi[0],

pmi[1], 100);
 if (diff.size() != 0) {
 out(diff);
 };
 };
};
'>

Result

This example shows the differences between the physical fields of the packet instances. The differences
between the protocol fields are not reported.

Differences between packet-@0 and packet-@1
--
header.code: 1138738501 != 3071222567
data[0]: 27 != 37
data[1]: 132 != 56
data[2]: 163 != 69
data[3]: 71 != 236
data[4]: 178 != 120
data[5]: 230 != 100
data[6]: 116 != 239
data[7]: 241 != 216
data[8]: 238 != 144
data[9]: 150 != 253

See Also

� �deep_compare()� on page 716
� �deep_copy()� on page 713
� �attribute field� on page 139

24.2 Arithmetic Routines

The following sections describe the predefined arithmetic routines in e:
This is an unapproved IEEE Standards Draft, subject to change.
721

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �min()� on page 722
� �max()� on page 723
� �abs()� on page 724
� �odd()� on page 724
� �even()� on page 725
� �ilog2()� on page 726
� �ilog10()� on page 727
� �ipow()� on page 728
� �isqrt()� on page 729
� �div_round_up()� on page 729

24.2.1 min()

Purpose

Get the minimum of two numeric values

Category

Pseudo method

Syntax

min(x: numeric-type, y: numeric-type): numeric-type

Syntax example:

print min((x + 5), y);

Parameters

Description

Returns the smaller of the two numeric values.

Example

<'
extend sys {

m1() is {
var x:int = 5;
var y: int = 123;
print min((x + 5), y);

};
};
'>

Result

sys.m1()
 min((x + 5), y) = 10

x A numeric expression.
y A numeric expression.
722 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �Arithmetic Routines� on page 721

24.2.2 max()

Purpose

Get the maximum of two numeric values

Category

Pseudo method

Syntax

max(x: numeric-type, y: numeric-type): numeric-type

Syntax example:

print max((x + 5), y);

Parameters

Description

Returns the larger of the two numeric values.

Example

<'
extend sys {

m1() is {
var x:int = 5;
var y: int = 123;
print max((x + 5), y);

};
};
'>

Result

sys.m1()
 max((x + 5), y) = 123

See Also

� �Arithmetic Routines� on page 721

x A numeric expression.
y A numeric expression.
This is an unapproved IEEE Standards Draft, subject to change.
723

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
24.2.3 abs()

Purpose

Get the absolute value

Category

Routine

Syntax

abs(x: numeric-type): numeric-type

Syntax example:

print abs(x);

Parameters

Description

Returns the absolute value of the expression.

Example

<'
extend sys {

m1() is {
var x: int = -5;
print abs(x);

};
};
'>

Result

sys.m1()
 abs(x) = 5

See Also

� �Arithmetic Routines� on page 721

24.2.4 odd()

Purpose

Check if an integer is odd

Category

Routine

x A numeric expression.
724 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

odd(x: int): bool

Syntax example:

print odd(x);

Parameters

Description

Returns TRUE if the integer is odd, FALSE if the integer is even.

Example

<'
extend sys {

m1() is {
var x: int = -5;
print odd(x);

};
};
'>

Result

sys.m1()
odd(x) = TRUE

See Also

� �Arithmetic Routines� on page 721

24.2.5 even()

Purpose

Check if an integer is even

Category

Routine

Syntax

even(x: int): bool

Syntax example:

print even(x);

x An integer expression.
This is an unapproved IEEE Standards Draft, subject to change.
725

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns TRUE if the integer passed to it is even, FALSE if the integer is odd.

Example

<'
extend sys {

m1() is {
var x: int = -5;
print even(x);

};
};
'>

Result

sys.m1()
even(x) = FALSE

See Also

� �Arithmetic Routines� on page 721

24.2.6 ilog2()

Purpose

Get the base-2 logarithm

Category

Routine

Syntax

ilog2(x: uint): int

Syntax example:

print ilog2(x);

Parameters

Description

Returns the integer part of the base-2 logarithm of x.

x An integer expression.

x An unsigned integer expression.
726 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example

<'
extend sys {

m1() is {
var x: int = 1034;
print ilog2(x);

};
};
'>

Result

sys.m1()
 ilog2(x) = 10

See Also

� �Arithmetic Routines� on page 721

24.2.7 ilog10()

Purpose

Get the base-10 logarithm

Category

Routine

Syntax

ilog10(x: uint): int

Syntax example:

print ilog10(x);

Parameters

Description

Returns the integer part of the base-10 logarithm of x.

Example

<'
extend sys {

m1() is {
var x: int = 1034;
print ilog10(x);

};
};
'>

x An unsigned integer expression.
This is an unapproved IEEE Standards Draft, subject to change.
727

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Result

sys.m1()
ilog10(x) = 3

See Also

� �Arithmetic Routines� on page 721

24.2.8 ipow()

Purpose

Raise to a power

Category

Routine

Syntax

ipow(x: int, y: int): int

Syntax example:

print ipow(x, y);

Parameters

Description

Raises x to the power of y and returns the integer result.

Example

<'
extend sys {

m1() is {
var x: int = 4;
var y: int = 3;
print ipow(x, y);

};
};
'>

Result

sys.m1()
 ipow(x, y) = 64

See Also

� �Arithmetic Routines� on page 721

x An integer expression.
y An integer expression.
728 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
24.2.9 isqrt()

Purpose

Get the square root

Category

Routine

Syntax

isqrt(x: uint): int

Syntax example:

print isqrt(x);

Parameters

Description

Returns the integer part of the square root of x.

Example

<'
extend sys {

m1() is {
var x: int = 67;
print isqrt(x);

};
};
'>

Result

sys.m1()
 isqrt(x) = 8

See Also

� �Arithmetic Routines� on page 721

24.2.10 div_round_up()

Purpose

Division rounded up

Category

Routine

x An unsigned integer expression.
This is an unapproved IEEE Standards Draft, subject to change.
729

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

div_round_up(x: int, y: int): int

Syntax example:

print div_round_up(x, y);

Parameters

Description

Returns the result of x / y rounded up to the next integer.

Example

<'
extend sys {

m1() is {
var x: int = 5;
var y: int = 2;
print div_round_up(x, y);

};
};
'>

Result

sys.m1()
 div_round_up(x, y) = 3

See Also

� �Arithmetic Routines� on page 721
� �/� arithmetic operator in �+ - * / %� on page 41

24.3 Bitwise Routines

24.3.1 Overview

The predefined bitwise routines perform boolean operations bit-by-bit and return a single-bit result.

24.3.2 bitwise_op()

Purpose

Perform a Verilog-style unary reduction operation

Category

Pseudo-method

x An integer expression. to use as the dividend.
y An integer expression to use as the divisor.
730 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

bitwise_op(exp: int|uint): bit

Syntax example:

print bitwise_and(b);

Parameters

Description

Performs a Verilog-style unary reduction operation on a single operand to produce a single bit result. There
is no reduction operator in e, but the bitwise_op() routines perform the same functions as reduction opera-
tors in Verilog. For example, you can use bitwise_xor() to calculate parity.

For bitwise_nand(), bitwise_nor(), and bitwise_xnor(), the result is computed by inverting the result of the
bitwise_and(), bitwise_or(), and bitwise_xor() operation, respectively.

Table 24-1 shows the predefined pseudo-methods for bitwise operations.

NOTE� These routines cannot be used to perform bitwise operations on unbounded integers.

Example 1

<'
struct nums {
 m1() is {
 var b: uint = 0xffffffff;
 print bitwise_and(b);
 print bitwise_nand(b);
 };
};

extend sys {
 pmi:nums;
};
'>

op One of and, or, xor, nand, nor, xnor.
exp A 32-bit numeric expression.

Table 24-1�Bitwise Operation Pseudo-Methods

Pseudo-Method Operation

bitwise_and() Boolean AND of all bits

bitwise_or() Boolean OR of all bits

bitwise_xor() Boolean XOR of all bits

bitwise_nand() !bitwise_and()

bitwise_nor() !bitwise_or()

bitwise_xnor() !bitwise_xor()
This is an unapproved IEEE Standards Draft, subject to change.
731

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Result

sys.pmi.m()
 bitwise_and(b) = 1
 bitwise_nand(b) = 0

Example 2

<'
struct nums {
 m1() is {
 var b: uint = 0xcccccccc;
 print bitwise_or(b);
 print bitwise_nor(b);
 };
};

extend sys {
 pmi:nums;
};
'>

Result

sys.pmi.m()
 bitwise_or(b) = 1
 bitwise_nor(b) = 0

Example 3

<'
struct nums {
 m1() is {
 var b: uint = 0x1;
 print bitwise_xor(b);
 print bitwise_xnor(b);
 };
};

extend sys {
 pmi:nums;
};
'>

Result

sys.pmi.m()
 bitwise_xor(b) = 1
 bitwise_xnor(b) = 0

See Also

� �Arithmetic Routines� on page 721

24.4 Unit-Related Predefined Routines

The predefined routines that are useful for units include:
732 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �set_config_max()� on page 733
� �get_all_units()� on page 735

24.4.1 set_config_max()

Purpose

Increase values of numeric global configuration parameters

Category

Predefined routine

Syntax

set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])

Syntax example:

set_config_max(memory, gc_threshold, 100m);
This is an unapproved IEEE Standards Draft, subject to change.
733

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Sets the numeric options of a particular category to the specified maximum values.

If you are creating a modular verification environment, it is recommended to use set_config_max() instead
of set_config() in order to avoid possible conflicts that may happen in an integrated environment. For exam-
ple, if two units are instantiated and both of them attempt to enlarge configuration value of
absolute_max_size then the recommended way to it is via set_config_max, so that no unit decrements the
value set by another one.

Example

<'
extend sys {

setup() is also {
set_config_max(memory, gc_threshold, 100m);

category Is one of the following: coverage, generation, memory, and run.
option The valid coverage options are:

� absolute_max_buckets, described in the coverage option of
�set_config()� on page 766

The valid generation options are:

� absolute_max_list_size

� max_depth

� max_structs

These options are described in the generation option of �set_config()�
on page 766.

The valid memory options are:

� gc_threshold

� gc_increment

� max_size

� absolute_max_size

These options are described in the memory option of �set_config()� on
page 766.

The valid run options are:

� tick_max, described in the run option of �set_config()� on
page 766.

value The valid values are different for each option and are described in
�set_config()� on page 766.
734 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};
'>

See Also

� �Predefined Methods of Any Unit� on page 662
� �Unit-Related Predefined Methods of Any Struct� on page 670

24.4.2 get_all_units()

Purpose

Return a list of instances of a specified unit type

Category

Routine

Syntax

get_all_units(unit-type: exp): list of unit instances

Syntax example:

print get_all_units(XYZ_channel);

Parameters

Description

This routine receives a unit type as a parameter and returns a list of instances of this unit type as well as any
unit instances contained within each instance.

Example

This example uses get_all_units() to print a list of the instances of XYZ_router. Note that the display also
shows that this instance of XYZ_router contains �channels�, which is a list of three unit instances.

<'
unit XYZ_router {
 channels: list of XYZ_channel is instance;

 keep channels.size() == 3;
 keep for each in channels {

.hdl_path() == append("chan", index);

.router == me
};

};

unit XYZ_channel {
 router:XYZ_router;

unit-type The name of a unit type. The type must be defined or an error occurs.
This is an unapproved IEEE Standards Draft, subject to change.
735

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
};

extend sys {
 router:XYZ_router is instance;

 run() is also {
print get_all_units(XYZ_router);

 };
};
'>

Result

 get_all_units(XYZ_router) =
item type channels

0. XYZ_router (3 items)

See Also

� �Predefined Methods of Any Unit� on page 662
� �Unit-Related Predefined Methods of Any Struct� on page 670

24.5 String Routines

None of the string routines in e modify the input parameters. When you pass a parameter to one of these rou-
tines, the routine makes a copy of the parameter, manipulates the copy, and returns the copy.

You can use the as_a() casting operator to convert strings to integers or bytes. See Table 3-5 on page 107.

Routines that convert expressions into a string:

� �append()� on page 737
� �appendf()� on page 739
� �quote()� on page 743
� �to_string()� on page 761

Routines that manipulate substrings:

� �str_join()� on page 748
� �str_split()� on page 756
� �str_split_all()� on page 758
� �str_sub()� on page 759

Routines that manipulate regular expressions:

� �str_match()� on page 751
� �str_replace()� on page 754
� �str_insensitive()� on page 747

Routines that change the radix of a numeric expression:

� �bin()� on page 740
� �dec()� on page 741
� �hex()� on page 742
736 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Routines that manipulate the length of an expression:

� �str_chop()� on page 744
� �str_empty()� on page 745
� �str_exactly()� on page 745
� �str_len()� on page 749
� �str_pad()� on page 753

Routines that are useful within macros:

� �quote()� on page 743
� �str_expand_dots()� on page 746

Routines that manipulate the case of characters within a string:

� �str_lower()� on page 750
� �str_upper()� on page 760
� �str_insensitive()� on page 747

See Also

� �String Matching� on page 51
� �The string Type� on page 86
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107

24.5.1 append()

Purpose

Concatenate expressions into a string

Category

Routine

Syntax

append(): string

append(item: exp, ...): string

Syntax example:

message = append(list1, " ", list2);
This is an unapproved IEEE Standards Draft, subject to change.
737

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Calls �to_string()� on page 761 to convert each expression to a string using the current radix setting for any
numeric expressions, then concatenates them and returns the result as a single string.

NOTE� If you are concatenating a very large number of strings (for example, a long list of strings)
into a single string, it is better to use str_join(), for performance reasons. If there are 10000 items in
my_list, the for loop shown below makes 10000 copies of the lengthening string, hence creating an
n**2 effect:

foo = "";
for each in l {

foo = append(foo, it);
};

In contrast, the following will create a string of the right length and do a single copy operation:

foo = str_join(l, "");

Example

extend sys {
m1() is {

var message: string;
var u1:uint = 55;
var u2:uint = 44;
message = append(u1, " ", u2);
print message;
var list1:list of bit = {0;1;0;1};
var list2:list of bit = {1;1;1;0};
message = append(list1, " ", list2);
print message;

};
};

Result

The radix setting for this example was hex.

sys.m1()
message = "0x37 0x2c"
message = "0x0 0x1 0x0 0x1 0x1 0x1 0x1 0x0"

See Also

� �String Routines� on page 736
� Table 3-5 on page 107, for information about type conversion between strings and scalars

item A legal e expression. String expressions must be enclosed in double quotes. If the expres-
sion is a struct instance, the struct ID is printed. If no items are passed to append(), it
returns an empty string.
738 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
24.5.2 appendf()

Purpose

Concatenate expressions into a string according to a given format

Category

Routine

Syntax

appendf(format: string, item: exp, ...): string

Syntax example:

message = appendf("%4d\n %4d\n %4d\n", 255, 54, 1570);

Parameters

Description

Converts each expression to a string using the current radix setting for any numeric expressions and the
specified format, then concatenates them and returns the result as a single string.

NOTE� If the number and type of masks in the format string does not match the number and type
of expressions, an error is issued.

Example

<'
extend sys {
 m1() is {

var message: string;
message = appendf("%4d\n %4d\n %4d\n", 255, 54, 1570);
out(message);

 };
};
'>

Result

The radix setting for this example was DEC.

sys.m1()
255
54

1570

format A string expression containing a standard C formatting mask for each item. See �Format
String� on page 765 for more information.

item A legal e expression. String expressions must be enclosed in double quotes. If the
expression is a struct instance, the struct ID is printed.
This is an unapproved IEEE Standards Draft, subject to change.
739

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �String Routines� on page 736
� Table 3-5 on page 107, for information about type conversion between strings and scalars

24.5.3 bin()

Purpose

Concatenate expressions into string, using binary representation for numeric types

Category

Routine

Syntax

bin(item: exp, ...): string

Syntax example:

var my_string: string = bin(pi.i, " ", list1, " ",8);

Parameters

Description

Concatenates one or more expressions into a string, using binary representation for any expressions of
numeric types, regardless of the current radix setting.

Example

<'
struct p {
 i:int;
};

extend sys {
pi:p;
m1() is {

pi = new;
pi.i = 11;
var list1:list of bit = {0;1;1;0};
var my_string: string = bin(pi.i, " ", list1, " ",8);
print my_string;

};
};
'>

Result

sys.m1()
 my_string = "0b1011 0b0 0b1 0b1 0b0 0b1000"

item A legal e expression. String expressions must be enclosed in double quotes.
If the expression is a struct instance, the struct ID is printed.
740 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �String Routines� on page 736
� Table 3-5 on page 107, for information about type conversion between strings and scalars

24.5.4 dec()

Purpose

Concatenate expressions into string, using decimal representation for numeric types

Category

Routine

Syntax

dec(item: exp, ...): string

Syntax example:

var my_string: string = dec(pi.i, " ", list1, " ",8);

Parameters

Description

Concatenates one or more expressions into a string, using decimal representation for any expressions of
numeric types, regardless of the current radix setting.

Example

<'
struct p {
 i:int;
};

extend sys {
pi:p;
m1() is {

pi = new;
pi.i = 11;
var list1:list of bit = {0;1;1;0};
var my_string: string = dec(pi.i, " ", list1, " ",8);
print my_string;

};
};
'>

Result

sys.m1()
 my_string = "11 0 1 1 0 8"

item A legal e expression. String expressions must be enclosed in double quotes. If the expres-
sion is a struct instance, the struct ID is printed.
This is an unapproved IEEE Standards Draft, subject to change.
741

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �String Routines� on page 736
� Table 3-5 on page 107, for information about type conversion between strings and scalars

24.5.5 hex()

Purpose

Concatenate expressions into string, using hexadecimal representation for numeric types

Category

Routine

Syntax

hex(item: exp, ...): string

Syntax example:

var my_string: string = hex(pi.i, " ", list1, " ",8);

Parameters

Description

Concatenates one or more expressions into a string, using hexadecimal representation for any expressions of
numeric types, regardless of the current radix setting.

Example

<'
struct p {
 i: int;
};

extend sys {
pi: p;
m1() is {

pi = new;
pi.i = 11;
var list1:list of bit = {0;1;1;0};
var my_string: string = hex(pi.i, " ", list1, " ",8);
print my_string;

};
};
'>

Result

sys.m1()
 my_string = "0xb 0x0 0x1 0x1 0x0 0x8"

item A list of one or more legal e expressions. String expressions must be enclosed in double
quotes. If the expression is a struct instance, the struct ID is printed.
742 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �String Routines� on page 736
� Table 3-5 on page 107, for information about type conversion between strings and scalars

24.5.6 quote()

Purpose

Enclose a string in double quotes

Category

Routine

Syntax

quote(text: string): string

Syntax example:

out(quote(message));

Parameters

Description

Returns a copy of the text, enclosed in double quotes (" "), with any internal quote or backslash preceded by
a backslash (\).

This routine is useful when creating commands with define.

Example

<'
extend sys {

m1() is {
var message: string = "Error occurred in \"D\" block...";
out(message);
out(quote(message));

};
};
'>

Result

sys.m1()
 Error occurred in "D" block...
 "Error occurred in \"D\" block..."

See Also

� �String Routines� on page 736

text An expression of type string.
This is an unapproved IEEE Standards Draft, subject to change.
743

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for
information about type conversion between strings and scalars

24.5.7 str_chop()

Purpose

Chop the tail of a string

Category

Routine

Syntax

str_chop(str: string, length: int): string

Syntax example:

var test_dir: string = str_chop(tmp_dir, 13);

Parameters

Description

Returns str (if its length is <= length), or a copy of the first length chars of str.

Removes characters from the end of a string, returning a string of the desired length. If the original string is
already less than or equal to the desired length, this routine returns a copy of the original string.

Example

<'
extend sys {

m1() is {
 var tmp_dir: string = "/rtests/test1/tmp";
 var test_dir: string = str_chop(tmp_dir, 13);
 print test_dir;

};
};
'>

Result

sys.m1()
 test_dir = "/rtests/test1"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

str An expression of type string.
length An integer representing the desired length.
744 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
24.5.8 str_empty()

Purpose

Check if a string is empty

Category

Routine

Syntax

str_empty(str: string): bool

Syntax example:

print str_empty(s1);

Parameters

Description

Returns TRUE if the string is uninitialized or empty.

Example

<'
extend sys{

m1() is {
var s1: string;
var s2: string = "";
print str_empty(s1);
print str_empty(s2);

};
};
'>

Result

sys.m1()
str_empty(s1) = TRUE
str_empty(s2) = TRUE

See Also

� �String Routines� on page 736

24.5.9 str_exactly()

Purpose

Get a string with exact length

str An expression of type string.
This is an unapproved IEEE Standards Draft, subject to change.
745

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Routine

Syntax

str_exactly(str: string, length: int): string

Syntax example:

var long: string = str_exactly("123", 6);

Parameters

Description

Returns a copy of the original string, whose length is the desired length, by adding blanks to the right or by
truncating the expression from the right as necessary. If non-blank characters are truncated, the * character
appears as the last character in the string returned.

Example

<'
extend sys {
 m1() is {
 var short: string = str_exactly("123000",3);
 print short;
 var long: string = str_exactly("123", 6);
 print long;
 };
};
'>

Result

sys.m1()
short = "12*"
long = "123 "

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.10 str_expand_dots()

Purpose

Expand strings shortened by the parser

str An expression of type string.
length An integer representing the desired length.
746 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Routine

Syntax

str_expand_dots(str: string): string

Syntax example:

out("After expand: ",str_expand_dots(<1>));

Parameters

Description

Returns a copy of the original string, expanding any dot place holders into the actual code they represent.

This routine is useful only in context of define as [computed] statements. When preprocessing an e file, any
sequence of characters between matching brackets or quotes (such as (), [], {}, or " ") is conveted to com-
pressed code, with dots as place holders. If you want to retrieve the original string, not just the compressed
code, you can use this routine.

Example

To retrieve the original string passed to my_macro, the str_expand_dots() routine is called.

<'
define <my_macro'command> "my_macro (\

\"<string>\")" as computed {
out("Before expand: ", <1>);
out("After expand: ",str_expand_dots(<1>));
result = "{}"

};
'>

Result

my_macro "hello world"
 Before expand: "10"
 After expand: "hello world"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.11 str_insensitive()

Purpose

Get a case-insensitive AWK-style regular-expression

str An expression of type string.
This is an unapproved IEEE Standards Draft, subject to change.
747

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Routine

Syntax

str_insensitive(regular_exp: string): string

Syntax example:

var insensitive: string = str_insensitive("/hello.*/");

Parameters

Description

Returns an AWK-style regular expression string which is the case-insensitive version of the original regular
expression.

Example

<'
extend sys {
 m1() is {
 var insensitive: string = str_insensitive("/hello.*/");
 print insensitive;
 };
};
'>

Result

sys.m1()
 insensitive = "/[Hh][Ee][Ll][Ll][Oo].*/"

See Also

� �AWK-Style String Matching� on page 52
� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.12 str_join()

Purpose

Concatenate a list of strings

Category

Routine

regular-exp An AWK-style regular expression.
748 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

str_join(list: list of string, separator: string): string

Syntax example:

var s := str_join(slist," - ");

Parameters

Description

Returns a single string which is the concatenation of the strings in the list of strings, separated by the separa-
tor.

Example

<'
extend sys {
 m1() is {
 var slist: list of string = {"first";"second";"third"};
 var s := str_join(slist," - ");
 print s;
 };
};
'>

Result

sys.m1()
 s = "first - second - third"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.13 str_len()

Purpose

Get string length

Category

Routine

Syntax

str_len(str: string): int

list A list of type string.
separator The string that will be used to separate the list elements.
This is an unapproved IEEE Standards Draft, subject to change.
749

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax example:

var length: int = str_len("hello");

Parameters

Description

Returns the number of characters in the original string, not counting the terminating NULL character \0.

Example

<'
extend sys {
 m1() is {
 var length: int = str_len("hello");
 print length;
 };
};
'>

Result

sys.m1()
 length = 5

See Also

� �String Routines� on page 736

24.5.14 str_lower()

Purpose

Convert string to lowercase

Category

Routine

Syntax

str_lower(str: string): string

Syntax example:

var lower: string = str_lower("UPPER");

str An expression of type string.
750 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Converts all upper case characters in the original string to lower case and returns the string.

Example

<'
extend sys {
 m1() is {
 var lower: string = str_lower("UPPER");
 print lower;
 };
};
'>

Result

sys.m1()
 lower = "upper"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.15 str_match()

Purpose

Match strings

Category

Routine

Syntax

str_match(str: string, regular-exp: string): bool

Syntax example:

print str_match("ace", "/c(e)?$/");

str An expression of type string.
This is an unapproved IEEE Standards Draft, subject to change.
751

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns TRUE if the strings match, or FALSE if the strings do not match. The routine str_match() is fully
equivalent to the operator ~.

Example 1

After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthe-
sized pieces of the match. $0 stores the entire matched piece of the string.

This example uses AWK-style regular expressions. See �AWK-Style String Matching� on page 52 for more
information on these types of expressions.

<'
extend sys {

m1() is {
print str_match("a", "/^(a)?(b)?$/"); -- matches "ab", "a", or "b"
print $0, $1, $2;
print str_match("hello","/^\\d*$/"); -- matches string with 0

-- or more digits
print $0, $1, $2;
print str_match("ab", "/^(a)?(b)?$/");
print $0, $1, $2;
print str_match("ace", "/c(e)?$/"); -- matches string ending

-- in "c" or "ce"
print $0, $1;

};
};
'>

Result

sys.m1()
str_match("a", "/^(a)?(b)?$/") = TRUE
 $0 = "a" -- stores the entire matched portion of the string
 $1 = "a" -- stores the first match
 $2 = ""
str_match("hello","/^\\d*$/") = FALSE
 $0 = "a" -- the values from the previous call to str_match() persist
 $1 = "a"
 $2 = ""
str_match("ab", "/^(a)?(b)?$/") = TRUE
 $0 = "ab"
 $1 = "a"
 $2 = "b"
str_match("ace", "/c(e)?$/") = TRUE
 $0 = "ce"
 $1 = "e"

str An expression of type string.
regular-exp An AWK-style or native e regular expression. If not surrounded by slashes, the

expression is treated as a native style expression. See �String Matching� on
page 51 for more information on these types of expressions.
752 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Example 2

This example uses native e regular expressions. See �Native e Elite String Matching� on page 51 for more
information on these types of expressions. The * character matches any sequence of non-white characters,
while the "..." string matches any sequence of characters, including white space.

<'
extend sys {
 m1() is {
 var s:string = "a bc";
 print str_match(s, "a*");
 print $0, $1, $2;
 print str_match(s, "* *");
 print $0, $1, $2;
 print str_match(s, "a...");
 print $0, $1, $2;
 };
};
'>

Result

sys.m1()
str_match(s, "a*") = FALSE
 $0 = ""
 $1 = ""
 $2 = ""
str_match(s, "* *") = TRUE
 $0 = "a bc"
 $1 = "a"
 $2 = "bc"
str_match(s, "a...") = TRUE
 $0 = "a bc"
 $1 = " bc"
 $2 = ""

See Also

� �String Routines� on page 736
� �~ !~� on page 47

24.5.16 str_pad()

Purpose

Pad string with blanks

Category

Routine

Syntax

str_pad(str: string, length: int): string

Syntax example:
This is an unapproved IEEE Standards Draft, subject to change.
753

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var s: string = str_pad("hello world",14);

Parameters

Description

Returns a copy of the original string padded with blanks on the right, up to desired length. If the length of the
original string is greater than or equal to the desired length, then the original string is returned (not a copy)
with no padding.

Example

<'
extend sys {
 m1() is {
 var s: string = str_pad("hello world",14);
 print s;
 };
};
'>

Result

sys.m1()
s = "hello world "

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.17 str_replace()

Purpose

Replace a substring in a string with another string

Category

Routine

Syntax

str_replace(str: string, regular-exp: string, replacement: string): string

Syntax example:

var s: string = str_replace("crc32", "/(.*32)/", "32_flip");

str An expression of type string.
length An integer representing the desired length, no greater than 4000.
754 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

A new copy of the original string is created, and then all the matches of the regular expression are replaced
by the replacement string. If no match is found, a copy of the source string is returned.

To incorporate the matched substrings in the replacement string, use back-slash escaped numbers \1, \2, ...

In native e regular expressions, the portion of the original string that matches the * or the ... characters is
replaced by the replacement string.

In AWK-style regular expressions, you can mark the portions of the regular expressions that you want to
replace with parentheses. For example, the following regular expression marks all the characters after �on�,
up to and including �th� to be replaced.

"/on(.*th)/"

Example 1

This example uses AWK-style string matching.

<'
extend sys {

m1() is {
var new_str : string = str_replace("testing one two \

three", "/on(.*th)/" , "f");
print new_str;

};
};
'>

Result

sys.m1()
new_str = "testing free"

Example 2

Another AWK-style example, using \1, \2:

<'
extend sys {
 m1() is {

var new_str : string = str_replace("A saw B",
"/(.*) saw (.*)/" , "\2 was seen by \1");

print new_str;
 };
};

str An expression of type string.
regular-exp An AWK-style or native e regular expression. If not surrounded by slashes, the

expression is treated as a native style expression. See �String Matching� on
page 51 for more information on these types of expressions.

replacement The string that you want to replace all occurrences of the regular expression.
This is an unapproved IEEE Standards Draft, subject to change.
755

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
'>

Result

sys.m1()
new_str = "B was seen by A"

Example 3

This example uses a e -style regular expression.

<'
extend sys {
 m1() is {

var new_str: string=str_replace("abc z", "a* " , "xy");
print new_str;

 };
};
'>

Result

sys.m1()
new_str = "xyz"

Example 4

This example uses a e -style regular expression with \1.

<'
extend sys {
 m1() is {
var new_str: string=str_replace("abc ghi", "* " , "\1 def ");
 print new_str;
 };
};
'>

Result

sys.m1()
new_str = "abc def ghi"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.18 str_split()

Purpose

Split a string to substrings
756 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Routine

Syntax

str_split(str: string, regular-exp: string): list of string

Syntax example:

var s: list of string = str_split("first-second-third", "-");

Parameters

Description

Splits the original string on each occurrence of the regular expression, and returns a list of strings. If the reg-
ular expression occurs at the beginning or the end of the original string, an empty string is returned.

If the regular expression is an empty string, it has the effect of removing all blanks in the original string.

Example 1

<'
extend sys {
 m1() is {
 var s: list of string=str_split("one-two-three", "-");
 print s;
 };
};
'>

Result

sys.m1()
s =
0. "one"
1. "two"
2. "three"

Example 2

<'
extend sys {
 m1() is {

var s: list of string = str_split(" A B C", "/ +/");
print s;

 };
};
'>

str An expression of type string.
regular-exp An AWK-style or native e -style regular expression that specifies

where to split the string. See �String Matching� on page 51 for
more information on these types of expressions.
This is an unapproved IEEE Standards Draft, subject to change.
757

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Result

sys.m1()
s =
0. ""
1. "A"
2. "B"
3. "C"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.19 str_split_all()

Purpose

Split a string to substrings, including separators

Category

Routine

Syntax

str_split_all(str: string, regular-exp: string): list of string

Syntax example:

var s: list of string = str_split_all(" A B C", "/ +/");

Parameters

Description

Splits the original string on each occurrence of the regular expression, and returns a list of strings. If the reg-
ular expression occurs at the beginning or the end of the original string, an empty string is returned.

This routine is similar to str_split(), except that it includes the separators in the resulting list of strings.

Example

<'
extend sys {
 m1() is {

var s: list of string = str_split_all(" A B C", "/ +/");
 print s;
 };
};

str An expression of type string.
regular-exp An AWK-style or native e -style regular expression that specifies where to split

the string. See �String Matching� on page 51 for more information on these types
of expressions.
758 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
'>

Result

sys.m1()
s =
0. ""
1. " "
2. "A"
3. " "
4. "B"
5. " "
6. "C"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.20 str_sub()

Purpose

Extract a substring from a string

Category

Routine

Syntax

str_sub(str: string, from: int, length: int): string

Syntax example:

var dir: string = str_sub("/rtests/test32/tmp", 8, 6);

Parameters

Description

Returns a substring of the specified length from the original string, starting from the specified index posi-
tion.

Example

<'
extend sys {

m1() is {

str An expression of type string.
from The index position from which to start extracting. The first character in the string is at

index 0.
length An integer representing the number of characters to extract.
This is an unapproved IEEE Standards Draft, subject to change.
759

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var dir: string = str_sub("/rtests/test32/tmp", 8, 6);
print dir;

};
};
'>

Result

sys.m1()
dir = "test32"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.21 str_upper()

Purpose

Convert a string to uppercase

Category

Routine

Syntax

str_upper(str: string): string

Syntax example:

var upper: string = str_upper("lower");

Parameters

Description

Returns a copy of the original string, converting all lower case characters to upper case characters.

Example

<'
extend sys {
 m1() is {
 var upper: string = str_upper("lower");
 print upper;
 };
};
'>

Result

sys.m1()

str An expression of type string.
760 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
upper = "LOWER"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.5.22 to_string()

Purpose

Convert any expression to a string

Category

Method

Syntax

exp.to_string(): string

Syntax example:

print pkts[0].to_string();

Parameters

Description

This method can be used to convert any type to a string.

If the expression is a struct expression, the to_string() method returns a unique identification string for each
struct instance. You can use this ID to refer to the struct. By default, the identification string is of the form
type-@ num, where num is a unique struct number over all instances of all structs in the current run.

If the expression is a list of strings, the to_string() method is called for each element in the list. The string
returned contains all the elements with a newline between each element.

If the expression is a list of any type except string, the to_string() method returns a string containing all the
elements with a space between each element.

If the expression is a numeric type, the expression is converted using the current radix with the radix prefix.

If the expression is a string, the to_string() method returns the string.

If the expression is an enumerated or a boolean type, the to_string() method returns the value.

Example

<'
struct pkt {
 protocol: [ethernet, atm, other];

exp A legal e expression.
This is an unapproved IEEE Standards Draft, subject to change.
761

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 legal : bool;
 data[2]: list of byte;
};

extend sys {
 pkts[5]: list of pkt;
 m1() is {
 var slist: list of string = {"strA";"strB";"strC"};
 print pkts[0].to_string();
 print pkts[0].data.to_string();
 print pkts[0].protocol.to_string();
 print pkts[0].legal.to_string();
 print slist.to_string();
 };
};
'>

Result

sys.m1()
pkts[0].to_string() = "pkt-@0"

 pkts[0].data.to_string() = "52 218"
 pkts[0].protocol.to_string() = "atm"
 pkts[0].legal.to_string() = "TRUE"
 slist.to_string() = "strA
strB
strC"

See Also

� �String Routines� on page 736
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalars

24.6 Output Routines

The predefined output routines print formatted and unformatted information to the screen and to open log
files. The following sections describe the output routines:

� �out()� on page 762
� �outf()� on page 764

24.6.1 out()

Purpose

Print expressions to output, with a new line at the end

Category

Routine

Syntax

out()
762 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
out(item: exp, ...)

Syntax example:

out("pkts[1].data is ", pkts[1].data);

Parameters

Description

Calls to_string() to convert each expression to a string and prints them to the screen (and to the log file if it
is open), followed by a new line.

Example

This first example shows that if the expression is a struct, out() prints the ID of the struct. If the expression
is a list, out() prints each element of the list from left to right, starting with the element with the lowest
index. If no expression is passed, out() prints a new line.

struct pkt {
 protocol: [ethernet, atm, other];
 legal : bool;
 data[2]: list of byte;

};

extend sys {
 pkts[5]: list of pkt;
 m1() is {
 out();
 out("ID of first packet is ", pkts[0]);
 out("pkts[1].data is ", pkts[1].data);
 out("pkts[1].data[0] is ", pkts[1].data[0]);
 out();
 };
};

Result

sys.m1()

ID of first packet is pkt-@0
pkts[1].data is 142 170
pkts[1].data[0] is 142

See Also

� �outf()� on page 764

item A legal e expression. String expressions must be enclosed in double quotes.
If the expression is a struct instance, the struct ID is printed. If no item is
passed to out(), an empty string is printed, followed by a new line.
This is an unapproved IEEE Standards Draft, subject to change.
763

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
24.6.2 outf()

Purpose

Print formatted expressions to output, with no new line at the end

Category

Routine

Syntax

outf(format: string, item: exp, ...)

Syntax example:

outf("%s %#08x","pkts[1].data[0] is ", pkts[1].data[0]);

Parameters

Description

Converts each expression to a string using the corresponding format string and then prints them to the screen
(and to the log file if it is open).

To add a new line, add the \n characters to the format string.

Notes

� If the number and type of masks in the format string does not match the number and type of expres-
sions, an error is issued.

� The e program adds a new line by default after 80 characters. To disable this, set the line size to
UNDEF or to a very large number with the set_config() routine.

set_config(print, line_size, UNDEF);

Example 1

This example has similar results to the in the description of �out()� on page 762. Note that outf() allows you
to add the new lines where needed. Printing of lists is not supported with outf().

extend sys {
 pkts[5]: list of pkt;
 m1() is {
 outf("%s %s\n","pkts[0] ID is ", pkts[0]);
 outf("%s %#x","pkts[1].data[0] is ", pkts[1].data[0]);
 };
};

format A string containing a standard C formatting mask for each item. See �Format
String� on page 765 for more information.

item A legal e expression. String expressions must be enclosed in double quotes. If the
expression is a struct instance, the struct ID is printed. If the expression is a list,
an error is issued.
764 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

sys.m1()
pkts[0] ID is pkt-@0
pkts[1].data[0] is 0x8e

Example 2

This example shows the control over formatting of strings that outf() allows. The fields have been enclosed
in double �:� characters so that you can easily see how wide the field is.

<'
extend sys {
 m1() is {
 outf(":%s:\n", "hello world");
 outf(":%15s:\n", "hello world");
 outf(":%-15s:\n", "hello world");
 outf(":%.8s:\n", "hello world");
 outf(":%08d:\n", 12);
 };
};
'>

Result

sys.m1()
:hello world:
: hello world:
:hello world :
:hello wo:
:00000012:

See Also

� �out()� on page 762

24.6.3 Format String

The format string for the outf() and for the appendf() routine uses the following syntax:

"%[0|-][#][min_width][.[max_chars]](s|d|x|b|o|u)"

where:

0 Pads with 0 instead of blanks. Padding is only done when right alignment is used, on
the left end of the expression.

- Aligns left. The default is to align right.
Adds 0x before the number. Can be used only with the x (hexadecimal) format speci-

fier. Examples: %#x, %#010x
min_width A number that specifies the minimum number of characters. This number determines

the minimum width of the field. If there are not enough characters in the expression to
fill the field, the expression is padded to make it this many characters wide. If there are
more characters in the expression than this number (and if max_chars is set large
enough), this number is ignored and enough space is used to accommodate the entire
expression.
This is an unapproved IEEE Standards Draft, subject to change.
765

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
24.7 Configuration Routines

The configuration routines set options that allow you to control printing, memory usage, runtime character-
istics, coverage, generation, and debug from within the e code.

� �set_config()� on page 766
� �get_config()� on page 781
� �write_config()� on page 782
� �read_config()� on page 784

24.7.1 set_config()

Purpose

Set configuration options

Category

Routine

max_chars A number that specifies the maximum number of characters to use from the expres-
sion. Characters in excess of this number are truncated. If this number is larger than
min_width, then the min_width number is ignored.

In the following example, min_width is 7 and max_chars is 5, so the outf() method
prints five characters from �abcdefghi� in a field seven characters wide, padding the
two unused spaces with blanks:

outf("%7.5s\n", "abcdefghi")
abcde

In the following example, min_width is 8 and max_chars is 3, so the outf() method
prints three characters from �abcdefghi� in a field eight characters wide, padding the
five unused spaces with zeros, since the 0 padding option is present immediately after
the %:

outf("%08.3s\n", "abcdefghi")
00000abc

s Converts the expression to a string. The routine �to_string()� on page 761 is used to
convert a non-string expression to a string.

d Prints a numeric expression in decimal format.
x Prints a numeric expression in hex format. With the optional # character, adds 0x

before the number.
b Prints a numeric expression in binary format.
o Prints a numeric expression in octal format.
u Prints integers (int and uint) in uint format.
766 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

set_config(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...]) [[with]
{action; ...}]

Syntax example:

set_config(print, radix, bin);

Parameters
category Is one of the following: cover[age], data[browser], debug[ger], gen[eration],

gui, mem[ory], misc, print, run, and wave.
option The valid options are different for each category. The options for each category are

listed in the following tables:

� Coverage Configuration Options: Table 24-2, �Coverage Configuration
Options�, on page 768

� Generation Configuration Options: Table 24-2, �Coverage Configuration
Options�, on page 768

� Memory Configuration Options: Table 24-4, �Memory Configuration
Options�, on page 775

� Run Configuration Options: Table 24-5, �Run Configuration Options�, on
page 778

value The valid values are different for each option and are described in the tables listed
above.
This is an unapproved IEEE Standards Draft, subject to change.
767

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Table 24-2�Coverage Configuration Options
Option Description

at_least_multiplier, n An integer that is multiplied by the at-least specification for each
coverage bucket to determine the smallest number of samples are
not considered a hole. The default of this number is 1. If several
tests were run you might want to increase this number. The range is
0 to MAX_INT.

grading_formula, type Selects the type of grading formula used to calculate bucket grades,
either linear (the default) or root_mean_square.

mode, value Legal values are default, off, on, on_interactive. The default is on
if coverage groups exist in the e code. If no coverage groups exist,
the default is off.

default
If coverage groups exist in the e code, the mode switches to on just
before simulation (in the setup phase). If no coverage groups exist,
the mode switches to off.

off
No coverage collection is done.

on
Collects coverage summary only. Using this mode, post run cross
coverage is disabled. This is the default mode. It can be overridden
by the no_collect option of each cover group.

on_interactive
Coverage information is fully collected. It can be overridden by the
no_collect option of each cover group.

verbose_interface, TRUE |
FALSE

Turns on verbose mode, in which a prompt is issued to confirm the
effects of coverage actions and methods. The affected methods are:

� covers.set_cover()

� covers.set_weight()

� covers.set_get_contributing_runs()

� covers.include_tests()

� covers.set_at_least()
dir,string The directory in which to save coverage files.
file_name,string The file in which to store coverage data at the end of the test. The

default is run_name (see above). If no extension is given with the
string, the .ecov extension is added automatically.

test_name,string With run_name and tag_name, an identifier for the coverage data
for a particular test run.

The default is the name of the top module (the e module loaded
last).
768 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
run_name, string With test_name and tag_name, an identifier for the coverage data
for a particular test run.

The default is test_name_seed.
tag_name, string With test_name and run_name, an identifier for the coverage data

for a particular test run.

The initial default is dir (see -dir option, below).
max_int_buckets, n An integer that applies to integer items such as int or byte, with no

explicit ranges. If the maximum number of possible values is less
than or equal to n, a bucket is created for every possible value. If,
however, the number of possible values is greater than n, a bucket
is created only for each new sampled value. The result is that no
buckets are defined for values which were never sampled. The
default value is 16. The range is 0 to MAX_INT.

absolute_max_buckets, n An integer that specifies the maximum number of buckets that can
be created for a range specified using the range cover item option.

This limit prevents problems due to excessive memory usage when
there are too many buckets to display. For example, if a cover item
definition includes a range specification such as range([1..64K],
��, 1), then 64K buckets are created, which can cause a memory
explosion when coverage is displayed. Setting this option to a num-
ber smaller than 64K causes an error message for this case. If you
really intend to display 64K buckets, you can set this option to 64K.

The default is 4096. The range is MIN_INT to 0.
max_gui_buckets, n An integer that specifies the maximum number of buckets that will

be shown for any coverage item.

The Coverage GUI can display up to about 50,000 buckets. Since
that is a very large number of buckets to browse interactively, and
since exceeding that number of buckets might cause the Coverage
GUI to crash, this option allows you to limit the number of buckets
shown in the GUI.

For any coverage item whose number of buckets exceeds this value,
the item�s buckets are not shown in the Coverage GUI. However,
the item name and its grade are shown.

The range is 0 to 200,000. The default is 10,000.
This is an unapproved IEEE Standards Draft, subject to change.
769

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
show_mode, value Determines whether holes are shown. Possible value are
holes_only, full, and both. The default is both.

holes_only
Shows only buckets whose number of samples is less than the at-
least number for this bucket multiplied by the at_least_multiplier
factor.

full
Shows all buckets with a grade of 1. Invalid buckets are not
reported.

both
Shows all full buckets and buckets with holes. Invalid buckets are
not reported

sorted, bool If TRUE displayed buckets are sorted by decreasing samples count.
The default value is FALSE.

show_file_names, bool If TRUE (the default), then all coverage file names are displayed as
the coverage files are read in.

If a coverage file contains data from more than one test, the number
of test runs is displayed with the file name.

show_sub_holes A cross coverage item might have empty subtrees if any of the
combinations of cross items consists only of empty buckets. When
this option is TRUE, all of the item values for empty subtrees are
displayed even though they have only empty buckets.

When this option is FALSE (the default), the item value which has
only empty buckets is displayed as a dash (-).

show_instances_only Determines what information is shown for per-instance coverage.

If this option is TRUE, for cover groups that have per_instance
items, coverage data is only shown for the instances. The grading
does not include data for the original item.

If this option is FALSE, coverage data is shown for the original
item and for all instances.

The default is FALSE.
show_partial_grade Enables displaying the fully calculated grade for part of the cover-

age database. When this option is set to TRUE, if you use wild
cards for coverage groups or item when you view the coverage, you
see the total grades for the particular items and groups that match
the wild cards.
770 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
surecov_config Sets filtering options for SureSight. The options are:

� --filter_reset � Filters out FSM reset transitions in coverage
reports.

� --filter_file = filter-file-name � Applies the specified filter
file to the coverage database. The specified filter file must
be an existing file.

You can enter either option alone or both of them, in either order.

NOTE� The --filter_reset and --filter_file options are
available in SureCov version 3.1 or later.

ranking_cost, option Use this option to specify a metric for the cost of coverage. The
metric option can be one of the following:

� constant_cost � Test ranking is based on the coverage
database grade only, disregarding the cost in terms of time.

� system_cpu_time � Test ranking is based on the coverage
database grade divided by the system CPU time consumed
by the coverage run. The system CPU time is stored in the
predefined session.end_of_test.system_time field.

� user_cpu_time � Test ranking is based on the coverage
database grade divided by the user CPU time consumed by
the coverage run. The user CPU time is stored in the
predefined session.end_of_test.user_time field.

� cpu_time � Test ranking is based on the coverage database
grade divided by the sum of the system CPU time and the
user CPU time (see above).

� test_time � Test ranking is based on the coverage database
grade divided by the test time consumed by the run (the
value of sys.time at the end of the run). The test time is
stored in the predefined session.end_of_test.test_time
field.

ranking_precision, value Use this option to specify the number of digits after the floating
point that are to be used for test ranking results. The value can be
from 0 to 4, and has a default of 2.

This option affects only the test ranking output display, and not the
actual computation of the results.
This is an unapproved IEEE Standards Draft, subject to change.
771

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Table 24-3�Generation Configuration Options
Option Description

seed, n | random The initial seed used for every generation in the run. random speci-
fies a new initial seed that is based on the time of day, the user id,
and so on. The range for n is MIN_INT to MAX_INT. The default is
1.

default_max_list_size, n An integer value that specifies the maximum number of items in a
generated list. The default value is 50. You can override the default
max list size with a hard value constraint, or cancel it with a
reset_soft() constraint. The range is 0 to MAX_INT.

absolute_max_list_size, n This is a watchdog field, which simply helps you get a clear error
message rather than undesirable results. If while generating a list, its
range extends to absolute_max_list_size, then an error message
will result: this means that the size of this list has not been con-
strained properly (via either hard or soft constraints).

The default is 524282. The range is 0 to MAX_INT.
max_depth, n This is another watchdog field. It guards against an infinite genera-

tion loop, which usually results from not constraining a back-pointer
to point back at the parent struct. The default value is 30. The range
is 0 to MAX_INT.

max_structs, n This is another watchdog field. If the total number of structs gener-
ated for any particular field during a single test (both pre-generation
and on the fly) exceeds this number, an error message is issued.
Often you will get the max_depth message first, but in some cases
(e.g.very long lists of struct) you will get this error message first.
The default is 10,000. The range is 0 to MAX_INT.

collect_gen, bool Starts or stops tracing of generation data. The default is FALSE.
collect_all, bool This option has no effect when the collect_gen option is FALSE.

When this option is TRUE, all generation executions are traced.
When it is FALSE, only the last unnested generation execution is
traced. The default is FALSE.

reorder_fields, bool By default this is TRUE and the following algorithm is used to
determine the order in which it generates the fields within a struct:

� By default, use the order in which the fields are declared.

� However, if a gen before constraint requests a different
order, obey it.

� Finally, if the constraints themselves force a different order,
this takes highest precedence. For instance, a constraint such
as the following always causes y to be generated before x:

keep x == my_method(y);

Setting reorder_fields to FALSE causes the third rule above to be
ignored, and generation to always be done by field order and gen
before order. Use this flag to help debugging.
772 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
check_unsatisfied_cons If TRUE (the default), at the end of generation for each struct,
checks that the constraints defined in this struct are satisfied. If
FALSE, some constraints may be ignored by the generator without
warning.

long_max_width, n Determines the maximum size (in bits) of a long integer that is used
with bit-constraints. By default n is 128.

You should increase the maximum size of long integers if you have
bit slice constraints on integers that are longer than 128 bits and you
get a generation contradiction. For example, the following constraint
causes a contradiction if the maximum size is not increased:

<'
extend sys {

i: int (bits: 256);
keep i[143:72] == 1;

};
'>

NOTE� Increasing the size has performance impact.
determinants_before_ sub-
types, bool | option

To turn on global subtype generation optimization, setting this
option to TRUE activates subtype optimization for all structs.

For more specific subtype generation optimization control, the
option can be one of the following:

� force_off � Subtype optimization is not activated for any
determinants.

� default_off � Subtype optimization is not activated for any
determinant except those determinants specified in
gen_before_subtypes() constraints in the e code. This is the
default.

� default_on � Subtype optimization is activated for all structs
or units, except those that contain a
reset_gen_before_subtypes() constraint, and for all
determinants within a struct or unit, except those specified
explicitly by gen_before_subtypes() constraints.

� force_on � Subtype optimization is activated for all
determinants in the e code.

See �keep gen_before_subtypes()� on page 287 for information
about the purpose and usage of subtype generation optimization.

warn, bool Turns on warnings if set to TRUE. Generation warnings, including
warnings on single constraints, on ordering, and on size, are issued
only if the -warn generation option is set to TRUE. The default is
FALSE, except during debug, when all warnings are shown.
This is an unapproved IEEE Standards Draft, subject to change.
773

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
resolve_cycles, bool A constraint cycle occurs when two or more unidirectional con-
straints impose order relations inconsistent with each other. With
this option set to FALSE (the default), a cycle causes a run-time
contradiction error. With this option set to TRUE, whenever the gen-
erator encounters a cycle, it resolves it as follows:

� The generator chooses the item that needs the least number
of other items.

� If there are multiple items with the same least number of
needs relations, the generator chooses the one lowest in the
soft order.

bool_exp_is_bidir, bool When TRUE (the default), constraints of the form are bidirectional:

keep bool-field == complex-bool-exp

where complex-bool-exp is an expression involving only a single
comparison operator between fields or constants.

To maintain compatibility with previous releases, you can set this
flag to FALSE.

Setting this option to FALSE makes such constraints unidirectional,
which might cause an order cycle or a contradiction.

unit_reference_rule, bool When TRUE (the default), requires the generator to recognize con-
straints on fields within a unit reference and set those constraints to
be unidirectional, with the unit reference being generated before
other fields in the constraint. For example, the following constraint,
where �driver� is a field of type unit (not unit instance), causes
�driver� to be generated before �name�:

keep name == driver.name;

NOTE� This option does not apply to unit instances used
to point to other unit instances or to unit references that are
generated and then assigned.

static_analysis_opt, TRUE Performs optimizations to decrease the memory consumption and
run time of static analysis.

Notes

Random stability is not preserved when the optimizations are acti-
vated.

If it is used, the static_analysis_opt configuration option must be
set no later than the setup() test phase.

The configuration option is FALSE by default, and cannot be set to
FALSE. The only possible user setting is TRUE.

This option is for beta testing purposes only, and will be deprecated
in future releases.
774 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Table 24-4�Memory Configuration Options
Option Description

absolute_max_size, n An integer value that determines the maximum amount of memory
that the program will consume before issuing a fatal error message
and terminating execution. This value should be at least 2Mb larger
than the max_size option value in order to provide sufficient mem-
ory for handling and debugging memory overflow errors. In any
case, the value of absolute_max_size must be less than the total
memory resources of the machine.

The default for absolute_max_size is 200Mb. The range is 100M to
MAX_UINT. There is no automatic update for the value of
absolute_max_size.

gc_increment, n An integer value that determines the automatic increase in the value
of the gc_threshold option after a regular garbage collection.
gc_increment effectively sets a minimum amount of memory alloca-
tion between successive garbage collections. If you set
gc_increment to a large number, 100Mb for example, garbage col-
lections occur at a lower rate. Depending on your hardware
resources, however, the e might run out of memory if you increase
gc_increment to a large amount.

The default is 16Mb. The range is 0 to MAX_UINT.

the e automatically updates the value of gc_increment after per-
forming a regular garbage collection (and before updating the value
of gc_threshold). The updated value of gc_increment is as follows:

max (gc_increment, (memory_size / 5))

Where memory_size is the amount of memory after garbage collec-
tion.

The value of gc_increment is not updated after on-the-fly garbage
collection.
This is an unapproved IEEE Standards Draft, subject to change.
775

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
gc_threshold, n An integer value that determines how much memory the program
can allocate before performing a regular garbage collection. Increas-
ing gc_threshold to 500Mb, for example, is a good way to avoid reg-
ular garbage collections. Depending on your hardware resources,
however, the program might run out of memory if you increase
gc_threshold to a large amount.

The default is 80Mb. The range is 0 to MAX_UINT.

The program automatically updates the value of gc_threshold after
performing a regular garbage collection. The updated value of
gc_threshold is as follows:

max (gc_threshold, (memory_size +
updated_gc_increment))

Where memory_size is the amount of memory and
updated_gc_increment is the updated value of gc_increment after
the garbage collection takes place.

The value of gc_threshold is not updated after on-the-fly garbage
collection.

max_size, n Maximum amount of memory that the program can use. When the
memory to be allocated reaches this limit, the program performs on-
the-fly garbage collection in an attempt to find unused memory seg-
ments. If no additional memory is found, an error is issued. the pro-
gram does not terminate execution, however, until the amount of
memory reaches the value of absolute_max_size.

The default for max_size is 180Mb. The range is 100M to
MAX_UINT. There is no automatic update for the value of
max_size.

print_msg, bool When TRUE, causes the program to print garbage collection infor-
mation whenever regular (non-on-the-fly) garbage collection occurs.

The default is TRUE
print_otf_msg, bool When TRUE, causes the program to print garbage collection infor-

mation whenever on-the-fly garbage collection occurs.

The default is FALSE.
776 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
retain_printed_structs, bool When FALSE, allows normal garbage collection to be performed on
printed struct instances�unless pointed to by existing objects or
retained by another option (such as retain_trace_structs).

Printed struct instances are instances whose value you can print. In
other words, they are struct instances for which to_string() or
vt.instance_to_string() has been called to create a unique type-
@num ID, for example �pkt-@0�. (See �to_string()� on page 761.

When TRUE, retain_printed_structs prevents the garbage collector
from collecting and destroying printed struct instances.

Setting this option to FALSE speeds up simulation. Setting it to
TRUE retains printed struct instances, which can increase runtime
memory consumption.

The default is TRUE.
retain_trace_structs, bool When FALSE, allows normal garbage collection to be performed on

structs displayed in the waveform viewer�unless pointed to by
existing objects or retained by another option (such as
retain_printed_structs).

When TRUE, prevents the garbage collector from collecting and
destroying any struct that is displayed in the waveform viewer.

Setting this option to FALSE speeds up simulation.

The default is FALSE
This is an unapproved IEEE Standards Draft, subject to change.
777

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Table 24-5�Run Configuration Options

Description

This form of the set_config() action sets the specified options of a particular category to the specified val-
ues.

If an action block is specified, the options are set only temporarily during the execution of the action block.

Option Description

error_command, string Specifies a command that is executed if an error occurs during the
run. The command is executed for all types of errors including:

� DUT errors (defined with check that, expect, or
dut_error()) whose check-effect is ERROR,
ERROR_AUTOMATIC, ERROR_BREAK_RUN, or
ERROR_CONTINUE

� Pre-run errors such as load errors or errors during the
generation phase

� Errors defined with error()

exit_on, exit-mode Specifies the conditions under which teh program exits. exit-mode is
one of the following:
command (the default) � Exits only when you execute the simula-
tor exit command. This option is recommended for interactive runs.
normal_stop � Exits only when the run completes without an
error. If any error occurs, the program does not exit until you exe-
cute the simulator exit command. This option is recommended for
batch runs if you want to execute some commands in the simulator,
such as debug commands, when the run completes with an error.
error �Exits when an error of any kind occurs. If the error is a pre-
run error, such as a load error or an error during the generation
phase, the program exits immediately. If the error is a DUT error, the
point at which the program exits depends on the check effect for that
error. If no error occurs, the program does not exit until you execute
the simulator exit command. This option is recommended for batch
runs if you want to execute some commands in the simulator when
the run completes without error.
all � Exits when a call to stop_run() is made from e code or when
an error of any kind occurs. If neither of these occurs, the program
does not exit until you execute the simulator exit command. This
option is recommended for batch runs.

tick_max, n Determines the maximum number of ticks before the test stops. The
purpose is to keep the simulation from running longer than neces-
sary. When run tick_max is reached, an error occurs. The value of n
can be a number in the range 0 to MAX_INT. The default is 10,000.

use_manual_tick, bool Adds the ability to use the manually cause a tick. This is usually
used for debugging without a simulator. When not running with a
simulator, the program runs until stop_run() is called, unless an
ERROR occurs. When this flag is TRUE, you must execute the tick
manually. The default is FALSE.
778 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
For the configuration options to be effective, they must be set before the run test phase. The recommended
place to use set_config() is in the sys.setup() method, as follows:

extend sys {
setup() is also {

set_config(category, option, value, ...);
};

};

Example 1

In the following example, the setup() method is extended to set configuration options.

<'
extend sys {
 setup() is also {
 set_config(print, radix, bin);
 set_config(cover, sorted, TRUE);
 set_config(gen, seed, random, default_max_list_size,
 20);
 set_config(run, tick_max, 1000, exit_on, all);
 set_config(memory, gc_threshold, 100m);
 set_config(misc, warn, FALSE);
 };
};
'>

Result

configuration options for: print
-radix = BIN

.

.

.
configuration options for: cover

-sorted = TRUE
.
.
.
configuration options for: gen

-seed = 187136885
-default_max_list_size = 20

.

.

.
configuration options for: run

-tick_max = 1000
-exit_on = all

.

.

.
configuration options for: memory

-gc_threshold = 104857600
.
.
.
configuration options for: misc

-warn = FALSE
This is an unapproved IEEE Standards Draft, subject to change.
779

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
.

.

.

Example 2

<'
struct packet {
 protocol: [atm, eth];
 data[10]: list of byte;
};

extend sys {
 !pi: list of packet;
 post_generate() is also {
 set_config(gen, seed, 0xff) with {gen pi;};
 };
};
'>

Example 3

The following example demonstrates the difference between setting the show_sub_holes coverage configu-
ration option to TRUE versus the default setting of FALSE.

Two coverage items, i1 and i2 are defined, both for boolean fields. A cross item is also defined for the two
items.

<’
extend sys {
 i1: bool;
 i2: bool;
 event cv;
 cover cv is {
 item i1;
 item i2;
 cross i1, i2;
 };
 run() is also {
 emit cv;
 };
};
extend sys {
 setup() is also {
 set_config(cover, mode, on_interactive, show_mode, both);
 };
};
’>

In the test, i1 gets FALSE and i2 gets TRUE.

The cross i1, i2 section of the coverage data with show_sub_holes = FALSE is shown below. In this exam-
ple, since i1 = TRUE is an empty top bucket, the coverage report does not show the non-existent sub-buckets
for i1 = TRUE, i2 = X.

** cross__i1__i2 **
Samples: 1 Tests: 1 Grade: 0.25 Weight: 1
780 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
grade goal samples tests %p/% i1/i2

 0.50 - 1 1 100/100 FALSE
 0.00 1 0 0 0/0 FALSE/FALSE
 1.00 1 1 1 100/100 FALSE/TRUE
 0.00 - 0 0 0/0 TRUE

The cross i1, i2 section of the coverage data with show_sub_holes = TRUE is shown below. In this exam-
ple, the coverage data shows the tree under the empty top bucket for i1 = TRUE, and expands the two empty
sub-buckets under it, i1/i2 = TRUE/FALSE and i1/12=TRUE/TRUE.

** cross__i1__i2 **
Samples: 1 Tests: 1 Grade: 0.25 Weight: 1

grade goal samples tests %p/%t i1/i2

 0.50 - 1 1 100/100 FALSE
 0.00 1 0 0 0/0 FALSE/FALSE
 1.00 1 1 1 100/100 FALSE/TRUE
 0.00 - 0 0 0/0 TRUE
 0.00 1 0 0 0/0 TRUE/FALSE
 0.00 1 0 0 0/0 TRUE/TRUE

See Also

� �Configuration Routines� on page 766

24.7.2 get_config()

Purpose

Get the configuration option settings

Category

Routine

Syntax

get_config(category: exp, option: exp)

Syntax example:

var s: int = get_config(gen, seed);
This is an unapproved IEEE Standards Draft, subject to change.
781

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns the value of the configuration option. The type of the returned value depends on the specified
option.

Example

<'
struct packet {

protocol: [atm, eth];
data[10]: list of byte;

};

extend sys {
!pi: list of packet;

post_generate() is also {
set_config(gen, seed, 0xff) with {

gen pi;
var seed: int = get_config(gen, seed);
set_config(print, radix, hex) with {

print seed;
var radix: po_radix = get_config(print, radix);
print radix;
print get_config(print, radix).type().name;

};
 };
 };
};
'>

Results

 seed = 0xff
 radix = HEX
 get_config(print, radix).type().name = "po_radix"

See Also

� �Configuration Routines� on page 766

24.7.3 write_config()

Purpose

Save configuration options in a file

Category

Routine

category Is one of the following: cover, generation, memory, and run.
option The valid options are different for each category. See �set_config()� on page 766

for more information:
782 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

write_config(filename: string)

Syntax example:

write_config("test25");

Parameters

Description

Creates a file with the specified name and writes the current configuration options to the file.

The read_config() method can be used to read the configuration options back in from the file.

Example

<'
struct packet {
 protocol: [atm, eth];
 data[10]: list of byte;
};

extend sys {
 pi: list of packet;
};

extend sys {
 setup() is also {
 set_config(print, radix, bin);
 set_config(cover, sorted, TRUE);
 set_config(gen, seed, random, default_max_list_size, 20);
 set_config(run, tick_max, 1000, exit_on, all);
 set_config(memory, gc_threshold, 100m);
 set_config(misc, warn, FALSE);
 write_config("test25");
 };
};
'>

Result

% cat test25.ecfg
-- The top struct
struct: config_all-@0:

print: print config_options-@1:
category: print
print’radix: BIN
print’items: 0b10100
print’list_lines: 0b10100
print’list_from: 0b0
print’title: NULL
.

filename A string enclosed in double quotes and containing the name of a file. If a filename is
entered with no filename extension, the default extension .ecfg is used.
This is an unapproved IEEE Standards Draft, subject to change.
783

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
.

.

See Also

� �Configuration Routines� on page 766

24.7.4 read_config()

Purpose

Read configuration options from a file

Category

Routine

Syntax

read_config(filename: string)

Syntax example:

read_config("test25");

Parameters

Description

Read configuration options from a file with the specified name. The configuration options must previously
have been written to the file using the write_config() method.

Example

<'
struct packet {
 protocol: [atm, eth];
 data[10]: list of byte;
};

extend sys {
 pi: list of packet;

 setup() is also {
read_config("test25");

 };
};
'>

Result

configuration options for: print
-radix = BIN

filename A string enclosed in double quotes and containing the name of a file. If a filename is
entered with no filename extension, the default extension .ecfg is used.
784 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
.

.

.
configuration options for: cover

-sorted = TRUE
.
.
.
configuration options for: gen

-seed = 908142002
-default_max_list_size = 20

.

.

.
configuration options for: run

-tick_max = 1000
-exit_on = all

.

.

.
configuration options for: memory

-gc_threshold = 104857600
.
.
.
configuration options for: misc

-warn = FALSE
.
.
.

See Also

� �Configuration Routines� on page 766

24.8 OS Interface Routines

The routines in this section enable use of operating system commands from within the e programming lan-
guage. These routines work on all supported operating systems.

The OS interface routines in this section are:

� �spawn()� on page 786
� �spawn_check()� on page 786
� �system()� on page 787
� �output_from()� on page 788
� �output_from_check()� on page 789
� �get_symbol()� on page 790
� �date_time()� on page 791
� �getpid()� on page 792
This is an unapproved IEEE Standards Draft, subject to change.
785

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
24.8.1 spawn()

Purpose

Send commands to the operating system

Category

Pseudo-routine

Syntax

spawn()

spawn(command: string, ...)

Syntax example:

spawn("touch error.log;","grep Error my.elog > error.log");

Parameters

Description

Takes a variable number of parameters, concatenates them together, and executes the string result as an oper-
ating system command via system().

Example

<'
extend sys {

m1() is {
spawn("touch error.log;","grep Error my.elog > \

error.log");
};

};
'>

See Also

� �OS Interface Routines� on page 785

24.8.2 spawn_check()

Purpose

Send a command to the operating system and report error

Category

Routine

command An operating system command, with or without parameters and enclosed in double
quotes.
786 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

spawn_check(command: string)

Syntax example:

spawn_check("grep Error my.elog >& error.log");

Parameters

Description

Executes a single string as an operating system command via system(), then calls error() if the execution of
the command returned an error status.

Example

<'
extend sys {

m1() is {
spawn_check("grep Error my.elog >& error.log");

};
};
'>

Result

sys.m1()
 *** Error: Error while executing ’spawn_check("grep Error my.elog >&

error.log")’

See Also

� �OS Interface Routines� on page 785

24.8.3 system()

Purpose

Send a command to the operating system

Category

Routine

Syntax

system(command: string): int

Syntax example:

stub = system("cat my.v");

command A single operating system command, with or without parameters and enclosed in
double quotes.
This is an unapproved IEEE Standards Draft, subject to change.
787

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Executes the string as an operating system command using the C system() call and returns the result.

Example

<'
extend sys {
 m1() is {
 var stub: int;
 stub = system("cat my.v");
 print stub;
 };
};
'>

Result

sys.m1()
module top;
 parameter sn_version_id = 0; /* Version */
 parameter sn_version_date = 31198; /* Version date*/
...

See Also

� �OS Interface Routines� on page 785

24.8.4 output_from()

Purpose

Collect the results of a system call

Category

Routine

Syntax

output_from(command: string): list of string

Syntax example:

log_list = output_from("ls *log");

command A single operating system command, with or without parameters and enclosed in
double quotes.
788 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Executes the string as an operating system command and returns the output as a list of string. Under UNIX,
stdout and stderr go to the string list.

Example

<'
extend sys {
 m1() is {
 var log_list: list of string;
 log_list = output_from("ls *log");
 print log_list;
 };
};
'>

Result

sys.m1()
log_list =
0. "my_sn.elog"
1. "my_sn_sv.elog"

See Also

� �OS Interface Routines� on page 785

24.8.5 output_from_check()

Purpose

Collect the results of a system call and check for errors

Category

Routine

Syntax

output_from_check(command: string): list of string

Syntax example:

log_list = output_from_check("ls *.log");

command A single operating system command, with or without parameters and enclosed in
double quotes.
This is an unapproved IEEE Standards Draft, subject to change.
789

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Executes the string as an operating system command, returns the output as a list of string, and then calls
error() if the execution of the command returns an error status. Under UNIX, stdout and stderr go to the
string list.

Example

<'
extend sys {
 m1() is {
 var log_list: list of string;
 log_list = output_from_check("ls *.log");
 print log_list;
 };
};
'>

Result

sys.m1()
*** Error: Error from system command "ls *.log":
No match

See Also

� �OS Interface Routines� on page 785

24.8.6 get_symbol()

Purpose

Get UNIX environment variable

Category

Routine

Syntax

get_symbol(env-variable: string): string

Syntax example:

current_dir = get_symbol("PWD");

command A single operating system command with or without parameters and enclosed in
double quotes.
790 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Returns the environment variable as a string.

Example

<'
extend sys {

m1() is {
var current_dir: string;
current_dir = get_symbol("PWD");
print current_dir;

};
};
'>

Result

sys.m1()
current_dir = "/users3/sawa/docs/314/code"

See Also

� �OS Interface Routines� on page 785

24.8.7 date_time()

Purpose

Retrieve current date and time

Category

Routine

Syntax

date_time(): string

Syntax example:

print date_time();

Description

Returns the current date and time as a string.

Example

date_time() = "Tue Jul 27 13:10:43 1999"

env-variable A UNIX environment variable enclosed in double quotes.
This is an unapproved IEEE Standards Draft, subject to change.
791

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �OS Interface Routines� on page 785

24.8.8 getpid()

Purpose

Retrieve process ID

Category

Routine

Syntax

getpid(): int

Syntax example:

print getpid();

Description

Returns the current process ID as an integer.

Example

 getpid() = 25517

See Also

� �OS Interface Routines� on page 785

24.9 On-the-Fly Garbage Collection Routine: do_otf_gc()

Purpose

Perform on-the-fly garbage collection

Category

Routine

Syntax

do_otf_gc()

Syntax example:

do_otf_gc();
792 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

This routine performs on-the-fly garbage collection. It can be called at any time from either a regular method
or a TCM. It takes no arguments and returns no value.

Use this routine at any point when reducing the e program memory heap would be beneficial. For example,
use this routine between ticks, when significant memory can accumulate. (Regular garbage collection does
not occur between ticks.)

Notes

� The do_otf_gc() routine is not related to the regular garbage collection mechanism, although keep-
ing the memory heap low with do_otf_gc() helps limit the amount of regular garbage collection that
is performed.

� The do_otf_gc() routine does consume some CPU time, so it should be used in moderation.
� Use the print_otf_msg configuration option to request that on-the-fly GC messages be printed.

Example

This example calls do_otf_gc() from a TCM. However, it can also be called from a regular method.

unit port {
 drive_frames : out buffer_port of frame is instance;
 keep drive_frames.buffer_size() == 200;
 num_frames: uint;

 !next_frame: frame;

 in_frames() @sys.any is {
 var in_count : uint ;

 while (in_count < num_frames) {
 gen next_frame;
 drive_frames.put(next_frame);
 in_count += 1;
 // invoke on-the-fly garbage collection every 10 frames
 if (in_count % 10 == 0) then {
 do_otf_gc();
 };
 };
 };
};

See Also

� �set_config()� on page 766

24.10 Calling Predefined Routines: routine()

Purpose

Call a predefined routine
This is an unapproved IEEE Standards Draft, subject to change.
793

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Action

Syntax

routine-name()

routine-name(param, ...)

Syntax example:

var s := str_join(slist," - ");

Parameters

Description

Calls a predefined routine passing it the specified parameters.

Example

This example shows how to call a predefined routine.

<'
extend sys {
 m1() is {
 var slist: list of string = {"first";"second";"third"};
 var s := str_join(slist," - ");
 print s;
 };
};
'>

Result

sys.m1()
s = "first - second - third"

routine-name The name of the routine.
param One or more parameters separated by commas, one parameter for each parameter

in the parameter list of the routine definition. Parameters are passed by their rela-
tive position in the list, so the name of the parameter being passed does not have to
match the name of the parameter in the routine definition. The parentheses around
the parameter list are required even if the parameter list is empty.
794 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
25 Simulation-Related Constructs

This chapter describes the following e constructs:

� �Verilog Statements or Unit Members� on page 795
� �VHDL Statements and Unit Members� on page 812
� �Simulation-Related Actions� on page 830
� �Simulation-Related Expressions� on page 838
� �Simulation-Related Routines� on page 840

25.1 Verilog Statements or Unit Members

Some basic functionality of the Verilog simulator interface, such as setting or sampling the values of some
Verilog objects, is enabled without any action on your part. However, some features, such as the continuous
driving of Verilog signals or calling of Verilog tasks and functions, requires some user-specified declarations
- verilog statements or unit members. The following sections describe these constructs:

� �verilog code� on page 795
� �verilog function� on page 797
� �verilog import� on page 799
� �verilog task� on page 801
� �verilog time� on page 803
� �verilog variable reg | wire� on page 804
� �verilog variable memory� on page 810

25.1.1 verilog code

Purpose

Write Verilog code directly to the stubs file

Category

Statement or unit member

Syntax

verilog code {list-of-strings}

Syntax examples:

verilog code {"initial clk = 1'b1;"};
unit router {

verilog code { "initial "; s};
verilog code ls;

};
This is an unapproved IEEE Standards Draft, subject to change.
795

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Specifies a list of Verilog strings to be included in the Verilog stubs file each time it is generated. The stubs
file contains code that enables some Verilog-related features. It is recommended to use verilog code state-
ments or unit members to modify this file rather than to modify it by hand.

When verilog code is used as a unit member, any non-constant expressions in the list of strings are calcu-
lated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to the
stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated within
the context of sys.

NOTE� Whenever you add or modify a verilog code statement or unit member or add an instance
of a unit containing a verilog code unit member, you must create a new stubs file.

Example 1

This example uses a verilog code statement to define a Verilog event, clk_rise, in the stubs file. The Verilog
clk_rise event is triggered on every positive edge of the HDL signal, top.clk. Deriving an e event from the
Verilog clk_rise event rather than from the HDL signal top.clk itself reduces the number of callbacks by half.

top.v

module top();
reg clk;

initial clk = 0;
forever begin

#50 clk = ~clk;
end

endmodule

clk.e

verilog code {
 "event clk_rise;";
 "always @(posedge top.clk) begin";
 " ->clk_rise;";
 "end"
};
extend sys {
 event clk_rise is change('top.clk_rise')@sim;

 on clk_rise {
 print sys.time;
 };
};

list-of-strings Any list of strings that after concatenation creates any sequence of legal Verilog
code. Verilog syntax errors are identified only when you compile or interpret the
file with the Verilog compiler.

The curly braces are required only if the list of strings contains more than one
string.
796 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

sys.time = 50
 sys.time = 150
 sys.time = 250
 sys.time = 350
 sys.time = 450
 sys.time = 550
 sys.time = 650
...

Example 2

This example initializes an HDL clock by adding code to the stubs file. It uses verilog code as a unit mem-
ber so that the clock name and its initial value can be configured on a unit instance basis.

<'
unit channel {

clk_name: string;
keep soft clk_name == "clk";
clk_init: bit;
keep soft clk_init == 1;
s: string;
keep s == append("initial ", full_hdl_path(),".",clk_name,

 "= ",clk_init,";");
verilog code {s};

};

extend sys {
chan: channel is instance;
keep chan.hdl_path() == "top";

};
'>

25.1.2 verilog function

Purpose

Declare a Verilog function

Category

Statement or unit member

Syntax

verilog function 'HDL-pathname' (verilog-function-parameter[, ...]): result-size-exp

Syntax examples:

verilog function 'top.write_mem'(addr:32, data:32):32;

extend my_unit {
verilog function '(read_mem_name)'(addr:addr_width):ret_size;

}

This is an unapproved IEEE Standards Draft, subject to change.
797

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Declares a Verilog function in e so that it can be called from a time-consuming method (TCM).

When verilog function is used as a unit member, any non-constant expressions in the list of strings are cal-
culated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to
the stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated
within the context of sys.

Notes

� Calls to Verilog functions are value-returning expressions.
� Even though Verilog functions do not consume time in Verilog, they do so on the e side because they

require a context switch between the e program and the simulator. Thus, Verilog functions can be
called only from TCMs.

� The e language does not support concurrent calls to a Verilog function. In other words, you cannot
call the same Verilog function from more than one thread in the same tick.

� You must explicitly pack all structs before passing them in as inputs to the function.
� Whenever you add or modify a verilog function statement or unit member or add an instance of a

unit containing a verilog function unit member, you must create a new stubs file and then load the
file into the Verilog simulator.

Example

The following function has two 32-bit inputs and returns a 32-bit error status. The memory_driver unit calls
the top.write_mem() function.

unit memory_driver {
addr_width: uint;
keep soft addr_width == 32;
data_width: uint;
keep soft data_width == 32;
verilog function 'top.write_mem'(addr:addr_width,data:data_width):32;

event mem_enable is rise ('top.enable') @sim;
write() @mem_enable is {

var error_status: int;
error_status = 'top.write_mem'(31,45);

HDL-pathname The full path to the Verilog function. If this name is not a constant, it is calcu-
lated after the final step of pre-run generation. See �'HDL-pathname'� on
page 838 for a complete description of HDL path syntax.

verilog-function-
parameter

The syntax for each parameter is parameter_name:size_exp. The parameter
name need not match the name in Verilog. All parameters are passed by posi-
tion, not name. All parameters must be inputs, and the number of parameters
must match the number declared in the Verilog function.

The size-exp must be a legal unsigned integer expression specifying the size in
bits of the parameter. No default size is assumed. If the size expression is not a
constant, it is calculated after the final step of pre-run generation.

result-size-exp A legal unsigned integer expression specifying the size in bits of the returned
value. No default size is assumed. If the size expression is not a constant, it is
calculated after the final step of pre-run generation.
798 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};
};

See Also

� �'HDL-pathname'� on page 838
� �Rules for Defining and Extending Methods� on page 459

25.1.3 verilog import

Purpose

Read in Verilog text macros

Category

Statement

Syntax

verilog import file-name

Syntax example:

verilog import defines_MCP.v;

Parameters

Description

Reads in a file that includes Verilog `define text macros. After reading in the file, you can use these text mac-
ros in e expressions.

An e program understands several Verilog language constructs when reading the `define macros:

� It recognizes the Verilog `include directive and reads in the specified file.
� It recognizes the Verilog `ifdef, `else, and `endif directives and skips the irrelevant parts of the file

according to the currently defined symbols.

Notes

� verilog import statements cannot be used as unit members.
� verilog import statements must appear in the e file before any other statement except package,

define, and import statements. package statements must appear first in the file.
� Whenever you add or redefine an imported Verilog macro that appears in an HDL declaration, you

need to create a new stubs file and then load the file into the simulator.

For example, if you use a Verilog macro to specify the width of the parameters in a task identified with ver-
ilog task, then you need to recreate the stubs file if the macro is redefined.

file-name The e program searches for imported files in the directories specified in $PATH. If the
file is not found in $PATH, the e program then searches the directory where the import-
ing file resides.
This is an unapproved IEEE Standards Draft, subject to change.
799

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 1

To import more than one file, you must use multiple verilog import statements or use the Verilog compiler
directive `include. You can import the same file more than once. If you define the same macro with different
values before using it, the e program uses the definition that is loaded last. Once you use the macro, how-
ever, you cannot redefine it. Subsequent definitions are ignored without warning.

The following example shows how to import multiple files. Note that once X is used in the x.e file, its value
of 7 (the last loaded definition before it is used) cannot be changed.

a.v

‘define X 5

b.v

‘define X 7

x.e

verilog import a.v ;
verilog import b.v ;
extend sys {
 run() is also {
 print ‘X;
 };
};

y.e

verilog import a.v ;
extend sys {
 run() is also {
 print ‘X;
 };
};

z.e

verilog import b.v ;

Example 2

You can use Verilog macros everywhere an e macro is allowed. For example, you can use Verilog macros in
width declarations or when assigning values to enumerated items.

macros.v

`define BASIC_DELAY 2
`ifdef OLD_TECH

`define TRANS_DELAY `BASIC_DELAY+3
`else

`define TRANS_DELAY `BASIC_DELAY
`endif

`define TOP tb
`define READY `TOP.ready
`define WORD_WIDTH 8
`define HIGH_BIT 7
800 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
dut_driver.e

verilog import macros.v;

extend sys {
event pclk;
driver: dut_driver;
event pclk is only @any; -- for stand-alone mode

};

struct dut_driver {
ld: list of int(bits: `WORD_WIDTH);
keep ld.size() in [1..30];

stimuli() @sys.pclk is {
'`READY' = 1;
for each in ld {

wait until true('`READY' == 1);
'`TOP.data_in' = it;
wait [`TRANS_DELAY];

};
stop_run();

};
run() is also {

start stimuli();
};

};

25.1.4 verilog task

Purpose

Declare a Verilog task

Category

Statement or unit member

Syntax

verilog task 'HDL-pathname' (verilog-task-parameter[, ...])

Syntax examples:

verilog task 'top.read'(addr: 64, cell: 128:out);
verilog task 'top.(read_task_name)'(addr:addr_width, cell:cell_width:out);

Parameters

HDL-pathname The full path to the Verilog task. If this name is not a constant, it is
calculated after the final step of pre-run generation. See �'HDL-path-
name'� on page 838 for a complete description of HDL path syntax.
This is an unapproved IEEE Standards Draft, subject to change.
801

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Declares a Verilog user-defined task or system task in e so that it can be called from a TCM. In the following
example, �addr� is a 64-bit input and �cell� is a 128-bit output. $display is a Verilog system task.

verilog task 'top.read'(addr: 64, cell: 128:out);
verilog task '$display'(int:32);

When verilog task is used as a unit member, any non-constant expressions in the list of strings are calcu-
lated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to the
stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated within
the context of sys.

Notes

� Calls to Verilog tasks are time-consuming actions and can only be made from TCMs.
� The e language does not support concurrent calls to a Verilog task. In other words, you cannot call

the same Verilog task from multiple threads in the same tick.
� You must explicitly pack all structs before passing them in as inputs to the task.
� Whenever you add or modify a verilog task statement or unit member or add an instance of a unit

containing a verilog task unit member, you must create a new stubs file and then load the file into
the Verilog simulator.

Example

This task is similar to the Verilog function �write_mem� shown in the example for the verilog function unit
member (�verilog function� on page 797). This task returns an error status as an output parameter.

struct mem_w {
addr: int;
data: int(bits: 64);

};

unit receiver {
read_task_name: string;
addr_width: uint;
keep soft addr_width == 32;
data_width: uint;
keep soft data_width == 64;
verilog task 'top.(read_task_name)'

verilog-task-parameter The verilog-task-parameter has the syntax name:size-exp[:direc-
tion].

The name need not match the name in Verilog. All parameters are
passed by position, not name. The number of parameters must match
the number of parameters in the task declaration in Verilog.

The size-exp must be a legal unsigned integer expression specifying
the size in bits of the parameter. No default size is assumed. If the size
expression is not a constant, it is calculated after the final step of pre-
run generation.

The direction is one of the following keywords: input (or in), output
(or out), inout. The default is input.
802 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
(addr:addr_width:in,data:data_width:out,status:32:out);
event mem_read_enable;

get_mem(mw: mem_w) @mem_read_enable is {
var error_status: int;

'top.(read_task_name)'(mw.addr, mw.data, error_status);
check that error_status == 0;

};
};

See Also

� �'HDL-pathname'� on page 838
� �Rules for Defining and Extending Methods� on page 459

25.1.5 verilog time

Purpose

Set the Verilog time resolution

Category

Statement

Syntax

verilog time verilog-time-scale

Syntax examples:

verilog time 100ns/10ns;
verilog time num1 ns/num2 ns;

Parameters

Description

Sets the time resolution in the Verilog stubs file to the specified verilog-time-scale.

verilog-time-scale The Verilog specification for time scale has the syntax time-exp unit / preci-
sion-exp unit.

time-exp and precision-exp must be integer expressions. If the expression is
not a constant, it is calculated after the final step of pre-run generation.
According to Verilog standards, the legal values for the integer expressions
are 1, 10 and 100, but The e program does not check whether the value is
legal or not.

unit is any unit of time measurement. According to Verilog standards, the
valid character strings are s, ms, us, ns, ps, and fs, but the e program does not
check whether the value is legal or not.
This is an unapproved IEEE Standards Draft, subject to change.
803

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The verilog time statement can be used to scale the following:

� # delays in verilog variable or verilog code statements
� delays in e temporal expressions
� simulation time as shown in sys.time, a 64-bit integer field that stores testbench time.

Notes

� When the DUT contains more than one `timescale directive, using the verilog time statement is
strongly recommended. Otherwise, e program time becomes dependent on the order of the Verilog
modules.

� If you need to call the e program (using $sn) from Verilog code explicitly, use the verilog code state-
ment to put the e program call in the stubs file. This ensures that the call to the e program has the
time scale shown in the stubs file instead of a time scale from other parts of the Verilog code.

� The Verilog time scale precision in the verilog time statement must be set to the precision required
for # delays in verilog variable or verilog code statements.

� verilog time statements cannot be used as unit members.
� If you use a non-constant expression for the time or the precision, this expression is computed in the

context of sys and so must be visible in that context.
� Whenever you add or modify a verilog time statement in an e module, you must create a new stubs

file and then load the file into the Verilog simulator.

Example 1

verilog time 10ns/1ns;

Example 2

verilog time (num1)ns/(num2)ns;
extend sys {

num1:int;
num2:int;

keep num1 == 100;
keep num2 == 10;

};

25.1.6 verilog variable reg | wire

Purpose

Identify a Verilog register or wire

Category

Statement or unit member

Syntax

verilog variable 'HDL-pathname' using option, ...

Syntax examples:

verilog variable 'top.dbus[5:0]' using wire,drive="@(posedge top.m)";
804 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
verilog variable 'i1.(reset_name)[m:l]' using wire,drive_hold=dh_opt;

Parameters

Description

Allows access to the Verilog object named in 'HDL-pathname', a register or a net. In general, you can
access Verilog objects using the 'HDL-pathname' expression. The verilog variable statement is necessary
only when you want to

HDL-pathname The complete path to the Verilog object, a register or a net.If this
name is not a constant, it is calculated after the final step of pre-run
generation. See �'HDL-pathname'� on page 838 for a complete
description of HDL path syntax.

NOTE� If the register or wire has a width greater than 1,
the bit range must be explicitly declared in order to create
internal temporary registers of the correct width.

The width range has the syntax
[right-bound-exp:left-bound-exp]

where right-bound-exp and left-bound-exp are any legal integer
expressions. The width range must be the same (including the
descending or ascending order) as in the Verilog declaration. If these
expressions are not constants, they are calculated after the final step
of pre-run generation.

option A list of one or more of the following options separated by commas.
drive=string-exp Specifies that the Verilog object is driven when the event specified by

string-exp occurs. string-exp is any legal string expression specifying
a legal Verilog timing control. If this expression is not a constant, it is
calculated after the final step of pre-run generation.

drive_hold=string-exp Specifies a Verilog event after which the HDL object�s value is set to
z. string-exp is any legal string expression specifying a legal Verilog
timing control. If this expression is not a constant, it is calculated after
the final step of pre-run generation. The drive_hold option requires
that you also specify the drive option.

net,

wire

Specifies that the Verilog object is a net (wire). Some simulators
(VCS and ModelSim) require this option anytime you drive a Verilog
wire from e. Other simulators require this option only when you drive
from within the model as well as from e and you want the Verilog
wire to be resolved. By default the value driven by the e program is
always driven last, overwriting all values driven by Verilog.

forcible Allows forcing of Verilog wires. By default Verilog wires are not
forcible. This option requires that you also specify the net or wire
option.

strobe=string-exp Specifies that the value of the Verilog object is sampled at the event
specified using string-exp. string-exp is any legal string expression
specifying a legal Verilog timing control. If this expression is not a
constant, it is calculated after the final step of pre-run generation.
This is an unapproved IEEE Standards Draft, subject to change.
805

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� drive or force a wire
� drive or sample a wire or reg with an offset from the e program callback

Some simulators (VCS and ModelSim) require this option anytime you drive a Verilog wire from e. Other
simulators require this option only when you drive from within the model as well as from e and you want the
Verilog wire to be resolved. By default the value driven by the e program is always driven last, overwriting
all values driven by Verilog.

If you have not included verilog variable statement and one is required, you will see an error message such
as

*** Error: Cannot drive ‘top.sig_wire’. Driving a wire which is not declared
with ‘verilog variable suing wire’ is not allowed by the simulator.
at line 6 in @your_module

verilog variable declarations for the same object can be repeated (to allow incremental building of e code),
but each repeated declaration must be identical.

When verilog variable is used as a unit member, any non-constant expressions in the list of strings are cal-
culated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to
the stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated
within the context of sys.

Notes

� Assignments to Verilog nets are implemented through the Verilog code in the stubs file. These
assignments are not propagated until the start of simulation, so no pre-run initialization of Verilog
nets can be performed by the e program.

� Whenever you add or modify a verilog variable statement or unit member or add an instance of a
unit containing a verilog variable unit member, you must create a new stubs file and then load the
file into the Verilog simulator.

Example 1

The following example sets drive and drive_hold timing controls on a register:

verilog variable 'top.reset_request' using
drive="#5",drive_hold="@(negedge clock)";

struct controller {
event reset_request;
on reset_request {

'top.reset_request' = 1;
};

};

If, for example, the e event �reset_request� is emitted at time 100ns, then the Verilog top-level register
�reset_request� is set at time 105ns, and it is disconnected (assigned Z value) at the next negative edge of the
clock.

Example 2

The following example sets strobe and drive delays for a wire using a verilog variable unit member and a
non-constant expression.
806 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
unit box {
 bus_name: string;
 bus_width: uint;
 strobe_option: string;
 drive_option: string;
 drive_hold_option: string;

 verilog variable '(bus_name)[bus_width-1:0]' using
 strobe=strobe_option,
 drive=drive_option,
 drive_hold=drive_hold_option,
 wire;
 };
 extend sys {
 box: box is instance;
 keep box.hdl_path() == "top_box";
 keep box.bus_name == "xx_bus";
 keep box.bus_width == 64;
 keep box.strobe_option == "@(posedge top.clk_b)";
 keep box.drive_option == "@(negedge top.clk_b) #3";
 keep box.drive_hold_option == "@(negedge top.clk_b) #10";
};

The verilog variable ... using strobe statement creates an additional temporary variable in the Verilog stubs
file that strobes the value of the real Verilog object, according to the timing conditions specified for this
option. Any read operation of the real Verilog object in e code accesses the temporary variable and thus gets
the latest strobed value. In this example, an additional register, �top__xx_bus�, is created and this register
gets the current value of �top.xx_bus[63:0]� at every positive edge on �top.clk_b�.

Example 3

Here is a complete example of how to drive a clock wire.

clk.e

verilog time 1ns / 1ns;
verilog variable 'top.ev_clock' using wire ;
define CLOCK_HALF_PERIOD 50;

extend sys {
 dut: dut;
};

struct dut {
 clk: uint (bits:1);
 event dut_evclk is rise ('top.ev_clock')@sim;

 driver() @sys.any is {
 var drive_var: int = 1;

'top.ev_clock' = 0;
 while(TRUE) {
 wait delay(CLOCK_HALF_PERIOD);

'top.ev_clock' = drive_var;
 drive_var = ~drive_var;
 };
 };

 wait_and_stop() @sys.any is {
This is an unapproved IEEE Standards Draft, subject to change.
807

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 wait [100] * cycle;
 stop_run();
 };

 run() is also {
 start driver();
 start wait_and_stop();
 };
};

clk.v

‘timescale 1 ns / 1ns
module top;
 wire ev_clock ;

endmodule

Example 4

This example shows how to use verilog variable as a unit member with a relative path. In this case, the full
HDL path of the unit driver is prefixed to the relative path �rxd� in order to access the rxd signal in each of
the DUT receivers. For example �~/top.chan0.rx.rxd� accesses the rxd signal in the first channel�s receiver.

enet_env.e

<’
unit enet_env {
 keep hdl_path() == "~/top";
 ports : list of enet_port is instance;

 keep soft ports.size() == 4;

 keep for each in ports {
 .number == index;
 .hdl_path() == append("chan", index);
 };
};

unit enet_port {
 number : int;

 injector : driver is instance;
 collector : receiver is instance;

 keep injector.parent_port == me;
 keep injector.number == number;
 keep injector.hdl_path() == "rx";
 keep collector.parent_port == me;
 keep collector.number == number;
 keep collector.hdl_path() == "tx";
};

unit driver {
 parent_port : enet_port;
 number : int;
808 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 event clk is rise (’~/top.clock’)@sim;

 verilog variable ’rxd[7:0]’ using wire;// Unit member with relative path

 send_data() @clk is {
 out("Injecting data at ", full_hdl_path());
 var pkt: packet;
 gen pkt;
 var total_data : list of byte;
 total_data = pack(packing.low, pkt);
 print total_data;
 wait cycle;
 for each (data) in total_data {
 ’rxd’ = data; // inject data
 wait cycle;
 };
 wait [50] * cycle;
 stop_run();
 };

 run() is also {
 start send_data();
 };
};
unit receiver {
 parent_port : enet_port;
 number : int;
};

struct packet {
 %data: list of byte;
};

extend sys {
 enet: enet_env is instance;
};
’>

top.v

module top ();
 reg clock;

 initial clock = 0;
 always #50 clock = ~clock;

channel chan0();
channel chan1();
channel chan2();
channel chan3();

endmodule

module channel();
 receiver rx();
 transmitter tx();

endmodule
This is an unapproved IEEE Standards Draft, subject to change.
809

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
module receiver();
 wire [7:0] rxd;

endmodule

module transmitter();

endmodule

Result

ncsim> run
Injecting data at ~/top.chan0.rx
 total_data = (27 items, dec):
 201 120 34 42 158 187 67 96 255 147 240 2 .0
 38 21 43 49 151 151 10 79 181 102 176 145 .12
 249 124 77 .24

Injecting data at ~/top.chan1.rx
 total_data = (12 items, dec):
 70 48 246 35 78 170 156 136 10 133 33 156 .0

Injecting data at ~/top.chan2.rx
 total_data = (22 items, dec):
 170 70 48 175 50 112 39 26 109 53 65 156 .0
 152 108 147 136 83 239 62 217 131 249 .12

Injecting data at ~/top.chan3.rx
 total_data = (3 items, dec):
 146 71 163 .0

Memory Usage - 24.5M program + 17.7M data = 42.3M total
CPU Usage - 0.4s system + 4.0s user = 4.4s total (87.8% cpu)
Simulation stopped via $stop(2) at time 5450 NS + 1
ncsim> exit

See Also

� �'HDL-pathname'� on page 838
� �force� on page 830
� �release� on page 834

25.1.7 verilog variable memory

Purpose

Identify a Verilog memory

Category

Statement or unit member

Syntax

verilog variable 'HDL-pathname [mem-range] [verilog-reg-range]' [using vcs_pli]
810 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

verilog variable 'top.my_mem[1:10000][31:0]';

Parameters

Description

Allows access to a Verilog memory. verilog variable declarations for the same memory can be repeated (to
allow incremental building of e code), but each repeated declaration must be identical.

Note that the order of the range specifiers in the e syntax is the reverse of the Verilog declaration order.

For example, if a memory is defined in Verilog as follows:

module top;
reg[31:0] my_mem[1:10000];

endmodule

The corresponding verilog variable statement is:

verilog variable 'top.my_mem[1:10000][31:0]';

When verilog variable is used as a unit member, any non-constant expressions in the list of strings are cal-
culated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to
the stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated
within the context of sys.

Notes

� Only a single register element from the Verilog memory can be accessed in one e expression (such as
'top.my_mem[0]' or 'top.my_mem[j]').

� Verilog memories are always accessed directly, not cached, for reading and writing. You must orga-
nize how reading and writing memories occurs within a tick.

� Verilog memories cannot be accessed before simulation starts. This means that memories cannot be
initialized during pre-run generation. You must provide code to generate initial memory contents on
the fly at time zero.

HDL-pathname The full path to the Verilog memory. If this name is not a constant, it is calcu-
lated after the final step of pre-run generation. See �'HDL-pathname'� on
page 838 for a complete description of HDL path syntax.

mem-range A legal expression specifying the range of the memory elements. A legal
expression has the syntax [exp:exp]. If this expression is not a constant, it is
calculated after the final step of pre-run generation.

verilog-reg-range A legal expression specifying the width of each memory element. A legal
expression has the syntax [exp:exp]. If this expression is not a constant, it is
calculated after the final step of pre-run generation.

using vcs_pli Enables the propagation of Verilog memory updates with VCS. If the
e program is not linked to the VCS simulator, this option is ignored.

NOTE� Due to a limitation of the VCS simulator extension,
changes to bits containing x or z values are not propagated.
This is an unapproved IEEE Standards Draft, subject to change.
811

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� For NC Verilog, code that contains memory declarations must be compiled with a NC Verilog com-
mand line option, -nomempack.

� Access to Verilog memories is not supported when the e program is linked with SpeedSim.
� Whenever you add or modify a verilog variable statement or unit member or add an instance of a

unit containing a verilog variable unit member, you must create a new stubs file and then load the
file into the Verilog simulator.

Example

This example shows one possible way of initializing a Verilog memory at the beginning of the simulation.

xmem.v

module xmem;
reg [63:0] bank [1:10];

endmodule

module topmod;
reg clk;
initial clk = 0;
always #10 clk = ~clk;
xmem m1();

endmodule

memstarter.e

verilog variable 'topmod.m1.bank[1:10][63:0]';

struct mem_starter {
event init_event is rise('topmod.clk')@sim;
on init_event {

var rand_s: int (bits: 64);

for j from 1 to 10 {
gen rand_s;
'topmod.m1.bank[j]' = rand_s;

};
quit();

};
};

extend sys {

ms: mem_starter;
event clk is fall('topmod.clk')@sim;

};

See Also

� �'HDL-pathname'� on page 838

25.2 VHDL Statements and Unit Members

Some basic functionality of the VHDL simulator interface, such as setting or sampling the values of some
VHDL objects, is enabled without any action on your part. However, some features, such as the continuous
driving of VHDL signals or calling of VHDL subprograms, requires some user-specified declarations - vhdl
statements. The following sections describe these statements and unit members:
812 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �vhdl code� on page 813
� �vhdl driver� on page 815
� �vhdl function� on page 819
� �vhdl procedure� on page 822
� �vhdl time� on page 829

25.2.1 vhdl code

Purpose

Write VHDL code directly to the stubs file

Category

Statement or unit member

Syntax

vhdl code {list-of-strings}

Syntax example:

vhdl code {
"library common_lib;";
"use common_lib.common_types.all;";

};
unit router {

vhdl code {
"library my_lib;";
"use my_lib.my_types.all;";

};
};

Parameters

Description

Specifies a list of VHDL strings to be included in the stubs file (�sim.vhd�). The stubs file contains code that
enables some simulation-related features. It is recommended to use vhdl code statements or unit members to
modify this file rather than to modify it by hand.

When vhdl code is used as a unit member, any non-constant expressions in the list of strings are calculated
within the context of a unit instance. Each unit instance adds a separate fragment of VHDL code to the stubs
file. When used as a statement, any non-constant expressions in the list of strings are calculated within the
context of sys.

list-of-strings Any list of strings that after concatenation creates any sequence of legal VHDL
code. the e program does not check for VHDL syntax errors. VHDL syntax errors
are identified only when you compile the file with the VHDL compiler.

The curly braces are required only if the list of strings contains more than one
string.
This is an unapproved IEEE Standards Draft, subject to change.
813

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
NOTE� Whenever you add or modify a vhdl code statement or unit member or add an instance
of a unit containing a vhdl code unit member, you must create a new stubs file.

Example 1

A common use for the vhdl code statement is to include packages. For example, parameter types may be
declared in a different package from the one where the subprogram is declared. The example below adds the
�common_types� package defined in the �common_lib� library to the _sim.vhd file.

vhdl code {
"library common_lib;";
"use common_lib.common_types.all;";

};

The sim.vhd file generated with this statement looks like this:

library common_lib;
use common_lib.common_types.all;

entity ... is
end ...;

Example 2

You can also use non-constants in vhdl code expressions. The following example configures the DUT clock
differently for each channel instance.

<’
unit channel {
 chan_number: string;
 keep chan_number == hdl_path();

 s: string;
 keep s == append("library worklib; \n",
 "configuration phased_clocks of TOP is \n",
 " use worklib.all; \n",
 " for behavioral \n",
 " for CLK: clock \n",
 " use entity clkgen(",chan_number,"_clock); \n",
 " end for; \n",
 " end for; \n",
 "end phased_clocks;");
 vhdl code {s};
};
’>

This vhdl code unit member inserts the following VHDL code into the sim.vhd file:

library worklib;
configuration phased_clocks of TOP is
 use worklib.all;
 for behavioral
 for CLK: clock
 use entity clkgen(CHAN0_clock);
 end for;
 end for;
814 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
end phased_clocks;
library worklib;
configuration phased_clocks of TOP is
 use worklib.all;
 for behavioral
 for CLK: clock
 use entity clkgen(CHAN1_clock);
 end for;
 end for;
end phased_clocks;

See Also

� �VHDL Statements and Unit Members� on page 812

25.2.2 vhdl driver

Purpose

Drive a VHDL signal continuously via the resolution function

Category

Unit member

Syntax

vhdl driver 'HDL-pathname' using option, ...

Syntax examples:

unit top {
vhdl driver '~/top/data' using initial_value=32'bz,

disconnect_value=32'bz;
vhdl driver '(addr_name)' using initial_value= 1'bz,

delay= addr_delay;
};

Parameters

HDL-pathname A full or a relative VHDL path to the signal. If the signal has more than
one driver, one driver in the DUT and one in the e program, for exam-
ple, then the signal must be of a resolved type. If this name is not a con-
stant, it is calculated after the final step of pre-run generation.

See �'HDL-pathname'� on page 838 for a complete description of HDL
path syntax.

option A list of one or more of the following options separated by commas.
None of the options is required.
This is an unapproved IEEE Standards Draft, subject to change.
815

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

The vhdl driver unit member identifies a VHDL signal that, when assigned to by an e method of that unit, is
driven continuously using the resolution function. In contrast, signal assignments made without vhdl driver
are over-ridden by any subsequent assignment from a VHDL process or from another e method, rather than
the two driven values being resolved.

disconnect_value=
[integer-expression | ver-
ilog-literal]

Any legal integer expression specifying the value to be used on the
e program restore to disconnect the driver. The default is z. If this
expression is not a constant, it is calculated after the final step of pre-run
generation.

This value is used when you restore Specman Elite after issuing a test
command but do not restart the simulator. This value should be set to a
value that does not affect the overall value of the resolved signal. For
std_logic signals, the value should be z.

NOTE� If the VHDL signal name is a computed name then
it will be computed again at the before the restore. Thus, in
order to correctly assign a disconnect_value, it is important to
keep the expressions used in the computed name unchanged
during the simulation session.

Use a Verilog literal to specify values containing x or z. A Verilog literal
is a sized literal that can contain 0, 1, x, and z, for example 16'bx.

delay=
integer-expression

Any legal integer expression specifying a delay for all assignments. The
delay time units are determined by the current time unit setting. See
�vhdl time� on page 829 for information on how to set time units for
e programs. If this expression is not a constant, it is calculated after the
final step of pre-run generation.

mode=[INERTIAL |
TRANSPORT]

Used only when delay is also specified, this option specifies whether
pulses whose period is shorter than the delay are propagated through the
driver. INERTIAL specifies that such pulses are not propagated.
TRANSPORT, the default, specifies that all pulses, regardless of length,
are propagated.

The mode option also influences what happens if another driver (either
VHDL or another unit) schedules a signal change and before that
change occurs, this driver schedules a different change. With INER-
TIAL, the first change never occurs.

initial_value=
[integer-expression | ver-
ilog-literal]

Any legal integer expression specifying an initial value for the signal. If
this expression is not a constant, it is calculated after the final step of
pre-run generation.

When the e program is driving a resolved signal that is also driven from
VHDL, unless an initial value is specified, the signal value is X until the
first value is driven from he e program, even if a 0 or a 1 is driven from
VHDL.

Use a Verilog literal to specify values containing x or z. A Verilog literal
is a sized literal that can contain 0, 1, x, and z, for example 16'bx.
816 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Any non-constant expressions in the list of strings are calculated within the context of a unit instance. Each
unit instance adds a separate fragment of Verilog code to the stubs file.

To require resolution between VHDL process assignments and an e method assignment or between e method
assignments, you can use the vhdl driver unit member. The vhdl driver unit member creates a driver that
influences any assignments to the specified VHDL signal made by a method in the enclosing unit or by a
method in a struct enclosed by this unit.

You can create multiple drivers for the same signal by making multiple instances of a unit that contains a
vhdl driver unit member. In this case, the driver is created for every unit instance. This may be useful when
modeling multiple modules on a tri-state bus, for example. Multiple drivers can be created only for signals
of a resolved type.

Note that there is a significant semantic difference between a verilog variable using drive statement/unit
member and a vhdl driver unit member. verilog variable using drive creates a single Verilog always block
for each actual Verilog signal. This means that there is one and only one driver for this signal.

Notes

� vhdl driver influences only assignments made by methods of the unit in which it was declared or by
methods of the structs nested in this unit. Therefore, you must use the vhdl driver unit member in
each unit that drives a particular signal; adding a vhdl driver unit member in only one of the units
that drives it is not sufficient.

� vhdl driver is a unit member, not a statement. If you need to declare a vhdl driver and your verifica-
tion environment does not have any user-defined units, then you must explicitly extend sys (sys is a
unit):

<'

extend sys {

vhdl driver '/top/comp_io' using initial_value=1'bz;

};

'>

� The vhdl driver unit member is supported only with ModelSim VHDL. For multi-bit signal support,
ModelSim version 5.4c is earliest version that can be used.

� The pathname for multi-bit signals must be specified without a bit range, for example, 'sig'. If you
include the bit range, for example, 'sig[1:0]', the e program does not apply the driver.

� The vhdl driver unit member does not affect the VHDL stubs file, so it is not necessary to rewrite
the stubs file if you add or modify a vhdl driver unit member in your e code.

Example

top.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity top is
end top;

architecture arch of top is

signal a : std_logic := '0';
signal b : std_logic := '0';
signal c : std_logic := '0';
This is an unapproved IEEE Standards Draft, subject to change.
817

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
signal s : std_logic := '1';
signal t : std_logic ;

signal clk : std_logic := '0';

 component comspec
 end component;
 for all: comspec use entity work.REFERENCE (arch);

begin

 clk_pr:process(clk) begin
 clk <= not clk after 50 ns;
 end process clk_pr;

 shifter: process(clk) begin
 if (clk'event AND clk = '1') THEN
 a <= not a ;
 b <= a xor b ;
 c <= (a and b) xor c ;

 if (b = '0' and c = '1') THEN
 t <= '1' ;
 elsif (b = '1' and c = '1') THEN
 t <= '0' ;
 else t <= 'Z' ;
 end if ;
 end if ;
 end process shifter ;

 I: comspec;
end arch ;

driver.e

<'
extend sys {

event clk is fall('~/top/clk')@sim ;
drive0 : drive is instance ;
drive1 : drive is instance ;
keep drive0.hdl_path() == "~/top";
keep drive0.name == "t";
keep drive1.hdl_path() == "~/top";
keep drive1.name == "t";

};

unit drive {
name: string;
vhdl driver '(name)' using disconnect_value=1'bz,

initial_value = 1'bz;
driver() @sys.clk is {

'(name)' = 1 ;
wait cycle ;
'(name)' = 1'bz ;
wait [7] ;
'(name)' = 0 ;
wait cycle ;
stop_run() ;

};
818 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
run() is also { start driver() } ;
};
'>

Result (ModelSim waveform)

run -all
0 : t = U
50 : t = Z
100 : t = 1
200 : t = Z
450 : t = 1
650 : t = 0
850 : t = Z
900 : t = 0
Simulation stop requested
quit

See Also

� �'HDL-pathname'� on page 838
� �VHDL Statements and Unit Members� on page 812

25.2.3 vhdl function

Purpose

Declare a VHDL function defined in a VHDL package

Category

Statement or unit member

Syntax

vhdl function 'identifier' using option, ...

Syntax examples:

unit calc {
vhdl function 'max' using

interface="(op1:word64; op2:word64) return word64",
library="work", package="arith_pkg";

vhdl function '(vhdl_min_name)' using
interface=intf,library=lib_name,package=package_name;

 };

Parameters

identifier The operator symbol (for example '"and�') or the name of the
VHDL function as specified in the package. If the identifier
is not a constant, it is calculated after the final step of pre-run
generation.
This is an unapproved IEEE Standards Draft, subject to change.
819

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
option A comma-separated list of two or more of the following
options. The interface, library and package options are
required.

interface=
�(string-exp) return return-subtype�

A legal string expression that specifies the interface list for
the function. If this expression is not a constant, it is calcu-
lated after the final step of pre-run generation.

The legal syntax for this string is
[parameter-class] identifier :subtype[;...]

The only output of the function is the returned value.

The optional parameter class is constant or signal � as
specified in the VHDL declaration � and is transparent for
the e program.

The identifier does not have to be the name of the parameter
as specified in the package but the parameter subtype must
match exactly the package specification.

The type of the returned value must match exactly the pack-
age specification. The type must also be one of the types
supported by the e language.

library=string-exp A legal string expression specifying the name of the VHDL
library containing the package where the function is defined.
If this expression is not a constant, it is calculated after the
final step of pre-run generation.

package=
string-exp

A legal string expression specifying the package name. If
this expression is not a constant, it is calculated after the
final step of pre-run generation.

alias=string-exp A legal string expression that specifies the name with which
the function will be called from e. If this expression is not a
constant, it is calculated after the final step of pre-run gener-
ation.

There are various reasons to use aliases. For example, an
alias is required when there are overloaded functions with
the same names but different interfaces. It must also be used
for VHDL functions that overload operator symbols (for
example, function �+�...) because the call from e cannot con-
tain double quotes.

declarative_item=string-exp A legal string expression that specifies one or more use
clauses that are placed in the stubs file at the local scope of
the function call rather than at the global scope of the REF-
ERENCE entity. If this expression is not a constant, it is cal-
culated after the final step of pre-run generation.

This option may prevent unwanted overwriting of declara-
tions in the stubs file. See Example 1 on page 825 for an
example of declarative_item used with vhdl procedure.
820 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Declares a VHDL function in e so that it can be called from a time-consuming method (TCM).

When there is a call to a procedure with a constant or signal parameter, the value of the constant or signal is
passed.

If there are functions in a single package that have the same name but different numbers or types of parame-
ters, make a separate declaration in e for each one you plan to call and specify a unique alias for each decla-
ration.

When vhdl function is used as a unit member, any non-constant expressions in the list of strings are calcu-
lated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to the
stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated within
the context of sys.

Notes

� The VHDL function specifiers �pure� and �impure� are not supported.
� If an alias is not used, then a call to a VHDL function requires the full VHDL name in the following

format: library_name.package_name.function_name.
� Calls to VHDL functions are value-returning expressions. They are time-consuming and can only be

made from TCMs.
� Function calls must explicitly specify actual values�either scalars or lists of scalars�for all param-

eters. Default values for parameters are not supported.
� Whenever you add or modify a vhdl function statement in an e module, you must create a new stubs

file.

Example 1

VHDL allows overloading of subprogram names. It is possible, for example, to define two functions with
the name �increment� where the number and type of arguments or the return type may differ:

function increment (a: integer) return integer is ...
function increment (a: integer; n:integer) return integer is ...

In cases like this, you must create an alias for each version that you intend to call.

vhdl function 'increment' using
interface="(a: integer) return integer",
library="work", package="pkg", alias="integer_inc_1";

vhdl function 'increment' using
interface="(a: integer; n: integer) return integer",
library="work", package="pkg",
alias="integer_inc_n";

extend sys {
event clk is rise ('top.clk') @sim;

test(a:int)@clk is {
check that 'integer_inc_1'(a) == 'integer_inc_n'(a,1);

};
};
This is an unapproved IEEE Standards Draft, subject to change.
821

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

Another case where aliasing may be required is when a subprogram contains unconstrained array parameters
or unconstrained return values. For example, �ToStdLogicVector� accepts an integer and converts it to a
STD_LOGIC_VECTOR of the given length, probably truncating the value.

In order to support subprograms with unconstrained array parameters or return values, the e program must
be notified about all (or maximal) potential lengths in the given test. This is required because the e program
must provide a VHDL stub code that will specify the exact returned value type. Accordingly you may need
to use multiple aliases for the same VHDL function.

library ieee;
use IEEE.std_logic_1164.all;

package pkg is
function ToStdLogicVector(oper:INTEGER; length:NATURAL) \

return STD_LOGIC_VECTOR;
end pkg;

You must create an alias for each of the possible lengths of the returned value.

vhdl function 'ToStdLogicVector' using
interface= "(oper:INTEGER; length:NATURAL) \

return STD_LOGIC_VECTOR(0 to 31)",
library="lib", package="pkg",
alias="ToStdLogicVector32";

vhdl function 'ToStdLogicVector' using
interface="(oper:INTEGER; length:NATURAL) \

return STD_LOGIC_VECTOR(15 downto 0)",
library="lib", package="pkg",
alias="ToStdLogicVector16";

See Also

� �'HDL-pathname'� on page 838
� �VHDL Statements and Unit Members� on page 812

25.2.4 vhdl procedure

Purpose

Declare a VHDL procedure defined in a VHDL package

Category

Statement or unit member

Syntax

vhdl procedure 'identifier' using option, ...

Syntax example:

unit calc {
822 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
vhdl procedure 'do_arith_op' using
interface="(op1:integer; op2: integer; \
op_code: func_code; result: out integer)",
library="work", package="arith_pkg";

vhdl procedure '(vhdl_min_name)' using
interface=intf,library=lib_name,package=package_name;

};

Parameters

identifier The name of the VHDL procedure as specified in the package. If this
identifier is not a constant, it is calculated after the final step of pre-run
generation.

option A comma-separated list of two or more of the following options. The
library and package options are required.

interface=
�(string-exp)�

A legal string expression that specifies the interface list for the proce-
dure. If this expression is not a constant, it is calculated after the final
step of pre-run generation.

The legal syntax for this string is
[parameter_class] identifier : [mode] subtype[;...]

The optional parameter class is constant, variable, or signal � as
defined in the VHDL declaration � and is transparent for the
e program.

Mode is in, inout or out. The default mode is in.

The identifier does not have to be the name of the parameter as specified
in the package but the subtype must match exactly the specification in
the package. The subtype must also be one of the types supported by e.

library=
string-exp

A legal string expression specifying the name of the library containing
the package where the procedure is defined. If this expression is not a
constant, it is calculated after the final step of pre-run generation.

package=
string-exp

A legal string expression specifying the package name. If this expres-
sion is not a constant, it is calculated after the final step of pre-run gen-
eration.

alias=
string-exp

A legal string expression that specifies the name with which the proce-
dure will be called from e. If this expression is not a constant, it is calcu-
lated after the final step of pre-run generation.

There are various reasons to use aliases. For example, an alias is
required when there are overloaded procedures with the same names but
different interfaces. It is also useful when two different procedures have
the same name but belong to different packages.
This is an unapproved IEEE Standards Draft, subject to change.
823

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Declares a VHDL procedure in e so that it can be called from a time-consuming method (TCM).

When vhdl procedure is used as a unit member, any non-constant expressions in the list of strings are calcu-
lated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to the
stubs file. When used as a statement, any non-constant expressions in the list of strings are calculated within
the context of sys.

When there is a call to a procedure with a constant or variable parameter, the value of the constant or vari-
able is passed. Signal parameters are handled differently.

When there is a call to a procedure with a signal parameter of mode in, instead of passing the value of the
signal, it passes the signal object itself. Any reference to the formal parameter within the procedure is
exactly like a reference to the actual signal itself. A consequence of this is that if the procedure executes a
wait statement, the signal value may be different after the wait statement is completed and the procedure
resumes.

When there is a call to a procedure with a signal parameter of mode out, the procedure receives a reference
for the signal. When the procedure performs a signal assignment statement on the formal parameter, the
value is propagated to the actual signal parameter. Note that output parameters are assigned in the default e
way; the value is assigned immediately but is not forced and not assigned via a VHDL driver.

If there are procedures in a single package that have the same name but different numbers or types of param-
eters, you must make a separate declaration in e for each one you plan to call and specify a unique alias for
each declaration.

In order to allow multiple e program threads to call the same time-consuming VHDL procedure simulta-
neously and in parallel, you must create multiple unit members - one per such a thread. This may be done,
for example, by placing a vhdl procedure declaration in a unit, which logically maps the block of the DUT
to a e program thread, and creating multiple instances of that unit. the e program creates a separate VHDL
process in the stubs file for each unit member, and you can then invoke the procedure simultaneously from
different unit instances.

There is a significant semantic difference between VHDL procedure/function and Verilog task/function unit
members. Verilog tasks are always located within Verilog modules. Thus, there may be multiple instances of
those tasks within a DUT. Accordingly, an HDL path of a corresponding unit in e maps between the unit and
a Verilog task instances. On the VHDL side, e supports only subprograms that are declared in VHDL pack-
ages. Such subprograms have nothing to do with HDL paths. Accordingly, the correspondence between e
unit instance and a VHDL procedure unit member is completely abstract�it just creates a separate process
in the VHDL stub file. Such correspondence is natural, because in VHDL the time-consuming package sub-
programs are re-entrant and may be called simultaneously from parallel VHDL component instances.

The fact that VHDL subprogram unit members are not bound to HDL paths causes a difference in how these
subprograms may be called from nested unit instances. The essence of this difference is that if some VHDL

declarative_item=
string-exp

A legal string expression that specifies a use clause that is placed at the
local scope of the procedure call rather than at the global scope of the
REFERENCE entity in the stubs file. If this expression is not a constant,
it is calculated after the final step of pre-run generation.

This option prevents unwanted overwriting of declarations in the stubs
file. See Example 1 on page 825.
824 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
procedure/function is declared in a parent unit instance, then it may be called from other units, instantiated
below, without a duplication of the subprogram declaration.

Notes

� Calls to VHDL procedures are time-consuming and can only be made from TCMs.
� Passing a bit select of a signal parameter (for example, 'signal_name[3:7]') is not supported. (Passing

a bit select of a constant or variable is supported.)
� Passing a signal parameter with @x, @z, or @n (for example, 'signal_name@x') is not supported.

(Passing a constant or variable with @x, @n, or @z is supported.)
� If an alias is not used, then a call to VHDL procedure requires the full VHDL name in the following

format: library_name.package_name.function_name
� You must explicitly pack all structs before passing them in as inputs to a procedure.
� Procedure calls must explicitly specify actual values for all parameters. Default values for parame-

ters are not supported.
� Whenever you add or modify a vhdl procedure statement in an e module, you must create a new

stubs file.

Example 1

This example shows how to handle the case where two different types from two different packages have the
same name (�state�). Using the declarative_item option to specify a use clause at the scope local to the pro-
cedure avoids name collision.

vhdl procedure 'check_state' using
interface="(s:state)",
library="lib1",
package="procedures_pkg",
declarative_item="use lib1.fsm_types.all;";

vhdl procedure 'show' using
interface="(s:state)",
library="lib2",
package="display_pkg",
declarative_item="use lib2.widget_types.all;";

Result

The qvh.vhd file has the following structure. Note that the library declarations appear at the global scope.
Any use clauses included with vhdl code declarations would also appear at this scope. In contrast, the use
clauses declared with declarative_item appear at the scope of the appropriate function call.

entity ... is
end ...;
architecture fmi_stub of ... is
...
library IEEE;
use IEEE.std_logic_1164.all;

entity wave is

This example shows how to allow parallel invocation of the same procedure. There are two instances of the
unit �transactor�, which contains a vhdl procedure unit member. The TCM �test()� of each unit instance is
called during the run phase, simultaneously invoking two different VHDL processes. Notice that the paren-
theses are required when calling the procedure from e, even though �send_packet()� has no interface.
This is an unapproved IEEE Standards Draft, subject to change.
825

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
unit transactor {
vhdl procedure 'send_packet' using library="work",

package="pkg";

test() @sys.clk is {
'work.pkg.send_packet'();

};
};

extend sys {
event clk is rise ('top.clk') @sim;

transactor1: transactor is instance;
transactor2: transactor is instance;

run() is also {
start transactor1.test();
start transactor2.test();

};
};

Example 2

This example illustrates the transmitting and receiving of a one-byte packet. The unit �driver� uses the
VHDL procedure �transmit_packet_data� to drive one bit of data per cycle. This procedure accepts two
input parameters by value and two signal parameters: an input, �clock�, and an output, the data bit.

The unit �receiver� uses the VHDL procedure �receive_packet� for reading the data. This procedure accepts
two input signal parameters: the clock and one bit of data (both are changing during the running of the pro-
cedure) and one output parameter: the resulting package. The procedure waits for the rise of the clock and
then reads the new data.

The VHDL package:

package transmit_receive_pkg is

subtype data_range is integer range 1 to 8;
type packet_array is array (data_range) of bit;

procedure receive_packet (signal rx_data: in bit;
signal rx_clock: in bit;
data_buffer: out packet_array);

procedure transmit_packet_data (packet_type: in bit;
data_buffer: in bit_vector(6 downto 0);
signal rx_clock: in bit;
signal rx_data: out bit);

end transmit_receive_pkg;

package body transmit_receive_pkg is

procedure receive_packet (signal rx_data: in bit;
signal rx_clock: in bit;
data_buffer: out packet_array) is

begin
for index in data_range loop
826 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
wait until rx_clock = '1';
data_buffer(index) := rx_data;

end loop;
end receive_packet;

procedure transmit_packet_data (packet_type: in bit;
data_buffer: in bit_vector(6 downto 0);
signal rx_clock: in bit;
signal rx_data: out bit) is

begin
for index in 0 to 6 loop

wait until rx_clock = '0';
rx_data <= data_buffer(index);

end loop;

wait until rx_clock = '0';
rx_data <= packet_type;

end transmit_packet_data;
end;

The entity and architecture:

use work.transmit_receive_pkg.all;
entity receiver is
end receiver;

architecture behavioral of receiver is

component SN
end component;
for all: SN use entity work.reference (arch);

signal data : bit;
signal clock: bit;

begin

clock_generator : process
begin

clock <= '0' after 2 ns, '1' after 10 ns;
wait for 10 ns;

end process clock_generator;

SN_INST: SN;

end behavioral;

The receiver unit

<'

unit receiver {

vhdl procedure 'receive_packet' using interface= "(\
signal rx_data: bit; signal rx_clock: bit; \
data_buffer: out packet_array)", library= "work",
package = "transmit_receive_pkg";
This is an unapproved IEEE Standards Draft, subject to change.
827

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

!received_packet : byte;
event clk is fall ('clock')@sim;

receive_packet() @clk is {

'work.transmit_receive_pkg.receive_packet'('data',
'clock',received_packet);

wait cycle;
outf("The packet that was received : \

%#x\n",received_packet);

wait cycle;
};

};

unit driver{

vhdl procedure 'transmit_packet_data' using interface= "(\
packet_type:in bit; \
data_buffer : in bit_vector(6 downto 0); \
signal rx_clock : in bit; signal rx_data : out bit)",
library= "work", package = "transmit_receive_pkg";

transmit_data : list of bit;
keep transmit_data.size() == 7;

packet_type : bit;

event clk is rise ('clock')@sim;

send_packet()@clk is{
'work.transmit_receive_pkg.transmit_packet_data'(
packet_type,transmit_data,'clock','data');

};
};

extend sys{

driver :driver is instance;
receiver :receiver is instance;

keep driver.hdl_path() == "/";
keep receiver.hdl_path() == "/";

run() is also {
start driver.send_packet();
start receiver.receive_packet();
start do_check();

};

do_check()@receiver.clk is {
var transmit_packet: byte;
unpack(NULL,driver.transmit_data.reverse(),

transmit_packet[7:1]);
transmit_packet[0:0] = driver.packet_type;
outf("The packet that was transmitted : \

%#x\n",transmit_packet);
wait [10]*cycle;
828 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
check that (transmit_packet == receiver.received_packet)
else dut_error(" the data did not pass correctly");

stop_run();

};
};
'>

See Also

� �'HDL-pathname'� on page 838
� �VHDL Statements and Unit Members� on page 812

25.2.5 vhdl time

Purpose

Sets VHDL time resolution

Category

Statement

Syntax

vhdl time integer-exp time-unit

Syntax example:

vhdl time 100 ns;

Parameters

Description

Sets the time resolution to the specified time scale. This time scale is used to scale:

� Delays in e program temporal expressions
� Delays specified in vhdl driver unit members
� Simulation time as shown in sys.time, a 64-bit integer field that stores e program time.

If you use NC simulator and do not specify a time resolution, the default resolution for the e program is 1ns.
(NC VHDL always uses a time scale of 1 fs.)

If you use ModelSim, the default resolution always matches the settings chosen on the simulator side in the
initialization file or with the simulator invocation option.

integer-exp A legal integer expression. If the expression is not a constant, it is calculated after
the final step of pre-run generation.

time-unit Any valid VHDL time unit.
This is an unapproved IEEE Standards Draft, subject to change.
829

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Notes

� The vhdl time statement does not affect the stubs file, so it is not necessary to rewrite the stubs file if
you change the time scale.

� vhdl time cannot be used as a unit member.
� If you use a non-constant expression in a vhdl time statement, this expression is computed in the

context of sys and so must be visible in that context.

Example 1

The following statement sets the time resolution to 100ns.

vhdl time 100 ns;

Example 2

In this example, the time resolution is not calculated until after the final step of pre-run generation.

vhdl time num ns;

extend sys {

num:int;
keep num == 100;

};

See Also

� �VHDL Statements and Unit Members� on page 812
� �vhdl driver� on page 815

25.3 Simulation-Related Actions

There are two simulation-related actions in e:

� �force� on page 830
� �release� on page 834

25.3.1 force

Purpose

Force a value on an HDL object

Category

Action

Syntax

force 'HDL-pathname' = exp

Syntax example:
830 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
force '~/top/sig' = 7;

Parameters

Description

Forces an HDL object to a specified value, overriding the current value and preventing the DUT from driv-
ing any value. The HDL object remains at the specified value until a subsequent force action from e or until
freed by a release action.

When an e program is linked with a Verilog simulator, you can apply a force action to any net or wire that
has been declared forcible with the verilog variable statement.

When an e program is linked with a VHDL simulator, you can force signals of a scalar integer or enumerated
type as well as binary array type, such as arrays of std_logic and bit vectors. No declaration is required for
VHDL objects.

When an e program is linked with ModelSim VHDL simulator, you can force single elements of an array of
a scalar integer or enumerated type using the predefined routine simulator_command().

If you force a part of a vectored object, the force action is propagated to the rest of the object. If a force
action is applied to a Verilog signal from an e programe, all preceding and subsequent non-forced assign-
ments to the same object �including those within the same tick � are ignored until a subsequent release
action from e. The only exception is that if you force different parts of a vectored object in the same tick, the
actions are accumulated and applied together at the end of the tick.

If there are multiple assignments to a VHDL object from e, every new (not necessarily forced) assignment
overrides the previous one, without requiring you to explicitly release the signal from e. The release action is
needed only when a signal must be driven from the e program and from the DUT by turns.

Notes

� Forcing of Verilog registers is not supported.
� The interface with SpeedSim does not support force or release.
� Forcing signals is always costly to performance. In VCS, forcing signals is disabled by default. If it

is not enabled and you try to force a signal, you will see an error such as the following:

*** Error: acc_set_value: Pli force not enabled.
Please add capability frc to module your_module.

To enable forcing in VCS, you need to add the force option manually to the pli.tab by changing
�acc=rw,cbk:*� to �acc=frc,cbk:*�. To decrease the performance hit, you can change �*� to just the levels of
DUT hierarchy that you want an e program to access, for example, �acc=frc,cbk:TOP.DMA.*;TOP.USB.*�.

Example 1

This example shows the effect of force and release actions in a Verilog environment.

HDL-pathname The full path name of an HDL object, optionally including expressions. See
�'HDL-pathname'� on page 838 for more information.

exp Any scalar expression or literal constant, as long as it is composed only of 1's
and 0's. No x or z values are allowed. Thus �16'hf0f1� or (sys.my_val + 5) are
legal.
This is an unapproved IEEE Standards Draft, subject to change.
831

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
top.v

module top();
reg clk;
wire [7:0] data;

initial begin
clk = 0;
forever begin

#50 clk = ~clk;
end

end

// monitors
 always @(data) $display ("%t : data = %b", $time, data);

endmodule

test.e

struct sim {
 event clk is rise ('~/top/clk')@sim;

 m() @clk is {
'~/top/data' = 8'b10101010;

 force '~/top/data[3:0]' =0;
 '~/top/data[7:4]' = 4'b0000;

 wait cycle;
 '~/top/data' = 8'b10011001;

 wait cycle;
 release '~/top/data[7:0]';

 wait cycle;
 '~/top/data' = 8'b11111111;

 wait [2]* cycle;
 stop_run();
 };

};

extend sys {
 sim;

 setup() is also {
 set_config(print, radix, bin);
 };

 run() is also {
 start sys.sim.m();
 };
};

verilog.e

verilog variable '~/top/data[7:0]' using wire, forcible;
832 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result (ModelSim transcript)

run -all
0 : data = zzzzzzzz
50 : data = 10100000
250 : data = 10011001
250 : data = zzzzzzzz
350 : data = 11111111
Simulation stop requested
quit

Example 2

This example shows the effect of force and release actions in a VHDL environment.

top.vhd

use std.textio.all;
library IEEE;
use IEEE.std_logic_1164.all;
entity top is
end top;

architecture arc of top is

signal clk : std_logic := '0';
signal data: std_logic_vector (7 downto 0);

component comspec
end component;

for all: comspec use entity work.REFERENCE (arch);
begin

I: comspec;

 clk <= not clk after 50 ns;

end arc;

test.e

struct sim {
 event clk is rise ('~/top/clk')@sim;

 m() @clk is {
'~/top/data' = 8'b10101010;

 force '~/top/data[3:0]' =0;
 '~/top/data[7:4]' = 4'b0000;

 wait cycle;
 '~/top/data' = 8'b10011001;

 wait cycle;
 release '~/top/data[7:0]';

 wait cycle;
 '~/top/data' = 8'b11111111;
This is an unapproved IEEE Standards Draft, subject to change.
833

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 wait [2]* cycle;
 stop_run();
 };

};

extend sys {
 sim;

 setup() is also {
 set_config(print, radix, bin);
 };

 run() is also {
 start sys.sim.m();
 };
};

Result (ModelSim waveform)

run -all
0 : data = UUUUUUUU
50 : data = 10100000
150 : data = 10011001
350 : data = 11111111
Simulation stop requested
quit

See Also

� �'HDL-pathname'� on page 838
� �release� on page 834

25.3.2 release

Purpose

Remove a force action from an HDL object

Category

Action

Syntax

release 'HDL-pathname'

Syntax example:

release 'TOP.sig';
834 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Releases the HDL object that you have previously forced.

In a VHDL environment, a release action is only required to allow the object to be driven by the DUT. Each
new action from e overrides the previous one without an explicit release action.

If the object is a Verilog wire and it has no other driver from within the model, it floats to high-impedance
(all z).

NOTE� The interface with SpeedSim does not support force or release.

Example 1

This example shows the effect of force and release actions in a Verilog environment.

top.v

module top();
reg clk;
wire [7:0] data;

initial begin
clk = 0;
forever begin

#50 clk = ~clk;
end

end

// monitors
 always @(data) $display ("%t : data = %b", $time, data);

endmodule

test.e

struct sim {
 event clk is rise ('~/top/clk')@sim;

 m() @clk is {
'~/top/data' = 8'b10101010;

 force '~/top/data[3:0]' =0;
 '~/top/data[7:4]' = 4'b0000;

 wait cycle;
 '~/top/data' = 8'b10011001;

 wait cycle;
 release '~/top/data[7:0]';

 wait cycle;
 '~/top/data' = 8'b11111111;

HDL-pathname The full path name of an HDL object previously specified in a force action.
This is an unapproved IEEE Standards Draft, subject to change.
835

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 wait [2]* cycle;
 stop_run();
 };

};

extend sys {
 sim;

 setup() is also {
 set_config(print, radix, bin);
 };

 run() is also {
 start sys.sim.m();
 };
};

verilog.e

verilog variable '~/top/data[7:0]' using wire, forcible;

Result (ModelSim transcript)

run -all
0 : data = zzzzzzzz
50 : data = 10100000
250 : data = 10011001
250 : data = zzzzzzzz
350 : data = 11111111
Simulation stop requested
quit

Example 2

This example shows the effect of force and release actions in a VHDL environment.

top.vhd

use std.textio.all;
library IEEE;
use IEEE.std_logic_1164.all;
entity top is
end top;

architecture arc of top is

signal clk : std_logic := '0';
signal data: std_logic_vector (7 downto 0);

component comspec
end component;

for all: comspec use entity work.... (arch);
begin

I: comspec;
836 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
 clk <= not clk after 50 ns;

end arc;

test.e

struct sim {
 event clk is rise ('~/top/clk')@sim;

 m() @clk is {
'~/top/data' = 8'b10101010;

 force '~/top/data[3:0]' =0;
 '~/top/data[7:4]' = 4'b0000;

 wait cycle;
 '~/top/data' = 8'b10011001;

 wait cycle;
 release '~/top/data[7:0]';

 wait cycle;
 '~/top/data' = 8'b11111111;

 wait [2]* cycle;
 stop_run();
 };

};

extend sys {
 sim;

 setup() is also {
 set_config(print, radix, bin);
 };

 run() is also {
 start sys.sim.m();
 };
};

Result (ModelSim waveform)

run -all
0 : data = UUUUUUUU
50 : data = 10100000
150 : data = 10011001
350 : data = 11111111
Simulation stop requested
quit

See Also

� �'HDL-pathname'� on page 838
� �force� on page 830
This is an unapproved IEEE Standards Draft, subject to change.
837

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
25.4 Simulation-Related Expressions

This section contains:

� �'HDL-pathname'� on page 838
� �specman deferred� on page 839

25.4.1 'HDL-pathname'

Purpose

Accessing HDL objects, using full-path-names

Category

Expression

Syntax

'HDL-pathname[index-exp | bit-range] [@(x | z | n)]'

Syntax example:

'~/top/sig' = 7;
print '~/top/sig';

Parameters

HDL-pathname The full path name of an HDL object, optionally including expressions and
composite data.

bit-range A bit range has the format [high-bit-num:low-bit-num] and is extracted from
the object from high bit to low bit. Slices of buses are treated exactly as they are
in HDL languages. They must be specified in the same direction as in the HDL
code and reference the same bit numbers.

index-exp Accesses a single bit of a Verilog vector, a single element of a Verilog memory,
or a single vector of a VHDL array of vectors.

@x | z Sets or gets the x or z component of the value. When this notation is not used in
accessing an HDL object, the e program translates the values of x to zero and z
to one.

When reading HDL objects using @x (or @z), the e program translates the
specified value (x or z) to one, and all other values to zero. When writing HDL
objects, if @x (or @z) is specified, the e program sets every bit that has a value
of one to x (or z). In this way, @x or @z acts much like a data mask, manipulat-
ing only those bits that match the value of x or z.

@n When this specifier is used for driving HDL objects, the new value is visible
immediately (now). The default mode is to buffer projected values and update
only at the end of the tick. If reading a value using @n then the projected sim-
ulator value can be seen.
838 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Accesses Verilog and VHDL objects from e.

NOTE� In general, you can access HDL objects using the 'HDL-pathname' expression. In order
to enable some non-trivial capabilities, however, you must also use verilog or vhdl statements.

�

25.4.2 specman deferred

Purpose

Identify a deferred Verilog `define

Category

Verilog expression

Verilog Syntax

`define macro-name default-value // specman deferred

Syntax example:

`define bus_width 64 // specman deferred

Parameters

Description

Deferred Verilog `defines let you use Verilog definitions without specifying their final values at compile
time. Instead, you can redefine their values just prior to use.

This feature lets you compile and link a single executable for all tests and then load in different Verilog
`defines definitions for different tests.

All non-deferred `defines are substituted in place during parsing. References to deferred `defines are
resolved at run time.

Notes

� Deferred `defines cannot be used in other Verilog `defines.
� You can only redefine the value of a `define; you cannot redefine its type or width. For example:

macro-name Any legal Verilog identifier.
default-value A constant expression. This value is used as the definition of the `define

unless you over-write it with another value. The size and type of this value is
used to determine the expected type and size of the runtime expressions.
Thus, if this value is longer than 32 bits, its size must be explicitly specified.

// specman deferred The �// specman deferred� comment must appear on the same line of the file
that specifies the `define. This comment can contain any number of spaces
or tabs.
This is an unapproved IEEE Standards Draft, subject to change.
839

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The following lines define a `define with the default width of 32 bits:

`define MY_MASK 0 // specman deferred

If later on during the run MY_MASK is defined with a different type or length, for example:

`define MY_WRONG_MASK 64'bz

an error occurs.

� Whether a `define is deferred or not is established at its very first occurrence and cannot be changed
by any subsequent occurrence of this macro.

� The use of deferred macros causes some performance overhead, which is equivalent to accessing an
entry in a table when using a function call for this purpose.

See Also

� �verilog import� on page 799

25.5 Simulation-Related Routines

The following routines perform functions related to simulation:

� �simulator_command()� on page 840
� �stop_run()� on page 841

25.5.1 simulator_command()

Purpose

Issue a simulator command

Category

Predefined routine

Syntax

simulator_command(command: string)

Syntax example:

simulator_command("force -deposit memA(31:0)");

Parameters

command A valid simulator command, enclosed in double quotes. Commands that change the
state of simulation, such as run, restart, restore, or exit, cannot be passed to the simula-
tor with simulator_command().
840 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Passes a command to the HDL simulator from e. The command returns no value. The output of the com-
mand is sent to standard output and to the log file.

NOTE� This routine can be used only with the ModelSim, SpeedSim, and NC (VHDL)
simulators.

See Also

� �force� on page 830

25.5.2 stop_run()

Purpose

Stop a simulation run cleanly

Category

Predefined routine

Syntax

stop_run()

Syntax example:

stop_run();

Description

Stops the simulator and initiates post-simulation phases. The following things occur when stop_run() is
invoked:

1) The quit() method of each struct under sys is called. Each quit() method emits a �quit� event
for that struct instance at the end of the current tick.

2) The scheduler continues running all threads until the end of the current tick.
3) At the end of the current tick, the extract, check, and finalize test phases are performed.
4) If a simulator is linked in to the e programe, the e program terminates the simulation cleanly after

the test is finalized.

Notes

� This method must be called by a user-defined method or TCM to stop the simulation run cleanly.
� You should not extend or modify the stop_run() method. If you want something to happen right after

you stop the run, you can extend sys.extract().
� Executing a tick after calling stop_run() is considered an error. This includes executing a tick to call

a Verilog function or task.
� The actual threads are not removed until the end of the tick.
� If the simulator exit command is called before stop_run(), the global methods for extracting, check-

ing and finalizing the test are called.
This is an unapproved IEEE Standards Draft, subject to change.
841

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

verilog import macros.v;

extend sys {
event pclk is rise ('`TOP.pclk');
driver: dut_driver;

};

struct dut_driver {
ld: list of int(bits: `WORD_WIDTH);
keep ld.size() in [1..30];

stimuli() @sys.pclk is {
'`READY' = 1;
for each in ld {

wait until true('`READY' == 1);
'`TOP.data_in' = it;
wait [`TRANS_DELAY];

};
stop_run();

};
run() is also {

start stimuli();
};

};

See Also

� �The quit() Method of any_struct� on page 659
� The run option of �set_config()� on page 766
842 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
26 Predefined File Routines Library

26.1 Overview

The global struct named files contains predefined routines for working with files. This chapter contains
information about using files and the predefined file routines. Like most global objects, the predefined rou-
tines in the files struct are not meant to be extended with is also or is only.

General information about working with files is provided in the following sections.

� �File Names and Search Paths� on page 843
� �File Descriptors� on page 843

Syntax for the predefined file routines is described in the following sections.

� �Low-Level File Routines� on page 843
� �General File Routines� on page 856
� �Reading and Writing Structs� on page 874

See Also

� �File Iteration Actions� on page 545
� �String Routines� on page 736

26.2 File Names and Search Paths

Many of the file routines require a file-name parameter. The following are restrictions on file-name parame-
ters for most routines.

� The file-name must be the exact path to the file.
� You cannot use ~, or wild card patterns, or any environment variable, including $PATH, in the file-

name.
� For files that have default extensions, such as .e or .ecom, leave the extension off the file-name.

The exception to the above restrictions is the files.add_file_type() routine. This routine accepts ~, wild
cards (*), or $PATH as a file-name parameter (see �add_file_type()� on page 844). Before you use any of
the file routines, it is recommended that you use files.add_file_type() to make sure you have a valid path to
a file.

26.3 File Descriptors

For every open file, a file descriptor struct exists which contains information about the file. The routine
�open()� on page 848 returns the file descriptor as a variable of type file. The name of the file variable is
used in low-level file operations such as the files.read(), files.write() and files.flush() routines. These rou-
tines are described in �Low-Level File Routines� on page 843.

26.4 Low-Level File Routines

This section contains descriptions of the file routines that use file descriptor structs.
This is an unapproved IEEE Standards Draft, subject to change.
843

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
To write strings to a file, the simplest routine is �write_string_list()� on page 873.

The following file routines are described in this section.

� �add_file_type()� on page 844
� �close()� on page 846
� �flush()� on page 847
� �open()� on page 848
� �read()� on page 850
� �read_lob()� on page 851
� �write()� on page 852
� �write_lob()� on page 853
� �writef()� on page 855

See Also

� �General File Routines� on page 856
� �Reading and Writing Structs� on page 874

26.4.1 add_file_type()

Purpose

Get a file name

Category

Method

Syntax

files.add_file_type(file-name: string, file-ext: string, exists: bool): string

Syntax example:

var fv: string;
fv = files.add_file_type("fname", ".e", FALSE);

Parameters

Description

Returns a string holding the file name.

This routine assigns a string consisting of file-name and file-ext to a string variable. If file-name already
contains an extension, then file-ext is ignored. If file-ext is empty, the file-name is used with no extension.

If exists is FALSE, the routine returns the file-name string without checking for the existence of the file.
Wild cards, ~, and $PATH are not evaluated.

file-name The name of the file to access. A wild card pattern can be used.
file-ext The file extension, including the dot (.) may be empty.
exists Sets checking for existence of the file.
844 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
If exists is TRUE, the e program checks to see if there is a file that matches the file-name in the current
directory. The file-name can contain ~, $PATH, and * wild cards. The * wild card represents any combina-
tion of ASCII characters. If there is one and only one file that matches the file-name pattern, the file's name
is returned. If there is no match in the current directory, then the $PATH directories are searched for the file.
If no matching file can be found, or if more than one file is found in a directory that matches a wild card, an
error is issued. If there are multiple matching files in different directories in the PATH, the first one found is
returned.

Examples

For the following examples, assume files named �ex_file� and �ex_file.tmp� exist in the current directory,
and a file named �ex_file.e� exists under /prog/docs (which is included in the $PATH definition).

The following assigns ex_file.e to the f1 variable, without checking to see if the ex_file.e file exists.

struct f_str {
!file_list: list of string;
AppendFileToList(ex_file: string) is {

var f1: string;
f1 = files.add_file_type(ex_file, ".e", FALSE);
file_list.add(f1);

};
};
extend sys {

fi: f_str;
run() is also {

fi.AppendFileToList("ex_file");
};

};

The following statement tries to assign ex_file.e to the f2 variable, but issues an error when it checks for the
existence of ex_file.e.

AppendFileToList(ex_file: string) is {
var f2: string;
f2 = files.add_file_type(ex_file, ".e", TRUE);
file_list.add(f2);

};

The error is shown below.

*** Error: No match for file ‘ex_file.e’

The following action assigns ex_file to the f3 variable.

var f3: string = files.add_file_type("ex_file", "", TRUE);

Although ex_file.e does not exist in the current directory, it does exist in the /prog/docs directory, which is in
the $PATH. Therefore, the following action assigns /prog/docs/ex_file.e to the f4 variable.

var f4: string = files.add_file_type("ex_file", ".e", TRUE);

The following action assigns ex* to the f5 variable.

var f5: string = files.add_file_type("ex*", "", FALSE);
This is an unapproved IEEE Standards Draft, subject to change.
845

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
The following action checks for files that match the ex* pattern.

var f6: string = files.add_file_type("ex*", "", TRUE);

Since more than one file in the current directory matches the pattern, the names of the matching files are
printed and an error is issued:

ex_file
ex_file.tmp
There is more than one file matching ex*

See Also

� �file_exists()� on page 861

26.4.2 close()

Purpose

Close a file

Category

Method

Syntax

files.close(file: file-descriptor)

Syntax example:

files.close(f_desc);

Parameters

Description

Flushes the file buffer and closes the file specified by file-descriptor. The file must previously have been
opened using �open()� on page 848. When no further activity is planned for a file, it should be closed to pre-
vent unintentional operations on its contents.

Example

The WrAndFlush() user-defined method in the following example opens a file named �ex_file.txt� as the
m_file variable, writes a line to the file, and then closes the file. The RFile() user-defined method then opens
the same file for reading and reads its contents into the m_string variable.

The files.flush() routine writes the �AaBaCa 0123� string to the disk immediately, so that the read routine
can read it. If there were no files.close() routine (or files.flush() routine) following the write, the data would
not be in disk file when the read was done.

struct f_s_1 {

file The file descriptor of the file to be closed.
846 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
WrAndFlush(ex_file: string) is {
var m_file: file;
m_file = files.open(ex_file, "w", "Text file");
files.write(m_file, "AaBaCa 0123");
files.close(m_file);

};
RFile(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "r", "Text file");
var r_chk: bool;
var m_string: string;
r_chk = files.read(m_file, m_string);
if r_chk then {print m_string}

else {out("file not read")};
};

};
extend sys {

f_si_1: f_s_1;
run() is also {

f_si_1.WrAndFlush("ex_file.txt");
f_si_1.RFile("ex_file.txt");

};
};

See Also

� �open()� on page 848
� �flush()� on page 847

26.4.3 flush()

Purpose

Flush file buffers

Category

Method

Syntax

files.flush(file: file-descriptor)

Syntax example:

files.flush(a_file);

Parameters

Description

Flushes all the operating system buffers associated with file to the disk.

file The file descriptor of the file to flush.
This is an unapproved IEEE Standards Draft, subject to change.
847

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
File data is buffered in memory and only written to disk at certain times, such as when the file is closed. This
routine causes data to be written to the disk immediately, instead of later when the file is closed.

This can be useful if two processes are using the same disk file, for example, to make sure that the current
data from one process is written to the file before the other process reads from the file.

Example

The WrAndFlush() user-defined method in the following example opens a file named �ex_file.txt� as the
m_file variable, writes a line to the file, and then flushes the file�s buffer to disk. The RFile() user-defined
method then opens the same file for reading and reads its contents into the m_string variable.

The files.flush() routine writes the �AaBaCa 0123� string to the disk immediately, so that the read routine
can read it. If there were no files.flush() routine (or file.close() routine) following the write, the data would
not be in disk file when the read was done.

struct f_s_2 {
WrAndFlush(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "w", "Text file");
files.write(m_file, "AaBaCa 0123");
files.flush(m_file);

};
RFile(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "r", "Text file");
var r_chk: bool;
var m_string: string;
r_chk = files.read(m_file, m_string);
if r_chk then {print m_string}

else {out("file not read")};
};

};
extend sys {

f_si_2: f_s_2;
run() is also {

f_si_2.WrAndFlush("ex_file.txt");
f_si_2.RFile("ex_file.txt");

};
};

See Also

� �open()� on page 848
� �flush()� on page 847

26.4.4 open()

Purpose

Open a file for reading or writing or both

Category

Method
848 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax

files.open(file-name: string, mode: string, file-role: string): file

Syntax example:

var m_file: file;
m_file = files.open("a_file.txt", "r", "Text File");

Parameters

Description

Opens the file for reading, writing, both reading and writing, or append, according to mode (r, w, rw, a) and
returns the file descriptor of the file. The file-role is a description of the file, for example, �source file�.

If the file cannot be opened, an error like the following is issued.

*** Error: Cannot open file-role 'file-name' for mode

Example 1

The following example opens a file named �/users/a_file.txt� in write mode as file variable m_file, writes a
line to the file, and then closes the file.

struct f_3_str {
RdWrFile(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "w", "Text file");
files.write(m_file, "HEADER");
files.close(m_file);

};
};
extend sys {

fi_3: f_3_str;
run() is also {

fi_3.RdWrFile("/users/a_file.txt");
};

};

file-name The name of the file to open. Wild cards, ~, and $PATH are not allowed in the file
name. To use them to select files, see �add_file_type()� on page 844.

mode The read/write mode for the file. The mode may be one of the following.

r - open the file for reading.

w - open the file for writing (overwrite the existing contents)

rw - open the file for reading and writing (add to the end of the existing contents)

a - open the file for appending (add to the end of the existing contents)
file-role A text description used in error messages about the file.
This is an unapproved IEEE Standards Draft, subject to change.
849

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example 2

The following actions perform the same operations as Example 1, above.

var m_file: file;
m_file = files.open("/users/a_file.txt", "w", "Text file");
files.write(m_file, "HEADER");
files.close(m_file);

See Also

� �add_file_type()� on page 844
� �close()� on page 846
� �write()� on page 852

26.4.5 read()

Purpose

Read an ASCII line from a file

Category

Method

Syntax

files.read(file: file-descriptor, string-var: *string): bool

Syntax example:

r_b = files.read(f_desc, m_string);

Parameters

Description

Reads a line of text from a file into a string variable. The file must have been opened with �open()� on
page 848. The line from the file is read into the variable without the final \n newline character.

The routine returns TRUE on success. If the method cannot read a line (for example, if the end of the file is
reached), it returns FALSE.

The files.read() routine is a low level routine. For performance considerations, it is generally recommended
to use the for each line in file action, rather than this routine.

Example

The following example opens a file named �a_file.txt� as variable m_f, reads lines one by one from the file
into a variable named �m_string�, and displays each string as it reads it.

file The file descriptor of the file that contains the text to read.
string-var A variable into which the ASCII text will be read.
850 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct f_s_3 {
RFile(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "r", "Text file");
var r_chk: bool;
var m_string: string;
r_chk = files.read(m_file, m_string);
out("The first line is: ", m_string);
while files.read(m_file, m_string) {

out("The next line is: ", m_string);
};
files.close(m_file);

};
};
extend sys {

f_si_3: f_s_3;
run() is also {

f_si_3.RFile("ex_file.txt");
};

};

See Also

� �for each line in file� on page 545
� �open()� on page 848
� �read_lob()� on page 851
� �read_ascii_struct()� on page 874
� �read_binary_struct()� on page 875
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

26.4.6 read_lob()

Purpose

Read from a binary file into a list of bits

Category

Method

Syntax

files.read_lob(file: file-descriptor, size-in-bits: int): list of bit

Syntax example:

var m_file: file = files.open("a_file.dat", "r", "Data");
var b_l: list of bit;
b_l = files.read_lob(m_file, 32);

Parameters

file The file descriptor of the file to read from.
size-in-bits The number of bits to read. Should be a multiple of 8
This is an unapproved IEEE Standards Draft, subject to change.
851

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Reads data from a binary file into a list of bits and returns the list of bits. The file must already have been
opened with �open()� on page 848. To read an entire file, use UNDEF as the size-in-bits.

Example 1

The following example opens a file named �a_file.dat� with the file descriptor m_f, and reads the first 16
bits from the file into a list of bits named �b_list�.

struct f_4 {
b_list: list of bit;
RdLOB(ex_file: string) is {

var m_f: file = files.open(ex_file, "r", "Data");
b_list = files.read_lob(m_f, 16);
files.close(m_f);

};
};
extend sys {

fi_4: f_4;
run() is also {

fi_4.RdLOB("a_file.dat");
};

};

Example 2

The following actions perform the same operations as Example 1, above.

var m_f: file = files.open("a_file.dat", "r", "data file");
var b_list: list of bit = files.read_lob(m_f, 16);
files.close(m_f);

See Also

� �close()� on page 846
� �open()� on page 848
� �write_lob()� on page 853
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

26.4.7 write()

Purpose

Write a string to file

Category

Method

Syntax

files.write(file: file-descriptor, text: string)
852 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

files.write(m_file, "Test Procedure");

Parameters

Description

Adds a string to the end of an existing, open file. A new-line \n is added automatically at the end of the
string. The file must already have been opened using �open()� on page 848. If the file is not open, an error
message is issued.

If the file is opened in write mode (w), this routine overwrites the existing contents. To avoid overwriting the
existing file, open it in append mode (a).

NOTE� The >> concatenation operator can be used to append information to the end of a file.

Example

The following example opens a file named �/users/a_file.txt� in write mode as file variable m_file, writes
two lines to the file, and then closes the file.

struct f_s_5 {
WrFile(ex_file: string) is {

var m_file: file;
m_file = files.open(ex_file, "w", "Text file");
files.write(m_file, "FILE 1");
files.write(m_file, "Test 1");
files.close(m_file);

};
};
extend sys {

f_si_5: f_s_5;
run() is also {

f_si_5.WrFile("/users/a_file.txt");
};

};

See Also

� �close()� on page 846
� �open()� on page 848

26.4.8 write_lob()

Purpose

Write a list of bits to a binary file

file The file descriptor of the file to write into.
text The text to write to the file.
This is an unapproved IEEE Standards Draft, subject to change.
853

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Method

Syntax

files.write_lob(file: file-descriptor, bit-list: list of bit)

Syntax example:

var m_file: file = files.open("a_f.dat", "w", "My data");
var b_l: list of bit;
files.write_lob(m_file, b_l);

Parameters

Description

Writes all the bits in the bit list (whose size should be a multiple of 8) to the end of the file specified by file.
The file must already have been opened with �open()� on page 848.

Lists of bits are always written in binary format.

Example

The following example opens a file named �a_file.dat� as file descriptor m_f_1 in write mode (w). The
files.write_lob() routine writes the contents of a list of bits named �b_list� into the file.

The files.read_lob() routine reads the contents of the file into a variable named �b_2� as a list of bits, which
is then printed.

struct f_5_str {
RdWrLOB(ex_file: string) is {

var b_list: list of bit = {1; 0; 1; 1; 0; 1 ;1; 1};
var m_f_1: file = files.open(ex_file, "w", "Data");
files.write_lob(m_f_1, b_list);
files.close(m_f_1);

var b_2: list of bit;
var m_f_2: file = files.open(ex_file, "r", "Data");
b_2 = files.read_lob(m_f_2, 8);
print b_2 using radix=bin, list_starts_on_right=FALSE;

};
};
extend sys {

fi_5: f_5_str;
run() is also {

fi_5.RdWrLOB("a_file.dat");
};

};

The print action in the example above displays the following.

file The file descriptor of the file to write into.
bit-list A list of bits to write to the file. The size of the list must be a multiple of 8 bits.
854 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
b_2 = (8 items, bin):
0. 1 0 1 1 0 1 1 1

See Also

� �close()� on page 846
� �open()� on page 848
� �read_lob()� on page 851

26.4.9 writef()

Purpose

Write to a file in a specified format

Category

Pseudo-method

Syntax

files.writef(file: file-descriptor, format: string, item: exp, ...)

Syntax example:

var m_file: file = files.open("a_f.txt", "w", "My data");
var m_i := new m_struct_s;
writef(m_file, "Type: %s\tData: %s\n", m_i.s_type, m_i.data);

Parameters

Description

Adds a formatted string to the end of the specified file. No newline is automatically added. (Use �\n� in the
formatting mask to add a newline).

The file must already have been opened with �open()� on page 848, otherwise an error is issued.

If the number of items in the formatting mask is different than the number of item expressions, an error is
issued.

How the data is written to the file is affected by the open() mode �w� or �a� option and by whether or not the
file already exists, as follows:

� If the file did not previously exist and the �w� (write) option is used with open(), then writef() writes
the data into a new file.

� If the file did not previously exist and the �a� (append) option is used with open(), then no data is
written.

file The file descriptor of the file to write into.
format A string containing a standard C formatting mask for each item. See �Format String�

on page 765 for information about formatting masks.
item An e expression to write to the file.
This is an unapproved IEEE Standards Draft, subject to change.
855

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� If the file did previously exist and the �w� (write) option is used with open(), then writef() over-
writes the contents of the file.

� If the file did previously exist and the �a� (append) option is used with open(), then writef() appends
the data to the existing contents of the file.

Example

In the following example, a file named �pkts_file.txt� is opened in write (�w�) mode, with file descriptor
mypkts. The writef() pseudo-method writes the contents of a list of pkt_s structs to the pkts_file, using a
new line (\n) for each struct instance, with tabs (\t) after the struct instance name and the ptype field. The
struct instance and the ptype are written as strings (%s) and pdata is written as a number (%d).

<’
type pkt_t: [PKT1, PKT2, PKT3];
struct pkt_s {

ptype: pkt_t;
pdata: byte;

};
extend sys {

pkt_l[5]: list of pkt_s;
run() is also {

var mypkts: file = files.open("pkts_file.txt", "w", "");
for each (pkt) in pkt_l {

writef(mypkts, "Struct: %s\tType: %s\tData: %d\n",
pkt, pkt.ptype, pkt.pdata);

};
files.close(mypkts);

};
};
’>

Result

This is what the contents of the pkts_file.txt file look like:

Struct: pkt_s-@0 Type: PKT2 Data: 148
Struct: pkt_s-@1 Type: PKT3 Data: 198
Struct: pkt_s-@2 Type: PKT3 Data: 61
Struct: pkt_s-@3 Type: PKT2 Data: 18
Struct: pkt_s-@4 Type: PKT1 Data: 82

See Also

� �close()� on page 846
� �open()� on page 848
� �write()� on page 852
� �write_lob()� on page 853
� �Format String� on page 765

26.5 General File Routines

This section contains descriptions of the following routines.

� �file_age()� on page 857
� �file_append()� on page 858
856 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� �file_copy()� on page 859
� �file_delete()� on page 860
� �file_exists()� on page 861
� �file_extension()� on page 862
� �file_is_dir()� on page 863
� �file_is_link()� on page 864
� �file_is_readable()� on page 865
� �file_is_regular()� on page 866
� �file_is_temp()� on page 868
� �file_is_text()� on page 869
� �file_rename()� on page 870
� �file_size()� on page 871
� �new_temp_file()� on page 872
� �write_string_list()� on page 873

See Also

� �Low-Level File Routines� on page 843
� �Reading and Writing Structs� on page 874

26.5.1 file_age()

Purpose

Get a file�s modification date

Category

Method

Syntax

files.file_age(file-name: string): int

Syntax example:

var f_data: int;
f_data = files.file_age("f.txt");

Parameters

Description

Returns the modification date of the file as an integer. This routine can be used to compare the modification
dates of files. The integer returned by the routine is not recognizable as a date, but is a unique number
derived from the file�s modification date. If the modification date includes the time of day, the time is fac-
tored into the number the routine returns. Newer files produce larger numbers than older files.

If the file does not exist, an error like the following is issued.

*** Error: Internal error in file_age: 'file-name' does not exist

file-name The file whose age is to be found.
This is an unapproved IEEE Standards Draft, subject to change.
857

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Example

In the following example, the files.file_age() routine derives a number from the modification date of a file
whose variable is my_f. The routine is called twice in the run() method in the sys extension, once for each of
two files. The age numbers are printed and compared to find the largest.

struct f_6_str {
FAge(ex_file: string): int is {

var my_f: string;
var my_age: int;
my_f = files.add_file_type(ex_file, "", TRUE);
my_age = files.file_age(my_f);
outf("file name: %s, age: %d\n", ex_file, my_age);
return my_age;

}
};
extend sys {

fi_6: f_6_str;
run() is also {

var my_age_1: int = fi_6.FAge("f_1.e");
var my_age_2: int = fi_6.FAge("f_2.e");
var oldest: int = max(my_age_1, my_age_2);
print oldest;

};
};

The example above prints the following.

file name: f_1.e, age: 927860670
file name: f_2.e, age: 927860675
 oldest = 927860675

See Also

� �add_file_type()� on page 844

26.5.2 file_append()

Purpose

Append files

Category

Method

Syntax

files.file_append(from-file-name: string, to-file-name: string)

Syntax example:

files.file_append(f_1, f_2);
858 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Adds the contents of the file named from-file-name to the end of the file named to-file-name. If either of the
files does not exist, an error is issued.

NOTE� The >> concatenation operator can be used to append information to the end of a file.

Example

The following example appends the contents of f_2.txt to the end of f_1.txt.

struct f_7_str {
FAppend(ex_file_1: string, ex_file_2: string) is {

var my_f_1: string;
my_f_1 = files.add_file_type(ex_file_1, ".txt", TRUE);
var my_f_2: string;
my_f_2 = files.add_file_type(ex_file_2, ".txt", TRUE);
files.file_append(my_f_1, my_f_2);

}
};
extend sys {

fi_7: f_7_str;
run() is also {

fi_7.FAppend("f_2.txt", "f_1.txt");
};

};

See Also

� �add_file_type()� on page 844

26.5.3 file_copy()

Purpose

Create a copy of a file

Category

Method

Syntax

files.file_copy(from-file-name: string, to-file-name: string)

Syntax example:

files.file_copy("file_1.txt", "tmp_file.txt");

from-file-name The name of the file that will be appended to the to-file.
to-file-name The name of the file to which the from-file will be appended.
This is an unapproved IEEE Standards Draft, subject to change.
859

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Makes a copy of the file named from-file-name, with the name to-file-name. If a files already exists with the
to-file-name, the contents of that file are replaced by the contents of the file named from-file-name. If the
file named from-file-name does not exist, an error is issued.

Example

The following example copies the contents of f_1.txt into f_1.bak.

struct f_str_8 {
FCp(ex_file_1: string, ex_file_2:string) is {

files.file_copy(ex_file_1, ex_file_2);
};

};
extend sys {

fi_8: f_str_8;
run() is also {

fi_8.FCp("f_1.txt", "f_1.bak");
};

};

See Also

� �file_rename()� on page 870

26.5.4 file_delete()

Purpose

Delete a file

Category

Method

Syntax

files.file_delete(file-name: string)

Syntax example:

files.file_delete("run_1.log");

Parameters

from-file-name The name of the file to copy.
to-file-name The name of the copy of the file.

file-name The file to be deleted.
860 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Description

Deletes a specified file. If the file cannot be found, an error like the following is issued.

*** Error: No match for file 'run_1.log'

Example

The following example deletes the f_1.txt file.

struct f_str_9 {
FDel(ex_file: string) is {

var my_f_1: string;
my_f_1 = files.add_file_type(ex_file, ".txt", TRUE);
files.file_delete(my_f_1);

};
};
extend sys {

fi_9: f_str_9;
run() is also {

fi_9.FDel("f_1.txt");
};

};

See Also

� �file_exists()� on page 861

26.5.5 file_exists()

Purpose

Check if a file exists

Category

Method

Syntax

files.file_exists(file-name: string): bool

Syntax example:

var f_e: bool;
f_e = files.file_exists("file_1.e");

Parameters

file-name The name of the file to be checked.
This is an unapproved IEEE Standards Draft, subject to change.
861

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Description

Check if the file-name exists in the file system. Return TRUE if the file exists or issues an error if it does not
exist. Also returns TRUE if the file is a directory. The routine does not check whether the file is readable or
not.

NOTE� This routine only checks for the existence of a file with the exact name you specify. For
a routine that can check for multiple similarly named files, see �add_file_type()� on page 844.

Example

The following example prints �file f_1.txt exists� if there is a file named �f_1.txt� in the current directory. If
the file does not exist, an error is issued.

struct f_str_10 {
FEx(ex_file: string) is {

var my_f_1: string;
my_f_1 = files.add_file_type(ex_file, ".txt", TRUE);
var f_exists: bool;
f_exists = files.file_exists(my_f_1);
if f_exists then {outf("file %s exists\n", my_f_1)};

};
};
extend sys {

fi_10: f_str_10;
run() is also {

fi_10.FEx("f_1.txt");
};

};

See Also

� �add_file_type()� on page 844
� �file_is_dir()� on page 863
� �file_is_readable()� on page 865
� �file_is_regular()� on page 866
� �file_is_link()� on page 864
� �file_is_text()� on page 869
� Table 3-4 on page 105, for information about type conversion between scalar types

26.5.6 file_extension()

Purpose

Get the extension of a file

Category

Method

Syntax

files.file_extension(file-name: string): string

Syntax example:
862 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
var f_ext: string;
f_ext = files.file_extension("f_1.exa");

Parameters

Description

Returns a string containing the file extension, which is the sequence of characters after the last period (.).

Example

The following example prints �get_ext = �.bak��.

struct f_str_11 {
FExten(ex_file: string) is {

var get_ext: string;
get_ext = files.file_extension(ex_file);
print get_ext;

};
};
extend sys {

fi_11: f_str_11;
run() is also {

fi_11.FExten("f_1.bak");
};

};

See Also

� �add_file_type()� on page 844
� �file_exists()� on page 861
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between strings and scalar types

26.5.7 file_is_dir()

Purpose

Check if a file is a directory

Category

Method

Syntax

files.file_is_dir(file-name: string): bool

Syntax example:

var is_d: bool;
is_d = files.file_is_dir("a_fil");

file-name The name of the file.
This is an unapproved IEEE Standards Draft, subject to change.
863

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Parameters

Description

Returns TRUE if the file exists and is a directory. Returns FALSE if the file does not exist or is not a direc-
tory.

Example

The following example prints TRUE if f_1 is a directory, or FALSE if f_1 does not exist or if it is not a
directory.

struct f_str_12 {
F_is_Dir(ex_file: string) is {

var is_dir: bool;
is_dir = files.file_is_dir(ex_file);
outf("%s is_dir = %s\n", ex_file, is_dir);

};
};
extend sys {

fi_12: f_str_12;
run() is also {

fi_12.F_is_Dir("f_1");
};

};

See Also

� �file_exists()� on page 861
� �file_is_link()� on page 864
� �file_is_readable()� on page 865)
� �file_is_regular()� on page 866
� �file_is_temp()� on page 868
� �file_is_text()� on page 869
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalar types

26.5.8 file_is_link()

Purpose

Check if a file is a symbolic link

Category

Method

Syntax

files.file_is_link(file-name: string): bool

file-name The name of the file to be checked.
864 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Syntax example:

var is_l: bool;
is_l = files.file_is_link("a_fil");

Parameters

Description

Returns TRUE if the file exists and is a symbolic link. Returns FALSE if the file does not exist or is not a
symbolic link.

Example

The following example prints TRUE if f_1 is a symbolic link, or FALSE if f_1 does not exist or if it is not a
symbolic link.

struct f_str_13 {
F_is_Link(ex_file: string) is {

var is_link: bool;
is_link = files.file_is_link(ex_file);
outf("%s is_link = %s\n", ex_file, is_link);

};
};
extend sys {

fi_13: f_str_13;
run() is also {

fi_13.F_is_Link("f_1");
};

};

See Also

� �file_exists()� on page 861
� �file_is_dir()� on page 863
� �file_is_readable()� on page 865)
� �file_is_regular()� on page 866
� �file_is_temp()� on page 868
� �file_is_text()� on page 869
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

26.5.9 file_is_readable()

Purpose

Check if a file is readable

Category

Method

file-name The name of the file to be checked.
This is an unapproved IEEE Standards Draft, subject to change.
865

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

files.file_is_readable(file-name: string): bool

Syntax example:

var is_rd: bool;
is_rd = files.file_is_readable("a_fil");

Parameters

Description

Returns TRUE if the file exists and is readable. Returns FALSE if the file does not exist or is not readable.

Example

The following example prints TRUE if f_1.dat is readable, or FALSE if f_1.dat does not exist or if it is not
readable.

struct f_str_14 {
F_is_Readable(ex_file: string) is {

var is_readable: bool;
is_readable = files.file_is_readable(ex_file);
outf("%s is_readable = %s\n", ex_file, is_readable);

};
};
extend sys {

fi_14: f_str_14;
run() is also {

fi_14.F_is_Readable("f_1.dat");
};

};

See Also

� �file_exists()� on page 861
� �file_is_dir()� on page 863
� �file_is_link()� on page 864)
� �file_is_regular()� on page 866
� �file_is_temp()� on page 868
� �file_is_text()� on page 869
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

26.5.10 file_is_regular()

Purpose

Check if a file is a regular file (not a directory or link)

file-name The name of the file to be checked.
866 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Category

Method

Syntax

files.file_is_regular(file-name: string): bool

Syntax example:

var is_rg: bool;
is_rg = files.file_is_regular("a_fil");

Parameters

Description

Returns TRUE if the file exists and is a regular file. Returns FALSE if the file does not exist or if it is a
directory or a symbolic link.

Example

The following example prints TRUE if f_1 is a regular file, or FALSE if f_1 does not exist or if it is a link or
directory.

struct f_str_15 {
F_is_Regular(ex_file: string) is {

var is_regular: bool;
is_regular = files.file_is_regular(ex_file);
outf("%s is_regular = %s\n", ex_file, is_regular);

};
};
extend sys {

fi_15: f_str_15;
run() is also {

fi_15.F_is_Regular("f_1");
};

};

See Also

� �file_exists()� on page 861
� �file_is_dir()� on page 863
� �file_is_link()� on page 864
� �file_is_readable()� on page 865)
� �file_is_temp()� on page 868
� �file_is_text()� on page 869
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

file-name The name of the file to be checked.
This is an unapproved IEEE Standards Draft, subject to change.
867

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
26.5.11 file_is_temp()

Purpose

Check if a file name starts with �/tmp�

Category

Method

Syntax

files.file_is_temp(file-name: string): bool

Syntax example:

var is_tmp: bool;
is_tmp = files.file_is_temp("a_fil");

Parameters

Description

Returns TRUE if the file name starts with �/tmp�, otherwise returns FALSE.

Example

The following example prints �/tmp/f_1.dat is_temp = TRUE�.

struct f_str_16 {
F_is_Temp(ex_file: string) is {

var is_temp: bool;
is_temp = files.file_is_temp(ex_file);
outf("%s is_temp = %s\n", ex_file, is_temp);

};
};
extend sys {

fi_16: f_str_16;
run() is also {

fi_16.F_is_Temp("/tmp/f_1.dat");
};

};

See Also

� �new_temp_file()� on page 872
� �file_exists()� on page 861
� �file_is_dir()� on page 863
� �file_is_link()� on page 864
� �file_is_readable()� on page 865)
� �file_is_regular()� on page 866
� �file_is_text()� on page 869

file-name The name of the file to be checked.
868 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information
about type conversion between scalar types

26.5.12 file_is_text()

Purpose

Check if a file is a text file

Category

Method

Syntax

files.file_is_text(file-name: string): bool

Syntax example:

var is_txt: bool;
is_txt = files.file_is_text("a_fil");

Parameters

Description

Returns TRUE if the file is a text file (that is, if it contains more than 20% printable characters). Returns
FALSE if the file does not exist or if it is a not a text file.

Example

The following example prints TRUE if f_1.dat is a text file, or FALSE if f_1.dat does not exist or if it is not
a text file.

struct f_str_17 {
F_is_Text(ex_file: string) is {

var is_text: bool;
is_text = files.file_is_text(ex_file);
outf("%s is_text = %s\n", ex_file, is_text);

};
};
extend sys {

fi_17: f_str_17;
run() is also {

fi_17.F_is_Text("f_1.dat");
};

};

See Also

� �file_exists()� on page 861
� �file_is_dir()� on page 863
� �file_is_link()� on page 864

file-name The name of the file to be checked.
This is an unapproved IEEE Standards Draft, subject to change.
869

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �file_is_readable()� on page 865)
� �file_is_regular()� on page 866
� �file_is_temp()� on page 868
� Table 3-4, �Type Conversion Between Scalars and Lists of Scalars�, on page 105, for information

about type conversion between scalar types

26.5.13 file_rename()

Purpose

Rename a file

Category

Method

Syntax

files.file_rename(from-file-name: string, to-file-name: string)

Syntax example:

files.file_rename("f_1.exa", "b_1.exa");

Parameters

Description

Renames the file named from-file-name to to-file-name. If any files already exists with to-file-name, that
file is overwritten by the contents of the file named from-file-name.

If the file or directory is not writable, an error is issued.

Example

The following example changes the name of the f_1.dat file to f_old.dat. If the f_1.dat file does not exist, the
files.add_file_type() routine issues an error.

struct f_str_18 {
FRename(ex_file_1: string, ex_file_2:string) is {

var m_f: string;
m_f = files.add_file_type(ex_file_1, "", TRUE);
files.file_rename (m_f, ex_file_2);

};
};
extend sys {

fi_18: f_str_18;
run() is also {

fi_18.FRename("f_1.dat", "f_old.dat");
};

};

from-file-name The file to rename.
to-file-name The new file name.
870 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �add_file_type()� on page 844
� �file_copy()� on page 859

26.5.14 file_size()

Purpose

Get the size of a file

Category

Method

Syntax

files.file_size(file-name: string): int

Syntax example:

var f_s: int;
f_s = files.file_size("a_file.txt");

Parameters

Description

Returns the integer number of bytes in the file. If the file does not exist, an error is issued.

Example

The following example gets and displays the number of bytes in the file named �f_1.dat�.

struct f_str_19 {
FGetSize(ex_file: string) is {

var m_f: string;
m_f = files.add_file_type(ex_file, "", TRUE);
var f_size: int;
f_size = files.file_size (m_f);
outf("%s size is %d\n", m_f, f_size);

};
};
extend sys {

fi_19: f_str_19;
run() is also {

fi_19.FGetSize("f_1.dat");
};

};

See Also

� �add_file_type()� on page 844

file-name The name of the file.
This is an unapproved IEEE Standards Draft, subject to change.
871

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
� �file_age()� on page 857

26.5.15 new_temp_file()

Purpose

Create a unique temporary file name

Category

Method

Syntax

files.new_temp_file(): string

Syntax example:

var t_name: string;
t_name = files.new_temp_file()

Description

Computes a file name. Each file name this routine produces contains the name of the process, so names are
unique across processes. Returns a string with a period at the end.

The files are saved in the /tmp directory.

This routine only creates a file name. To create a file with this name, use the files.open() routine.

Example

The example below creates two file names in the /tmp directory and prints them.

struct f_str_20 {
FMkTmp() is {

var t_name_1: string;
t_name_1 = files.new_temp_file();
print t_name_1;
var t_name_2: string;
t_name_2 = files.new_temp_file();
print t_name_2;

};
};
extend sys {

fi_20: f_str_20;
run() is also {

fi_20.FMkTmp();
};

};

The example above prints the following.

 t_name_1 = "/tmp/proc5924/snt_5924_12698."
 t_name_2 = "/tmp/proc5924/snt_5924_12699."
872 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �file_is_temp()� on page 868
� �open()� on page 848
� Table 3-5, �Type Conversion Between Strings and Scalars or Lists of Scalars�, on page 107, for

information about type conversion between strings and scalar types

26.5.16 write_string_list()

Purpose

Write a list of strings to a file

Category

Method

Syntax

files.write_string_list(file-name: string, strings: list of string)

Syntax example:

var s_list:= {"a string"; "another string"};
files.write_string_list("a_file.txt", s_list);

Parameters

Description

Writes a list of strings into a file. Every string is written on a separate line in the file, with \n appended to the
end of the string. If the file already exists, it is overwritten.

If the list of strings contains a NULL, an error is issued.

Example

The following example writes three lines of text into a file named �f_1.txt�.

struct f_str_21 {
FWrStr(ex_file: string, str_list: list of string) is {

var m_f: string;
m_f = files.add_file_type(ex_file, "", TRUE);
files.write_string_list(ex_file, str_list);

};
};
extend sys {

fi_21: f_str_21;
run() is also {

var fname:string;
fname = "f_1.txt";

file-name The file name to write into.
strings A list of strings to write to the file.
This is an unapproved IEEE Standards Draft, subject to change.
873

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
var strlist: list of string;
strlist = {"first line"; "second line"; "third line"};
fi_21.FWrStr(fname, strlist);

};
};

See Also

� �open()� on page 848
� �write()� on page 852
� �write_lob()� on page 853
� �write_ascii_struct()� on page 877
� �write_binary_struct()� on page 880

26.6 Reading and Writing Structs

Structs in e can be read from files and written to files in either binary or ASCII format.

The routines that read structs from files and write structs to files are listed below and described in this sec-
tion.

� �read_ascii_struct()� on page 874
� �read_binary_struct()� on page 875
� �write_ascii_struct()� on page 877
� �write_binary_struct()� on page 880

See Also

� �General File Routines� on page 856
� �Low-Level File Routines� on page 843

26.6.1 read_ascii_struct()

Purpose

Read ASCII file data into a struct

Category

Method

Syntax

files.read_ascii_struct(file-name: string, struct: struct-type): struct

Syntax example:

var a_str: s_struct;
a_str = files.read_ascii_struct("a_s.out",

"s_struct").as_a(s_struct);
874 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Parameters

Description

Reads the ASCII contents of file-name into a struct of type struct, and returns a struct. The struct being read
must be cast to the correct data type (see �as_a()� on page 104). If the file does not exist, an error is issued.

Example

The following example creates a variable named �str� to hold an instance of the s_st struct type, reads ASCII
contents of a file named �a_s.out� into the struct variable, and prints the contents.

struct s_st {
len: int;
hdr: string;
b_l: list of bool;

};
struct r_st {

r_file() is {
var str: s_st;
str = files.read_ascii_struct("a_s.out",

"s_st").as_a(s_st);
print str;

};
run() is also {

r_file();
};

};
extend sys {

ri: r_st;
};

See Also

� �read()� on page 850
� �read_lob()� on page 851
� �file_is_readable()� on page 865
� �read_binary_struct()� on page 875
� �write_ascii_struct()� on page 877

26.6.2 read_binary_struct()

Purpose

Read the contents of a binary file into a struct

Category

Method

file-name The name of the file to read from. The file may have been created either with
files.write_ascii_struct() or in a similar format with an editor.

struct The struct type to read data into.
This is an unapproved IEEE Standards Draft, subject to change.
875

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

files.read_binary_struct(file-name: string, struct: struct-type,
check-version: bool): struct

Syntax example:

var b_str: s_struct;
b_str = files.read_binary_struct("b.out", "s_struct",

 TRUE).as_a(s_struct);

Parameters

Description

Reads the binary contents of file-name into a struct of the specified type, and returns a struct. The struct
being read must be cast to the correct data type (see �as_a()� on page 104).

If check-version is FALSE, the routine can run even if the order of fields in the file struct is different from
the order of fields in the currently running e module. If check-version is TRUE, an error is issued if the
struct definition has been changed in any way since the struct was written to the file.

Example

The following example creates a variable named �str� to hold an instance of the s_st struct type, reads binary
contents of a file named �b_s.out� into the struct variable, and prints the contents. The check-version param-
eter is set to TRUE to issue an error if the b_s.out file struct does not exactly match the s_st definition. The
b_s.out binary struct file was created previously by �write_binary_struct()� on page 880.

struct s_st {
len: int;
hdr: string;
b_l: list of bool;

};
struct r_st {

r_file() is {
var str: s_st;
str = files.read_binary_struct("b_s.out", "s_st",

TRUE).as_a(s_st);
print str;

};
run() is also {

r_file();
};

};
extend sys {

ri: r_st;
};

file-name The name of the file to read from. The file must have been created by
�write_binary_struct()� on page 880.

struct The struct type to read data into.
check-version Set to TRUE to compare the contents of the file being read with the definition

of the struct in the currently running module. Set to FALSE to allow minor
changes.
876 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �read()� on page 850
� �read_lob()� on page 851
� �file_is_readable()� on page 865
� �read_ascii_struct()� on page 874
� �write_ascii_struct()� on page 877

26.6.3 write_ascii_struct()

Purpose

Write the contents of a struct to a file in ASCII format

Category

Method

Syntax

files.write_ascii_struct(file-name: string, struct: struct, comment: string,
indent: bool, depth: int, max-list-items: int)

Syntax example:

files.write_ascii_struct("a_file.dat", a_str, "my_struct",
TRUE, 2, 10);

Parameters

Description

Recursively writes the contents of the struct to the file-name in ASCII format. If the struct contains other
structs, those structs are also written to the file. If the number of hierarchical levels contained in the struct is
greater than the specified depth, levels below the depth level are represented by ellipses (...) in the ASCII
file.

If the file already exists, it is overwritten.

This routine will not write any of the e program internal structs. It will write the sys struct, but not any pre-
defined structs within sys.

The .erd default file name extension is automatically added to the file name only if the file name you specify
has no extension and does not end with �.� (a period). That is, if you enter �myfile�, the file name becomes

file-name The name of the file to write into. If you do not specify a file name exten-
sion, the default extension is .erd, which stands for e-readable data.

struct The name of the struct instance to write to the file.
comment A string for a comment at the beginning of the file.
indent Boolean selector for indentation to the struct�s field depth.
depth The number of levels of nested structs to write.
max-list-items For lists, how many items from each list to write.
This is an unapproved IEEE Standards Draft, subject to change.
877

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
�myfile.erd�. If you enter �myfile.�, the file is named �myfile.�. If you enter �myfile.out�, the file is named
�myfile.out�.

Example

In the following example, there are three levels of hierarchy under the sys struct: the w_st struct contains a
s_st struct, which contains a list of dat_s structs. The ss_i instance of the s_st struct is written to an ASCII
file with these options:

� The comment �My ASCII struct� is placed at the top of the file.
� Indentation of the struct�s fields is TRUE.
� Only the highest hierarchical level of structs is written (depth = 1).
� The first three items in lists are written.
struct dat_s {

dat_l: list of uint;
keep dat_l.size() == 5;

};
struct s_st {

ds_l: list of dat_s;
keep ds_l.size() == 6;
len: int;
hdr: string;
b_l: list of bool;

};
struct w_st {

ss_i: s_st;
wr_file() is {

files.write_ascii_struct("a_s.out", ss_i,
"My ASCII struct", TRUE, 1, 3);

};
run() is also {

wr_file();
};

};
extend sys {

wi: w_st;
};

The following is the a_s.out file created by the example above.

-- My ASCII struct
-- The top struct
struct: s_st-@0{
 ds_l:
 -- struct: ...
 -- struct: ...
 -- struct: ...
 -- ds_l[3..5] ...
 };
 len: -2025306869
 hdr: ""
 b_l:
 FALSE
 TRUE
 FALSE
 -- b_l[3..3] ...
 };
878 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
};

Changing depth from 1 to 2 in the example above adds a level of hierarchy to the results, which produces the
following file.

-- My ASCII struct
-- The top struct
struct: s_st-@0{
 ds_l:
 -- ds_l[0]
 struct: dat_s-@1{
 -- root___unit: ...
 dat_l:
 4166871515
 381462224
 2293917550
 -- dat_l[3..4] ...
 };
 };
 -- ds_l[1]
 struct: dat_s-@2{
 -- root___unit: ...
 dat_l:
 3680934570
 495418143
 1152908095
 -- dat_l[3..4] ...
 };
 };
 -- ds_l[2]
 struct: dat_s-@3{
 -- root___unit: ...
 dat_l:
 1924257378
 1889370393
 3534009340
 -- dat_l[3..4] ...
 };
 };
 -- ds_l[3..5] ...
 };
 len: -2025306869
 hdr: ""
 b_l:
 FALSE
 TRUE
 FALSE
 -- b_l[3..3] ...
 };
};

See Also

� �write()� on page 852
� �write_lob()� on page 853
� �read_ascii_struct()� on page 874
� �write_binary_struct()� on page 880
This is an unapproved IEEE Standards Draft, subject to change.
879

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
26.6.4 write_binary_struct()

Purpose

Write the contents of a struct to a file in binary format

Category

Method

Syntax

files.write_binary_struct(file-name: string, struct: struct)

Syntax example:

files.write_binary_struct("b_file.dat", b_str);

Parameters

Description

Recursively writes the contents of the struct to the file-name in binary format. If the struct contains other
structs, those structs are also written to the file. If the file already exists, it is overwritten.

Example

The following example creates a struct instance named �str� and writes the struct�s contents in binary format
to a file named �b_s.out�.

struct s_st {
len: int;
hdr: string;
b_l: list of bool;

};
struct w_st {

wr_file() is {
var str := a new s_st with {

.len = 1;

.hdr = "top";

.b_l = { TRUE; FALSE; TRUE };
};
files.write_binary_struct("b_s.out", str);

};
run() is also {

wr_file();
};

};
extend sys {

wi: w_st;
};

file-name The name of the file to write structs into.
struct The name of the struct instance to write to the file.
880 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
See Also

� �write()� on page 852
� �write_lob()� on page 853
� �read_binary_struct()� on page 875
� �write_ascii_struct()� on page 877
This is an unapproved IEEE Standards Draft, subject to change.
881

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
882 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
27 State Machines Library

This chapter contains descriptions of how to create state machines and of the constructs used in them. It con-
tains the following sections.

� �State Machine Overview� on page 883
� �State Machine Constructs� on page 883
� �Sample State Machine� on page 888
� �Using State Machines� on page 889

See Also

� �Invoking Methods� on page 474
� �e Data Types� on page 75

27.1 State Machine Overview

The e language state machine action provides constructs for modeling state machines in e .

A state machine definition consists of the state machine action followed by a state holder expression and a
block that specifies the ways the state machine can get from one state to another (see �state machine� on
page 883).

State machines can be defined only within time-consuming methods (TCMs). When the execution of a TCM
reaches a state machine action, the appropriate series of state transitions occurs, and then the state machine
exits. At this point the TCM continues from the action following the state machine action.

See Also

� �State Machine Constructs� on page 883
� �Sample State Machine� on page 888
� �Using State Machines� on page 889

27.2 State Machine Constructs

The e state machine constructs are used to define state machines and the transitions between their states.
This section contains descriptions of the following constructs.

� �state machine� on page 883
� �state => state� on page 886
� �* => state� on page 887
� �state action� on page 887

27.2.1 state machine

Purpose

Define a state machine
This is an unapproved IEEE Standards Draft, subject to change.
883

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Category

Action

Syntax

state machine state-holder-exp [until final-state]
{(state-transition | state) {action; ...}; ...}

Syntax example:

!c_proc: [st, dn];
s_m()@sys.clk is {

state machine c_proc until dn {
*=> st {wait rise('top.rst'); wait [2]*cycle};
st => dn {out("going to dn"); wait [3]*cycle;};

};
};

Parameters

Description

Defines a state machine using an enumerated state-holder-exp to hold the current state of the machine.

The state machine must be defined in a time-consuming method (TCM). When the state machine action is
reached, the state machine starts, in the first state listed in the enumerated state holder expression type defi-
nition.

During the execution of the state machine action the current state is stored in the state-holder-exp.

If the optional until final-state exit condition is used, the state machine runs until that state is reached. The
final state must be one of the enumerated values declared with the state machine name.

If the until clause is not used, the state machine runs until the TCM is terminated, or, if the state machine is
in an all of or first of action, it runs until the all of or first of action completes (see �Terminating a State
Machine� on page 890).

state-holder-exp Stores the current state of the state machine. This can be a variable in the current
TCM, a field under sys, or any assignable expression. It typically is an enumer-
ated type field of the struct in which the TCM is defined.

final-state The state at which the state machine terminates.
state-transition A state transition, which occurs when the associated action block finishes. See

�state => state� on page 886 and �* => state� on page 887.
state A state. When this state is entered, the associated action block is invoked. See

�state action� on page 887.
action; ... One of the following:

� An action block which, upon completion, causes the transition to occur,
if the state-transition syntax is used.

� An action block that is to be performed when the given state is entered,
if the state syntax is used.
884 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The state-transition block is a list of the allowed transitions between states of the state machine. Each state
transition contains an action block that defines conditions that cause the transition to occur. Typically, the
action block contains a single wait until action. However, it can contain any block of actions. For example,

x => y {wait until @named_event_1; wait until @named_event_2};

The transition only occurs after both events happen, in order.

The action block can contain a regular method, as in the following.

x => y {wait until change(p_clk); me.packet.bb_operations()};

Once change(p_clk) happens, the method executes immediately, and then the transition occurs.

Example

In the following example, the struct field expression used for the state machine is the �status� field declara-
tion. The state machine name is �status�, and its possible states are �start� and �done�. The state machine is
defined in the �sm_meth()� TCM. It has a final state of �done�, meaning the state machine terminates when
it enters the �done� state.

Since the �start� field is listed first in the list of states, that is the initial state for the state machine. The state
changes from �start� to �done� two �sys.smclk� cycles after it enters the �start� state. Upon entering the
�done� state, the state machine exits. The out() action is executed after the state machine exits.

struct smp_state_machine{
!status: [start, done];
sm_meth() @sys.smclk is {

state machine status until done {
start => done {wait [2]*cycle};

};
out("The status state machine is done");

};
};

A more complex state machine is shown below. The name of the state machine is �arbiter_state�, and it is
declared with states �idle�, �busy�, �grant�, and �reject�.

This state machine has no �until finish-state� exit condition, so it runs until it the �watcher()� TCM is termi-
nated.

The �* => idle� syntax means �from any other state to the idle state�. The condition for this transition is that
10 cycles of �sys.pclk� have elapsed since the state machine entered the any state.

struct bus {
!arbiter_state: [idle, busy, grant, reject];
watcher() @sys.pclk is {

wait [3]*cycle;
state machine arbiter_state {

idle => busy {wait @sys.req};
busy => grant {wait [2]*cycle};
busy => reject {wait @sys.bad_pkt};
* => idle {wait [10]*cycle};

};
};

};
This is an unapproved IEEE Standards Draft, subject to change.
885

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
See Also

� �State Machine Overview� on page 883
� �state => state� on page 886
� �* => state� on page 887
� �state action� on page 887

27.2.2 state => state

Purpose

One-to-one state transition

Category

State transition

Syntax

current-state=>next-state {action; ...}

Syntax example:

begin => run {wait [2]*cycle; out("Run state entered")};

Parameters

Description

Specifies how a transition occurs from one state to another. The action block starts executing when the state
machine enters the current state. When the action block completes, the transition to the next state occurs.

Example

The example below shows a definition of a transition for the �initial� state to the �running� state. If the
'top.start' HDL signal changes while the state machine is in the �initial� state, the state changes to �running�.

initial => running {wait until change('top.start')@sim};

See Also

� �State Machine Overview� on page 883
� �state machine� on page 883
� �* => state� on page 887
� �state action� on page 887

current-state The state from which the transition starts.
next-state The state to which the transition changes.
action; ... The sequence of actions that precede the transition. It usually contains at least one

time-consuming action.
886 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
27.2.3 * => state

Purpose

Any-to-one state transition

Category

State transition

Syntax

*=>next-state {action; ...}

Syntax example:

* => pause {wait @sys.restart; out("Entering pause state");};

Parameters

Description

Specifies how a transition occurs from any defined state to a particular state. The action block starts execut-
ing when the state machine enters a new state. When the action block completes, the transition to the next
state occurs.

Example

The example below shows a definition of a transition for any state to the �running� state. From any state, if
the 'top.start' HDL signal rises and later the 'top.hold' signal falls, the state changes to �running�.

* => running { wait until rise('top.start')@pclk;
wait until fall('top.hold')@pclk };

See Also

� �State Machine Overview� on page 883
� �state machine� on page 883
� �state => state� on page 886
� �state action� on page 887

27.2.4 state action

Purpose

Execute actions upon entering a state, with no state transition

Category

State action block

next-state The state to which the transition changes.
action; ... The sequence of actions that precede the transition. It usually contains at least one

time-consuming action.
This is an unapproved IEEE Standards Draft, subject to change.
887

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax

current-state {action; ...}

Syntax example:

* => run {out("* to run"); wait cycle};
run {out("In run state"); wait cycle; out("Still in run");};
run => done {out("run to done"); wait cycle};

Parameters

Description

Specifies an action block that is executed when a specific state is entered. No transition occurs when the
action block completes. The state machine stays in the current state until some other transition takes place.

Example

The last two lines in the following example contain an action block that is to be executed when the state
machine enters the �running� state. The �while TRUE ...� action means that as long as the state machine is
in the �running� state, the out() action is executed every cycle.

state machine sm_1 until done {
initial => running { wait until rise('top.a') };
initial => done { wait until change('top.r1');

wait until rise('top.r2') };
running => initial { wait until rise('top.b') };

running {
out("Entered running state");

while TRUE {wait cycle; out("still running");}
};

};

See Also

� �State Machine Overview� on page 883
� �state machine� on page 883
� �state => state� on page 886
� �* => state� on page 887

27.3 Sample State Machine

The following example shows a single state machine. The state machine is declared in the �sm_1� field, with
possible states named �initial�, �running�, and �done�.

struct exa_1_state_machine {
!sm_1: [initial, running, done];
tcm_1()@sys.sm_clk is {

wait [10]*cycle;

current-state The state for which the action block is to be executed.
action; ... The sequence of actions that is executed upon entering the current state. It usually

contains at least one time-consuming action.
888 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
state machine sm_1 until done {
initial => running { wait until rise('top.a') };
initial => done { wait until change('top.r1');

wait until rise('top.r2') };
running => done {wait until fall('top.b')};

 running {while TRUE {out("Running"); wait cycle}};
};
out("tcm_1 finished");

};
};

The �sm_1� state machine is defined in the �tcm_1()� TCM. Note that the TCM contains other actions
besides the state machine. There is a 10-cycle wait before the state machine starts, and an out() that is exe-
cuted after the state machine is finished.

The �until done� clause means that the state machine will run until it reaches the �done� state.

The transition definitions are as follows:

See Also

� �State Machine Overview� on page 883
� �State Machine Constructs� on page 883
� �Using State Machines� on page 889

27.4 Using State Machines

This section contains the following topics.

� �Initializing a State Machine� on page 889
� �Terminating a State Machine� on page 890
� �Rules for State Transitions� on page 891
� �Nested State Machines� on page 892
� �Parallel State Machines� on page 892

27.4.1 Initializing a State Machine

State machines start by default in the first state specified in the enumerated type definition of the state-
holder-exp (see �State Machine Overview� on page 883). In the following, the starting state for state
machine �sm_2� is �initial� because that is the first state listed in the �sm_2� type definition.

struct exa_2_state_machine{

initial => running A rise of the 'top.a' HDL signal causes a transition from �initial� to �run-
ning�.

initial => done A change in the 'top.r1' signal followed eventually by a rise in the 'top.r2'
signal causes a transition from �initial� to �done�.

running => done A fall of the 'top.b' signal causes a transition from �running� to �done�.
running When the state machine enters the �running� state, continuously execute the

�{out(�Running�); wait cycle};� action block until the state changes.
This is an unapproved IEEE Standards Draft, subject to change.
889

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
!sm_2: [initial, running, done];
tcm_2()@sys.sm_clk is {

state machine sm_2 until done {
// ...

};
};

};

If the state machine is entered several times in the same TCM, it is initialized to the starting state each time
it is entered. A state machine can be re-entered if it is nested in another state machine or if it is enclosed in a
loop. Conditional initialization of the state machine can be performed within the state machine as shown in
the following.

struct exa_2_state_machine{
!sm_2: [initial, init_cond, init_no_cond, running, done];
tcm_2()@sys.sm_clk is {

state machine sm_2 until done {
initial => init_cond {sync true(cond);};
initial => init_no_cond {sync true(not cond);};
// ...

};
};

};

See Also

� �State Machine Overview� on page 883

27.4.2 Terminating a State Machine

You can terminate a state machine in any of the following ways.

� Specify a final state in an until clause.
� Enclose the state machine within a first of action.
� Terminate the TCM using the quit() method.

A state machine defined as follows will exit when it reaches the �done� state. The TCM continues execution.

struct exa_3_state_machine{
!sm_3: [initial, running, done];
tcm_3()@sys.tclk is {

state machine sm_3 until done {
// ...

};
// ...

};
};

The following state machine is enclosed in a first of action. The other thread of the first of action terminates
after wait [MAXN] * cycle. If the state machine runs for MAXN cycles, the wait thread finishes and the
TCM terminates.

struct exa_4_state_machine {
!sm_4: [initial, running, done];
tcm_4()@sys.tclk is {

first of {
890 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
{wait [MAXN]*cycle;};
{state machine sm_4 {

// ...
};

};
// ...

};
};

};

The quit() method of the struct can be used in another TCM to terminate all active TCMs and their state
machines. This method cannot be used to terminate only one of several active TCMs, nor can it terminate a
state machine while allowing the TCM to continue executing. In the following example, a TCM in sys calls
the quit() method of the �exa_4_state_machine� instance, which terminates the �tcm_4()� TCM and the
state machine.

struct exa_4_state_machine{
!sm_4: [initial, running, done];
tcm_4()@sys.tclk is {

state machine sm_4 {
// ...

};
};

};

See Also

� �State Machine Overview� on page 883

27.4.3 Rules for State Transitions

� A transition takes place when its action block finishes.
� If there are several contending transitions (for example, several transitions with the same current-

state), their action blocks are executed in parallel. The transition whose action block finishes first is
the one that occurs.

� When the action blocks for two transitions can complete during the same cycle, it is not possible to
determine which transition will prevail. One will occur successfully and the other will not occur.

� Action blocks can take time, but transitions themselves take no time.

If the state machine specifies:

x => y {sync true('cpu.clock' == 1)};
y => z {sync true('alu.clock' == 1)};

and both �cpu.clock� and �alu.clock� are high within the same cycle, the two transitions both occur within the
same cycle.

See Also

� �State Machine Overview� on page 883
This is an unapproved IEEE Standards Draft, subject to change.
891

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
27.4.4 Nested State Machines

A state machine is just an action like all others, so it can appear anywhere an action can appear. This makes
nested and parallel state machines possible. For example, the following contains a state machine named
�run_to_finish� nested within another state machine named �sm_5�.

struct exa_5_state_machine {
!sm_5: [begin, run, finish];
run_to_finish: [s_b1, s_b2, s_b3];
tcm_5() @sys.pclk is {

state machine sm_5 until finish {
begin => run {wait [2]*cycle};
run => finish {

state machine run_to_finish until s_b3 {
s_b1 => s_b2 {wait [2]*cycle};
s_b2 => s_b1 {wait [3]*cycle};
s_b2 => s_b3 {wait @sys.s_reset};

};
};
* => begin {wait @sys.reset};

};
};

};

Whenever the �sm_5� state machine enters the �run� state, it starts the nested �run_to_finish� state machine.
When that machine finally reaches its �s_b3� state it exits, and the �sm_5� state machine enters its �finish�
state.

If �sys.reset� becomes TRUE, the �sm_5� state machine enters its �begin� state regardless of the current
state of the �run_to_finish� state machine. This is an example of preempting a state machine from the out-
side.

See Also

� �State Machine Overview� on page 883

27.4.5 Parallel State Machines

An example of parallel state machines is shown below.

struct exa_6_state_machine {
!sm_6a: [x1, x2, x3];
!sm_6b: [y1, y2];
tcm_6() @sys.sclk is {

all of {
state machine sm_6a until x3 {

// ...
};
state machine sm_6b until y2 {

// ...
};

};
out("sm_6a and sm_6b state machines are both done");

};
};
892 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
The two state machines in the example above are entered at the same time, and each proceeds independently
of the other. Because they are started in an all of construct, both state machines must exit before the out()
action can be executed.

In the following example, the two state machines are started in a first of rather than all of construct.

struct exa_6_2_state_machine {
!sm_6a_2: [x1, x2, x3];
!sm_6b_2: [y1, y2];
tcm_6_2() @sys.sclk is {

first of {
state machine sm_6a_2 until x3 {

// ...
};
state machine sm_6b_2 until y2 {

//...
};

};
out("either sm_6a_2 or sm_6b_2 state machine is done");

};
};

Parallel state machines can be nested within another state machine, as in the following.

a => b {
all of {

state machine x until end_x {. . .};
state machine y until end_y {. . .};

};
};

See Also

� �State Machine Overview� on page 883
This is an unapproved IEEE Standards Draft, subject to change.
893

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
894 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Index

Symbols
- subtraction operator syntax 41
- unary minus operator syntax 40
-- comment syntax 4
! boolean NOT operator syntax 35
! operator

used to prevent generation 126
used with pre_generate() 300

!= nonidentity operator syntax 43
!== Verilog nonidentity operator syntax 45
!~ string non-matching operator syntax 47
#define statement syntax 630
#ifdef statement syntax 627
#ifndef statement syntax 627
$ port access operator

event ports 201
simple ports 193

$0 string matching pseudo-variable 52
$1 - $27 string matching pseudo-variables 51, 52

example 53
% modulo (remainder) operator syntax 41
%{... , ...} bit concatenation operator syntax 62
& bitwise AND operator syntax 32
&& boolean AND operator syntax 36
(bits width) bit width specification syntax 102
(bits width-exp) size specification operator syntax 65
(byte width-exp) size specification operator syntax 65
(bytes width) byte width specification syntax 102
* multiplication operator syntax 41
* parameter passing by reference syntax 484, 485
* unbounded integer syntax 77
+ addition operator syntax 41
+ unary plus operator syntax 40
. (period) at start of path name 27
. (period) field selection operator syntax 71
/ division operator syntax 41
/.../ AWK regular expression syntax 52
// comment syntax 4
:= assignment operator 487
< less than operator syntax 42
<< bit shift left operator syntax 33
<= delayed assignment action syntax 493
<= less than or equal to operator syntax 42
<� begin code markers 4
= assignment action syntax 489
= assignment operator 487
== Boolean equality operator 43

versus = assignment operator 490
== identity operator syntax 43
=== Verilog identity operator 490
=== Verilog identity operator syntax 45
This is an unapproved IEEE Standards Draft, subject to change.
895

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
=> boolean implication operator syntax 37
=> boolean imply operator syntax 37
=> See implication operator, state transition syntax, yield temporal expression
=> yield temporal expression 342

sampling event 343
> greater than operator syntax 42
>= greater than or equal to operator syntax 42
>> bit shift right operator syntax 33
? :conditional evaluation operator syntax 73
@ sampling operator temporal expression syntax 347
@ unary event temporal expression syntax 346
@n operator syntax 838
@sim event 306

emitting 322
simulator callback 309

@sim operator with ports 196
@x

HDL logic translation 352
@x operator syntax 838
@z

HDL logic translation 352
@z operator syntax 838
[..] first match repeat syntax 338
[..] list slice operator syntax 58
[:] bit slice operator

and packing 514
syntax 55

[]
in temporal expressions 337, 338, 340
list index syntax 84
subscript operator 84
temporal repetition syntax 337

[] list size operator 128
[length-expression] list initial size specification 128
[name, ...] enumerated type definition syntax 98
[range, ...] range modifier operator syntax 64
[range, ...] scalar range syntax 100
\d regular expression digit 52
\D regular expression nondigit 52
\S regular expression non-white-space 52
\s regular expression white space 52
\W regular expression non-word 52
\w regular expression word 52
^ bitwise XOR operator syntax 32
_ underscore

in numbers 5
in names 9

{... ; ...} list concatenation operator syntax 60
{;} temporal sequence syntax 335
{}

in temporal expressions 335
{} action block delimiters 14
| bitwise OR operator syntax 32
|| boolean OR operator syntax 37
896 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
~ bitwise negation operator syntax 31
~ string matching operator syntax 47
~[..] true match repeat syntax 340
� backticks

in macro names 11
� backtick

in regular expressions 52
� See also backtick
� (apostrophe) syntax 73
� (apostrophe) usage 73
� (tick)

enumerated type selection syntax 80
subtype selection syntax 81

�> end code markers 4

Numerics
0c character symbol 9
2147483647 predefined constant maximum integer 8
4-state. See four-state

A
abs() arithmetic routine syntax 724
absolute value routine 724
-absolute_max_buckets cover configuration option 769
absolute_max_list_size configuration option 275
-absolute_max_list_size generate option 772
-absolute_max_size config memory option 775
abstract methods

declaring 472
restrictions on 473

access modifiers
package 641, 642
private 643
protected 643
struct members 643

actions
= assignment 489
all of 369
assert 456
break 547
case bool-case-item 536
case labeled-case-item 534
check that 441
compute 480
conditional 533
continue 548
defining 433
dut_error() 443
emit 307
error() 451
executing 356, 359
executing conditionally, overview 15
This is an unapproved IEEE Standards Draft, subject to change.
897

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
executing iteratively, overview 16
fatal() 452
first of 370
for 544
for each

file matching 546
in loop 540
line in file 545

for from to 543
force 830
gen 296
if then else 533
iterative 537
method() 478
op= assignment 491
overview 14
release 834
repeat until 539
return 481
routine 793
start tcm() 477
state machine 883
state transitions 887
sync 365
tcm() 475
try 454
var 487
wait 367
warning() 450
while 538

actions, <= assignment 493
advanced replacement macro, defined 436
agent() predefined method syntax 174, 667
agent_options

coverage item option 409
syntax

arc 409
block 409
event 409
expr 409
hier 409
instance 409
module 409
state 409
toggle 409
trans 409

alias option, vhdl function statement 820
alias option, vhdl procedure statement 823
all of action syntax 369
all_values() expression syntax 115
also method extension option 467, 469
and

in compound constraint boolean expression 292
of list items 608
898 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
temporal expression syntax 331
any_struct

parent of all user-defined structs 647
predefined base struct type 117

any_unit
parent of all user-defined units 662

any-state => state transition syntax 887
apostrophe

usage 73
See also �, tick

append() string routine syntax 737
appendf() string routine

formats 765
syntax 739

arithmetic operators 40
as_a type casting operator

subtype casting 84
as_a() type casting operator syntax 104
ASCII characters 9
assert action syntax 456
assignment

action, and copying structs or lists 648
of boolean types 91
compound (op=) 491
defined 89
of enumerated types 91
of lists 93
of numeric types 91
references 90
rules 89
simple (=) 489
of strings 92
of structs 92

assignment, delayed (<=) 493
assume struct member

syntax 360
at_least

coverage item option 380
cross coverage item option 397
transition coverage item option 404

-at_least_multiplier coverage configuration option 768
attribute

struct member
syntax 139

average, of list items 609

B
b binary number symbol 6
backslash characters 8
base 10 log routine 727
base 2 log routine 726
behavioral rules

specifying 119
This is an unapproved IEEE Standards Draft, subject to change.
899

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
temporal 325, 360
bin() string routine syntax 740
binary files

reading 852, 876
writing 854, 880

binary integers 5
bit selects

constraining 266
bit slices

constraining 266
bit width, specifying 101
bits

ANDing 32
Boolean operators 730
concatenating 62
negating 31
ORing 32
shifting right, left 33
slicing 55
XORing 32

bitwise_and() pseudo-method syntax 730
bitwise_nand() pseudo-method syntax 730
bitwise_nor() pseudo-method syntax 730
bitwise_or() pseudo-method syntax 730
bitwise_xnor() pseudo-method syntax 730
bitwise_xor() pseudo-method syntax 730
-bool_exp_is_bidir generate option 774
Boolean

bitwise AND 731
bitwise OR 731
bitwise XOR 731
data type. See bool
types, assigning 91

Boolean FALSE 8
Boolean operators 35
Boolean TRUE 8
both configure cover option 770
brackets. See []
break action syntax 547
buckets

contributing tests, listing 705, 706
goals 702

buffer ports
defining 204

byte width, specifying 101

C
C routines, bypassing type checking for 679
C style formatting mask 765
C style loop 544
callbacks

from the simulator to e 322
on bit-selects of vectors 322
900 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
using Verilog events to create 323
calling methods, without using value 480
carriage-return characters 8
case bool-case-item action syntax 536
case default option syntax 535
case labeled-case-item action syntax 534
case sensitivity

in names 9
casting

automatic 91, 96
explicit 104
reference parameters 97
signed integers to unsigned integers 97

change temporal expression syntax 351
characters

escape sequences 8
hidden 746
in names 9

check
effects

setting with set_check() 448
check that action syntax 441
check_test() predefined method

executed by global.stop_run() 841
-check_unsatisfied_cons generate option 773
checking

subtypes 67
See also behavioral rules

code
checking, action for 456
segments 4

-collect_all generate option 772
-collect_gen generate option 772
commands

custom, defining 433
in e code 792
operating system 786, 787

comparison operators 42
values compared 44

compound
constraint boolean expressions 292
parameters, passing 485

restrictions on 486
compute action syntax 480
concatenation. See packing
conditional actions 533
configuration options

cover
-absolute_max_buckets 769
-at_least_multiplier 768
-dir 768
-file 768
-grading_formula 768
-max_gui_buckets 769
This is an unapproved IEEE Standards Draft, subject to change.
901

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
-max_int_buckets 769
-mode 768
-ranking_cost 771
-ranking_precision 771
-run_name 769
-show_file_names 770
-show_instances_only 770
-show_mode 770
-show_partial_grade 770
-show_sub_holes 770
-sorted 770
-surecov_config 771
-tag_name 769
-test_name 768
-verbose_interface 768

displaying 781
file 783, 784
gen

-absolute_max_list_size 772
absolute_max_list_size 275
-bool_exp_is_bidir 774
-check_unsatisfied_cons 773
-collect_all 772
-collect_gen 772
-default_max_list_size 772
default_max_list_size 264
-determinants_before_subtypes 773
-long_max_width 773
-max_depth 772
-max_structs 772
-reorder_fields 772
-resolve_cycles 774
resolve_cycles 285
-seed 772
-static_analysis_opt 774
-unit_reference_rule 774
-warn 773

memory
-absolute_max_size 775
-gc_incremental 775
-gc_threshold 776
-max_size 776
-print_msg 776
-print_otf_msg 776
-retain_printed_structs 777
-retain_trace_structs 777

misc
-ports_data_pass_by_pointer 226

reading 784
run

-error_command 778
-exit_on 778
-tick_max 778
-use_manual_tick 778
902 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
saving 782
setting 766

constants
expressions treated as, in constraint boolean expressions 259, 261
methods not treated as, in constraint boolean expressions 259
predefined 8
user-defined

names 28
constraining numerics to even or odd 266
constraint blocks

defining 272
constraint boolean expressions

compound, and soft constraints 278
enforceable 261
generatable items in 294
syntax 292

constraints
applied to one instance 297
bit slice 266

debugging 269
and generation order 267
limitations 269
and signed entities 268
and soft constraints 269

Boolean expressions 292
cycles 260

and keep gen before 285
defining 119, 257, 270
on generatable items, defining 292
generatable items, identifying 294
gen-item 294
hard value, defining 270
item in list 265
keep 270
keep all of 272
keep for each 275
keep gen before 284
keep gen_before_subtypes() 287
keep is_all_iterations() 274
keep reset_gen_before_subtypes() 289
keep reset_soft() 283
keep soft 278
keep soft gen before 285
keep soft select 279
on lists 264
modifying generation sequence 290
nested 275
port bindings 215
struct members 119
on structs 263
unidirectional 259

setting with value() 291
user-defined 257
value() 290
This is an unapproved IEEE Standards Draft, subject to change.
903

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
weighted 279
See also soft constraints

constructs, overview 11
consume temporal expression syntax 353
continue action syntax 548
contradiction errors 260

caused by constraint cycle 260
copy predefined method syntax 647
copy, of expression

shallow 647
cover

struct member syntax 373
using also ... is also struct member syntax 412
(see also coverage)

coverage
API

end_group() method 427
end_instance() method 426
end_item() method 425
invoking 421
scan_bucket() method 424
start_group() method 422
start_instance() method 423
start_item() method 424

basic items
defining 378

bit slices 390
buckets

defining 381
names 377

code coverage
SureCov options 409

combining previous and new definitions 413
contributing tests, listing 705
cross coverage

extension example 402
per instance example 401

cross items
at_least option 397
defining 396
extending 417
ignore option 398
illegal option 398
name option 397
options 397
text option 397
weight option 398
when option 397

cross of cross example 402
cross__item variable 399
current test name 711
external groups

defining 408
SureCov 408
904 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
fields generated on the fly 391
files

displaying names 770
goals

setting 702
grades

default number of buckets 383
displaying overall 709
goals 380, 381, 397, 404
groups, weights 375
ignored values 382, 398, 404
items, weights 383, 398, 405
total grade for partial test 770
uint items 383
ungradeable values 383

groups
automatic prev variable 413
defining 373
extending 412

prev variable 413
extending per instance 413
external option 408
global option 374
is empty syntax 374
names 374, 412
no_collect option 374
on option 374
options 374
radix option 375
sampling events 374
selecting 703
struct members 119
text option 374
weight option 375
when option 374

hierarchical struct fields 390
holes 380, 381

showing all 780
items

at_least option 380
example 387

at-least-num range option 381
automatic prev variable 417
cross 375
defining 374, 378, 412
every-count range option 381
external option 408
ignore option 382

example 388
illegal option 382

example 388
name range option 381
names 379, 416
no_collect option 379
This is an unapproved IEEE Standards Draft, subject to change.
905

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
example 386
no_trace option 383

example 389
options 379
per_instance option 379

example 386
radix option 383

example 389
range option 381
ranges 377
ranges option 381

example 387
selecting 703
text option 379

example 387
transition 375
types 379, 416
weight option 383

example 389
when option 380

example 387
list elements 390
maximum number of buckets 769
maximum number of buckets for GUI 769
per instance 384

errors 385
items 384
original per_type item 384
sample reports 392, 394
show_instances_only configuration option for reports 770
showing coverage data 770

per_instance option 384
predefined method expressions 390
ranges 381

effects on grades 383
results .ecov file name 710
session.events field 21
SureSight filter configuration options 771
SureSight filter file option 771
SureSight FSM reset filter option 771
test ranking

listing unique buckets 706
test ranking cost constant_cost option 771
test ranking cost cpu_time option 771
test ranking cost system_cpu_time option 771
test ranking cost user_cpu_time option 771
test ranking floating point precision 771
test ranking metrics 771
test ranking test_time option 771
transition

extension example 407
per instance example 406

transition items
at_least option 404
906 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
defining 403
extending 417
ignore option 404
illegal option 405
name option 404
names 404
options 404
text option 404
weight option 405
when option 404

transition__item variable 397, 405
weights

multiplying 702
setting 702

and when subtypes 136
writing .ecov file during a test 708

covers.get_contributing_runs() predefined method syntax 705
covers.get_unique_buckets() predefined method syntax 706
covers.include_tests() predefined method syntax 701
covers.set_at_least() predefined method syntax 702
covers.set_cover() predefined method syntax 703
covers.set_weight() predefined method syntax 702
CRC functions for lists 614
cross coverage 396

item options 397
item syntax 396

cross__item-name coverage syntax 399
cycle temporal expression syntax 349
cyclic import

explicit 636
example 638

implicit 636
example 637

cyclic importing
parsing order 636

cyclic redundancy checks. See CRC

D
d decimal number symbol 6
data

comparison 441
fields. See fields
structs. See structs

data types
bit 76
bit concatenations 87
bool 76
byte 76
casting 104

automatic 96
compound 80
enumerated, default value 79
enumerated, numeric value 78
This is an unapproved IEEE Standards Draft, subject to change.
907

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
for expressions 87
extending 98
external_pointer 86
HDL objects 87
int 76
lists 84

defaults 85
size 87

memory requirements 87
memory size requirements 87
pack() expressions 87
predefined scalar types 76
range modifiers 76
scalar

defaults 76
enumerated 77
named subtypes 77
sizes 76
subtypes 76

scalars
size 87

simulator objects 87
strings 86

defaults 86
size 87

struct pointers
size 87

structs 80
Boolean subtypes 81
size 87
subtypes 80

time 76
uint 76
unbounded integers 77
width modifiers 76

date_time() OS routine syntax 791
dead locks 697
dec() string routine syntax 741
decimal integers 5
declarative_item option, vhdl function statement 820
declarative_item option, vhdl procedure statement 824
declared_type() pseudo-method syntax 677
deep_compare() predefined routine syntax 716
deep_compare_physical() predefined routine syntax 720
deep_copy() predefined routine syntax 713
default cover configuration option 768
default sampling event 308
default, case action option 534, 536
-default_max_list_size 264
-default_max_list_size generate option 772
define as

replacement terms, maximum number allowed 432
define as computed

compiled macros 438
908 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
loaded macros 438
precedence over define as 432, 438
replacement terms, maximum number allowed 439
statement syntax 436

define as statement syntax 429
�define macros 11
define statement

violating import statement order] 639
�defines, Verilog

deferred 839
importing 799

delay option, vhdl driver statement 816
delay temporal expression syntax 345
delayed assignments

making 493
detach temporal expression 324

syntax 343
-determinants_before_subtypes generate option 773
-dir

cover configuration option 768
disconnect_value option, vhdl driver statement 816
div_round_up() arithmetic routine syntax 729
division

rounding down 41
rounding up 729

do option
for each file matching loop 546
for each in loop 540
for each line in file loop 545
for from to loop 543
for loop 544
while loop 538, 539, 540

do_otf_gc() routine syntax 792
do_pack() predefined method 514

syntax 526, 649
do_print() predefined method syntax 655
do_unpack() predefined method 514

syntax 529, 652
documentation

document conventions 1
documentation syntax notation 2
dot at start of path name 27
dot placeholders in strings, expanding 746
down

for from to option 543
drive option, verilog variable statement 805
drive_hold option, verilog variable statement 805
DUT errors

checking for 442
defining responses 444
line in module, returning 445
method name, returning 445
struct name, returning 445
struct reference, returning 445
This is an unapproved IEEE Standards Draft, subject to change.
909

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
dut_error() action syntax 443
dut_error_struct predefined struct 444
dut_error_struct.check_effect() 445
dut_error_struct.message 445
dut_error_struct.pre_error() 445
dut_error_struct.set_check_effect() 445
dut_error_struct.source_location() 445
dut_error_struct.source_method_name() 445
dut_error_struct.source_struct() 445
dut_error_struct.source_struct_name() 445
dut_error_struct.write() 444, 445

E
.e files 3
e module names 9
e names

legal 9
e program time 20
e_path() predefined method syntax 173, 666
.ecfg files 783

configuration options 784
.ecov coverage files

renaming 768
edges keep soft select option 280
ellipses, expanding 746
ellipsis. See ellipses
else dut_error option, check that action 441

omitting 442
else error() option, assert action 456
else if option, if then else action 533
else option, if then else action 533
emit action syntax 307
empty method declaration option 472
encapsulation

package package-name statement 641
package struct member modifier 643
package type-declaration statement 642

end_group() predefined method syntax 427
end_instance() predefined method syntax 426
end_item() predefined method syntax 425
enforceable expressions 261
enumerated types

assigning 91
numeric values 78

casting in comparisons 80
comparison operations 79
defining 98
empty 78
extending 78
names for values 23
renaming 78
scalars, extending 103

environment variables
910 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
UNIX, getting 790
ERROR check effect 449
error detection and handling actions, overview 18
error handling

programming errors 456
user errors 450

error() action syntax 451
ERROR_AUTOMATIC check effect 449
ERROR_BREAK_RUN check effect 449
-error_command config run option 778
ERROR_CONTINUE check effect 449
errors

exception handling 454
setting error message 451
setting warning message 450

evaluation order 30
even value routine 725
even() arithmetic routine syntax 725
event ports

defining 205
event struct members

defining 305
syntax 305

event_port_edge type 223
events

@
binary syntax 347
unary syntax 346

@sim 306
binary sampling expression 347
checking for occurrences 38
consuming 353
for debugging 312
defined 303
emitting 307
end_of_test 841
executing actions on 359
functional coverage data 304
instances 304
invoking 304
is only redefinition 306
named 305
names 305
predefined 309
quit 311
redefining 306
sampling 308
schedule of 304
scope of 304
session struct field 304
session.call 312
session.check 312
session.dut_error 312
session.end_of_test 310, 311
This is an unapproved IEEE Standards Draft, subject to change.
911

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
session.events counter 21
session.line 312
session.output 312
session.return 312
session.sim_read 312
session.sim_write 312
session.start_of_test 310, 311
session.tcm_call 312
session.tcm_end 312
session.tcm_return 312
session.tcm_start 312
session.tcm_state 312
session.tcm_wait 312
struct members 119
struct.quit 310, 311
sys.any 309, 310
sys.new_time 310
sys.tick_end 310, 311
sys.tick_start 310, 311
tracing 312
unary expression 346
unattached 305
in when subtypes 306

eventually temporal expression 311
syntax 336

examples 129
exec temporal expression syntax 356
-exit_on config run option 778
exiting an e program 452
expect struct member 119

syntax 360
exponential routine 728
expressions

all_values() 115
constraint boolean expressions 292
converting to strings 761
data types of 87
declared type descriptor for, getting 677
enforceable 261
gen-item 294
HDL pathname 838
method() 478
operands 19
order of evaluation 30
overview 19
// specman deferred 839
tcm() 475
temporal 319
type checking 19
type descriptor for, getting 677

extend type statement syntax 103
extending

coverage groups 412
cross items 417
912 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
enumerated scalar types 103
struct subtypes 148

restrictions 122
structs, limitations with like 122
transition items 417

external coverage item option 408
external_pointer

data type 86
extract_test() predefined method

executed by global.stop_run() 841

F
fail temporal expression syntax 329
fall temporal expression syntax 351
fatal() action syntax 452
field() pseudo-method syntax 678
fields

defining 125
inhibiting generation of 300
keyed lists 129
lists 127

of unit instances 167
of unit type 169

of structs, iterations of 274
order of generation 257
path resolution 71
physical 126

packing 502, 526, 649
unpacking 502, 530, 653

referencing 22, 25
restricting generated values for 271
selecting

. (period) operator 71
soft constraints for, defining 278
struct members 119
type 126
type descriptors 678
ungenerated 126
unit

instance fields 165
type fields 166

values
assigning 126
initializing 657

FIFO ordered resource sharing 680
file

search paths 843
-file cover configuration option 768
files

.ecov
name, displaying 710, 711

append mode 849
appending 858
This is an unapproved IEEE Standards Draft, subject to change.
913

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
 See also concatenating
buffers, flushing 846, 847
check

if directory 863
if link 864
if readable 865
if regular 866
if temporary 868
if text 869

closing 846
configuration options 783, 784
copying 859
deleting 860
descriptors 843
.ecfg 783, 784
existence, checking 861
extensions, getting 862
global struct 843
importing 635
iteration actions 545
modification dates, getting 857
names 843

getting 844
pattern matching 845
renaming 870
and search paths 843
wild cards 843, 845

opening 848
read modes 849
reading

ASCII 850
ASCII structs 874
binary structs 875
lists of bits 851

renaming 870
search paths 843
size, getting 871
specman.v 795
temporary, creating 872
types, checking 863, 864, 866, 868, 869
write modes 849
writing

ASCII 852
ASCII structs 877
binary 853
binary structs 880
formatted data 855
lists of bits 853
lists of strings 873

files predefined struct 20
files.add_file_type() routine syntax 844
files.close() routine syntax 846
files.file_age() routine syntax 857
files.file_append() routine syntax 858
914 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
files.file_copy() routine syntax 859
files.file_delete() routine syntax 860
files.file_exists() routine syntax 861
files.file_extension() routine syntax 862
files.file_is_dir() routine syntax 863
files.file_is_link() routine syntax 864
files.file_is_readable() routine syntax 865
files.file_is_regular() routine syntax 866
files.file_is_temp() routine syntax 868
files.file_is_text() routine syntax 869
files.file_rename() routine syntax 870
files.file_size() routine syntax 871
files.flush() routine syntax 847
files.new_temp_file() routine syntax 872
files.open() routine syntax 848
files.read() routine syntax 850
files.read_ascii_struct() routine syntax 874
files.read_binary_struct() routine syntax 875
files.read_lob() routine syntax 851
files.write() routine syntax 852
files.write_ascii_struct

.erd file name extension 878
files.write_ascii_struct() routine syntax 877
files.write_binary_struct() routine syntax 880
files.write_lob() routine syntax 853
files.write_string_list() routine syntax 873
--filter_file coverage configuration option 771
--filter_reset coverage configuration option 771
final_reorder 513
final_reorder field 513
finalize_test() predefined method

executed by global.stop_run() 841
first method extension option 467, 469
first of action

syntax 370
terminating branch of 698

flow control actions, overview 16
for action syntax 544
for each file matching action syntax 546
for each in action syntax 540
for each line in file action syntax 545
for from to action syntax 543
force action syntax 830
forcible option, verilog variable statement 805
forcible, verilog variable statement 805
fork and join

using all of action 369, 370
using first of action 370

formal verification
defining behavioral rules for 360

format string for appendf() and outf() 765
form-feed characters 8
four-state

logic comparison operators 45
This is an unapproved IEEE Standards Draft, subject to change.
915

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
x transitions 352
x value 45
z transitions 352
z value 45

full configure cover option 770
full_hdl_path() predefined method syntax 172, 664
full_run_name

test identifier 701

G
garbage collection

on-the-fly collection routine 792
-gc_increment config memory option 775
-gc_threshold config memory option 776
gen

action
syntax 296

called from pre_generate() 297
generatable items

defining constraints for 292
identifying 294
random values for 297

generated values, restricting 271
generating data 18
generation

contradiction errors during 260
inhibiting field generation 300
like inheritance restrictions 150
on-the-fly 257, 297
order 257

modifying 284
modifying with value() 290
and soft value constraints 262

post_generate() 300
pre_generate() 299
of random values 297
troubleshooting

bit slice constraints 267
values, manipulating 300

gen-item expression syntax 294
get_all_units() routine syntax 186, 735
get_config() configuration routine syntax 781
get_current_handle() predefined method syntax 692
get_enclosing_unit() predefined method syntax 180, 672
get_handles_by_name() predefined method syntax 693
get_handles_by_type() predefined method syntax 695
get_parent_unit() predefined method syntax 176, 669
get_symbol() OS routine syntax 790
get_unit() predefined method syntax 177, 670
getpid() OS routine syntax 792
glitch handling 313
glitches

how e handles 312
916 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
global
coverage group option 374

global predefined struct 20
global.files struct 843
global.stop_run() 841
global.stop_run() predefined method syntax 841
grading

goals
setting 702

weights, setting 702
-grading_formula coverage configuration option 768

H
h hexadecimal symbol 6
handles for threads 692

getting list of for struct instance 693
getting value of

by struct type 695
for current TCM 692

hard constraints
defined 257
keep 270
keep for each 275

hash tables
using keyed lists 130

HDL objects
accessing 838
forcing values on 830
releasing a force action 834

HDL pathname expression syntax 838
hdl_path() predefined method syntax 170, 663
hex() string routine syntax 742
hexadecimal integers 5
high impedance HDL value translations 352
holes (see coverage holes)
holes_only configure cover option 770

I
if then else action syntax 533
#ifdef statement

violating import statement order 639
ifdef. See #ifdef
ifndef. See #ifndef
ignore

coverage item option 382, 398
cross coverage item option 398
transition coverage item option 404

IGNORE check effect 449
illegal

cross coverage item option 398
transition coverage item option 405

ilog10() arithmetic routine syntax 727
This is an unapproved IEEE Standards Draft, subject to change.
917

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
ilog2() arithmetic routine syntax 726
implication

operator
in compound constraint boolean expression 292
and keep gen before 285
and keep soft gen before 286

implicit packing and unpacking 515
implicit variables

in for each in loops 541
in generatable item definitions 294
index 26

in lists 66
it 22, 24

in lists 66
me 22, 25
overview 24

imply operator
in compound constraint boolean expression 292
and keep gen before 285
and keep soft gen before 286

import
avoiding module dependency example 639

import statement
cyclic import 636
cyclic referencing 636
multiple modules 636
placement of 12, 636
special case of order violation 639
syntax 635

importing Verilog macros 799
in range list operator syntax 49
in, constraining multiple lists 266
index implicit variable 26
index reference in generatable items 297, 294
INERTIAL option, vhdl driver statement 816
infinite integer, and packing 517
inheritance 142�155

like 117, 119
single 142
when 117, 119, 133

versus like 142
See also like, when

init() predefined method syntax 656
initial_value option, vhdl driver statement 816
inline method 468

restrictions on 463
inline method declaration option 462
inline only method extension option 467
instance names

methods 23
pseudo-methods 23
routines 23

integer data type
See int
918 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
integers
casting 97
maximum size 8
minimum size 8
unbounded, and packing 517
See also numbers

interface option, vhdl function statement 820
interface option, vhdl procedure statement 823
inversion operator 328
ipow() arithmetic routine syntax 728
is a boolean operator syntax 67
is a struct subtype construct 293
is a subtype constraint syntax example 271
is a subtype field reference 83

example 83
is a subtype generation constraint 84
is a subtype syntax example 83
is also coverage group extension 412
is instance unit field syntax 165
is not a boolean operator syntax 67
is only event syntax 306
is_a_permutation()

and constraining lists 266, 272
isqrt() arithmetic routine syntax 729
it implicit variable 24

in gen-item expression 294
item coverage item syntax 378
item in list constraints 265
items in list of structs, constraining 264
items in list, constraining

example of 272
iterative actions 537

K
K (kilo) multiplier 5
keep

constraining list size 264
constraining one list to another list 265
constraining scalar list items 264
constraining struct list items 264
item in list 265
struct member syntax 270

keep all of
struct member syntax 272

keep for each
constraining multiple list items 265
struct member syntax 275

keep gen before
struct member syntax 284

keep gen_before_subtypes() syntax 287
keep is_all_iterations()

constraining lists of structs 266
list method syntax 274
This is an unapproved IEEE Standards Draft, subject to change.
919

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
memory and performance considerations with 274
keep reset_gen_before_subtypes() syntax 289
keep reset_soft() struct member syntax 283
keep soft

struct member syntax 278
keep soft gen before

struct member syntax 285
keep soft select

struct member syntax 279
keeping clause, in gen action 296
keyed lists

defining 129
fields 129
not generatable 624
not generateable 86
pseudo-methods 618
restrictions on 624
syntax 129

keywords, alphabetical list of 10
kill() predefined method syntax 696

L
left-to-right evaluation 30
library option, vhdl function statement 820
library option, vhdl procedure statement 823
like

inheritance 119, 142�155
advantages 148
generation restrictions 150
language restrictions 149

limitations with extend 122
syntax 118

line in module, returning on DUT error 445
line number in source, finding 679
line option 545
list functions 551
list index operator syntax 54
list of <type> definition 84, 127
list of even integers

generating 266
list of list definition syntax 127
list of odd integers

generating 266
list of unit-type field definition syntax 169
list of unit-type is instance field definition syntax 167
list with key 129
list(key) of <type> definition 129
list.add(item) pseudo-method syntax 552
list.add(list) pseudo-method syntax 554
list.add0(item) pseudo-method syntax 555
list.add0(list) pseudo-method syntax 556
list.all() pseudo-method syntax 604
list.all_indices() pseudo-method syntax 605
920 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
list.and_all() pseudo-method syntax 608
list.apply() pseudo-method syntax 571
list.average() pseudo-method syntax 609
list.clear() pseudo-method syntax 557
list.copy() predefined method syntax 572
list.count() pseudo-method syntax 573
list.crc_32() pseudo-method syntax 615
list.crc_32_flip() pseudo-method syntax 617
list.crc_8() pseudo-method syntax 614
list.delete() pseudo-method syntax 558
list.exists() pseudo-method syntax 574
list.fast_delete() pseudo-method syntax 560
list.field specification syntax 575
list.first() pseudo-method syntax 576
list.first_index() pseudo-method syntax 577
list.get_indices() pseudo-method syntax 579
list.has() pseudo-method syntax 579
list.insert(index, item) pseudo-method syntax 561
list.insert(index, list) pseudo-method syntax 562
list.is_a_permutation() pseudo-method syntax 581
list.is_empty() pseudo-method syntax 582
list.key() pseudo-method syntax 619
list.key_exists() pseudo-method syntax 623
list.key_index() pseudo-method syntax 622
list.last() pseudo-method syntax 583
list.last_index() pseudo-method syntax 584
list.max() pseudo-method syntax 585
list.max_index() pseudo-method syntax 587
list.max_value() pseudo-method syntax 588
list.method() pseudo-method calling syntax 66
list.min() pseudo-method syntax 589
list.min_index() pseudo-method syntax 590
list.min_value() pseudo-method syntax 591
list.or_all() pseudo-method syntax 610
list.pop() pseudo-method syntax 563
list.pop0() pseudo-method syntax 564
list.product() pseudo-method syntax 611
list.push() pseudo-method syntax 565
list.push0() pseudo-method syntax 565
list.resize() pseudo-method syntax 566
list.reverse() pseudo-method syntax 593
list.size() pseudo-method syntax 594
list.sort() pseudo-method syntax 595
list.sort_by_field() pseudo-method syntax 596
list.split() pseudo-method syntax 597
list.sum() pseudo-method syntax 612
list.top() pseudo-method syntax 600
list.top0() pseudo-method syntax 601
list.unique() pseudo-method syntax 602
list[size] definition 264
lists

add all items 612
adding items. See inserting items 552
and all items 608
This is an unapproved IEEE Standards Draft, subject to change.
921

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
assigning 84, 93
average of all items 609
of bits

reading from files 851
writing to files 853

checking
for index 574
for items 579, 582
for key 623
permutations 581

checking for items in 49
concatenating 60
constraining 264

example of 272
constraints versus assignments 265
copying 572
counting items 573
CRC pseudo-methods 614
CRC32 function 615

flipping bits 617
CRC8 function 614
defining 84, 127
delete multiple items 559
deleting

all items 557
items 558, 560, 563, 564
repeated items 602

deleting a range of items 559
fields 127

getting contents of 575
generation order 257
getting maximum values 585, 587, 588
getting minimum values 589, 590, 591
getting size of 594
getting specific items 576, 577, 583, 584, 600, 601, 604, 605
getting specific items by key 619, 622
getting sublists 579
hash keys 85
indexes 84
initializing 264, 265, 566, 657
inserting

items 552, 555, 561, 565
lists 554, 556, 562

iterations, maximum allowed 275
keyed 85, 618

restrictions 624
of lists 85
logic operations for 608
mathematical functions 608
mathematical operators 608
methods. See pseudo-methods
modifying 552

all items 571
multiple, constraining 266
922 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
multiply all items 611
or all items 610
packing and unpacking 503
passing to methods 485

restrictions on 486
pseudo-methods 551

invocation syntax 66
removing items. See deleting items
resizing 566
reversing items 593
selecting items from 84
size

changing 566
constraining 264
constraints for permutations 582
default maximum 264
initializing 264
maximum number of iterations 275

sorting
by expression value 595
by field value 596

specifying a field 575
splitting 597
of structs

constraining 266
iterations of fields 274

sublist pseudo-methods 603
unpacking data into 264
unpacking into scalar expressions 501

list-syntax, of-syntax, is-syntax, instance-syntax 167
literal characters 9
literals

multi-value logic 6
load order

cyclic importing 636
loading multiple modules 636
local variables

in implication constraints example 271
in keep for each constraints 276

locker predefined struct 689
locker struct 681, 689
locking shared resources

dead locks 697
logarithms

base 10 727
base 2 726

-long_max_width generate option 773
loops 537

breaking execution of 547
continuing to next loop iteration 548
for (C-style) 544
for each file matching 546
for each in 540
for each line in file 545
This is an unapproved IEEE Standards Draft, subject to change.
923

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
for from to 543
overview 16
repeat until 539
while 538

M
M (mega) multiplier 5
macros

advanced replacement 436
names 630

undefining 632
overview 11
precedence 432, 438
replacement 429
replacement terms, maximum number allowed 432, 439
substitution 630

undefining 632
mathematical functions

list pseudo-methods 608
max keep soft select option 280
max() arithmetic routine syntax 723
-max_depth generate option 772
-max_gui_buckets cover configuration option 769
MAX_INT 8
-max_int_buckets cover configuration option 769
-max_size config memory option 776
-max_structs generate option 772
MAX_UINT 8
maximum value routine 723
me implicit variable 25

in gen-item expression 294
memory

considerations
and keep is_all_iterations() 274

NC Verilog 812
NC Verilog -nonmempack option 812
Verilog 810

memory management
on-the-fly garbage collection 792

method @event is struct member syntax 464
method [@event] is also|first|only|inline only struct member syntax 467
method [@event] is undefined|empty struct member syntax 472
method is inline struct member syntax 462
method is struct member syntax 462
method name, finding 680
method name, returning on DUT error 445
method() action or expression syntax 478
methods

abstract 472
restrictions on 473

declaring
empty option 472
inline option 462
924 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
regular 462
undefined option 472

defined 459
end_group() 427
end_instance() 426
end_item() 425
extending

also option 467, 469
first option 467, 469
inline only option 467
only option 467

extension rules 459
invoking, overview 17
keep is_all_iterations() 274
parameters, maximum number allowed 460
parameters, variable 460
passing parameters

scalar 484, 485
regular

calling 478, 480
returning from 481

restrictions on 460
scan_bucket() 424
scan_cover() 421
start_group() 422
start_instance() 423
start_item() 424
starting 646, 661
stopping simulation with 841
struct members 119
in struct subtypes 136
See also TCMs

min keep soft select option 280
min() arithmetic routine syntax 722
MIN_INT 8
minimum value routine 722
-mode cover configuration option 768
mode option, vhdl driver statement 816
ModelSim

passing commands from e 840
module in source, finding 679
module names

patch.e 10
test.e 10

modules
definition of 3
hierarchy 19
importing 635
line number in, finding 679
loading 635
See also files

multiple lists, constraining 266
example of 272

multi-value logic
This is an unapproved IEEE Standards Draft, subject to change.
925

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
literals 6
logic comparison operators 45
x and z transitions 352

multi-value logic (MVL) 194
predefined methods 235

MVL
logic comparison operators 45

MVL literals 6
mvl type 194

N
name

cross coverage item option 397
transition coverage item option 404

name macros
definition 630
undefining 632
with #ifdef, #ifndef 628

name resolution 26
names

resolving
with path 26
without path 27

NC Verilog memories 812
nesting constraints 275
net option, verilog variable statement 805, 806
net or wire option, verilog variable statement 805
nets

releasing 834
new ... with struct allocation operator syntax 69
new struct allocation operator syntax 69
new-line character 8
no_collect

coverage group option 374
coverage item option 379

no_trace coverage item option 383
non-enforceable expressions 261
nonterminal types

action 430
block 430
expression 430
file 431
num 430
statement 430
struct member 430
type 430

not temporal expression syntax 328
now boolean event check operator syntax 38
NULL

initial value of structs or lists 657
packing option of pack() 517
packing option of unpack() 521
predefined constant 8
926 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
numbers
base representations 5

numeric data, assigning 91
numeric expressions

context inheritance 94
context-dependent 93
context-independent 93

numeric operations
data conversion 95
precision rules 93
sign extension 95

O
o octal number symbol 6
objects. See structs
octal integers 5
odd value routine 724
odd() arithmetic routine syntax 724
off cover configuration option 768
on cover configuration option 768
on coverage configuration option 374
on event struct member

syntax 359
on struct member 119
on_interactive cover configuration option 768
only method extension option 467
on-the-fly generation 257, 297
op= assignment action syntax 491
operating system commands

collecting results of 788, 789
executing 786, 787
retrieving process ID 792

operator precedence
non-temporal operators 28

operators
&&, || lazy evaluation 30
(bits width-exp) size specification 65
(byte width-exp) size specification 65
. (period) field selection 71
= See = assignment action, op= assignment action
? conditional evaluation 73
@n 838
@x 838
@z 838
[..] list slice 58
[:] bit slice 55
[] list index 54
[range, ...] range modifier 64
{... , ...} bit concatenation 62
{... ; ...} list concatenation 60
as_a() type cast 104
is a 67
is not a 67
This is an unapproved IEEE Standards Draft, subject to change.
927

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
new struct allocation 69
or

in compound constraint boolean expression 292
of all list items 610
temporal expression syntax 333

order constraints, defined 257
OS. See operating system
others keep soft select option 280
out() output routine syntax 762
outf() output routine syntax 764
output

displaying 762
formatted 764

output_from() OS routine syntax 788
output_from_check() OS routine syntax 789
outputf() output routine formats 765

P
pack() pseudo-method syntax 516
pack_options

instances 506
struct 510

final_reorder 513
reverse_fields 511
reverse_list_items 512
scalar_reorder 512

package option, vhdl function statement 820
package option, vhdl procedure statement 823
packing

advanced techniques for 505
basic techniques for 497
using bit concatenation 62
bit slice operator 514
customizing for struct 514
defined 497
do_pack() 514, 526, 649
do_unpack() 514, 529, 652
implicit 515
lists 503
options

customizing 510
packing.global_default 510, 526, 529, 649, 652
packing.high 508, 516, 521, 526, 529, 649, 652
packing.high_big_endian 508, 526, 529, 649, 652
packing.low 506, 516, 521, 526, 529, 649, 652
packing.low_big_endian 507, 526, 529, 649, 652
packing.network 509

order, default 498
pack() 516
pack_options struct 510
scalar expressions 501
simple example of 498
strings 501
928 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
structs 502
pack_options instances 506

swap() 524
and type conversion 497
unpack() 521

packing predefined struct 20
packing.global_default 510, 526, 529, 649, 652
packing.high 508, 516, 521, 526, 529, 649, 652
packing.high_big_endian 508, 526, 529, 649, 652
packing.low 506, 516, 521, 526, 529, 649, 652

and implicit packing and unpacking 515
packing.low_big_endian 507, 526, 529, 649, 652
packing.network 509
parallel execution of action blocks 369, 370
parameters

compound, passing 485
restrictions on 486

scalar, passing 484
parity

calculating in e 731
pass keep soft select option 280
passing

by reference 484, 485
restrictions on 486

by value 484
pathnames. See paths
paths

it implicit variable 22
paths to fields or structs 22
per instance coverage 384

sample reports 394
per_instance coverage item option 379
performance considerations

and the inline option 463
and keep is_all_iterations() 274
and value() 291

physical fields
packing 502, 526, 649
unpacking 502, 530, 653

pointers
created by assignment 90
external_pointer type 86

ports
$ access operator

event ports 201
simple ports 193

abstract types
any_buffer_port 207
any_event_port 207
any_simple_port 207

advantages of using 189
associating with simulated objects 223
attributes 210

buffer_size() 217
This is an unapproved IEEE Standards Draft, subject to change.
929

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
declared_range() 219
delayed() 219
driver() 220
driver_delayed() 221
edge() 222
for all simulators 210
for HDL simulators 212
HDL paths 223
pack_options() 225
pass_by_pointer() 225
verilog_drive() 226
verilog_drive_hold() 227
verilog_forcible() 227
verilog_strobe() 228
verilog_wire() 229
vhdl_delay_model() 229
vhdl_disconnect_value() 230
vhdl_initial_value() 222

binding 215
binding rules 215
buffer

defining 204, 205
FIFO queue 232, 233
queue checking 234, 235
reading 232
writing 233

converting bits to MVL 252
converting ints to MVL 250
converting MVL lists to 4-value logic 253
converting MVL to 4-value logic 252
converting MVL to bits 251
converting MVL to ints 249
converting MVL to string 248
converting strings to 4-value logic 254
converting strings to MVL 247
creating instances of 190
dangling 215
disconnected 215
elaboration and checking 215
empty binding 215
event

defining 205
event ports

accessing values 209
examples

buffer ports 191, 200
external simple ports 198
simple ports 197

generation of 231
has unknown (U) 246
has X 245
has Z 245
in bidirectional constraints 231
initialization of 231
930 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
port type, defined 190
queue sizes 217
reading MVL as 4-value logic 241
reading MVL data 237
reading MVL list as 4-value logic 242
reading MVL lists 239
reading MVL strings 241
reading MVL strings as 4-value logic 243
references 207
rendezvous-style protocol 200
simple

defining 202
simple ports

accessing values 209
predefined methods 244
predefined MVL methods 235

temporal expressions using @sim 196
undefined binding 215
writing MVL data 236
writing MVL lists 238
writing MVL strings 240

ports, e-to-e
defined 189

ports, external
defined 189

ports, internal
defined 189

post_generate() predefined method syntax 300
power routine 728
pre_generate() predefined method

calling gen action 297
syntax 299

precision rules
example application 95
for numeric operations 93

predefined data types
See data types

predefined events 309
and e program ticks 312

predefined methods
agent() 174, 667
bits_to_mvl() 252
copy() 647
covers.get_contributing_runs() 705
covers.get_unique_buckets() 706
covers.include_tests() 701
covers.set_at_least() 702
covers.set_cover() 703
covers.set_weight() 702
do_pack() 526, 649
do_print() 655
do_unpack() 529, 652
down() 682
for units
This is an unapproved IEEE Standards Draft, subject to change.
931

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
e_path() 173, 666
full_hdl_path() 172, 664
get_parent_unit() 176, 669
hdl_path() 170, 663

get() 232
get_enclosing_unit 180, 672
get_max_value() 688
get_mvl() 237
get_mvl_list() 239
get_mvl_string() 241
get_mvl4() 241
get_mvl4()_list 242
get_mvl4()_string 243
get_unit 177, 670
get_value() 687
global.stop_run() 841
has_unknown() 246
has_x() 245
has_z() 245
init() 656
instance names 23
int_to_mvl() 250
is_empty() 234
is_full() 235
list.copy() 572
lock() 689
mvl_list_to_mvl4_list() 253
mvl_to_bits() 251
mvl_to_int() 249
mvl_to_mvl4() 252
mvl_to_string() 248
overview of 645
post_generate() 300
pre_generate() 299
print_line() 658
put() 233
put_mvl() 236
put_mvl_list() 238
put_mvl_string() 240
quit() 659
release() 689
run() 661
scheduler.get_current_handle() 692
scheduler.get_handles_by_name() 693
scheduler.get_handles_by_type() 695
scheduler.terminate_branch() 698
scheduler.terminate_thread() 699
set_max_value() 688
set_unit 183, 676
set_value() 687
string_to_mvl() 247
string_to_mvl4() 254
for structs 647
sys.generate() 645
932 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
sys.init() 645
sys.run() 646
try_down() 685
try_enclosing_unit 182, 674
try_up() 685
for units 662
up() 682

predefined pack_options instances 506
predefined routines

abs() 724
append() 737
appendf() 739
bin() 740
data_time() 791
dec() 741
deep_compare() 716
deep_compare_physical() 720
deep_copy() 713
div_round_up() 729
do_otf_gc() 792
even() 725
files.add_file_type() 844
files.close() 846
files.file_age() 857
files.file_append() 858
files.file_copy() 859
files.file_delete() 860
files.file_exists() 861
files.file_extension() 862
files.file_is_dir() 863
files.file_is_link() 864
files.file_is_readable() 865
files.file_is_regular() 866
files.file_is_temp() 868
files.file_is_text() 869
files.file_rename() 870
files.file_size() 871
files.flush() 847
files.new_temp_file() 872
files.open() 848
files.read() 850
files.read_ascii_struct() 874
files.read_binary_struct() 875
files.read_lob() 851
files.write() 852
files.write_ascii_struct() 877
files.write_binary_struct() 880
files.write_lob() 853
files.write_string_list() 873
files.writef) 855
get_all_units() 186, 735
get_config() 781
get_symbol() 790
getpid() 792
This is an unapproved IEEE Standards Draft, subject to change.
933

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
hex() 742
ilog10() 727
ilog2() 726
ipow() 728
isqrt() 729
max() 723
min() 722
odd() 724
out() 762
outf() 764
output_from() 788
output_from_check() 789
quote 743
read_config() 784
reductions 730
set_check() 448
set_config() 766
set_config_max() 184, 733
simulator_command() 840
spawn() 786
spawn_check() 786
str_chop() 744
str_empty() 745
str_exactly() 745
str_expand_dots() 746
str_insensitive() 747
str_join() 748
str_len() 749
str_lower() 750
str_match() 751
str_pad() 753
str_replace() 754
str_split() 756
str_split_all() 758
str_sub() 759
str_upper() 760
system() 787
to_string() 761
write_config() 782

predefined structs
dut_error_struct 444
locker 689
overview 19
scheduler 692

preprocessor directives, defining 627
prev variable

in coverage group definitions 413
in coverage group extensions 413
in coverage item definitions 417

prev, in keep for each constraints 276
prev__item-name transition coverage item 404
print actions, overview 18
print_line() predefined method syntax 658
-print_msg config memory option 776
934 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
-print_otf_msg config memory option 776
printing

struct information 655, 658
product of all list items 611
programs, hierarchical structure of 19
protected struct-member syntax 643
pseudo-methods 551

bitwise_and() 730
bitwise_nand() 730
bitwise_nor() 730
bitwise_or() 730
bitwise_xnor() 730
bitwise_xor() 730
declared_type() 677
defined 676
field() 678
is_a_permutation()

and constraining lists 266, 272
keep is_all_iterations()

constraining lists of structs 266
list.add(item) 552
list.add(list) 554
list.add0(item) 555
list.add0(list) 556
list.all() 604
list.all_indices() 605
list.and_all() 608
list.apply() 571
list.average() 609
list.clear() 557
list.count() 573
list.crc_32() 615
list.crc_32_flip() 617
list.crc_8() 614
list.delete() 558
list.exists() 574
list.fast_delete() 560
list.field 575
list.first() 576
list.first_index() 577
list.get_indices() 579
list.has() 579
list.insert(index, item) 561
list.insert(index, list) 562
list.is_a_permutation() 581
list.is_empty() 582
list.key() 619
list.key_exists() 623
list.key_index() 622
list.last() 583
list.last_index() 584
list.max() 585
list.max_index() 587
list.max_value() 588
This is an unapproved IEEE Standards Draft, subject to change.
935

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
list.method() invocation 66
list.min() 589
list.min_index() 590
list.min_value() 591
list.or_all() 610
list.pop() 563
list.pop0() 564
list.product() 611
list.push() 565
list.push0() 565
list.resize() 566
list.reverse() 593
list.size() 594
list.sort() 595
list.split() 597
list.sum() 612
list.top() 600
list.top0() 601
list.unique() 602
pack() 516
reset_soft() 283
sort_by_field() 596
source_location() 679
source_method() 680
swap() 524
type() 677
unpack() 521
unsafe() 678
using 551
value() 290

pseudo-variables for string matching 51
put() method sampling event 233

Q
queues

implementing with buffer ports 204
queues, emulating with top0() and pop0() 601
quit event 311
quit() predefined method

executed by global.stop_run() 841
syntax 659

quote characters 8
quote() string routine syntax 743
quotes, adding to strings 743

R
races, using delayed assignment to avoid 493
radix

coverage group option 375
coverage item option 383

random values, generating 297
range specification 49, 64
936 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
ranges
coverage item option 381
specifying 64

-ranking_cost
cover configuration option 771

read_config() configuration routine syntax 784
reduction operators 731
reference parameters

casting 97
regular methods

calling 478
without using value 480

declaring 462
abstract 472

extending 467
passing parameters

compound 485
restrictions on 486
scalar 484

restrictions for 460
returning from 481
See also methods

release action syntax 834
rendezvous semaphore 681
-reorder_fields generate option 772
repeat until action syntax 539
replacement macro definition 429
reserved words, alphabetical list of 10
resolve_cycles configuration option 285
-resolve_cycles generate option 774
resource sharing 680
result implicit variable 26

using to return a method 483
-retain_printed_structs config memory option 777
-retain_trace_structs config memory option 777
return action

in extended methods 468
syntax 481

reusability, by extending structs 117
reverse option, for each in loop 540
reverse_fields 511
reverse_fields pack option 511
reverse_list_items 512
reverse_list_items pack option 512
rise temporal expression syntax 351
routine action syntax 793
routines

calling 793
parameters 794
See also predefined routines

run() predefined method
syntax 661

-run_name cover configuration option 769
run-time errors
This is an unapproved IEEE Standards Draft, subject to change.
937

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
caused by constraint cycle 260
caused by non-enforceable expressions 261

S
sampling events 308, 347

cycle expression 349
Sampling Events Overview 308
scalar

expressions, packing and unpacking 501
parameters, passing 484
subtypes 63

defining 100
types

accessing all values of 115
specifying ranges for 100

scalar modifiers 76
scalar types

accessing all values 115
scalar_reorder 512
scalars

enumerated, extending 103
sized, defining 101
specifying sizes 65

scan_bucket() predefined method syntax 424
scan_cover() predefined method syntax 421
scheduler predefined struct 20, 692
scheduler.get_current_handle() predefined method syntax 692
scheduler.get_handles_by_name() predefined method syntax 693
scheduler.get_handles_by_type() predefined method syntax 695
scheduler.kill() predefined method syntax 696
scheduler.terminate_branch() predefined method syntax 698
scheduler.terminate_thread() predefined method syntax 699
scope

of events 304
of variables 28

-seed generate option 772
seed,displaying 711
selecting bits 55
semaphore methods 680
semaphore struct

how to use 682
semaphores

checking available resources 687
checking maximum resources 688
locking and release resources 689
setting maximum resources 688
setting resources 687
synchronizing TCMs 682, 685

semicolon temporal sequence operator 335
sequences, temporal 324
session predefined struct 21
session struct

events field 304
938 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
session.call event 312
session.check event 312
session.check_ok predefined field 21
session.dut_error event 312
session.end_of_test event 310, 311, 841
session.end_of_test.system_time field usage 771
session.end_of_test.test_time field usage 771
session.end_of_test.user_time field usage 771
session.events coverage item 21
session.line event 312
session.output event 312
session.return event 312
session.sim_read event 312
session.sim_write event 312
session.specman_memory predefined field 21
session.start_of_test event 310, 311
session.system_time predefined field 21
session.tcm_call event 312
session.tcm_end event 312
session.tcm_return event 312
session.tcm_start event 312
session.tcm_state event 312
session.tcm_wait event 312
session.user_time predefined field 21
set_check() predefined routine syntax 448
set_config() configuration routine syntax 766
set_config_max() predefined routine syntax 184, 733
set_unit() predefined method syntax 183, 676
shallow copy, of expression 647
shared resources 680
show event coverage collection 377
-show_file_names cover configuration option 770
-show_instances_only cover configuration option 770
-show_mode coverage configuration option 770
-show_partial_grade

cover configuration option 770
-show_sub_holes cover configuration option 770
show_sub_holes cover configuration option

example 780
sign, changing 40
simple ports

defining 202
simulation delta cycles

and e program ticks 312
simulation time slots

and e program ticks 312
simulation, stopping 841
simulator

callbacks 309
definition of 189

simulator predefined struct 21
simulator_command() predefined routine syntax 840
simulators

glitch handling 353
This is an unapproved IEEE Standards Draft, subject to change.
939

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
list 129
size of lists, constraining 264
sized integers

defining 101
sized numbers 5

radix specification 5
width 5

soft
not allowed in compound constraint boolean expression 292
used with gen action 297

soft constraints
and compound constraint boolean expressions 278
defined 257
distribution of values, constraining 279
keep reset_soft() 283
keep soft 278
keep soft gen before 285
keep soft select 279
order of evaluation 262
preventing from being skipped 284

-sorted configure cover option 770
source files

line number in module, finding 679
module in, finding 679

source_location() pseudo-method syntax 679
source_method() pseudo-method syntax 680
sparse memory example 132
spawn() OS routine syntax 786
spawn_check() OS command routine 786
// specman deferred expression syntax 839
start tcm() action syntax 477
start_group() predefined method syntax 422
start_instance() predefined method syntax 423
start_item() predefined method syntax 424
state => state transition syntax 886
state action block syntax 887
state machine action syntax 883
state machines

defining 883
example 888
initializing 889
nested 892
parallel 892
state holder expression 884
terminating 884, 890
transition block 885
transitions 891

any-state-to-state 887
state-to-state 886

state transition syntax
*=> state 887
state => state 886

statements
#define 630
940 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
#ifdef 627
#ifndef 627
define as 429
define as computed 436
example of user-defined 439
extend type 103
import 635
order of 12

special violation case 639
overview 12
package package-name 641
package type-declaration 642
struct 118
type enumerated scalar 98
type scalar subtype 100
type sized scalar 101
undef 632
unit 161
verilog code 795
verilog function 797
verilog import 799
verilog task 801
verilog time 803
verilog variable memory 810
verilog variable reg 804
verilog variable wire 804
vhdl code 813
vhdl function 819
vhdl procedure 822
vhdl time 829

states. See state machines
step option for the for from to loop 543
stop_run() predefined method syntax 841
str_chop() string routine syntax 744
str_empty() string routine syntax 745
str_exactly() string routine syntax 745
str_expand_dots() string routine syntax 746
str_insensitive() string routine syntax 747
str_join() string routine syntax 748
str_len() string routine syntax 749
str_lower() string routine syntax 750
str_match() string routine syntax 751
str_pad() string routine syntax 753
str_replace() string routine syntax 754
str_split() string routine syntax 756
str_split_all() string routine syntax 758
str_sub() string routine syntax 759
str_upper() string routine syntax 760
strings

accessing substrings 86
appending 737

binary representation 740
decimal representation 741
formatted 739
This is an unapproved IEEE Standards Draft, subject to change.
941

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
hexadecimal representation 742
lists of 748

assigning 92
case

changing to lowercase 750
changing to uppercase 760

case sensitivity, changing 747
changing length of 745
checking if empty 745
concatenating 737

binary representation 740
decimal representation 741
formatted 739
hexadecimal representation 742
lists of 748

converting expressions to 761
escape sequences in 8
expanding hidden characters 746
extracting substrings 759
length, getting 749
matching 47, 51, 751

* wild card 51
... sequence 51
AWK-style regular expressions 52
blanks 51
longest match 53
meta-characters 51
Perl-style regular expressions 52
shortest match 53

operations 736
packing and unpacking 501
padding with blanks 753
patterns 51
quoting 743
replacing substrings 754
splitting 756, 758
truncating 744
uncompressing 746
writing to files 852, 873

strobe option, verilog variable statement 805
strobe, verilog variable statement 805
struct IDs

retrieving 761
struct members

assume 360
attribute 139
constraints 119
cover 373
cover ... using also ... is also 412
coverage groups 119
events 119, 305
expect 119, 360
fields 119, 125
keep 270
942 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
keep all of 272
keep for each 275
keep gen before 284
keep gen_before_subtypes() 287
keep reset_gen_before_subtypes() 289
keep reset_soft() 283
keep soft 278
keep soft gen before 285
keep soft select 279
keyed lists 129
lists 127
method @event is 464
method [@event] is also|first|only|inline only 467
method [@event] is undefined|empty 472
method is [inline] 462
methods 119
on 119, 359
overview 13
package access modifier 643
private access modifier 643
protected access modifier 643
temporal 359
types 119
when 119, 133

struct name, returning on DUT error 445
struct reference, returning on DUT error 445
struct statement syntax 118
struct.quit event 310, 311
structs

allocating 69
assigning 92
constraining 263
covers 700
creating 69
fields

defining 125
generation order of 257
restricting generated values for 271

file descriptor 843
hierarchy 19
initializing 656
instances, deactivating 659
lists of

constraining 266
iterations of the fields 274

members. See struct members
pack_options 510
packing and unpacking 502
passing to methods 485

restrictions on 486
predefined

scheduler 692
predefined methods for 647
printing information about 655
This is an unapproved IEEE Standards Draft, subject to change.
943

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
reading from files 874
referencing 22, 25
subtypes

creating 133
extending 123, 148
like inheritance 119, 144
multiple 146
when inheritance 119

when subtypes
coverage 136
extending 136
method extension 136

writing to files 874
sublists, creating 603
subscripting lists 54
substructs, generation order of 257
subtypes

assigning 92
creating 133
definition 134
specifying 119

with tick 81
with when 82

See also struct subtypes
sum, of all list items 612
-surecov_config

cover configuration option 771
swap() pseudo-method syntax 524
sync action

syntax 365
synchronizing TCMs 365, 367
syntactic elements, overview 11
syntax hierarchy 12
syntax notation for e constructs 2
sys predefined struct 20
sys, HDL path of 159
sys.any event 309, 310
sys.generate() predefined method syntax 645
sys.init() predefined method syntax 645
sys.new_time event 310

and e program tick 312
sys.run() predefined method

syntax 646
sys.tick_end event 310, 311

and e program tick 312
sys.tick_start event 310, 311
sys.time field 20
system calls 786, 787, 788, 789
system variables ($0 to $27) 52
system() OS routine syntax 787

T
tab characters 8
944 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
-tag_name cover configuration option 769
tcm() action or expression syntax 475
TCMs

calling 475
controlling execution of 685, 687, 688
declaring 464

abstract 472
defined 465
extending 467
extension rules 459
interrupting 366, 367
locking

dead locks 697
parallel actions 369, 370
parameters, maximum number of 466
passing parameters

compound 485
restrictions on 486
scalar 484

restrictions on 466
returning from 481
sampling events for 308
sharing resources 685, 687, 688
sharing resources, 682
starting 477, 646, 661
stopping simulation with 841
synchronizing 307, 365, 367
threads

defined 692
handles, getting 692, 693, 695
terminating 659, 696, 698, 699

temporal
behavioral rules 325

defining 360
expressions

=> yield 342
@ sampling operator 347
@ unary event 346
[..] first match repeat operator 338
[] (repetition) 337
[] fixed repeat operator 337
{;} (sequence) 335
~[..] true match repeat operator 340
and 331
change 351
consume 353
context of 319
cycle 349
delay 345
detach 324, 343
eventually 336
exec 356
in expect constructs 323
fail 329
This is an unapproved IEEE Standards Draft, subject to change.
945

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
fall 351
not 328
or 333
rise 351
sample forms 324
sampling events 308
in sync actions 323
transition 351
true 350
in Verilog objects 322
in wait actions 323

first match expression 338
operators 327

precedence of 328
sequences 324
struct members

assume 360
expect 360
on 359

true match expression 340
yield operator 324
expressions

in events 305
temporal expressions

errors 326
translation failures 326

terminate_branch() predefined method syntax 698
terminate_thread() predefined method syntax 699
test ranking

cost metric options 771
-test_name cover configuration option 768
testing

ending 841
tests

selecting 701
text

coverage group option 374
coverage item option 379
cross coverage item option 397
transition coverage item option 404

text macros
substitution

Verilog 839
Verilog

deferred 839
then option for if then else action 533
threads

defined 692
handles 692

by struct instance 693
by struct type 695
current TCM 692

terminating 696
at end of tick 659
946 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
branch of 698
immediately 699

tick
subtype 81

-tick_max config run option 778
time

precision 803
units

Verilog 803
VHDL 829

time scale, setting 803
time scale, setting for VHDL 829
time-consuming actions, overview 17
time-consuming methods

See also TCMs
to_string() string routine syntax 761
trace on event 312
transition coverage

item options 404
item syntax 403
prev__item variable 404

transition temporal expression 351
transition__item-name coverage syntax 397, 405
transitions

coverage 403
See also state machines transitions

TRANSPORT option, vhdl driver statement 816
tri-state

logic comparison operators 45
x and z transitions 352
x transitions 352
x value 45
z transitions 352
z value 45

true temporal expression syntax 350
try action syntax 454
try_enclosing_unit() predefined method syntax 182, 674
type casting

automatic 96
between scalars and lists of scalars 105
between simple lists and keyed lists 109
between strings and scalars or lists of scalars 107
between structs, struct subtypes, and lists of structs 109
enumerated types 80

type conversion
between scalars and lists of scalars 105
between simple lists and keyed lists 109
between strings and scalars or lists of scalars 107
between structs, struct subtypes, and lists of structs 109

type enumerated scalar statement syntax 98
type scalar subtype statement syntax 100
type sized scalar statement syntax 101
type statement

violating import statement order] 639
This is an unapproved IEEE Standards Draft, subject to change.
947

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
type() pseudo-method syntax 677

U
unbounded integer, and packing 517
unbounded unsigned integers 77
undef statement syntax 632
UNDEF value 8
undefined method declaration option 472
unidirectional constraints 259

and contradiction errors 260
setting with value() 291

unit instance tree, definition of 157
unit members

buffer ports 204
event ports 205
simple ports 202
verilog function 797
verilog task 801
verilog variable memory 810
verilog variable reg | wire 804
vhdl driver 815
vhdl function 819
vhdl procedure 822

unit members, types 162
unit statement syntax 161
-unit_reference_rule generate option 774
units

and structs, methodology recommendations 158
associating with HDL paths 159
basic concepts 157
displaying instances of a unit 186, 735
limitations 160
methodology recommendations 160
predefined methods for 662
predefined methods of any_struct 670

unit-type field definition syntax 166
unit-type is instance field definition syntax 165
UNIX environment variables, getting 790
unlabeled case condition action 536
unpack() pseudo-method syntax 521
unpacking

defined 497
implicit 515
lists 503
scalar expressions 501
simple example of 500
strings 501
structs 502
and type conversion 497
See also packing

unsafe() pseudo-method syntax 678
unsigned integer

data type. See uint
948 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
unsigned integers
maximum size 8

unsized numbers 5
until option

state machine action 884
wait action 367

untyped expression
effect of ~ operator on 32

untyped expressions 87
-use_manual_tick config run option 778
user-defined

constraints, and generation order 257
methods

starting 646, 661
stopping simulation with 841

user-defined methods
instance names 23

using also coverage group extension 412
using index option 540
using keyword

coverage group options 374
coverage item options 379, 416

V
value constraints

defined 257
hard, on list items 275
order of evaluation 262
unidirectional 259

value() pseudo-method syntax 290
values

distribution of
constraining 279
in generation 257

setting procedurally
after generation 300
before generation 299

var action syntax 487
variable parameters for methods 460
variables

declaring 487
defining 487
dynamic 488
initializing 488
names 488
overview 15
scope 28, 488
types 488

vcs_pli option, verilog variable statement 811
-verbose_interface coverage configuration option 768
Verilog

�defines
importing 799
This is an unapproved IEEE Standards Draft, subject to change.
949

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
reading 799
adding code

to specman.v file 795
four-state identity operators 45
functions 798

declaring 797
memories

accessing 811
specifying 810

objects
accessing 806
in temporal expressions 322

registers, specifying 804
tasks

calling from e 802
declaring 801

text macros
importing 799

time resolution 803
wires, specifying 804

verilog code statement syntax 795
Verilog events

monitoring from e programs 323
verilog function statement syntax 797
verilog import statement syntax 799
Verilog literals 6
Verilog simulator

interfaces, setting up 795
verilog task statement syntax 801
Verilog time scale 803
verilog time statement syntax 803
Verilog timescale 803
verilog variable

drive option 805
drive_hold option 805
forcible option 805
net option 805, 806
net or wire option 805
strobe option 805
wire option 805, 806

verilog variable memory statement syntax 810
verilog variable reg statement syntax 804
verilog variable statement

vcs_pli option 811
verilog variable wire statement 804
VHDL

code
in stub file 813

functions
calls to 821
declaring 819

procedures
calls to 825
declaring 822
950 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
time resolution 829
vhdl code statement syntax 813
vhdl driver

delay option 816
disconnect_value option 816
INERTIAL option 816
initial_value option 816
mode option 816
TRANSPORT option 816

vhdl driver unit member syntax 815
vhdl function

alias option 820
declarative_item option 820
interface option 820
library option 820
package option 820

vhdl function statement syntax 819
vhdl procedure

alias option 823
declarative_item option 824
interface option 823
library option 823
package option 823

vhdl procedure statement syntax 822
VHDL signals

driving continuously via resolution function 815
releasing a force action 834

VHDL simulator
interface, setting up 812

vhdl time statement syntax 829

W
wait action

syntax 367
-warn generate option 773
WARNING check effect 449
warning() action syntax 450
weight

coverage group option 375
coverage item option 383
cross coverage item option 398
transition coverage item option 405

weighted values
list elements 282

weighting generated list values 282
weighting generated values 279
weights, in keep soft select 280
when

coverage group option 374
coverage item option syntax 380
cross coverage item option 397
determinant 143

constraining 146
This is an unapproved IEEE Standards Draft, subject to change.
951

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
physical field 145
inheritance 142�155

advantages 145
determinant 143
referring to conditional fields 83

struct member
syntax 133

transition coverage item option 404
when subtypes

referring to fields in 83
while action syntax 538
wire option, verilog variable statement 805, 806
wires

releasing 834
with syntax. See new
write_config() configuration routine syntax 782
writef() file routine syntax 855

Y
yield operator 324

See also => yield temporal expression
yield temporal expression sampling event 343
yield temporal expression syntax 342
952 This is an unapproved IEEE Standards Draft, subject to change.

	Preliminary e Language Reference Draft
	4 December 2003

	Table of Contents
	1 About This Book 1
	2 e Basics 3
	3 Data Types 75
	4 Structs, Fields, and Subtypes 117
	5 Units 157
	6 e Ports 189
	7 Generation Constraints 257
	8 Events 303
	9 Temporal Expressions 319
	10 Temporal Struct Members 359
	11 Time-Consuming Actions 365
	12 Coverage Constructs 373
	13 Macros 429
	14 Checks and Error Handling 441
	15 Methods 459
	16 Creating and Modifying e Variables 487
	17 Packing and Unpacking 497
	18 Control Flow Actions 533
	19 List Pseudo-Methods Library 551
	20 Preprocessor Directives 627
	21 Importing e Files 635
	22 Encapsulation Constructs 641
	23 Predefined Methods Library 645
	24 Predefined Routines Library 713
	25 Simulation-Related Constructs 795
	26 Predefined File Routines Library 843
	27 State Machines Library 883
	Index 895

	1 About This Book
	The e language is an object-oriented programming language. Although e can be used to create any general- purpose software progra...
	The e language also is designed to reduce the effort required to write tests and to make the high-level intent of the test readi...
	This manual provides detailed information on the e programming language.
	1.1 Conventions in This Book

	This manual uses visual cues to help you locate and interpret information easily. These cues are explained in Table 1-1 on page 1.
	Table 1-1- Document Conventions (continued)

	The Courier font indicates e or HDL code. For example, the following line indicates e code:
	bold
	The bold font is used in descriptive text to indicate keywords. For example, the following sentence contains the keyword “keep”:
	The bold font is used in syntax descriptions to indicate text that must be typed exactly as it appears. For example, in the following sentence the keywords “keep” and “reset_soft”, as well as the period and the parentheses must be typed as they appear:
	italic
	The italic font represents user-defined variables that you must provide. For example, the following line instructs you to type “keep” as it appears, and then specify a boolean expression:
	[] square brackets
	Square brackets indicate optional parameters. For example, in the following construct the keywords “list of” are optional:
	[] bold brackets
	Bold square brackets are required. For example, in the following construct you must type the bold square brackets as they appear:
	construct, ...
	An item, followed by a separator (usually a comma or a semicolon) and an ellipsis is an abbreviation for a list of elements of the specified type. For example, the following line means you can type a list of zero or more names separated by commas.
	|
	The | character indicates alternative syntax or parameters. For example, the following line indicates that either the bits or bytes keyword should be used:
	1.2 Syntax Notation

	Each construct section starts with the syntax for the construct. The syntax shows the construct, any arguments it accepts with their types, and the construct’s return type if it has one.
	When using the construct, terms in bold in the syntax are to be entered exactly as shown. Terms in italics are to be replaced by terms of your own. The argument types and the construct return type are for information only and are not entered.
	For example, the syntax notation for the predefined pseudo-method named “first()” on page 576 is
	This is what the notation means:
	An example of a call to the list.first() pseudo-method is shown below, where “numbers” is a list of integer items and “my_number” is an integer. The pseudo-method returns the first integer in the list greater than 5:

	2 e Basics
	This chapter describes the structure of an e program, starting with the organization of e code into one or more files and the fo...
	See Also
	2.1 Lexical Conventions
	The following sections describe the lexical conventions of e:
	2.1.1 File Structure

	e code can be organized in multiple files. File names must be legal e names. The default file extension is “.e”. e code files are sometimes referred to as “modules” Each module contains at least one code segment and can also contain comments.

	See Also
	2.1.2 Code Segments
	A code segment is enclosed with a begin-code marker <' and an end-code marker '>. Both the begin-code and the end-code markers m...
	Several code segments can appear in one file. Each code segment consists of one or more statements.

	See Also
	2.1.3 Comments and White Space
	e files begin as a comment which ends when the first begin-code marker <' is encountered.
	Comments within code segments can be marked with double dashes (--) or double slashes (//):
	The end-code '> and the begin-code <' markers can be used in the middle of code sections, to write several consecutive lines of comment:

	See Also
	2.1.4 Literals and Constants
	Literals are numeric, character and string values specified literally in e. Operators can be applied to literals to create compound expressions. The following categories of literals and constants are supported in e:
	2.1.4.1 Unsized Numbers

	Unsized numbers are always positive and zero-extended unless preceded by a hyphen. Decimal constants are treated as signed integ...
	The notations shown in Table 2-1 can be used to represent unsized numbers.
	Table 2-1- Representing Unsized Numbers in Expressions

	Decimal integer
	Any combination of 0-9 possibly preceded by a hyphen - for negative numbers. An underscore (_) can be added anywhere in the number for readability.
	12, 55_32, -764
	Binary integer
	Any combination of 0-1 preceded by 0b. An underscore (_) can be added anywhere in the number for readability.
	0b100111, 0b1100_0101
	Hexadecimal integer
	Any combination of 0-9 and a-f preceded by 0x. An underscore (_) can be added anywhere in the number for readability.
	0xff, 0x99_aa_bb_cc
	Octal integer
	Any combination of 0-7 preceded by 0o. An underscore (_) can be added anywhere in the number for readability.
	0o66_123
	K (kilo: multiply by 1024)
	A decimal integer followed by a K or k. For example, 32K = 32768.
	32K, 32k, 128k
	M (mega: multiply by 1024*1024)
	A decimal integer followed by an M or m. For example, 2m = 2097152.
	1m, 4m, 4M

	See Also
	2.1.4.2 Sized Numbers
	A sized number is a notation that defines a literal with a specific size in bits. The syntax is as follows:
	width-number ' (b|o|d|h|x) value-number
	The width number is a decimal integer specifying the width of the literal in bits. The value number is the value of the literal and can be specified in one of four radixes, as shown in Table 2-2.
	NOTE- If the value number is more than the specified size in bits, its most significant bits are ignored. If the value number is less that the specified size, it is padded by zeros.
	Table 2-2- Radix Specification Characters
	Binary
	A leading 'b or 'B
	8'b11001010
	Octal
	A leading 'o or 'O
	6'o45
	Decimal
	A leading 'd or 'D
	16'd63453
	Hexadecimal
	A leading 'h or 'H or 'x or 'X
	32'h12ffab04

	See Also
	2.1.4.3 MVL Literals
	An MVL literal is based on the mvl type, which is a predefined enumerated scalar type in e. The mvl type is defined as follows:
	type mvl: [MVL_U,MVL_X,MVL_0,MVL_1,MVL_Z,MVL_W,MVL_L,MVL_H,MVL_N];
	NOTE- MVL_N represents “don’t care”.
	The mvl type is a superset of the capabilities provided by the @x and @z syntax allowed in HDL tick notation. For example, if a port is defined as type list of mvl, you can assign values with the $ access operator:
	If the port is a numeric type (uint, int, and so on), you can assign mvl values using the predefined MVL methods for ports. For example:
	An MVL literal, which is a literal of type list of mvl, provides a more convenient syntax for assigning MVL values. The syntax of an MVL literal is as follows:
	width-number ' (b|o|h) value-number
	The width number is an unsigned decimal integer specifying the size of the list. The value number is any sequence of digits that are legal for the base, plus x, z, u, l, h, w, n.
	Syntax rules:

	Examples
	Notes
	Syntactically, the same expression may be of a numeric type or MVL literal. For example, 1’b1 may represent either the number 1 or a list of MVL with the value {MVL_1}. A literal is considered to be an MVL literal when:
	If the type of the expression, according to the context, is numeric, or if the type cannot be extracted from the context, the default type remains uint, for example:
	NOTE- The type-casting operations as_a() and is a do not propagate the context.

	See Also
	2.1.4.4 Predefined Constants
	A set of constants is predefined in e, as shown in Table 2-3.
	Table 2-3- Predefined Constants

	TRUE
	For boolean variables and expressions.
	FALSE
	For boolean variables and expressions.
	NULL
	For structs, specifies a NULL pointer. For character strings, specifies an empty string.
	UNDEF
	UNDEF indicates NONE where an index is expected.
	MAX_INT
	Represents the largest 32-bit int (231 -1)
	MIN_INT
	Represents the smallest 32-bit int (-231).
	MAX_UINT
	Represents the largest 32-bit uint (232-1).

	See Also
	2.1.4.5 Literal String
	A literal string is a sequence of zero or more ASCII characters enclosed by double quotes (“ ”).
	The special escape sequences shown in Table 2-4 are allowed.
	Table 2-4- Escape Sequences in Strings

	\n
	New-line
	\t
	Tab
	\f
	Form-feed
	\”
	Quote
	\\
	Backslash
	\r
	Carriage-return

	Example
	This example shows escape sequences used in strings.

	Result
	See Also
	2.1.4.6 Literal Character
	A literal character is a single ASCII character, enclosed in quotation marks and preceded by 0c. This expression evaluates to th...
	NOTE- Literal characters can only be assigned to integers or unsigned integers without explicit casting.

	See Also
	2.1.5 Names, Keywords, and Macros
	The following sections describe the legal syntax for names and macros:
	2.1.5.1 Legal e Names

	User-defined names in e code consist of a case-sensitive combination of any length of the characters A-Z, a- z, 0-9, and undersc...
	The syntax of an e module name (a file name) is the same as the syntax of UNIX file names, with the following exceptions:
	NOTE- Many ASCII characters are not handled correctly by some UNIX commands when used in file names. These characters include control characters, spaces, and characters reserved for command line parsing, such as ‘-’, ‘|’, and ‘<‘.
	NOTE- Naming an e module “patch.e” or “test.e” can cause problems when you try to load the compiled file. If the module is to be compiled, do not name it patch.e or test.e.
	2.1.5.2 e Keywords
	The keywords listed below are the components of the e language. Some of the terms are keywords only when used together with other terms, such as “key” in “list(key:key)”, “before” in “keep gen x before y”, or “computed” in “define def as computed”.
	all of
	all_values
	and
	as a
	as_a
	assert
	assume
	async
	attribute
	before
	bit
	bits
	bool
	break
	byte
	bytes
	c export
	case
	change
	check that
	compute
	computed
	consume
	continue
	cover
	cross
	cvl call
	cvl callback
	cvl method
	cycle
	default
	define
	delay
	detach
	do
	down to
	dut_error
	each
	edges
	else
	emit
	event
	exec
	expect
	extend
	fail
	fall
	file
	first of
	for
	force
	from
	gen
	global
	hdl pathname
	if
	#ifdef
	#ifndef
	in
	index
	int
	is
	is a
	is also
	is c routine
	is empty
	is first
	is inline
	is instance
	is not a
	is not empty
	is only
	is undefined
	item
	keep
	keeping
	key
	like
	line
	list of
	matching
	me
	nand
	new
	nor
	not
	not in
	now
	on
	only
	or
	others
	pass
	prev
	print
	range
	ranges
	release
	repeat
	return
	reverse
	rise
	routine
	select
	session
	soft
	start
	state machine
	step
	struct
	string
	sync
	sys
	that
	then
	time
	to
	transition
	true
	try
	type
	uint
	unit
	until
	using
	var
	verilog code
	verilog function
	verilog import
	verilog simulator
	verilog task
	verilog time
	verilog timescale
	verilog trace
	verilog variable
	vhdl code
	vhdl driver
	vhdl function
	vhdl procedure
	vhdl driver
	vhdl simulator
	vhdl time
	when
	while
	with
	within
	2.1.5.3 Macros

	e macros (created with the define statement) can be defined with or without an initial ` character. There are two important characteristics of e macros defined with an initial ` character:
	Thus, if you import a file of Verilog macros containing the following macro:
	defining the following e macro results in a name conflict:
	With either macro defined, the correct way to reference it is as follows:

	See Also
	2.2 Syntactic Elements
	Every e construct belongs to a construct category that determines how the construct can be used. There are four categories of e constructs:
	Statements
	Statements are top-level constructs and are valid within the begin-code <' and end-code '> markers. See “Statements” on page 12 for a list and brief description of e statements.
	Struct members
	Struct members are second-level constructs and are valid only within a struct definition. See “Struct Members” on page 13 for a list and brief description of e struct members.
	Actions
	Actions are third-level constructs and are valid only when associated with a struct member, such as a method or an event. See “Actions” on page 14 for a list and brief description of e actions.
	Expressions
	Expressions are lower-level constructs that can be used only within another e construct. See “Expressions” on page 19 for a list and brief description of e expressions.
	The syntax hierarchy roughly corresponds to the level of indentation shown below:

	See Also
	2.2.1 Statements
	Statements are the top-level syntactic constructs of the e language and perform the functions related to extending the e language and interface with the simulator.
	Statements are valid within the begin-code <' and end-code '> markers. They can extend over several lines and are separated by semicolons. For example, the following code segment has two statements:
	In general, within a given e module, statements can appear in any order except that import statements must appear before any oth...
	Here is the complete list of e statements:
	struct
	Defines a new data structure. See “Defining Structs: struct” on page 118.
	type
	Defines an enumerated data type or scalar subtype. See “type enumerated scalar” on page 98, “type scalar subtype” on page 100, or “type sized scalar” on page 101
	extend
	Modifies a previously defined struct or type. See “Extending Structs: extend type” on page 121 or “extend type” on page 103
	define
	Extends the e language by defining new commands, actions, expressions, or any other syntactic element. See Chapter 13, “Macros”, “define as” on page 429, or “define as computed” on page 436.
	#ifdef, #ifndef
	Used together with define statements to place conditions on the e parser. See “#ifdef, #ifndef” on page 627.
	import
	Reads in an e file. See “import” on page 635.
	verilog import
	Reads in Verilog macro definitions from a file. See“verilog import” on page 799 .
	verilog code
	Writes Verilog code to the stubs file, which is used to interface e programs with a Verilog simulator. See “verilog code” on page 795.
	verilog time
	Specifies Verilog simulator time resolution. See“verilog time” on page 803 .
	verilog variable reg | wire
	Specifies a Verilog register or wire that you want to drive from e. See “verilog variable reg | wire” on page 804.
	verilog variable memory
	Specifies a Verilog memory that you want to access from e. See “verilog variable memory” on page 810.
	verilog function
	Specifies a Verilog function that you want to call from e. See “verilog function” on page 797.
	verilog task
	Specifies a Verilog task that you want to call from e. See “verilog task” on page 801.
	vhdl code
	Writes VHDL code to the stubs file, which is used to interface e programs with a VHDL simulator. See “vhdl code” on page 813.
	vhdl driver
	Used to drive a VHDL signal continuously via the resolution function. See “vhdl driver” on page 815.
	vhdl function
	Declares a VHDL function defined in a VHDL package. See “vhdl function” on page 819.
	vhdl procedure
	Declares a VHDL procedure defined in a VHDL package. See “vhdl procedure” on page 822.
	vhdl time
	Specifies VHDL simulator time resolution. See “vhdl time” on page 829.

	See Also
	2.2.2 Struct Members
	Struct member declarations are second-level syntactic constructs of the e language that associate the entities of various kinds with the enclosing struct.
	Struct members can only appear inside a struct type definition statement (see “Defining Structs: struct” on page 118). They can ...
	A struct can contain multiple struct members of any type in any order. Here is a brief description of e struct members:
	field declaration
	Defines a data entity that is a member of the enclosing struct and has an explicit data type.
	method declaration
	Defines an operational procedure that can manipulate the fields of the enclosing struct and access runtime values in the DUT.
	subtype declaration
	Defines an instance of the parent struct in which specific struct members have particular values or behavior.
	constraint declaration
	Influences the distribution of values generated for data entities and the order in which values are generated.
	coverage declaration
	Defines functional test goals and collects data on how well the testing is meeting those goals.
	temporal declaration
	Defines e events and their associated actions.

	See Also
	2.2.3 Actions
	e actions are lower-level procedural constructs that can be used in combination to manipulate the fields of a struct or exchange data with the DUT.
	Actions can extend over several lines and are separated by semicolons. An action block is a list of actions separated by semicolons and enclosed in curly brackets, { }.
	Actions must be associated with a struct member, specifically a method or an event, or issued interactively as commands at the c...
	The following sections describe the e actions:
	2.2.3.1 Creating or Modifying Variables

	“var” on page 487
	Defines a local variable.
	“=” on page 489
	Assigns or samples values of fields, local variables, or HDL objects.
	“op=” on page 491
	Performs a complex assignment (such as add and assign, or shift and assign) of a field, local variable, or HDL object.
	“force” on page 830
	Forces a Verilog net or wire to a specified value, over-riding the value from driven from the DUT.
	“release” on page 834
	Releases the Verilog net or wire that was previously forced.

	See Also
	2.2.3.2 Executing Actions Conditionally
	“if then else” on page 533
	Executes an action block if a condition is met and a different action block if it is not.
	“case labeled-case-item” on page 534
	Executes one action block out of multiple action blocks depending on the value of a single expression.
	“case bool-case-item” on page 536
	Evaluates a list of boolean expressions and executes the action block associated with the first expression that is true.

	See Also
	2.2.3.3 Executing Actions Iteratively
	“while” on page 538
	Executes an action block repeatedly until a boolean expression becomes FALSE.
	“repeat until” on page 539
	Executes an action block repeatedly until a boolean expression becomes TRUE.
	“for each in” on page 540
	For each item in a list that is a specified type, executes an action block.
	“for from to” on page 543
	Executes an action block for a specified number of times.
	“for” on page 544
	Executes an action block for a specified number of times.
	“for each line in file” on page 545
	Executes an action block for each line in a file.
	“for each file matching” on page 546
	Executes an action block for each file in the search path.

	See Also
	2.2.3.4 Controlling Program Flow
	“break” on page 547
	Breaks the execution of the enclosing loop.
	“continue” on page 548
	Stops execution of the enclosing loop and continues with the next iteration of the same loop.

	See Also
	2.2.3.5 Invoking Methods and Routines
	“method()” on page 478
	Calls a regular method.
	“tcm()” on page 475
	Calls a TCM.
	“start tcm()” on page 477
	Launches a TCM as a new thread (a parallel process).
	“Calling Predefined Routines: routine()” on page 793
	Calls an e predefined routine.
	“compute method()” on page 480
	Calls a value-returning method without using the value returned.
	“return” on page 481
	Returns immediately from the current method to the method that called it.

	See Also
	2.2.3.6 Performing Time-Consuming Actions
	“emit” on page 307
	Causes a named event to occur.
	“sync” on page 365
	Suspends execution of the current TCM until the temporal expression succeeds.
	“wait” on page 367
	Suspends execution of the current time-consuming method until a given temporal expression succeeds.
	“all of” on page 369
	Executes multiple action blocks concurrently, as separate branches of a fork. The action following the all of action is reached only when all branches of the all of have been fully executed.
	“first of” on page 370
	Executes multiple action blocks concurrently, as separate branches of a fork. The action following the first of action is reached when any of the branches in the first of has been fully executed.
	“state machine” on page 883
	Defines a state machine.

	See Also
	2.2.3.7 Generating Data Items
	“gen” on page 296
	Generates a value for an item, while considering all relevant constraints.

	See Also
	2.2.3.8 Detecting and Handling Errors
	“check that” on page 441
	Checks the DUT for correct data values.
	“dut_error()” on page 443
	Defines a DUT error message string.
	“assert” on page 456
	Issues an error message if a specified boolean expression is not true.
	“warning()” on page 450
	Issues a warning message.
	“error()” on page 451
	Issues an error message when a user error is detected.
	“fatal()” on page 452
	Issues an error message, halts all activities, and exits immediately.
	“try” on page 454
	Catches errors and exceptions.

	See Also
	2.2.3.9 Printing
	“set_config()” on page 766
	Sets options for various categories, including printing.

	See Also
	2.2.4 Expressions
	Expressions are constructs that combine operands and operators to represent a value. The resulting value is a function of the values of the operands and the semantic meaning of the operators.
	A few e expressions, such as expressions that restrict the range of valid values of a variable, must evaluate to constants at co...
	Each expression must contain at least one operand, which can be:
	A compound expression applies one or more operators to one or more operands.

	See Also
	2.3 Struct Hierarchy and Name Resolution
	The following sections explain the struct hierarchy of an e program and how to reference entities within the program:
	2.3.1 Struct Hierarchy

	Because structs can be instantiated as the fields of other structs, a typical e program has many levels of hierarchy. Every e pr...
	Figure 2-1- Diagram of Struct Hierarchy

	global
	2.3.1.1 Global Struct

	The predefined struct global is the root of all e structs. All predefined structs and most predefined methods are part of the global struct.
	It is highly recommended that you do not extend the global struct.
	2.3.1.2 Sys Struct

	The system struct is instantiated under global as sys.
	All fields and structs in sys not marked by an exclamation point (!) are generated automatically during the generate_test phase. Any structs or fields outside of sys that need generation must be generated explicitly.
	Time is stored in a 64-bit integer field named sys.time. When e is linked with an event-driven simulator, sys.time shows the cur...
	2.3.1.3 Packing Struct

	Packing and unpacking are controlled by a predefined struct under global named packing. Packing and unpacking prepare e data sen...
	2.3.1.4 Files Struct

	The files struct provides predefined methods for manipulating files.
	2.3.1.5 Scheduler Struct

	The scheduler struct contains predefined methods that allow you to access active TCMs and terminate them.
	2.3.1.6 Simulator Struct

	The simulator struct controls the HDL simulator and has a predefined method that allows access to Verilog macros at run time.
	2.3.1.7 Session Struct

	The session struct holds the status of the current simulator session, related information, and events. Fields available in the session struct that are of general interest include:
	The first three fields listed above help you determine the time and memory used in a particular session. The following sections describe the check_ok field and the events field.
	2.3.1.7.1 session.check_ok

	This field is of boolean type, and is set TRUE after every check, if the check succeeds. Otherwise, it is set to FALSE. This field allows you to extend checking of a behavior without the need to duplicate the if clause.
	The following example show how this is accomplished.
	2.3.1.7.2 session.events

	This field contains the names of all user-defined events that occurred during the test, and how many times each user-defined event occurred. The name of the event is preceded by the struct type and a double underscore:
	struct_type__event_name
	If an event is defined in a when subtype, the name of the event in the session.events field is prefixed by the subtype and a double underscore:
	subtype__struct_type__event_name
	2.3.2 Referencing e Entities

	The following sections describe how to reference e entities:
	2.3.2.1 Structs and Fields

	Any user-defined struct can be instantiated as a field of the sys struct or of another struct. Thus every instantiated struct and its fields have a place in the struct hierarchy and their names include a path reflecting that place.
	The keep constraints in the following example show the use of paths to identify the fields u and kind:

	Notes
	See Also
	2.3.2.2 Method and Routine Names
	The names of all methods and routines must be followed immediately by parentheses, both when you define the method and when you call it.
	The predefined methods of any struct, such as pre_generate() or init(), and all user-defined methods, are associated with a part...
	The example below illustrates the names used to call user-defined and predefined methods.
	Some predefined methods, such as the methods used to manipulate lists, are pseudo-methods. They are not associated with a partic...
	User-defined routines, like predefined routines, are associated with the global struct. You can omit global from the path when the context is unambiguous. See “Name Resolution Rules” on page 26 for more information.

	See Also
	2.3.2.3 Enumerated Type Values
	Names for enumerated type values must be unique within each type. For example, defining a type as “my_type: [a, a, b]” results in an error because the name “a” is not unique.
	However, the same name can be used in more than one enumerated type. For example, the following two enumerated types define the same value names:
	To refer to an enumerated type value in a struct where no values are shared between the enumerated types, you can use just the v...
	In the following keep constraint, it is clear that the type of “dest” is “destination”, so you can use just the value name “b”:
	However, because the type of the variable “tmp” below is not specified, it is necessary to use the full name for the enumerated type value “destination'b”:

	See Also
	2.3.3 Implicit Variables
	Many e constructs create implicit variables. The scope of these implicit variables is the construct that creates them. Two of these implicit variables, me and it, are used in pathnames when referencing e entities.
	This section describes the implicit variables:
	NOTE- With the exception of result, you cannot assign values to implicit variables. An assignment such as “me = packet” generates an error.
	2.3.3.1 it
	The constructs that create the implicit variable it are:
	The implicit variable it always refers to the current item.
	Wherever it.field can be used, the shorthand notation .field can be used in its place. For example, it.len can be abbreviated to .len, with a leading dot. A typical use of it is to refer to each item in a list within a loop.
	In the code above, .good is shorthand for it.good. The scope of the it variable is restricted to the for loop.
	In many places it is legal to designate and use a name other than the implicit it. In the following example, it is replaced with a variable name, “p”, that is declared in the iterating action.

	See Also
	2.3.3.2 me
	The implicit variable me refers to the current struct and can be used anywhere in the struct. In the following example, me refers to the current instance of the packet struct, and it refers to the current value of tmp.
	When referring to a field from another member of the same struct, the me. can be omitted. In the keep constraint shown below, the name “me.header.dest” is equivalent to the name “header.dest”.

	See Also
	2.3.3.3 result
	The result variable returns a value of the method’s return type. If no return action is encountered, result is returned by default. The following method returns the sum of “a” and “b”:

	See Also
	2.3.3.4 index
	The constructs that create the implicit variable index are:
	The index variable is a non-negative integer that holds the current index of the item referred to by it. The scope of the index variable is limited to the action block.
	The following loop assigns 5 to the len field of every item in the packets list and also assigns the index value of each item to its id field.

	See Also
	2.3.4 Name Resolution Rules
	The following sections describe how names are resolved, depending on whether the names include a path or not.
	2.3.4.1 Names that Include a Path

	To resolve names that include a path, an entity of that name is searched for at the specified scope and an error message is issu...
	NOTE- If the path begins with a period (.), the path is assumed to begin with the implicit variable it.

	See Also
	2.3.4.2 Names that Do Not Include a Path
	To resolve names that do not include a path, the following checks are performed, in order. The program stops after the first check that identifies the named object.
	1) Check whether the name is a macro. If there are two macro definitions, choose the most recent one.
	2) Check whether the name is one of the predefined constants. There cannot be two identical predefined constants.
	3) Check whether the name is an enumerated type. There cannot be two identical enumerated types.
	4) Check whether the name identifies a variable used in the current action block. If not, and if the action is nested, check whe...
	5) Check whether the name identifies a member of the current struct:
	6) Check whether the name identifies a member of the global struct.
	7) If the name is still unresolved, an error message is issued.

	Example
	The following example illustrates how variables in the inner scopes hide those in the outer scopes:

	Result
	NOTE- Macros, predefined constants, and enumerated types have “global scope”, Which means they can be seen from anywhere within an e program. For that reason, their names must be unique:

	See Also
	2.4 Operator Precedence
	The following table summarizes all e operators in order of precedence. The precedence is the same as in the C language, with the...
	Table 2-5- Operators in Order of Precedence (continued)

	“[]” on page 54
	List indexing (subscripting)
	“[..]” on page 58
	List slicing
	“[:]” on page 55
	Bit slicing (selection)
	f(...)
	Method and routine calls (see “Invoking Methods and Routines” on page 17)
	“.” on page 71
	Field selection
	“~” on page 31, “! (not)” on page 35
	Bitwise not, boolean not
	“{... ; ...}” on page 60
	List concatenation
	“%{... , ...}” on page 62
	Bit concatenation
	“Unary + -” on page 40
	Unary plus, minus
	*, /, %
	Binary multiply, divide, modulus (see “+ - * / %” on page 41)
	+, -
	Binary add and subtract (see “+ - * / %” on page 41)
	“>> <<” on page 33
	Shift right, shift left
	“< <= > >=” on page 42
	Comparison
	“is [not] a” on page 67
	Subtype identification
	“== !=” on page 43
	Equality, inequality
	“=== !==” on page 45
	Verilog four-state comparison
	“~ !~” on page 47
	String matching
	“in” on page 49
	Range list operator
	&
	Bitwise and (see “& | ^” on page 32)
	|
	Bitwise or (see “& | ^” on page 32)
	^
	Bitwise xor (see “& | ^” on page 32)
	“&& (and)” on page 36
	boolean and
	“|| (or)” on page 37
	boolean or
	“=>” on page 37
	boolean implication
	“? :” on page 73
	Conditional operator (“a ? b : c” means “if a then b else c”)
	NOTE- Every operation in e is performed within the context of types and is carried out either with 32-bit precision or unbounded precision.

	See Also
	2.5 Evaluation Order of Expressions
	In e it is defined that “and” (&&) and “or” (||) use left-to-right lazy evaluation. Consider the following statement:
	If foo(x) returns TRUE, then bar(x) will be evaluated as well, to determine whether bool_1 gets TRUE. If, however, foo(x) returns FALSE, then bool_1 gets FALSE immediately, and bar(x) is not executed. The argument to bar(x) is not even evaluated.
	Expressions containing || are likewise evaluated in a lazy fashion: If the subexpression on the left of the “or” operator is TRUE, then the subexpression on the right is ignored.
	Although e was implemented to use left-to-right evaluation for both compiled e code and interpreted e code, that evaluation order is not required by the language definition for operators other than && or ||.
	Take for example the following statement:
	If foo(x) or bar(x) has side effects (that is, if foo(x) changes the value of x or bar(x) changes the value of x), then the resu...

	See Also
	2.6 Bitwise Operators
	The following sections describe the e bitwise operators:
	“~” on page 31
	The bitwise unary negation operator changes each 0 bit to 1 and each 1 bit to 0 in a single expression.
	“& | ^” on page 32
	The binary bitwise AND, OR, and XOR operators compare each bit in one expression with the corresponding bit in a second expression to calculate the result.
	“>> <<” on page 33
	The shift-right and shift-left operators shift the bits in an expression to the left or right a specified number of bits.

	See Also
	2.6.1 ~

	Purpose
	Unary bitwise negation

	Category
	Expression

	Syntax
	~exp
	Syntax example:

	Parameter
	exp
	A numeric expression or an HDL pathname.

	Description
	Sets each 1 bit of an expression to 0 and each 0 bits to 1. Each bit of the result expression is the opposite of the same bit in the original expression.

	Example 1
	This example shows the effect of the ~ operator on a 32-bit integer.
	Result

	Example 2
	This example shows the effect of the ~ operator on a 2-bit integer.
	Result

	Example 3
	This example shows the effect of the ~ operator on an untyped expression.
	When the type and bit size of an HDL signal cannot be determined from the context, the expression is automaticallly cast as an unsigned 32-bit integer.
	Result
	See Also
	2.6.2 & | ^

	Purpose
	Binary bitwise operations

	Category
	Expression

	Syntax
	exp1 operator exp2
	Syntax example:

	Parameters
	exp1, exp2
	A numeric expression or an HDL pathname.
	operator is one of the following:
	&
	Performs an AND operation.
	|
	Performs an OR operation.
	^
	Performs an XOR operation.

	Description
	Performs an AND, OR, or XOR of both operands, bit by bit.

	Example 1
	Result

	Example 2
	Result

	Example 3
	Result
	See Also
	2.6.3 >> <<

	Purpose
	Shift bits left or right

	Category
	Expression

	Syntax
	exp1 operator exp2
	Syntax example:

	Parameters
	exp1
	A numeric expression or an HDL pathname.
	operator is one of the following:
	<<
	Performs a shift-left operation.
	>>
	Performs a shift-right operation.
	exp2
	A numeric expression.

	Description
	Shifts each bit of the first expression to the right or to the left the number of bits specified by the second expression.
	In a shift-right operation, the shifted bits on the right are lost, while on the left they are filled with 1, if the first expression is a negative integer, or 0, in all other cases.
	In a shift-left operation, the shifted bits on the left are lost, while on the right they are filled with 0.
	If the bit size of the second expression is greater than 32 bits, it is first truncated to 32 bits, and then the shift is performed. Truncation removes the most significant bits.
	NOTE- The result of a shift by more than 31 bits is undefined.

	Example 1
	Result

	Example 2
	Result
	See Also
	2.7 Boolean Operators
	The following sections describe the e boolean operators:
	“! (not)” on page 35
	Returns TRUE when an expression evaluates to FALSE, and vice versa.
	“&& (and)” on page 36
	Returns TRUE if two expressions are both TRUE.
	“|| (or)” on page 37
	Returns TRUE if one of two expressions is TRUE.
	“=>” on page 37
	Returns TRUE when the first expression of two expressions is FALSE, or when both expressions are TRUE.
	“now” on page 38
	Returns TRUE if an event has occurred in the current cycle.
	2.7.1 ! (not)

	Purpose
	Boolean not operation

	Category
	Expression

	Syntax
	!exp
	not exp
	Syntax example:

	Parameters
	exp
	A boolean expression or an HDL pathname.

	Description
	Returns FALSE when the expression evaluates to TRUE and returns TRUE when the expression evaluates to FALSE.

	Example
	Result
	See Also
	2.7.2 && (and)

	Purpose
	Boolean and

	Category
	Expression

	Syntax
	exp1 && exp2
	exp1 and exp2
	Syntax example:

	Parameters
	exp1, exp2
	A boolean expression or an HDL pathname.

	Description
	Returns TRUE if both expressions evaluate to TRUE; otherwise, returns FALSE.

	Example
	Result
	See Also
	2.7.3 || (or)

	Purpose
	Boolean or

	Category
	Expression

	Syntax
	exp1 || exp2
	exp1 or exp2
	Syntax example:

	Parameters
	exp1, exp2
	A boolean expression or an HDL pathname.

	Description
	Returns TRUE if one or both expressions evaluate to TRUE; otherwise, returns FALSE.

	Example
	Result
	See Also
	2.7.4 =>

	Purpose
	Boolean implication

	Category
	Expression

	Syntax
	exp1 => exp2
	Syntax example:

	Parameters
	exp1, exp2
	A boolean expression.

	Description
	The expression returns TRUE when the first expression is FALSE, or when the second expression is TRUE. This construct is the same as:

	Example
	Result
	See Also
	2.7.5 now

	Purpose
	Boolean event check

	Category
	Boolean expression

	Syntax
	now @event-name
	Syntax example:

	Parameter
	event-name
	The event to be checked.

	Description
	Evaluates to TRUE if the event occurs before the now expression is encountered, in the same cycle in which the now expression is encountered.
	However, if the event is consumed later during the same cycle, the now expression changes to FALSE. This means that the event can be missed, if it succeeds after the expression is encountered.

	Example 1
	In the following, the sys.tx_set event is checked when the if action is encountered. If the sys.tx_set event has already occurred, in the same sys.clk cycle, the out() routine is called.

	Example 2
	In this example, the now expression is FALSE until the tx_set event is emitted, which changes the expression to TRUE. When the event is consumed by “sync consume (@tx_set)”, the now expression changes back to FALSE.
	See Also
	2.8 Arithmetic Operators
	The following sections describe the e arithmetic operators:
	“Unary + -” on page 40
	Perform arithmetic operations on a single operand.
	“+ - * / %” on page 41
	Perform arithmetic operations on two operands.
	2.8.1 Unary + -

	Purpose
	Unary plus and minus

	Category
	Expression

	Syntax
	-exp
	+exp
	Syntax example:

	Parameter
	exp
	A numeric expression or an HDL pathname.

	Description
	Performs a unary plus or minus of the expression. The minus operation changes a positive integer to a negative one, and a negative integer to a positive one. The plus operation leaves the expression unchanged.

	Example 1
	Result

	Example 2
	Result
	See Also
	2.8.2 + - * / %

	Purpose
	Binary arithmetic

	Category
	Expression

	Syntax
	exp1 operator exp2
	Syntax example:

	Parameters
	exp1, exp2
	A numeric expression or an HDL pathname.
	operator is one of the following:
	+
	Performs addition.
	-
	Performs subtraction.
	*
	Performs multiplication.
	/
	Performs division and returns the quotient, rounded down.
	%
	Performs division and returns the remainder.

	Description
	Performs binary arithmetic operations.

	Example 1
	Result

	Example 2
	Result

	Example 3
	Result
	See Also
	2.9 Comparison Operators
	The following sections describe the e comparison operators:
	“< <= > >=” on page 42
	Compares two numeric expressions or HDL pathnames.
	“== !=” on page 43
	Determines whether two expressions are equal or not.
	“=== !==” on page 45
	Performs a 4-state, Verilog-style comparison of HDL objects.
	“~ !~” on page 47
	Determines whether two string expressions are equal or not.
	“in” on page 49
	Determines whether an expression is in a list or a range.
	2.9.1 < <= > >=

	Purpose
	Comparison of values

	Category
	Expression

	Syntax
	exp1 operator exp2
	Syntax example:

	Parameters
	exp1, exp2
	A numeric expression, or an HDL pathname.
	operator is one of the following:
	<
	Returns TRUE if the first expression is smaller than the second expression.
	<=
	Returns TRUE if the first expression is not larger than the second expression.
	>
	Returns TRUE if the first expression is larger than the second expression.
	>=
	Returns TRUE if the first expression is not smaller than the second expression.

	Description
	Compares two expressions.

	Example
	Result
	See Also
	2.9.2 == !=

	Purpose
	Equality of values

	Category
	Expression

	Syntax
	exp1 operator exp2
	Syntax example:

	Parameters
	exp1, exp2
	A numeric, boolean, string, list, or struct expression.
	operator is one of the following
	==
	Returns TRUE if the first expression evaluates to the same value as the second expression.
	!=
	Returns TRUE if the first expression does not evaluate to the same value as the second expression.

	Description
	The equality operators compare the items and return a boolean result. All types of items are compared by value, except for structs which are compared by address. Comparison methods for the various data types are listed in Table 2-6.
	Table 2-6- Equality Comparisons for Various Data Types

	integers, unsigned integers, booleans, HDL pathnames
	Values are compared.
	strings
	The strings are compared character by character.
	lists
	The lists are compared item by item.
	structs
	The structs addresses are compared

	Notes
	Example
	Result
	See Also
	2.9.3 === !==

	Purpose
	Verilog-style four-state comparison operators

	Category
	Expression

	Syntax
	'HDL-pathname' [!== | ===] exp
	exp [!== | ===] 'HDL-pathname'
	Syntax example:

	Parameters
	HDL-pathname
	The full path name of an HDL object, optionally including expressions and composite data. See “'HDL-pathname'” on page 838 for more information.
	===
	Determines identity, as in Verilog. Returns TRUE if the left and right operands have identical values, considering also the x and z values.
	!==
	Determines non-identity, as in Verilog. TRUE if the left and right operands differ in at least 1 bit, considering also the x and z values.
	==
	Returns TRUE if after translating all x values to 0 and all z values to 1, the left and right operands are equal.
	!=
	Returns TRUE if after translating all x values to 0 and all z values to 1, the left and right operands are non-equal.
	exp
	Either a literal with four-state values, a numeric expression, or another HDL pathname.

	Description
	Compares four-state values (0, 1, x and z) with the identity and non-identity operators (Verilog style operators). Alternatively...
	There are three ways to use the identity (===) and non-identity (!==) operators:

	Example 1
	As in Verilog, if the radix is not binary, the z and x values in a literal number are interpreted as more than one bit wide and ...
	Thus the value assigned in the following statement is 20'bxxxx_xxxx_zzzz_0000_0001.
	Because z is evaluated as 1 and x as 0 in ordinary expressions, the value printed by the following statement is 0000_0000_1111_0000_0001.
	Because x is evaluated as 1 and other values as 0 in expressions with @x, the value printed by the following statement is 1111_1111_0000_0000_0000.
	Because z is evaluated as 1 and other values as 0 in expressions with @z, the value printed by the following statement is 0000_0000_1111_0000_0000.

	Example 2
	In the following example, both comparisons evaluate to TRUE.

	Example 3
	This example shows how to test a single bit to determine its current state.
	See Also
	2.9.4 ~ !~

	Purpose
	String matching

	Category
	Expression

	Syntax
	“string” operator “pattern-string”
	Syntax example:

	Parameters
	string
	A legal e string.
	operator is one of the following:
	~
	Returns TRUE if the pattern string can be matched to the whole string.
	!~
	Returns TRUE if the pattern string cannot be matched to the whole string.
	pattern-string
	Either an AWK-style regular expression or a native e regular expression. If the pattern string starts and ends with slashes, the...

	Description
	Matches a string against a pattern. There are two styles of string matching: native e style, which is the default, and AWK-style.
	After a match using either of the two styles, a local pseudo-variable $0 holds the whole matched string, and the pseudo-variable...

	Example 1
	The first two patterns use e style; the next two use AWK.
	Result

	Example 2
	The first pattern uses e style; the next uses AWK.
	Result
	See Also
	2.9.5 in

	Purpose
	Check for value in a list or specify a range for a constraint.

	Category
	Expression

	Syntax
	exp1 in exp2
	Syntax example:

	Parameters
	exp1
	When the second expression is a range list, in a keep constraint, for example, then the type of the first expression has to be of a type comparable to the type of the range list. For a range list, square brackets are used.
	When the second expression is a list, in a check, for example, then the type of the first expression can be one of the following:
	For a list, curly braces are used.
	exp2
	Either a list or a range list. A range list is a list of constants or expressions that evaluate to constants. Expressions that use variables or struct fields cannot appear in range lists.

	Description
	For a check evaluates TRUE if the first expression is included or contained in the second expression. For a constraint, designates the range for the first expression.

	Example 1
	This example checks to make sure that a variable is generated correctly by confirming that its value is in a list of values.

	Example 2
	This example illustrates the use of in with square brackets, [], to designate a range of values for a constraint.

	Example 3
	When two lists are compared and the first one has more than one repetition of the same value (for example, in {1;2;1}, 1 is repeated twice), then at least the same number of repetitions has to exist in the second list for the operator to succeed.
	In this example, the list y is constrained to have 0 or 2 elements. The first check makes sure that y contains 0 to 2 instances of the numbers 0, 1, 2, and 3. An error is issued for the second check.
	Result

	Example 4
	This example illustrates that the order of the list items does not influence the result of the comparison. No error is issued.
	See Also
	2.10 String Matching
	There are two styles of string matching: native e style, which is the default, and an AWK-like style. If the pattern starts and ends with slashes, then everything inside the slashes is treated as an AWK-style regular expression.
	The following sections describe these two styles of string matching:

	See Also
	2.10.1 Native e Elite String Matching
	Native e string matching is attempted on all patterns that are not enclosed in slashes. e style is similar to UNIX filename matching.
	Native string matching uses the meta-characters shown in the following table.
	Table 2-7- Meta-Characters in Native String Matching

	" " (blank)
	Any sequence of white space (blanks and tabs)
	*
	Any sequence of non-white space characters, possibly empty (""). "a*" matches "a", "ab", and "abc", but not "ab c".
	...
	Any sequence of characters
	Native style string matching always matches the full string to the pattern. For example: r does not match Bluebird, but *r* does.
	A successful match results in assigning the local pseudo-variables $1 to $27 with the substrings corresponding to the non-blank meta-characters present in the pattern.
	Native style string matching is case-insensitive.

	Example
	Result
	See Also
	2.10.2 AWK-Style String Matching
	In an AWK-style string matching you can use the standard AWK regular expression notation to write complex patterns. This notation uses the “/.../” format for the pattern to specify AWK-style regular expression syntax.
	AWK style supports special characters such as . * [\ ^ $ +? <>, when those characters are used in the same ways as in UNIX regular expressions (regexp).
	The + and ? characters can be used in the same ways as in UNIX extended regular expression (egrep).
	In AWK-style regular expressions, you can also use the following Perl shorthand notations, each representing a single character.
	Table 2-8- Perl-Style Regular Expressions Supported

	`
	A shortest match operator: ` (back tick).
	\d
	Digit: [0-9]
	\D
	Non-digit
	\s
	Any white-space single char
	\S
	Any non-white-space single
	\w
	Word char: [a-zA-Z0-9_]
	\W
	Non-word char
	After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthesized pieces of the match. $0 stores the whole matched piece of the string.

	Example 1
	Result

	Example 2
	AWK-style matching is longest match. A shortest match operator is also supported: ` (back tick). The pattern “/x.`y/” matches the minimal such substring.
	Result

	Example 3
	After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthesized pieces of the match. For instance:
	Result
	See Also
	2.11 Extraction and Concatenation Operators
	The following sections describe the e extraction and concatenation operators:
	“[]” on page 54
	Extracts or sets a single item from a list.
	“[:]” on page 55
	Extracts or sets consecutive bits or slices of a scalar, a list of bits, or a list of bytes.
	“[..]” on page 58
	List slicing operator
	“[range,...]” on page 64
	Range list operator
	“{... ; ...}” on page 60
	List concatenation
	“%{... , ...}” on page 62
	Bit concatenation
	2.11.1 []

	Purpose
	List index operator

	Category
	Expression

	Syntax
	list-exp[exp]
	Syntax example:

	Parameters
	list-exp
	An expression that returns a list.
	exp
	A numeric expression.

	Description
	Extracts or sets a single item from a list.

	Notes
	Example
	Result
	See Also
	2.11.2 [:]

	Purpose
	Select bits or bit slices of an expression

	Category
	Expression

	Syntax
	exp[[high-exp]:[low-exp][:slice]]
	Syntax example:

	Parameters
	exp
	A numeric expression, an HDL pathname, or an expression returning a list of bit or a list of byte.
	high-exp
	A non-negative numeric expression. The high expression has to be greater than or equal to the low expression. To extract a single slice, use the same expression for both the high expression and the low expression.
	low-exp
	A non-negative numeric expression, less than or equal to the high expression.
	slice
	A numeric expression. The default is bit.

	Description
	Extracts or sets consecutive bits or slices of a scalar, a list of bits, or a list of bytes.
	When used on the left-hand-side of an assignment operator, the bit extract operator sets the specified bits of a scalar, a list ...
	When used in any context except the left-hand-side of an assignment operator, the bit extract operator extracts the specified bits of a scalar, a list of bits, or a list of bytes.
	2.11.2.1 Slice and Size of the Result

	The slice parameter affects the size of the slice that is set or extracted. With the default slice (bit), the bit extract operat...
	By specifying a different slice (byte, int, or uint), you can cause the bit operator to operate on a larger number of bits.
	For example, the first print statement displays the lower two bytes of big_i, 4096. The second print statement displays the higher 32-bit slice of big_i, -61440.

	Result
	2.11.2.2 Accessing Nonexistent Bits
	If the expression is a numeric expression or an HDL pathname, any reference to a non-existent bit is an error. However, for unbo...

	Notes

	Example 1
	This is a simple example showing how to extract and set the bits in an unsigned integer.
	Result

	Example 2
	This example shows how to extract and set the bits in a list of bit.
	Result

	Example 3
	This example shows how to extract and set the bits in a list of byte.
	Result

	Example 4
	This example shows how to use variables in the bit extract operator.
	Result

	Example 5
	This example shows how to use variables in the bit extract operator. “r” will be an unbounded integer containing 32 bits, extracted starting from byte 1 of the list of bit.
	Result
	See Also
	2.11.3 [..]

	Purpose
	List slicing operator

	Category
	Expression

	Syntax
	exp[[low-exp]..[high-exp]]
	Syntax example:

	Parameters
	exp
	An expression returning a list or a scalar.
	low-exp
	An expression evaluating to a positive integer. The default is 0.
	high-exp
	An expression evaluating to a positive integer. The default is the expression size on bits - 1.

	Description
	Accesses the specified list items and returns a list of the same type as the expression. If the expression is a list of bit it returns a list of bit. If the expression is a scalar, it is implicitly converted to a list of bit.
	The rules for the list slicing operator are as follows:
	These rules are also true for the case of list slicing a numeric value, for example
	This operator interprets the numeric value as a list of bits and returns the slice of that list. In the above example, the first print is legal if n>=m>=0 and n<32 and the second is legal if m>=0 and m<=32.

	Notes

	Example 1
	This example shows the use of the list slicing operator on a list of integers and a list of structs.
	Result

	Example 2
	This example shows the use of the list slicing operator on a scalar expression and an HDL pathname.
	Result
	See Also
	2.11.4 {... ; ...}

	Purpose
	List concatenation

	Syntax
	{exp; ...}
	Syntax example:

	Category
	Expression

	Parameters
	exp
	Any legal e expression, including a list. All expressions need to be compatible with the result type.

	Description
	Returns a list built out of one or more elements or other lists. The result type is determined by the following rules:

	Example
	Result
	See Also
	2.11.5 %{... , ...}

	Purpose
	Bit concatenation operator

	Category
	Expression

	Syntax
	%{exp1, exp2, ...}
	Syntax example:

	Parameters
	exp1, exp2
	Expressions that receive lists of bits (when on the left-hand side of an assignment operator), or supply lists of bits (when on the right- hand side of an assignment operator).

	Description
	Creates a list of bits from two or more expressions, or creates two or more smaller lists of bits from a given expression.
	You can use the bit concatenation operator %{} for packing or unpacking operations that require the packing.high order.
	Bit concatenations are untyped expressions. In many cases, the required type can be deduced from the context of the expression. See “Untyped Expressions” on page 87 for more information.

	Example
	This example shows several uses of the bit concatenation operator.

	Result
	See Also
	2.12 Scalar Modifiers
	You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type. The following sections describe the scalar modifiers:

	See Also
	2.12.1 [range,...]

	Purpose
	Range modifier

	Category
	Expression

	Syntax
	[range, ...]
	Syntax example:

	Parameter
	range
	Either a constant expression, or a range of constant expressions in the form
	If the scalar type is an enumerated type, it is ordered by the value associated with the integer value of each type item.

	Description
	Creates a scalar subtype by restricting the range of valid values.

	Example 1
	The following example shows how to limit the values of an enumerated type and a numeric type.

	Example 2
	The following example shows how to specify a list of possible values in a keep constraint.
	See Also
	2.12.2 (bits | bytes : width-exp)

	Purpose
	Define a sized scalar

	Category
	Expression

	Syntax
	(bits|bytes: width-exp)
	Syntax example:

	Parameter
	width-exp
	A positive constant expression. The valid range of values for sized scalars is limited to the range 1 to 2n - 1, where n is the number of bits or bytes.

	Description
	Defines a bit width for a scalar type. The actual bit width is exp * 1 for bits and exp * 8 for bytes. In the syntax example shown above, both types “word” and “address” have a bit width of 16.

	Example
	See Also
	2.13 Parentheses
	You can use parentheses freely to group terms in expressions, to improve the readability of the code. Parentheses are used in this way in some examples in this manual, although they are not syntactically required.
	Parentheses are required in a few places in e code, such as at the end of the method or routine name in all method definitions, method calls, or routine calls. Required parentheses are shown in boldface in the syntax listings in this manual.
	The following sections describe the contexts in which the parentheses are required to invoke a method, pseudo-method, or routine:
	2.14 list.method()

	Purpose
	Execute list pseudo-method

	Category
	Expression

	Syntax
	list-exp. list-method([param,]...)[.list-method([param,]...). ...]
	Syntax example:

	Parameters
	list-exp
	An expression that returns a list.
	list-method
	One of the list pseudo-methods described in Chapter 19, “List Pseudo-Methods Library”

	Description
	Executes a list pseudo-method on the specified list expression, item by item. When an item is evaluated, it stands for the item and index stands for its index in the list.
	When a parameter is passed, that expression is evaluated for each item in the list.

	Example 1
	This example shows how to call two simple list pseudo-methods. The is_empty() list method returns a boolean, while size() returns an int.
	Result

	Example 2
	List method calls can be nested within any expression as long as the returned type matches the context. The following example filters the list my_packets to include only the ethernet kind, sorts the result in ascending order, and prints.
	Result
	See Also
	2.15 Special-Purpose Operators
	The following special purpose operators are supported:
	“is [not] a” on page 67
	Identify the subtype of a struct instance
	“new” on page 69
	Allocate a new struct
	“.” on page 71
	Refer to fields in structs
	“'” on page 73
	Used in names of e entities
	“? :” on page 73
	Conditional operator
	2.15.1 is [not] a

	Purpose
	Identify the subtype of a struct instance

	Category
	Boolean expression

	Syntax
	struct-exp is a subtype [(name)]
	struct-exp is not a subtype
	Syntax example:

	Parameters
	struct-exp
	An expression that returns a struct.
	subtype
	A subtype of the specified struct type.
	name
	The name of the local variable you want to create. This parameter cannot be used with is not a expressions.

	Description
	Identifies whether a struct instance is a particular subtype or not at run time.
	If a name is specified, then a local temporary variable of that name is created in the scope of the action containing the is a expression. This local variable contains the result of struct-exp.as_a(type) when the is a expression returns TRUE.

	Notes
	Example
	Result
	See Also
	2.15.2 new

	Purpose
	Allocate a new initialized struct

	Category
	Expression

	Syntax
	new [struct-type [[(name)] with {action;...}]]
	Syntax example:

	Parameters
	struct-type
	Either a struct type or a struct subtype.
	name
	An optional name, valid within the action block, for the new struct. If no name is specified, you can use the implicit variable it to refer to the new struct.
	action
	A list of one or more actions.

	Description
	Creates a new struct:
	1) Allocates space for the struct.
	2) Assigns default values to struct fields.
	3) Invokes the init() method for the struct, which by default initializes all fields of scalar type, including enumerated scalar...
	4) Invokes the run() method for the struct, unless the new expression is in a construct that is executed before the run phase. For example, if you use new in an extension to sys.init(), then the run() method is not invoked.
	5) Executes the action-block, if one is specified.

	If no subtype is specified, the type is derived from the context. For example, if the new struct is assigned to a variable of type packet, the new struct will be of type packet.
	If the optional with clause is used, you can refer to the newly created struct either with the implicit variable it, or with an optional name.
	NOTE- The new struct is a shallow struct. The fields of the struct that are of type struct are not allocated.

	Example
	Result
	See Also
	2.15.3 .

	Purpose
	Refer to fields in structs

	Category
	Expression

	Syntax
	[[struct-exp].] field-name
	Syntax example:

	Parameters
	struct-exp
	An expression that returns a struct.
	field-name
	The name of the scalar field or list field to reference.

	Description
	Refers to a field in the specified struct. If the struct expression is missing, but the period exists, the implicit variable it ...

	Notes

	Example 1
	The following example shows the use of the “.” to identify the fields u and kind in the keep constraints:

	Example 2
	This example shows the effect of using the “.” to access the fields in a list (switch.port) and to access a field that is a list (switch.port.data):
	Result
	See Also
	2.15.4 '

	Apostrophes
	The apostrophe (') is an important syntax element used in multiple ways in e source code. The actual context of where it is used in the syntax defines its purpose. A single apostrophe is used in the following places:

	See Also
	2.15.5 ? :

	Purpose
	Conditional operator

	Category
	Expression

	Syntax
	bool-exp ? exp1 : exp2
	Syntax example:

	Parameters
	bool-exp
	A legal e expression that evaluates to TRUE or FALSE.
	exp1, exp2
	A legal e expression.

	Description
	Evaluates one of two possible expressions, depending on whether a boolean expression evaluates to TRUE or FALSE. If the boolean expression is TRUE, then the first expression is evaluated. If it is FALSE, then the second expression is evaluated.

	Example
	Result
	See Also

	3 Data Types
	The e language has a number of predefined data types including the integer and boolean scalar types common to most programming l...
	This chapter contains the following topics:
	See Also
	3.1 Overview of e Data Types
	The following sections provide a basic explanation of e data types:
	3.1.1 e Data Types

	Most e expressions have an explicit data type. These data types are described in the following sections:
	Certain expressions, such as HDL objects, have no explicit data type. See “Untyped Expressions” on page 87 for information on how these expressions are handled.
	3.1.1.1 Scalar Types

	Scalar types in e are one of the following:
	Table 3-1, “Predefined Scalar Types”, on page 76 shows the predefined numeric and boolean types. See the notes below the table for important information about these predefined types.
	Table 3-1- Predefined Scalar Types

	int
	Represents numeric data, both negative and non-negative integers.
	32 bits
	0
	uint
	Represents unsigned numeric data, non- negative integers only.
	32 bits
	0
	bit
	An unsigned integer in the range 0-1.
	1 bit
	0
	byte
	An unsigned integer in the range 0-255.
	8 bits
	0
	time
	An integer in the range 0-263-1.
	64 bits
	0
	bool
	Represents truth (logical) values, TRUE(1) and FALSE (0).
	1 bit
	FALSE (0)
	NOTE- Both signed and unsigned integers can be of any size and, thus, of any range. See “Scalar Subtypes” on page 76 for information on how to specify the size and range of a scalar field or variable explicitly.

	Result
	3.1.1.2 Scalar Subtypes
	You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type. You can also spec...
	The following sections describe scalar modifiers, named scalar subtypes, and unbounded integers in more detail.
	3.1.1.2.1 Scalar Modifiers

	There are two types of scalar modifiers that you can use together or separately to modify predefined scalar types:
	1) Range modifiers
	2) Width modifiers

	Range modifiers define the range of values that are valid. For example, the range modifier in the expression below restricts valid values to those between zero and 100 inclusive.
	Width modifiers define the width in bits or bytes. The width modifiers in the expressions below restrict the bit width to 8.
	You can use width and range modifiers in combination.
	3.1.1.2.2 Named Scalar Subtypes

	When you use a scalar modifier to limit the range or bit width of a scalar type, you can also specify a name.
	Named scalar subtypes are useful in a context where, for example, you need to declare a counter variable like the variable “count” several places in the program.
	By creating a named scalar type, you can use the type name when introducing new variables with this type.
	See “type enumerated scalar” on page 98 for more information on named scalar subtypes.
	3.1.1.2.3 Unbounded Integers

	Unbounded integers represent arbitrarily large positive or negative numbers. Unbounded integers are specified as:
	You can use an unbounded integer variable when you do not know the exact size of the data. You can use unbounded integers in expressions just as you use signed or unsigned integers.

	Notes
	See Also
	3.1.1.3 Enumerated Scalar Types
	You can define the valid values for a variable or field as a list of symbolic constants. For example, the following declaration defines the variable “kind” as having two legal values.
	These symbolic constants have associated unsigned integer values. By default, the first name in the list is assigned the value z...
	The associated unsigned integer value of a symbolic constant in an enumerated type can be obtained using the .as_a() type castin...
	Casting an unsigned integer to a symbolic constant:
	Casting a symbolic constant to an unsigned integer:
	You can explicitly assign values to some symbolic constants and allow others to be automatically assigned. The following declaration assigns the value 3 to “immediate”; the value 4 is assigned to “register” automatically.
	You can name an enumerated type to facilitate its reuse throughout your program. For example, the first statement below defines a new enumerated type named “instr_kind”. The variable “i_kind” has the two legal values defined by the “instr_kind” type.
	It is sometimes convenient to introduce a named enumerated type as an empty type.
	Once the protocols that are meaningful in the program are identified you can extend the definition of the type with a statement like:
	Enumerated types can be sized.
	Variables or fields with an enumerated type can also be restricted to a range. This variable declaration excludes “foreign” from its legal values:
	The default value for an enumerated type is zero, even if zero is not a legal value for that type. For example, the variable “i_kind” has the value zero until it is explicitly initialized or generated.
	3.1.1.4 Casting of Enumerated Types in Comparisons

	Enumerated scalar types, like boolean types, are not automatically converted to or from integers or unsigned integers in compari...
	Assume that I is an int, B is a bool, and E is an enumerated type. Since enumerated and boolean types are not automatically conv...
	The first two if statements above cause load errors because it is possible for A or B or both to be used in more than one enumer...
	In the fifth case, x < A, the context of A is not clear at load time, so a loading error occurs. The context of A is clear in the last case, x == A, however, so this code loads with no problem.

	See Also
	3.1.1.5 Struct Types
	Structs are the basis for constructing compound data structures.
	The following statement creates a struct type called “packet” with a field “protocol” of type “packet_protocol”.
	You can then use the struct type “packet” in any context where a type is required. For example in this statement, “packet” defines the type of a field in another struct.
	You can also define a variable using a struct type.
	The default value for a struct is NULL.

	See Also
	3.1.1.6 Struct Subtypes
	When a struct field has a boolean type or an enumerated type, you can define a struct subtype for one or more of the possible va...
	To refer to a boolean struct subtype, for example “legal packet”, use this syntax:
	To refer to an enumerated struct subtype in a struct where no values are shared between the enumerated types, you can use this syntax:
	In structs where more than one enumerated field can have the same value, you must use the following syntax to refer to the struct subtype:
	For example, if we define two enumerated types:
	And add two fields to the “packet” struct:
	The syntax for referring to the type of an Ethernet packet with the destination “b” is:
	because the name “b Ethernet packet” is ambiguous.
	The example below shows another context where a struct subtype can be used.
	You can also use the extend, when, or like constructs to add fields, methods, or method extensions that are required for a particular subtype.
	For example, the extend construct shown below adds a field and a method to the “Ethernet packet” subtype. The “Ethernet packet” subtype also inherits all the characteristics of the struct “packet”.
	The “Ethernet packet” subtype could also be defined with the when construct. The following “Ethernet packet” subtype is exactly equivalent to the Ethernet packet subtype defined by extend.
	You can use either the when or the extend construct to define struct subtypes with very similar results. These constructs are ap...
	3.1.1.7 Referencing Fields in When Constructs

	The example below shows how to refer to a field of a struct subtype outside of a when, like, or extend construct by assigning a temporary name to the struct subtype.
	In order to reference a field in a when construct, you must specify the appropriate value for the when determinant. For example, consider the following struct and subtype:
	For any instance “pk_inst” of the packet struct, references to the “i_val” field are only valid if the when determinant is “IEEE”. The following are three ways to ensure that “pk_inst” is in fact an “IEEE packet” before referencing “i_val”.

	See Also
	3.1.1.8 List Types
	List types hold ordered collections of data elements where each data element conforms to the same type. Items in a list can be i...
	Lists are defined by using the list of keyword in a variable or a field definition. The example below defines a list of bytes na...
	NOTE- Multi-dimensional lists (lists of lists) are not supported. To create a list with sublists in it, you can create a struct to contain the sublists, and then create a list of such structs as the main list.
	The default value of a list is an empty list.
	3.1.1.8.1 Regular Lists

	The following example shows two lists, “packets” and “all_lengths”.
	Each element of “packets” is a struct of type “packet”. Each element of “all_lengths” is a scalar value of type “length”.
	Both “packets” and “all_lengths” have 10 elements because of the explicit size “[10]” specified in the “packets” declaration. You can only specify a list size in this manner for fields. To size lists that are variables, you have to use a keep constraint.
	3.1.1.8.2 Keyed Lists

	A keyed list data type is similar to hash tables or association lists found in other programming languages. The declaration below specifies that “packets” is a list of packets, and that the “protocol” field in the packet type is used as the hash key.
	If the element type of the list is a scalar type or a string type, then the hash key must be the predefined implicit variable it.

	Notes
	See Also
	3.1.1.9 The string Type
	The predefined type string is the same as the C NULL terminated (zero terminated) string type. You can assign a series of ASCII characters enclosed by quotes (“”) to a variable or field of type string, for example:
	You cannot access bits or bit ranges of a string, but you can convert a string to a list of bytes and then access a portion of the string. The print statement shown below displays “/test1”.
	The default value of a variable of type string is NULL.

	See Also
	3.1.1.10 The external_pointer Type
	The external_pointer type is used to hold a pointer into an external (non-e) entity, such as a C struct. Unlike pointers to structs in e, external pointers are not changed during garbage collection.
	3.1.2 Memory Requirements for Data Types

	The amount of memory needed to store data types is listed in Table 3-3.
	Table 3-2- Storage Sizes of DataTypes

	All scalars up to 32 bits
	4 bytes
	Scalars larger than 32 bits
	Same as a list of bit of the appropriate size
	String
	4 bytes (the pointer) + the size of the string + 1 byte (the NULL byte)
	A NULL string is just the pointer.
	Struct pointer
	4 bytes
	Struct
	8 bytes + the sum of the field sizes
	A NULL struct is just the pointer (4 bytes)
	List
	4 bytes (a pointer to the list) + approximately 16 bytes (header) + the sum of the sizes of the elements
	Lists of scalars of size up to 16 bits are packed to the nearest power of 2 (in bits). This is often the most efficient representation.
	3.1.3 Untyped Expressions

	All e expressions have an explicit type, except for the following types of expressions:
	The default type of HDL objects is 32-bit uint, while pack() expressions and bit concatenations have a default type of list of b...
	NOTE- Implicit unpacking is not supported for strings, structs, or lists of non-scalar types. As a result, the following causes a load-time error if “i” is a string, a struct, or a list of a non- scalar type:
	NOTE- Implicit packing is not supported for strings, structs, or lists of non-scalar types. As a result, the assignment above would cause a load-time error if “j” were a string, a struct, or a list of a non-scalar type.
	NOTE- The method parameter or return value in the pack expression must be a scalar type or a list of scalar type. For example, the following results in a load-time error:
	When the type and bit size cannot be determined from the context, the expression is automatically cast according to the following rules.
	When expressions are untyped, an implicit pack/unpack is performed according to the expected type.

	See Also
	3.1.4 Assignment Rules
	Assignment rules define what is a legal assignment and how values are assigned to entities. The following sections describe various aspects of assignments:
	3.1.4.1 What Is an Assignment?

	There are several legal ways to assign values:
	Here is an example of an assignment action, where a value is explicitly assigned to a variable “x” and to a field “sys.x”.
	Here’s an example of a return action, which implicitly assigns a value to the result variable:
	Here’s an example of assigning a value (6) to a method parameter (“i”):
	Here’s an example of how variables are assigned during declaration:
	NOTE- You cannot assign values to fields during declaration in this same manner.
	3.1.4.2 Assignments Create Identical References
	Assigning one struct, list, or value to another object of the same type results in two references pointing to the same memory location, so that changes to one of the objects also occur in the other object immediately.
	After generation, the two lists data1 and data2 are different lists. However, after the data2=data1 assignment, both lists refer to the same memory location, therefore changing the data1[0] value also changes the data2[0] value immediately.
	3.1.4.3 Assignment to Different but Compatible Types
	3.1.4.3.1 Assignment of Numeric Types

	Any numeric type (for example, uint, int, or one of their subtypes) can be assigned with any other numeric type. Untyped express...
	Automatic casting is performed when a numeric type is assigned to a different numeric type, and automatic extension or truncatio...
	3.1.4.3.2 Assignment of Boolean Types

	A boolean type can only be assigned with another boolean type.
	3.1.4.3.3 Assignment of Enumerated Types

	An enumerated type can be assigned with that same type, or with its scalar subtype. (The scalar subtype differs only in range or bit size from the base type.)
	The example below shows:

	Example
	To assign any scalar type (numeric, enumerated, or boolean type) to any different scalar type, you must use the .as_a() operator.
	3.1.4.3.4 Assignment of Structs

	An entity of type struct can be assigned with a struct of that same type or with one of its subtypes. The following example shows:

	Example
	Although you can assign a subtype to its parent struct without any explicit casting as shown above, to perform the reverse assig...
	3.1.4.3.5 Assignment of Strings

	A string can be assigned only with strings, as shown below.
	3.1.4.3.6 Assignment of Lists

	An entity of type list can be assigned only with a list of the same type. In the following example, the assignment of “list1” to “x” is legal because both lists are lists of integers.
	However, an assignment such as “var y: list of int (bits: 16) = list1;” would be an error, because “list1” not the same list typ...

	See Also
	3.1.5 Precision Rules for Numeric Operations
	For precision rules, there are two types of numeric expressions in e:
	A numeric operation in e is performed in one of three possible combinations of precision and numeric type:
	The e language has rules for:
	The following sections describe these rules and give an example of how these rules are applied:

	See Also
	3.1.5.1 Determining the Context of an Expression
	The rules for defining the context of an expression are applied in the following order:
	1) In an assignment (lhs = rhs), the right-hand side (rhs) expression inherits the context of the left-hand side (lhs) expression.
	2) A sub-expression inherits the context of its enclosing expression.
	3) In a binary-operator expression (lho OP rho), the right-hand operand (rho) inherits context from the left-hand operand (lho), as well as from the enclosing expression.

	Table 3-3 summarizes context inheritance for each type of operator that can be used in numeric expressions.
	Table 3-3- Summary of Context Inheritance in Numeric Operations (continued)

	* / % + - < <= > >= == != === !== & | ^
	Arithmetic, comparison, equality, and bit-wise boolean
	The right-hand operand inherits context from the left-hand operand (lho), as well as from the enclosing expression. lho inherits only from the enclosing expression.
	~ ! unary + -
	Bitwise not, boolean not, unary plus, minus
	The operand inherits context from the enclosing expression.
	[]
	List indexing
	The list index is context independent.
	[..]
	List slicing
	The indices of the slice are context independent.
	[:]
	Bit slicing
	The indices of the slice are context independent.
	f(...)
	Method or routine call
	The context of a parameter to a method is the type and bit width of the formal parameter.
	{...; ...}
	List concatenation
	Context is passed from the lhs of the assignment, but not from left to right between the list members.
	%{..., ...}
	Bit concatenation
	The elements of the concatenation are context independent.
	>>, <<
	Shift
	Context is passed from the enclosing expression to the left operand. The context of the right operand is always 32-bit uint.
	lho in [i..j]
	Range list operator
	All three operands are context independent. (The range specifiers i and j must be constant.)
	&&, ||
	Boolean
	All operands are context independent.
	a ? b : c
	Conditional operator
	a is context independent, b inherits the context from the enclosing expression, c inherits context from b as well as from the enclosing expression
	.as_a()
	Casting
	The operand is context independent.
	abs(), odd() even()
	Arithmetic routine
	The parameter is context independent.
	min(), max()
	Arithmetic routine
	The right parameter inherits context from the left parameter (lp), as well as from the enclosing expression. lp inherits only from the enclosing expression.
	ilog2(), ilog10(), isqrt()
	Arithmetic routine
	The context of the parameter is always 32-bit uint.
	ipow()
	Arithmetic routine
	Both parameters inherit the context of the enclosing expression, but the right parameter does not inherit context from the left.
	3.1.5.2 Deciding Precision and Performing Data Conversion and Sign Extension

	The rules for deciding precision, performing data conversion and sign extension are as follows:
	NOTE- Decimal constants are treated as signed integers, whether they are negative or not. All other constants are treated as unsigned integers unless preceded by a hyphen.
	NOTE- Casting of small negative numbers (signed integers) to unsigned integers produces large positive numbers.
	3.1.5.3 Example Application of Precision Rules
	Given the following assignment:
	1) The precision of the multiplication operation (exp2 * exp3) is based on the four types involved here:
	2) The precision of the addition operation is based on the three types involved here:
	3) For the assignment operation, the result of the addition operation is converted to 32-bit int and assigned to sum.

	See Also
	3.1.6 Automatic Type Casting
	During assignment of a type to a different but compatible type, automatic type casting is performed in the following contexts:
	There are three important ramifications to automatic type casting:
	1) If the two types differ in bit size, then the assigned value is extended or truncated to the required bit size. See Example 1 on page 97.
	2) Casting of small negative numbers (signed integers) to unsigned integers produces large positive numbers. See Example 2 on page 98.
	3) There is no automatic casting to a reference parameter. See “Parameter Passing” on page 484 for more information.

	Example 1
	In the following example, “x” is a 32-bit signed integer, “y” is a 48-bit unsigned integer, and “z” is a 3-bit signed integer. Assigning “x” to “y” extends “x” to 48 bits. Assigning “x” to “z” chops “x” to 3 bits.
	Result
	Calling “sys.m()” results in:

	Example 2
	Result
	The int value “x” (0xffffffff) is automatically cast to uint and becomes MAX_UINT. As a result, the print statements display the following:

	See Also
	3.2 Defining and Extending Scalar Types
	You can use the following constructs to define and extend scalar types:
	3.2.1 type enumerated scalar

	Purpose
	Define an enumerated scalar type

	Category
	Statement

	Syntax
	type enum-type-name: [[name[=exp], ...]] [(bits | bytes: width-exp)]
	Syntax example:

	Parameters
	enum-type-name
	A legal e name. The name must be different from any other predefined or enumerated type name because the name space for types is global.
	name
	A legal e name. Each name must be unique within the type.
	exp
	A unique 32-bit constant expression. Names or name-value pairs can appear in any order. By default, the first name in the list i...
	width-exp
	A positive constant expression. The valid range of values for sized enumerated scalar types is limited to the range 1 to 2**n - 1, where n is the number of bits.

	Description
	Defines an enumerated scalar type having the name you specify and consisting of a set of names or name- value pairs. If no value...

	Example 1
	This is a simple example of the basic syntax.

	Example 2
	This example shows how HDL variables are automatically cast to the required scalar type.

	Example 3
	This example shows an enumerated type with a bit width:

	Example 4
	This example shows how to type cast between an enumerated type and an unsigned integer.
	See Also
	3.2.2 type scalar subtype

	Purpose
	Define a scalar subtype

	Category
	Statement

	Syntax
	type scalar-subtype-name: scalar-type [range, ...]
	Syntax example:

	Parameters
	scalar-subtype-name
	A unique e name.
	scalar-type
	Any previously defined enumerated scalar type, any of the predefined scalar types, including int, uint, bool, bit, byte, or time, or any previously defined scalar subtype.
	range
	A constant expression or two constant expressions separated by two dots. All constant expressions must resolve to legal values of the named type.

	Description
	Defines a subtype of a scalar type by restricting the legal values that can be generated for this subtype to the specified range.
	NOTE- The default value for variables or fields of this type “size” is zero, the default for all integers; the range affects only the generated values.

	Example 1
	The integer subtype defined below includes all non-negative integers except 4,5, and 7.

	Example 2
	The following example defines the “inst” type, which has five legal instruction values, and the subtype “mem_inst”, which has only the values related to memory.

	Example 3
	You can omit the range list, thus renaming the full range. The first example below gives the name “my_int” to the full range of integers. The second example gives the name “true_or_false” to the full range of the boolean type.
	See Also
	3.2.3 type sized scalar

	Purpose
	Define a sized scalar

	Category
	Statement

	Syntax
	type sized-scalar-name: type (bits | bytes: exp)
	Syntax example:

	Parameters
	sized-scalar-name
	A unique e name.
	type
	Any previously defined enumerated type or any of the predefined scalar types, including int, uint, bool, or time.
	exp
	A positive constant expression. The valid range of values for sized scalars is limited to the range 1 to 2n - 1, where n is the number of bits.

	Description
	Defines a scalar type with a specified bit width. The actual bit width is exp * 1 for bits and exp * 8 for bytes. In the example shown below, both types “word” and “address” have a bit width of 16.

	Example
	When assigning any expression into a sized scalar variable or field, the expression's value is truncated or extended automatical...
	Here is an example of assigning an expression where the expression's value is truncated:

	See Also
	3.2.4 extend type

	Purpose
	Extend an enumerated scalar type

	Category
	Statement

	Syntax
	extend enum-type: [name[= exp], ...]
	Syntax example:

	Parameters
	enum-type
	Any previously defined enumerated type.
	name
	A legal e name. Each name must be unique within the type.
	exp
	A unique 32-bit constant expression. Names or name-value pairs can appear in any order. By default, the first name in the list i...

	Description
	Extends the specified enumerated scalar type to include the names or name-value pairs you specify.

	Example 1
	This is an example of the basic syntax.

	Example 2
	A common use of type extension is defining a protocol type and extending it as new protocols are added to the test environment. ...
	As protocols are gradually added to the test environment, the new protocol type can be added without changes to the original code:
	Then again for more protocols:
	See Also
	3.3 Type Conversion Between Scalars and Strings
	This section contains:
	The as_a() expression is used to convert an expression from one data type to another. Information about how different types are ...
	This section contains:
	3.3.1 as_a()

	Purpose
	Casting operator

	Category
	Expression

	Syntax
	exp.as_a(type: type name): type
	Syntax example:

	Parameters
	exp
	Any e expression.
	type
	Any legal e type.

	Description
	Returns the expression, converted into the specified type. Although some casting is done automatically (see “Automatic Type Casting” on page 96), explicit casting is required in some cases when making assignments between different but compatible types.
	3.3.1.1 Type Conversion Between Scalars and Lists of Scalars

	Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon assignment to different numeric types.
	For other scalars and lists of scalars, there are a number of ways to perform type conversion, including the as_a() method, the ...
	In Table 3-4, “Type Conversion Between Scalars and Lists of Scalars”, on page 105, int represents int/uint of any size, including bit, byte, and any user-created size. If a solution is specific to bit or byte, then bit or byte is explicitly stated.
	int(bits:x) means x as any constant; variables cannot be used as the integer width.
	The solutions assume that there is a variables declared as
	Any conversions not explicitly shown may have to be accomplished in two stages.
	Table 3-4- Type Conversion Between Scalars and Lists of Scalars (continued)

	int
	list of bit
	list_of_bit = int[..]
	int
	list of int(bits:x)
	list_of_int = %{int}
	list_of_int = pack(packing.low, int)
	(LSB of int goes to list[0] for either choice)
	list of bit
	list of byte
	int
	int = list_of_bit[:]
	list of int(bits:x)
	int
	int = pack(packing.low, list_of_int)
	(Use packing.high for list in other order.)
	int(bits:x)
	int(bits:y)
	intx = inty
	(Truncation or extension is automatic.)
	intx.as_a(int(bits:y))
	bool
	int
	int = bool.as_a(int)
	(TRUE becomes 1, FALSE becomes 0.)
	int
	bool
	bool = int.as_a(bool)
	(0 becomes FALSE, non-0 becomes TRUE.)
	int
	enum
	enum = int.as_a(enum)
	(No checking is performed to make sure the int value is valid for the range of the enum.)
	enum
	int
	int = enum.as_a(int)
	(Truncation is automatic.)
	enum
	bool
	enum.as_a(bool)
	(Enumerated types with an associated unsigned integer value of 0 become FALSE; those with an associated non-0 values become TRUE. See “Enumerated Scalar Types” on page 77 for more information on values associated with enumerated types.)
	bool
	enum
	bool.as_a(enum)
	(Boolean types with a value of FALSE are converted to the enumerated type value that is associated with the unsigned integer val...
	enum
	enum
	enum1 = enum2.as_a(enum1)
	(no checking is performed to make sure the int value is valid for the range of the enum)
	list of int(bits:x)
	list of int(bits:y)
	listx.as_a(list of int(bits:y))
	(same number of items, each padded or truncated)
	listy = pack(packing.low, listx)
	(concatenated data, different number of items)
	3.3.1.2 Type Conversion Between Strings and Scalars or Lists of Scalars

	There are a number of ways to perform type conversion between strings and scalars or lists of scalars, including the as_a() meth...
	In Table 3-5, “Type Conversion Between Strings and Scalars or Lists of Scalars”, on page 107, int represents int/uint of any siz...
	int(bits:x) means x as any constant; variables cannot be used as the integer width.
	The solutions assume that there is a variables declared as
	Any conversions not explicitly shown may have to be accomplished in two stages.
	Table 3-5- Type Conversion Between Strings and Scalars or Lists of Scalars (continued)

	list of int
	list of byte
	string
	yes
	list_of_int.as_a(string)
	(Each list item is converted to its ASCII character and the characters are concatenated into a single string. int[0] represents left-most character. If a list item is not a printable ASCII character, the string returned is empty.)
	string
	list of int
	list of byte
	yes
	string.as_a(list of int)
	(Each character in the string is converted to its numeric value and assigned to a separate element in the list. The left-most character becomes int[0])
	string
	list of int
	yes
	list_of_int = pack(packing.low, string)
	list_of_int = %{string}
	(The numeric values of the characters are concatenated before assigning them to the list. Any pack option gives same result; null byte, 00, will be last item in list.)
	string
	int
	yes
	int = %{string}
	int = pack(packing.low, string)
	(Any pack option gives same result.)
	int
	string
	yes
	unpack(packing.low, %{8’b0, int}, string)
	(Any pack option with scalar_reorder={} gives same result.)
	string
	int
	no
	string.as_a(int) (Converts to decimal.)
	append(“0b”, string).as_a(int) (Converts to binary.)
	append(“0x”, string).as_a(int) (Converts to hexadecimal.)
	int
	string
	no
	int.as_a(string) (Uses the current print radix.)
	append(int) (Converts int according to current print radix.)
	dec(int), hex(int), bin(int) (Converts int according to specific radix.)
	string
	bool
	no
	bool = string.as_a(bool)
	(Only “TRUE” and “FALSE” can be converted to boolean; all other strings return an error.)
	bool
	string
	no
	string = bool.as_a(string)
	string
	enum
	no
	enum = string.as_a(enum)
	enum
	string
	no
	string = enum.as_a(string)
	3.3.1.3 Type Conversion Between Structs, Struct Subtypes, and Lists of Structs

	Struct subtypes are automatically cast to their base struct type, so, for example, you can assign a variable of type “Ethernet packet” to a variable of type “packet” without using as_a().
	You can use as_a() to cast a base struct type to one of its subtypes; if a mismatch occurs, then NULL is assigned. For example, the “print pkt.as_a(foreign packet)” action results in “pkt.as_a(foreign packet) = NULL” if pkt is not a foreign packet.
	When the expression to be converted is a list of structs, as_a() returns a new list of items whose type matches the specified type parameter. If no items match the type parameter, an empty list is returned.
	The list can contain items of various subtypes, but all items must have a common parent type. That is, the specified type parameter must be a subtype of the type of the list.
	Assigning a struct subtype to a base struct type does not change the declared type. Thus, you have to use as_a() to cast the base struct type as the subtype in order to access any of the subtype-specific struct members. See Example 6 on page 112.
	Subtypes created through like inheritance exhibit the same behavior as subtypes created through when inheritance.
	3.3.1.4 Type Conversion Between Simple Lists and Keyed Lists

	You can convert simple lists to keyed lists and keyed lists to simple lists. When you convert a keyed list to a simple list, the hash key is dropped. When you convert a simple list to a keyed list, you must specify the key.
	For example, if “sys.packets” is a simple list of packets and you want to convert it to a keyed list where the “len” field of the packet struct is the key, you can do so like this:
	The as_a() method returns a copy of sys.packets, so the original sys.packets is still a simple list, not a keyed list. Thus “pri...
	If a conversion between a simple list and a keyed list also involves a conversion of the type of each item, that conversion of e...
	NOTE- No checking is performed to make sure the value is valid when casting from a numeric or boolean type to an enumerated type or when casting between enumerated types.

	Example 1
	In this example, the most significant bits of the 32-bit variable “i” are truncated when “i” is printed as a 16- bit variable. When “i” is printed as a 64-bit variable, it is sign-extended to fit.
	Result

	Example 2
	No checking is performed when “c”, a variable of type color, is assigned a value outside its range. However, a message is issued when the “c” is accessed by the print statement.
	Result

	Example 3
	You can use the as_a() method to convert a boolean type to a numeric or an enumerated type or from one of those types to a boolean.
	Result

	Example 4
	You can cast between numeric types and strings with as_a(), but no ASCII conversion is performed. This example shows how to get ASCII conversion using unpack() and the bit concatenation operator %{}.
	Result

	Example 5
	You can cast between lists of numerics and strings with as_a(). As shown in the first print statement, each character in the str...
	Result

	Example 6
	The “print pkt.as_a(foreign packet)” action below results in “pkt.as_a(foreign packet) = NULL” because “pkt” is of type “Ethernet packet”.
	The “print pkt.e_field” action in this example results in a compile-time error because the declared type of “pkt” does not have a field “e_field”. However, the “print pkt.as_a(Ethernet packet).e_field” action prints the value of the field.
	Result

	Example 7
	The as_a() pseudo-method, when applied to a scalar list, creates a new list whose size is the same as the original size and then casts each element separately.
	To pass a list of integer(bits: 4) as a parameter to a method that requires a list of integers, you can use explicit casting, as follows:
	Result
	The print statement gives the following results:

	Example 8
	When the as_a() operator is applied to a list of structs, the list items for which the casting failed are omitted from the list.
	Result

	Example 9
	You can use as_a() to convert a string to an enumerated type. The string has to match letter by letter one of the possible values of that type or a runtime error is issued.
	This example sets a list of items of an enumerated type to the values read from a file.
	enum_items.txt
	Result
	NOTE- If the file is not accessible, you will see a runtime error with the name of the missing file. If there is a typo in the file, you will see a runtime error message like the following:

	See Also
	3.3.2 all_values()

	Purpose
	Access all values of a scalar type

	Category
	Pseudo routine

	Syntax
	all_values(scalar-type: type name): list of scalar type
	Syntax example:

	Parameters
	scalar-type
	Any legal e scalar type.

	Description
	Returns a list that contains all the legal values of the specified scalar type. When that type is an enumerated type, the order ...
	NOTE- When the specified type has more than 1million legal values, this routine gives a compile time error to alert you to possible memory abuse.

	Example
	Result

	4 Structs, Fields, and Subtypes
	The basic organization of an e program is a tree of structs. A struct is a compound type that contains data fields, procedural m...
	This chapter contains the following sections:
	See Also
	4.1 Structs Overview
	Structs are used to define data elements and behavior of components of a test environment. A struct can hold all types of data and methods.
	All user-defined structs inherit from the predefined base struct type, any_struct.
	For reusability of e code, you can add struct members or change the behavior of a previously defined struct with extend.
	Inheritance is implemented in e by either of two of aspects of a struct definition:
	The best inheritance methodology for most applications is “when” inheritance. See “Comparison of When and Like Inheritance” on page 142 for more information.
	4.2 Defining Structs: struct

	Purpose
	Define a data struct

	Category
	Statement

	Syntax
	struct struct-type [like base-struct-type] { [struct-member; ...]}
	Syntax example:

	Parameters
	struct-type
	The name of the new struct type.
	base-struct-type
	The type of the struct from which the new struct inherits its members.
	struct-member; ...
	The contents of the struct. The following are types of struct members:
	The definition of a struct can be empty, containing no members.

	Description
	Structs are used to define the data elements and behavior of components and the test environment. Structs contain struct members...
	The optional like clause is an inheritance directive. All struct members defined in base-struct-type are implicitly defined in t...

	Example 1
	A struct type named “transaction” is defined in this example.
	The “transaction” struct contains three members:

	Example 2
	In this example, a “pci_transaction” struct is derived from the “transaction” struct in the previous example, using like inheritance. The following struct members are added in this inherited struct:
	The “transform()” method, defined as empty in the “transaction” base type, is given a method body using the is only method extension syntax.

	Example 3
	Additional subtypes can, in turn, be derived from a subtype. In the following example, an “agp_transaction” subtype is derived f...
	See Also
	4.3 Extending Structs: extend type

	Purpose
	Extend an existing data struct

	Category
	Statement

	Syntax
	extend [struct-subtype] base-struct-type { [struct-member; ...]}
	Syntax example:

	Parameters
	struct-subtype
	Adds struct members to the specified subtype of the base struct type only. The added struct members are known only in that subtype, not in other subtypes.
	base-struct-type
	The base struct type to extend.
	member; ...
	The contents of the struct. A struct member is one of the following types:
	The extension of a struct can be empty, containing no members.

	Description
	Adds struct members to a previously defined struct or struct subtype.
	Members added to the base struct type in extensions apply to all other extensions of the same struct. Thus, for example, if you extend a method in a base struct with is only, it overrides that method in every one of the like children.
	NOTE- If like inheritance has been used on a struct type, there are limitations on how the original base struct type definition can be further extended with extend. See “Restrictions on Like Inheritance” on page 149.

	Example 1
	In the following example, a struct type named “pci_transaction” is defined in one module, which is then imported into another module where a field named “data_phases” and two constraints are added in an extension to the struct.

	Example 2
	In the following, the “tx_packet” struct inherits its kind field from the “packet” struct definition, from which it is derived u...
	See Also
	4.4 Extending Subtypes
	A struct subtype is an instance of the struct in which one of its fields has a particular value. For example, the “packet” struc...
	A struct subtype can optionally be specified with extend, so that the extension only applies to that subtype.

	Example 1
	The following shows a definition of a struct type named “packet”, an extension that adds a field named “len” to the struct definition, and a second extension that adds a field named “transmit_size” only to packets whose “kind” is “transmit”.

	Example 2
	The “packet” struct definition below is extended with a boolean field named “legal”. Two additional extensions add a field named...
	See Also
	4.5 Defining Fields: field

	Purpose
	Define a struct field

	Category
	Struct member

	Syntax
	[!][%] field-name[: type] [[min-val .. max-val]] [((bits | bytes):num)]
	Syntax example:

	Parameters
	!
	Denotes an ungenerated field. The “!” and “%” options can be used together, in either order.
	%
	Denotes a physical field. The “!” and “%” options can be used together, in either order.
	field-name
	The name of the field being defined.
	type
	The type for the field. This can be any scalar type, string, struct, or list.
	If the field name is the same as an existing type, you can omit the “: type” part of the field definition. Otherwise, the type specification is required.
	min-val..max-val
	An optional range of values for the field, in the form. If no range is specified, the range is the default range for the field’s type.
	(bits | bytes: num)
	The width of the field in bits or bytes. This syntax allows you to specify a width for the field other than the default width.
	This syntax can be used for any scalar field, even if the field has a type with a known width.

	Description
	Defines a field to hold data of a specific type. You can specify whether it is a physical field or a virtual field, and whether ...

	Physical Fields
	A field defined as a physical field (with the “%” option) is packed when the struct is packed. Fields that represent data that i...
	If no range is specified, the width of the field is determined by the field’s type. For a physical field, if the field’s type does not have a known width, you must use the (bits | bytes : num) syntax to specify the width.

	Ungenerated Fields
	A field defined as ungenerated (with the “!” option) is not generated automatically. This is useful for fields that are to be explicitly assigned during the test, or whose values involve computations that cannot be expressed in constraints.
	Ungenerated fields get default initial values (0 for scalars, NULL for structs, empty list for lists). An ungenerated field whos...

	Assigning Values to Fields
	Unless you define a field as ungenerated, a value is generated for it when the struct is generated, subject to any constraints t...

	Example
	The struct definitions below contain several types of fields.
	The “header” struct contains two physical fields:
	The “packet” struct contains:
	The sys struct extension contains a field for an instance of a “packet” struct. No type declaration is required for the “packet” field in the sys extension, since the field name is the same as the name of a type that was already defined.

	See Also
	4.6 Defining List Fields
	This section shows the syntax and examples of lists in general, and of keyed lists. It contains these topics:
	4.6.1 list of

	Purpose
	Define a list field

	Category
	Struct member

	Syntax
	[!][%]list-name[[length-exp]]: list of type
	Syntax example:

	Parameters
	!
	Do not generate this list. The “!” and “%” options can be used together, in either order.
	%
	Denotes a physical list. The “!” and “%” options can be used together, in either order.
	list-name
	The name of the list being defined.
	length-exp
	An expression that gives the initial size for the list. The expression must evaluate to a non-negative integer.
	type
	The type of items in the list. This can be any scalar type, string, or struct. It cannot be a list.

	Description
	Defines a list of items of a specified type.
	An initial size can be specified for the list. The list initially contains that number of items. The size conforms to the initia...
	All list items are initialized to their default values when the list is created. For a generated list, the initial default values are replaced by generated values.
	For information about initializing list items to particular values, see “Assignment of Lists” on page 93 and “Constraining Lists” on page 264.

	Example 1
	Three list fields are defined in the struct definitions below. The “cell” struct contains a list of bytes, the “packet” struct contains a list of “cell” struct instances, and the sys struct extension contains a list of 16 “packet” struct instances.

	Example 2
	Two lists of cells are defined in this following example, both with initial sizes specified using the [length] syntax. For the c...
	See Also
	4.6.2 list(key) of

	Purpose
	Define a keyed list field

	Category
	Struct member

	Syntax
	![%]list-name: list(key: key-field) of type
	Syntax example:

	Parameters
	!
	Do not generate this list. For a keyed list, the “!” is required, not optional.
	%
	Denotes a physical list. The “%” option may precede or follow the “!”.
	list-name
	The name of the list being defined.
	key-field
	The key of the list. For a list of structs, it is the name of a field of the struct. For a list of scalar or string items, it is the item itself, represented by the it variable.
	This is the field or value which the keyed list pseudo-methods will check when they operate on the list.
	type
	The type of items in the list. This can be any scalar type, string, or struct. It cannot be a list.

	Description
	Keyed lists are used to enable faster searching of lists by designating a particular field or value which is to be searched for. A keyed list can be used, for example, in the following ways:
	Although all of the operations that can be done using a keyed list can also be done using a regular list, using a keyed list provides an advantage in the greater speed of searching a keyed list.
	Besides the key parameter, the keyed list syntax differs from regular list syntax in the following ways:
	The keyed list pseudo-methods (see “Keyed List Pseudo-Methods” on page 618) only work on lists that were defined and created as ...
	A keyed list is a distinct type, different from a regular list. This means that you cannot assign a keyed list to a regular list...
	If the same key value exists in more than one item in a keyed list. the keyed list pseudo-methods always use the item latest in the list (the one with the highest list index number). Other items with the same key value are ignored.

	Example 1
	In the following example, the list named cl is declared to be a keyed list of four-bit uints, with the key being the list item i...
	In the if action, the list.key_exists() and list.key_index() keyed list pseudo-methods are used to check for the existence of an item with the value of 8, and to print the list and the key value’s index if it exists.
	Results

	Example 2
	In the following example, the struct type named s has fields a and b. A keyed list of s structs, with the n field as the key, is declared in the sys extension, and the list is built by the bl() method.
	In the run() method, the list.key_exists() keyed list pseudo-method is used to check whether the value 98 occurs in the n field ...
	Note that two list instances, index 12 and index 15, have the value 95 for n. If 95 was entered as the key value for the list.ke...
	Results

	Example 3
	In the following example, a keyed list is used to model sparse memory. A struct type named location has address and value fields...
	See Also
	4.7 Creating Subtypes with When
	4.7.1 Overview

	The when struct member creates a conditional subtype of the current struct type, if a particular field of the struct has a given...
	When inheritance is the recommended technique for modeling in e. Like inheritance is more appropriate for procedural testbench programming. When and like inheritance are compared in “Comparison of When and Like Inheritance” on page 142.
	4.7.2 when

	Purpose
	Create a subtype

	Category
	Struct member

	Syntax
	when struct-subtype base-struct-type {struct-member; ...}
	Syntax example:

	Parameters
	struct-subtype
	A subtype declaration in the form type-qualifier'field-name.
	The type-qualifier is one of the legal values for the field named by field- name. If the field-name is a boolean field, and its ...
	The field-name is the name of a field in the base struct type. Only boolean or enumerated fields can be used. If the field type ...
	More than one type-qualifier'field-name combination can be stated, to create a subtype based on more than one field of the base struct type.
	base-struct-type
	The struct type of the current struct (in which the subtype is being created).
	struct-member
	Definition of a struct member for the struct subtype. One or more new struct members can be defined for the subtype.

	Description
	You can use the when construct to create families of objects, in which multiple subtypes are derived from a common base struct type.
	A subtype is a struct type in which specific fields of the base struct have particular values. For example:
	Subtypes can also be combinations of fields, such as “eth TRUE’good packet” and “eth FALSE’good packet”.
	Struct members you define in a when construct can be accessed only in the subtype, not in the base struct. This provides a way t...
	NOTE- Once you have used like inheritance to create a subtype of a base struct type, you cannot extend the base type using when.

	Example 1
	An instance of the “packet” struct below can have a “kind” of either “transmit” or “receive”. The when construct creates a “tran...

	Example 2
	The “op1” field in the struct definition below can have one of the enumerated “reg_n” type values (REG0, REG1, REG2, or REG3). The “kind” field can have a value of “imm” or “reg”, and the “dest” field can have a value of “mm_1” or “reg”.
	The “REG0'op1” subtype specification in the first when construct creates a subtype of instances in which the “op1” value is “REG0”. This subtype has all the “instr” struct fields plus a “print_op1()” method.
	The “reg'kind” subtype specification in the second when construct creates a subtype of instances in which the “kind” value is “reg”. This subtype also has all the “instr” struct fields plus a “print_kind()” method.
	It is necessary to add the “'kind” expression in the second when construct because the “dest” field can also have a value of reg, which means that “reg” is ambiguous without the further specification of the field name.
	See Also
	4.8 Extending When Subtypes
	There are two general rules governing the extensions of when subtypes:
	4.8.1 Coverage and When Subtypes

	All coverage events must be defined in the base struct. Defining the ready3 event within the ADD subtype, for example, results in a load time error. Coverage groups can be defined in the base struct or in the subtype.
	4.8.2 Extending Methods in When Subtypes

	A method defined or extended within a when construct is executed in the context of the subtype and can freely access the unique struct members of the subtype with no need for any casting.
	When a method is declared in a base type, each extension of the method in a subtype must have the same parameters and return typ...
	However, if a method is not declared in the base type, each definition of the method in a subtype can have different parameters and return type. The following variation of the example above loads without error.
	If more than one method of the same name is known in a when subtype, any reference to that method is ambiguous and results in a ...
	To remove the ambiguity from such a reference, use the as_a() type casting operator or the when subtype qualifier syntax:
	NOTE- Method calls are checked when the e code is parsed. If there is no ambiguity, the method to be called is selected and all ...
	If this file is loaded after the rest of the e code has been loaded, no error is issued because the method call to p.show() was resolved when the first file was loaded. Any call to p.show() always prints:

	See Also
	4.9 Defining Attributes
	4.9.1 Overview

	You can define attributes that control how a field behaves when it is copied or compared. These attributes are used by deep_copy(), deep_compare(), and deep_compare_physical().
	4.9.2 attribute field

	Purpose
	Define the behavior of a field when copied or compared

	Category
	Struct member

	Syntax
	attribute field-name attribute-name = exp
	Syntax example:

	Parameters
	field-name
	The name of a field in the current struct.
	attribute-name is one of the following:
	deep_copy
	Controls how the field is copied by the deep_copy() routine.
	deep_compare
	Controls how the field is compared by the deep_compare() routine.
	deep_compare_physical
	Controls how the field is compared by the deep_compare_physical() routine.
	deep_all
	Controls how the field is copied by the deep_copy() routine or compared by the deep_compare() or deep_compare_physical() routines.
	exp is one of the following:
	normal
	Perform a deep (recursive) copy or comparison.
	reference
	Perform a shallow (non-recursive) copy or comparison.
	ignore
	Do not copy or compare.

	Description
	Defines how a field behaves when copied or compared. For a full description of the behavior specified by each expression, see th...
	The attribute construct can appear anywhere, including inside a when construct or an extend construct.
	To determine which attributes of a field are valid, all extensions to a unit or a struct are scanned in the order they were load...

	Example
	This example shows the effects of field attributes on the deep_copy() and deep_compare() routines. An instance of “packet”, whic...

	Result
	Here are the results of running the packet example:
	1 Running the test ...
	2
	3 parent of packet1 is : port-@0
	4 parent of packet1 should be: port-@0 original copy
	5
	6 parent of packet2 is : port-@0
	7 parent of packet2 should be: port-@0 shallow copy
	8
	9 origin of packet1 is : port-@1
	10 origin of packet1 should be: port-@1 original copy
	11
	12 origin of packet2 is : (a NULL port)
	13 origin of packet2 should be: a NULL port,
	14 attribute: copy: ignore
	15
	16 dest of packet1 is : port-@2
	17 dest of packet1 should be: port-@2
	18
	19 dest of packet2 is : port-@3
	20 dest of packet2 should be: a different port,
	21 attribute: copy: normal (deep)
	22
	23 Differences between packet-@4 and packet-@5
	24 --
	25 origin: port-@1 != (a NULL port)
	26
	27 Notice a diff in the origin field,
	28 attribute is normal for deep_compare
	29 Notice no diff for the dest field,
	30 attribute is ignore for deep_compare

	Line 3-Line 7: Because the parent field has the deep_all attribute reference, the parent field of the packet2 instance contains a pointer to the parent field of packet1 (port-@0).
	Line 9-Line 14: Because the origin field has the deep_copy attribute ignore, the origin field of the packet2 instance contains a NULL instance of type port.
	Line 16-Line 21: Because the dest field has the deep_copy attribute normal, the dest field of the packet2 instance contains a new instance of type port (port-@3).
	Line 23-Line 25: These lines show the results of a deep_compare() of packet1 and packet2. Note that just prior to this compariso...

	See Also
	4.10 Comparison of When and Like Inheritance
	There are two ways to implement object-oriented inheritance in e:
	This section discusses the pros and cons of both these types of inheritance and recommends when to use each of them.
	4.10.1 Summary of When versus Like

	In general, “when” inheritance should be used for modeling all DUT-related data structures. It is superior from a knowledge representation point of view and from an extensibility point of view. When inheritance lets you:
	Although like inheritance has more restrictions than when inheritance, it is recommended in some special cases because:
	4.10.2 A Simple Example of When Inheritance

	You can create a when subtype of a generic struct using any field in the struct that is a boolean or enumerated type. This field...
	NOTE- The following syntax is used in this document because it looks closer to the “like” version:
	This syntax is exactly equivalent to the when construct:
	The following example shows a generic packet struct with 3 fields, protocol, size and data, and an abstract method show(). In th...
	Of course, it is possible for a struct to have more than one when determinant. In the following example, the Ethernet packet subtype is extended with a field of a new enumerated type, Ethernet_op.
	Because it is possible for a struct to have more than one when determinant, the inheritance tree for a struct using when inherit...
	Figure 4-1- When Inheritance Tree for Packet Struct Subtypes

	packet
	4.10.3 A Simple Example of Like Inheritance

	You can create a like child of a generic struct using the like construct. In this example, a child Ethernet_packet is created from the generic struct packet and is extended by adding a field and extending the show() method.
	In the same way, you can create an IEEE_packet from packet using like:
	You can also easily create an e1_Ethernet_packet from Ethernet_packet using like inheritance.
	In contrast to the when inheritance tree, the like inheritance tree for the packet type is a single tree where each subtype must...
	Figure 4-2- Like Inheritance Tree for Packet Struct Subtypes

	packet
	4.10.4 Advantages of Using When Inheritance for Modeling

	While the like version and the when version look similar, and the “like” version may seem more natural to people familiar with o...

	You can refer explicitly to the determinant fields
	In the when version, the determinant of the when is an explicit field. In the like version, there is no explicit field that dete...

	You can create multiple orthogonal subtypes
	Suppose each packet (of any protocol) can be either a normal (data) packet, an ack packet or a nack packet, except that foreign packets are always normal:
	How do you do this in like inheritance? Disregard for now the issue of extending the packet struct later. Assume that you know the requirement stated above in advance, and you want to model it using like inheritance in the best possible way.
	Here is one way:
	This requires eight declarations.
	Then, the Ethernet_op possibilities must be taken into account:
	This works, but requires ((N1 * N2 * ... * Nd) - IMP) declarations, where d is the number of orthogonal dimensions, Ni is the number of possibilities in dimension i, and IMP is the number of impossible cases.
	Another issue is how to represent the impossible cases.
	Multiple inheritance would solve some of these problems, but would introduce new complications.
	With when inheritance all the possible combinations exist implicitly, but you do not have to enumerate them all. It is only when you want to say something about a particular one that you mention it, as in the following examples:
	All in all, the when version is more natural from a knowledge representation point of view, because:

	You can use random generation to create lists of objects with varying subtypes
	The job of the generator is to create (in this example) packet instances. By default, all possible packets should be generated. In both versions, you would create a list of packets. For example:
	However, the generator should only generate fully instantiated packets. In the when version, that happens automatically - there is no other way.
	With like inheritance, if you generate a parent struct, only that parent struct is created; none of the like children are created. For example, the following gen action always creates a generic packet, never an Ethernet packet or an IEEE packet:
	Thus, in practice you should only generate fields whose type is a leaf in the like inheritance tree. For example, you normally write:

	You can easily extend the struct later
	There are some restrictions on extending structs that have like children. Details are in “Restrictions on Like Inheritance” on page 149.

	You can create a new type by simple extension
	You can extend the packet_protocol type and add new members to the packet subtype, for example:
	Automatically your old environment is able to generate brand_new packets. With like inheritance, you have to find all instances of the procedural generation code and add the new case to the case statement.
	4.10.5 Advantages of Using Like Inheritance

	Like inheritance is a shorthand notation for a subset of when inheritance. It is restricted but more efficient.
	Like inheritance often has better performance than when inheritance for the following reasons:
	NOTE- If this becomes a problem in a particular design, there is a workaround. Rather than having many separate fields under the...

	When to Use Like Inheritance
	Like inheritance should be used for modeling only when the performance win is big enough to offset the restrictions, for example:
	Like inheritance should also be used for non-modeling, programming-like activities, such as implementing a generic package for a queue.
	4.10.6 Restrictions on Like Inheritance

	There are three types of restrictions on like inheritance:
	4.10.6.1 Restrictions Due to Inherent Differences

	Some of the restrictions on like inheritance derive from the inherent differences between when and like inheritance:
	For more information on the first 3 items in this list, see “Advantages of Using When Inheritance for Modeling” on page 145.
	4.10.6.2 Restrictions Due to Implementation

	In addition, the following restrictions are implementation-based and may be removed in future releases:
	For more information see See “Examples of Like Inheritance Restrictions” on page 152.
	4.10.6.3 Generation Restrictions on Like Inheritance

	This section describes restrictions on generation when like inheritance is used.
	4.10.6.4 Examples of Like Inheritance Restrictions

	Restrictions on like inheritance are demonstrated in the following sample e code.

	Example 1
	You cannot add when subtypes to a struct with like children. Similarly, you cannot create a like child from a struct that has when subtypes.

	Example 2
	You cannot extend or override a TCM in a struct that has like children, if the TCM has been modified by one of the like children.

	Example 3
	You cannot add fields to a struct that has like children if those children have added fields, either implicitly or explicitly.

	Example 4
	You cannot add an event to a struct that has like children if those children have added fields, either implicitly or explicitly. It is OK to extend a parent to modify an event.

	Example 5
	You cannot add or modify an expect or assume to a struct that has like children if those children have added fields, either implicitly or explicitly.

	Example 6
	You cannot modify in a like child a cover group whose event is defined in the parent. It may load without error, but it will fail in unpredictable ways when run.
	4.10.7 A When Inheritance Example

	The following example contains the e code fragments in the section titled “A Simple Example of When Inheritance” on page 143.

	5 Units
	This chapter describes the constructs used to define units and explains how you can use units to implement a modular verification methodology. This chapter contains the following sections:
	See Also
	5.1 Units Overview
	Units are the basic structural blocks for creating verification modules (verification cores) that can easily be integrated toget...
	The basic runtime data structure of an e program is a tree of unit instances whose root is sys, the only predefined unit in e. A...
	Figure 5-1- Runtime Data Structure of the XYZ_Router

	sys
	Each unit instance in the unit instance tree of the XYZ_router matches a module instance in the Verilog DUT, as shown in Figure ...
	Figure 5-2- DUT Router Hierarchy

	top
	Binding an e unit instance to a particular component in the DUT hierarchy allows you to reference signals within that DUT compon...
	This ability to use relative path names to reference HDL objects allows you to freely change the combination of verification cor...

	See Also
	5.1.1 Units vs. Structs
	The decision of whether to model a DUT component with a unit or a struct often depends on your verification strategy. Compelling reasons for using a unit instead of a struct include:
	On the other hand, using a struct to model abstract collections of data, like packets, allows you more flexibility as to when yo...
	Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is a generated during pre...

	See Also
	5.1.2 HDL Paths and Units
	Relative HDL paths are essential in creating a verification module that can be used to test a DUT component either standalone or...
	To associate a unit or unit instance with a DUT component, you use the hdl_path() method within a keep constraint. For example, ...
	Similarly, the following code creates three instances of XYZ_channel in XYZ_router and constrains the HDL path of the instances to be “chan0”, “chan1”, “chan2”. These are the names of the channel instances in the DUT relative to the “router_i” instance.
	The full HDL path of each unit instance is determined during generation, by appending the HDL path of the child unit instance to...
	The full path for a unit instance is used to resolve any internal HDL object references that contain relative HDL paths.
	By default, the do_print() method of any unit prints two predefined lines as well as the user-defined fields. The predefined lines display the e path and the full HDL path for that unit. The e path line contains a hyperlink to the parent unit.
	5.1.3 Methodology Recommendations and Limitations

	Each unit instance has a unique and constant place (an e path) in the runtime data structure of an e program that is determined ...
	The following limitations are implied by the nature of unit instances and fields of unit type:
	If you intend to create a modular verification environment, the following recommendations are also important:
	5.2 Defining Units and Fields of Type Unit

	The following sections describe the constructs for defining units and fields of type unit:
	5.2.1 unit

	Purpose
	Define a data struct associated with an HDL component or block

	Category
	Statement

	Syntax
	unit unit-type [like base-unit-type] { [unit-member; ...]}
	Syntax example:

	Parameters
	unit-type
	The type of the new unit.
	base-unit-type
	The type of the unit from which the new unit inherits its members.
	unit-member; ...
	The contents of the unit. Like structs, units can have the following types of members:
	Unlike structs, units can also have verilog members. This capability lets you create Verilog stub files for modular designs.
	The definition of a unit can be empty, containing no members.

	Description
	Units are the basic structural blocks for creating verification modules (verification cores) that can easily be integrated together to test larger designs. Units are a special kind of struct, with two important properties:
	Because the base unit type (any_unit) is derived from the base struct type (any_struct), user-defined units have the same predefined methods. In addition, units can have verilog members and have several specialized predefined methods.
	A unit type can be extended or used as the basis for creating unit subtypes. Extended unit types or unit subtypes inherit the base type’s members and contain additional members.
	See “Units vs. Structs” on page 158 for a discussion of when to use units instead of structs.

	Example
	This example defines a unit type XYZ_router.

	See Also
	5.2.2 field: unit-type is instance

	Purpose
	Define a unit instance field

	Category
	Unit member

	Syntax
	field-name[: unit-type] is instance
	Syntax example:

	Parameters
	field-name
	The name of the unit instance being defined.
	unit-type
	The name of a unit type.
	If the field name is the same as an existing type, you can omit the “: unit-type” part of the field definition. Otherwise, the type specification is required.

	Description
	Defines a field of a unit to be an instance of a unit type. Units can be instantiated within other units, thus creating a unit tree. The root of the unit tree is sys, the only predefined unit in e.
	A unit instance has to be bound to a particular component in the DUT (an HDL path). Each unit instance also has a unique and constant place (an e path) in the runtime data structure of an e program that is determined during pre-run generation.

	Notes
	Example
	This example creates an instance of the XYZ_router unit type in sys.

	See Also
	5.2.3 field: unit-type

	Purpose
	Define a field of type unit

	Category
	Struct or unit member

	Syntax
	[!] field-name[: unit-type]
	Syntax example:

	Parameters
	!
	Denotes an ungenerated field. If you generate this field on the fly, you must constrain it to an existing unit instance or a runtime error is issued.
	field-name
	The name of the field being defined.
	unit-type
	The name of a unit type.
	If the field name is the same as an existing type, you can omit the “: unit-type” part of the field definition. Otherwise, the type specification is required.

	Description
	Defines a field of unit type. A field of unit type is always either NULL or a reference to a unit instance of a specified unit type.

	Notes
	Example
	In the example below, the XYZ_router is extended with an ungenerated field of type XYZ_channel, a unit type. It remains NULL unt...

	See Also
	5.2.4 field: list of unit instances

	Purpose
	Define a list field of unit instances

	Category
	Struct or unit member

	Syntax
	name:[[length-exp]]: list of unit-type is instance
	Syntax example:

	Parameters
	name
	The name of the list being defined.
	length-exp
	An expression that gives the initial size for the list.
	unit-type
	A unit type.
	is instance
	Creates a list of unit instances.

	Description
	Defines a list field of unit instances. A list of unit instances can only be created during pre-run generation and cannot be modified after it is generated.

	Notes
	Example
	This example creates a list of unit instances of type XYZ_channel in XYZ_router.

	See Also
	5.2.5 field: list of unit-type

	Purpose
	Define a list field of type unit

	Category
	Struct or unit member

	Syntax
	[!]name[[length-exp]]: list of unit-type
	Syntax example:

	Parameters
	!
	Do not generate this list.
	name
	The name of the list being defined.
	length-exp
	An expression that gives the initial size for the list.
	unit-type
	A unit type.

	Description
	Defines a list field of type unit.
	NOTE- It is not recommended to use the physical field operator (%) with lists of unit type.

	Example
	This example creates a list of unit type XYZ_channel, which is used to create a list of currently valid channels.

	See Also
	5.3 Predefined Methods for Any Unit
	There is a predefined generic type any_unit, which is derived from any_struct. any_unit is the base type implicitly used in user...
	The predefined methods for any unit include:

	See Also
	5.3.1 hdl_path()

	Purpose
	Return a relative HDL path for a unit instance

	Category
	Predefined pseudo-method for any unit

	Syntax
	[unit-exp.]hdl_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the HDL path of a unit instance. The most important role of this method is to bind a unit instance to a particular compo...
	Although absolute HDL paths are allowed, relative HDL paths are recommended if you intend to follow a modular verification strategy.
	This method always returns an HDL path exactly as it was specified in constraints. If, for example, you use a macro in a constraint string, then hdl_path() returns the original and not substituted string.

	Notes
	Example 1
	This example shows how you can use relative paths in lower-level instances in the unit instance tree. To create the full HDL pat...

	Example 2
	This example shows how hdl_path() returns the HDL path exactly as specified in the constraint. Thus the first print action prints “`TOP.router_i”. The second print action, in contrast, accesses “top.router_i.clk”.
	Result
	See Also
	5.3.2 full_hdl_path()

	Purpose
	Return an absolute HDL path for a unit instance

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]full_hdl_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational messages. Like the hd...

	Example
	This example uses full_hdl_path() to display information about where a mutex violation has occurred.

	Result
	See Also
	5.3.3 e_path()

	Purpose
	Returns the location of a unit instance in the unit tree

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]e_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the location of a unit instance in the unit tree. This method is used mainly in informational messages.

	Example
	Result
	See Also
	5.3.4 agent()

	Purpose
	Maps the DUT’s HDL partitions into e code

	Category
	Predefined pseudo-method for any unit

	Syntax
	keep [unit-exp.]agent() == string;
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.
	string
	One of the following predefined agent names: verilog, vhdl, mti_vlog, mti_vhdl, ncvlog and ncvhdl. Specifying the agent name as ...

	Description
	Specifying an agent identifies the simulator that is used to simulate the corresponding DUT component. Once a unit instance has ...
	An agent name may be omitted in a single-HDL environment but it must be defined implicitly or explicitly in a mixed HDL environm...
	Given the hdl_path() and agent() constraints, a correspondence map is established between the unit instance HDL path and its age...
	It is possible to access Verilog signals from a VHDL unit instance code and vice-versa. Every signal is mapped to its HDL domain according to its full path, regardless of the specified agent of the unit that the signal is accessed from.
	When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the agent string is exactly as specified in the corresponding constraint.

	Notes

	Example 1
	In the following example, the driver instance inherits an agent name implicitly from the enclosing router unit instance.

	Example 2
	In this example, the signal ‘top.rout.packet_valid’ is sampled using the Verilog PLI because the path “top.rout” is specified as...
	5.3.5 get_parent_unit()

	Purpose
	Return a reference to the unit containing the current unit instance

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]get_parent_unit(): unit type
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns a reference to the unit containing the current unit instance.

	Example
	See Also
	5.4 Unit-Related Predefined Methods for Any Struct
	The predefined methods for any struct include:

	See Also
	5.4.1 get_unit()

	Purpose
	Return a reference to a unit

	Category
	Predefined method of any struct

	Syntax
	[exp.]get_unit(): unit type
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.

	Description
	When applied to an allocated struct instance, this method returns a reference to the parent unit-the unit to which the struct is bound. When applied to a unit, it returns the unit itself.
	Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is generated during pre-r...
	This method is useful when you want to determine the parent unit instance of a struct or a unit. You can also use this method to...

	Example 1
	This example shows that get_unit() can access predefined unit members, while get_enclosing_unit() must be used to access user-defined unit members.
	Result

	Example 2
	The first call to get_unit() below shows that the parent unit of the struct instance “p” is sys. The second call shows that the parent unit has been changed to “XYZ_router”.

	Example 3
	In this example, the trace_inject() method displays the full HDL path of the “XYZ_dlx” unit (not the “XYZ_tb” unit) because “instr_list” is generated by the run method of “XYZ_dlx”.
	Result
	See Also
	5.4.2 get_enclosing_unit()

	Purpose
	Return a reference to nearest unit of specified type

	Category
	Predefined pseudo-method of any struct

	Syntax
	[exp.]get_enclosing_unit(unit-type: exp): unit instance
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.
	NOTE- If get_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and not the parent unit instance.
	unit-type
	The name of a unit type or unit subtype.

	Description
	Returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access fields of the parent unit in a typed manner.
	You can use the parent unit to store shared data or options such as packing options that are valid for all its associated subunits or structs. Then you can access this shared data or options with the get_enclosing_unit() method.

	Notes

	Example 1
	In the following example, get_enclosing_unit() is used to print fields of the nearest enclosing unit instances of type “XYZ_cpu”...
	Result

	Example 2
	Result
	See Also
	5.4.3 try_enclosing_unit()

	Purpose
	Return a reference to nearest unit instance of specified type or NULL

	Category
	Predefined method of any struct

	Syntax
	[exp.]try_enclosing_unit(unit-type: exp): unit instance
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.
	NOTE- If try_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and not the parent unit instance.
	unit-type
	The name of a unit type or unit subtype.

	Description
	Like get_enclosing_unit(), this method returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access fields of the parent unit in a typed manner.
	Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified type is found. Inst...

	Example
	See Also
	5.4.4 set_unit()

	Purpose
	Change the parent unit of a struct

	Category
	Predefined method of any struct

	Syntax
	[struct-exp.]set_unit(parent: exp)
	Syntax example:

	Parameters
	struct-exp
	An expression that returns a struct. If no expression is specified, the current struct is assumed.
	parent
	An expression that returns a unit instance.

	Description
	Changes the parent unit of a struct to the specified unit instance.
	NOTE- This method does not exist for units because the unit tree cannot be modified.

	Example
	5.5 Unit-Related Predefined Routines
	The predefined routines that are useful for units include:
	5.5.1 set_config_max()

	Purpose
	Increase values of numeric global configuration parameters

	Category
	Predefined routine

	Syntax
	set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])
	Syntax example:
	set_config_max(memory, gc_threshold, 100m);

	Parameters
	category
	Is one of the following: cover, gen, memory, and run.
	option
	The valid cover option is:
	The valid generate options are:
	The valid memory options are:
	The valid run option is:
	The options are described in “set_config()” on page 766.
	value
	The valid values are different for each option and are described in “set_config()” on page 766.

	Description
	Sets the numeric options of a particular category to the specified maximum values.
	If you are creating a modular verification environment, it is recommended to use set_config_max() instead of set_config() in ord...

	Example
	See Also
	5.5.2 get_all_units()

	Purpose
	Return a list of instances of a specified unit type

	Category
	Routine

	Syntax
	get_all_units(unit-type: exp): list of unit instances
	Syntax example:
	print get_all_units(XYZ_channel);

	Parameters
	unit-type
	The name of a unit type. The type must be defined or an error occurs.

	Description
	This routine receives a unit type as a parameter and returns a list of instances of this unit type as well as any unit instances contained within each instance.

	Example
	This example uses get_all_units() to print a list of the instances of XYZ_router. Note that the display also shows that this instance of XYZ_router contains “channels”, which is a list of three unit instances.

	Result
	See Also

	6 e Ports
	This document describes ports, an e unit member that enhances the portability and inter-operability of verification environments by making separation between an e unit and its interface possible.
	This document discusses the following topics:
	6.1 Introduction to e Ports

	A port is an e unit member that makes a connection between an e unit and its interface to another internal or external entity. There are two ways to use ports:
	External ports are a generic way to access simulated objects of various kinds. An external port is bound to a simulated object, ...
	NOTE- In this document, “simulator” means any hardware or software agent that runs in parallel with an e program, and models the behavior of any part of the design under test (DUT) or its environment.
	6.1.1 Advantages of Using Ports
	Although previous HDL access mechanisms are still supported, ports have the following advantages over the old access mechanisms:
	6.1.2 Creating Port Instances

	Port type is defined by three aspects:
	You can instantiate ports only within units. Like units, port instances are generated during prerun generation and cannot be created, modified or removed during a run. When you instantiate a port, you must specify:
	The generic syntax for ports is as follows:
	port-instance-name: [direction] port-kind of [type-specifier] is instance;

	NOTE- Event ports do not allow a type specifier.
	For example, the following unit member creates a port instance:
	where:
	As another example, the following line creates a list of simple ports which each pass data of type bit:
	6.1.3 Using Ports

	A port’s behavior is influenced by port attributes, such as hdl_path() or bind(), which are applied to port instances using pre-...
	Each port kind has predefined methods that you use to access the port values. For example, buffer ports have a predefined method put(), which writes a value onto an output port:
	6.1.4 Ports Example

	The e code in this section shows examples of instantiating and using buffer ports. An output buffer port and an input buffer por...
	1 struct cell {
	2 header[2] : list of byte;
	3 data[50] : list of byte;
	4 };
	5
	6 unit trans {
	7 data_out: out buffer_port of cell is instance;
	8 !cells : int;
	9 keep cells == 100;
	10 drive_all() @sys.any is {
	11 var stimuli: cell;
	12 var counter: int=0;
	13 while counter < cells {
	14 wait [1]*cycle;
	15 gen stimuli;
	16 data_out.put(stimuli);
	17 counter+=1;
	18 };
	19 };
	20 };
	21
	22 unit rec {
	23 data_in: in buffer_port of cell is instance;
	24 keep data_in.buffer_size() == 20;
	25 get_all() @sys.any is {
	26 while TRUE {
	27 print data_in.get();
	28 };
	29 };
	30 };
	31 extend sys{
	32 transmitter: trans is instance;
	33 receiver: rec is instance;
	34 keep bind(transmitter.data_out, receiver.data_in);
	35 run() is also {
	36 start transmitter.drive_all();
	37 start receiver.get_all();
	38 };
	39 };

	Line 1 - Line 4 : define “cell”, the data element that is passed by the output buffer port.
	Line 7 creates a port instance named “data_out”, whose type is “out buffer_port of cell”.
	Line 10 - Line 19 : define a TCM that generates a variable named “stimuli” of type “cell” every cycle until 100 have been generated. This variable is written to the output buffer port by a predefined buffer port TCM, put(), in Line 16.
	Line 23 creates a port instance named “data_in” of type “in buffer_port of cell”. This port complements the “data_out” port created in the trans unit, and is used to receive cell data written to the data_out port.
	Line 24 constrains the maximum number of cells that can be held in the port queue to 20.
	Line 25 - Line 29 : define a TCM that retrieves and prints, one by one, the cells that have been placed on the port queue by the drive_all() TCM. Another predefined buffer port method, get(), is used to do this.
	Line 32 - Line 34 : create instances of the “rec” and “trans” units and connect the data_out port with the data_in port.
	6.2 Using Simple Ports

	You can use simple ports to transfer one data element at a time to or from either an external simulated object, such as a Verilo...
	Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists of scalar types...
	You can read or write port values using the $ port access operator. To access multi-value logic (MVL) on simple ports, you can e...
	Internal and external ports must have a bind() attribute that defines how they are connected. In addition, you can use the delayed() attribute to control whether new values are propagated immediately or at the next tick.
	An external simple port must have an hdl_path() attribute to specify the name of the object that it is connected to. In addition, an external simple port can have several additional attributes that enable continuous driving of external signals.
	See “Port Attributes” on page 210 for more information on attributes for simple ports.

	See Also
	6.2.1 Accessing Simple Ports and Their Values
	Ports are containers, and the values they hold are separate entities from the port itself. The $ access operator distinguishes port value expressions from port reference expressions.
	The $ access operator, for example p$, is used to access or update the value held in a simple port p. When used on the right-han...
	Without the $ operator an expression of any type port refers to the port itself, not to its value. In particular, an expression without the $ operator can be used for operations involving port references.
	NOTE- You cannot apply the $ access operator to an item of abstract type, such as any_simple_port. This type does not have any access methods. The expression “port_arg$ == 0” in the following code causes a syntax error.

	Examples of Accessing Port Values
	print p$;
	Prints the value of a simple port, p.
	NOTE- Compare with “print p”, which prints information about port p.
	p$ = 0;
	Assigns the value 0 to a simple port, p.

	NOTE- Compare with “pref = NULL”, which modifies a port reference so that it does not point to any port instance.
	force p$ = 0;
	Forces a simple external port to 0.
	print q$[1:0];
	Prints the two least-significant bits of the value of q.
	print q$[2:2];
	Prints the third least-significant bit of the value of q.
	print sys.pp$;
	Prints the value of port sys.pp.
	print sys.plist[0]$;
	Prints the value of port plist[0] from a list of ports, plist.
	print blist$[0..1];
	Prints the first two elements of a list value. blist is defined as:
	print listbl[0]$[1];
	Prints the second bit in a list value of the first element in a list of ports. Could be written (listbl[0])$[1]. listbl is defined as:

	NOTE- Indexing, slicing, and field access for a port value on the left-hand-side of an expression are currently not supported.

	Examples of Accessing a Port
	print p;
	Prints the information about port p. Port p is defined as:
	// p = 5;
	An error, as it is an attempt to assign incompatible types.
	keep q == p;
	q refers to the port instance p. Port reference q is defined as:
	r = q;
	Port reference r refers to the port instance p too. It is defined as:
	keep plist.size() == 3;
	plist is defined as:
	keep plist[0] == p;
	plist[0] refers to the port instance p.
	keep plist[1] == p2;
	plist[1] refers to the port instance p2. p2 is defined as:
	keep plist[2] == q;
	plist[2] refers to the port instance p (because of q).

	See Also
	6.2.2 Multi-Value Logic (MVL) on Simple Ports
	There are two ways to read and write multi-value logic on simple ports:
	Ports of type mvl or list of mvl (MVL ports) allow easy transformation between exact e values and multi- value logic, which is u...
	The enumerated type mvl is defined as:

	Notes
	Example 1 : Numeric Port
	This example shows how tick access notation translates to MVL methods, assuming the following numeric port declaration:
	d = 'data';
	d = data$;
	'data' = 32'bz;
	data.put_mvl_list(32'bz);
	check that 'data@x' == 0;
	check that data.get_mvl_list().has(it == MVL_X) == FALSE;
	check that data.has_x() == FALSE;
	d = 'data[31:10]@z';
	d = mvl_to_int(data.get_mvl_list(), {MVL_Z})[31:0];

	Example 2 : MVL Port
	This example shows how tick access notation translates to use of an MVL port, assuming the following MVL port declaration:
	check that 'data@x' == 0;
	check that data$.has(it == MVL_X} == FALSE;
	check that data.has_x() == FALSE;
	'data' = 32'bz;
	data$ = 32'bz;

	Example 3 : Checking Numeric Ports for MVL Values
	If you have several ports that pass numeric data elements of different sizes, you might want to create a generic method that checks these ports for MVL values such as MVL_X or MVL_Z. For example, you can create a generic method for the following ports:
	The correct way to create a generic method is to pass the port value, not the port itself, to the method. You must convert the port value to the desired type before passing it. For example:
	See Also
	6.2.3 @sim Temporal Expressions with External Simple Ports
	When you specify an event port, you cause e to be sensitive to the corresponding HDL signal during the entire simulation session...
	[change|rise|fall](simple-port$)@sim;
	Normally you use this syntax in wait actions. For example:
	This syntax might be also useful if you are interested in accessing a value of a signal, in addition to knowing if it changed. For example:

	Example
	Trying to apply the @sim operator to a bound internal port causes an error when the corresponding temporal expression is evaluated, which occurs at runtime.

	See Also
	6.2.4 An Internal Simple Ports Example
	This example shows two units communicating through simple ports, with no external ports.
	6.2.5 An External Simple Ports Example

	The following e code describes a testbench component that drives data into an encoder and checks the output of the encoder for errors.
	In this example the clk, data_length, data, address and rq ports are external ports associated with various Verilog signals. The...
	Verilog objects associated with the external ports are registers (clk, temp_address, data_width) and nets (data). On the e side,...
	The postfix $ access operator, for example clk$ or data$ in Line 29 and Line 32, is used to access the event associated with an ...
	1 unit encoder {
	2
	3 clk: in event_port is instance;
	4 keep bind(clk, external);
	5 keep clk.hdl_path() == "clk";
	6
	7 data_length: in simple_port of uint is instance;
	8 keep bind(data_length, external);
	9 keep data_length.hdl_path() == "data_width";
	10
	11 data: inout simple_port of list of bit is instance;
	12 keep bind(data, external);
	13 keep data.hdl_path() == "data";
	14 keep data.verilog_wire() == TRUE; -- simple port attribute
	15 keep data.declared_range() == "[31:0]"; -- simple port attribute
	16
	17 address: in simple_port of uint is instance;
	18 keep bind(address, external);
	19 keep address.hdl_path() == "PRIO/temp_address";
	20
	21 rq: in buffer_port of bool is instance;
	22 keep bind(rq, external);
	23 keep rq.buffer_size() == 8; -- buffer port attribute
	24 keep rq.hdl_path() == "rq";
	25
	26 data_list: list of bit;
	27 keep data_list.size() < 32;
	28
	29 inject()@clk$ is {
	30 for j from 0 to 15 {
	31 gen data_list;
	32 data$ = data_list;
	33 wait cycle;
	34 };
	35 stop_run();
	36 };
	37
	38 checker() @clk$ is {
	39 while TRUE {
	40 wait cycle;
	41
	42 if not rq.get() {
	43 check that address$ == 0;
	44 check that data$.has(it != 0)== FALSE;
	45 } else {
	46 check that address$!= 0;
	47 var mask: uint = 0x10000000;
	48 for {var i: byte = data_length$ - 1; i>0; i -= 1} {
	49 if (data$[31:0] & mask) != 0 {
	50 check that address$ == i;
	51 break;
	52 };
	53 mask >>= 1;
	54 };
	55 };
	56 };
	57 };
	58 run() is also {
	59 start inject();
	60 start checker();
	61 };
	62 };
	63
	64 extend sys {
	65 e: encoder is instance;
	66 keep e.hdl_path() == "~/priority_encoder";
	67 keep e.agent() == "verilog";
	68
	69 };
	6.3 Using Buffer Ports

	You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is inserted and extracted f...
	The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime. The queue size may be...
	A buffer port’s direction can be either input or output. Inout is not supported. Internal buffer ports can transfer data elements of any type..
	You can read or write port values using the buffer port’s predefined get() and put() methods. These methods are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.
	Buffer ports must have a bind() attribute that defines how they are connected. In addition, you can use the delayed() attribute ...

	See Also
	6.3.1 Rendezvous-Zero Size Buffer Queue
	In rendezvous-style handshaking protocol, access to a port is blocked after each put() until a subsequent get() is performed, and access is blocked after each get() until a subsequent put() is performed.
	This style of communication is easily achieved by using buffer ports with a data queue size of 0. The following example shows how this is done.

	Example
	See Also
	6.3.2 An Internal Buffer Ports Example
	This example shows two units communicating through buffer ports, with no external ports.
	6.4 Using Event Ports

	You can use event ports to transfer events between two e units or between an e unit and an external object. An internal event port’s direction can be either input, output or inout.
	You can read or write port values using the $ port access operator. See “Accessing Event Ports” on page 201 for more information.
	Internal and external ports must have a bind() attribute that defines how they are connected.
	An external port must have an hdl_path() attribute to specify the name of the object that it is connected to. The edge() attribute for an external input event port specifies the edge on which an event is generated.
	See “Port Attributes” on page 210 for more information on these attributes.

	See Also
	6.4.1 Accessing Event Ports
	The $ access operator is used to access the event associated with an event port. An expression of type event_port without the ‘$’ operator refers to the port itself and not to its event.

	Example 1
	Example 2
	This example shows how to connect event ports, using a bind() constraint, and how to use the $ operator to access event ports in event contexts.
	See Also
	6.4.2 Defining and Referencing Ports
	This section covers the following topics:
	6.4.2.1 simple_port

	Purpose
	Access other port instances or external simulated objects directly

	Category
	Unit member

	Syntax
	port-instance-name: [list of] [direction] simple_port of element-type is instance;
	Syntax example:

	Parameters
	port-instance-name
	A unique identifier you can use to refer to the port or access its value.
	direction
	One of in, out, or inout. The default is inout, which means that you can read values from and write values to this port. For an in port, you can only read values from the port, and for an out port you can only write values to the port.
	element-type
	Any predefined or user-defined e type except a port type or a unit type.

	Description
	You can use simple ports to transfer one data element at a time to or from either an external simulated object or an internal object (another e unit).
	Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists of scalar types...
	The port can be configured to access a different signal simply by changing the binding; all the code that reads or writes to the...
	A simple port’s direction can be either input, output, or inout. The direction specifier in a simple port is not a when subtype determinant. This means, for example, that the following type:
	is not the base type of:
	Furthermore, the following types are fully equivalent:
	Thus, the following constraint is an error because the two types are not equivalent:

	Example
	See Also
	6.4.2.2 buffer_port

	Purpose
	Implement an abstraction of queues with blocking get and put

	Category
	Unit member

	Syntax
	port-instance-name: [list of] direction buffer_port of element-type is instance;
	Syntax example:

	Parameters
	port-instance-name
	A unique identifier you can use to refer to the port or access its value.
	direction
	One of in or out. There is no default. For an in port, you can only read values from the port, and for an out port you can only write values to the port. See “Buffer Port Methods” on page 232 for information on how to read and write buffer ports.
	element-type
	Any predefined or user-defined e type except a unit or a port type.

	Description
	You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is inserted and extracted f...
	The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime. The queue size may be set to 0 for rendezvous ports.
	You can read or write port values using the buffer port’s predefined get() and put() methods. These methods are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.
	A typical usage of a buffer port is in a producer and consumer protocol, where one object puts data on an output port at possibly irregular intervals, and another object with the corresponding input port reads the data at its own rate.

	Example
	See Also
	6.4.2.3 event_port

	Purpose
	Transfer events between units or between simulators and units

	Category
	Unit member

	Syntax
	event-port-field-name: [list of] [direction] event_port is instance;
	Syntax example:

	Parameters
	event-port-field-name
	A unique identifier you can use to refer to the port or access its value.
	direction
	One of in, out, or inout. The default is inout, which means that events can be both emitted and sampled on the port. For a port with direction in, events can only be sampled. For a port with direction out, events can only be emitted.

	Description
	You can use event ports to transfer events between two e units or between an e unit and an external object.
	You can read or write port values using the $ port access operator. See “Accessing Event Ports” on page 201 for more information.
	An internal event port’s direction specifier can be either input, output or inout. The direction specifier is not a when subtype determinant. This means, for example, that the following type
	is not the base type of
	Furthermore, the following types are fully equivalent:

	Notes
	In order to use any of the above unsupported capabilities (except the first in the list) it is possible to define an additional event and connect it to the event port as follows:

	Example 1
	References to event ports are supported. In the following example, current_clk is an event port reference.

	Example 2
	You can pass an event port as a parameter to a TCM. In this example, each event in a list of events is passed as a parameter to the drive() method.

	Example 3
	The attribute hdl_path() must be specified for external event ports. In the following example, only a “cti” simulator can emit ext_ep. Presumably there is some DUT event related to a simulated item “~/top_s/ transaction_done”.
	See Also
	6.4.2.4 any_simple_port, any_buffer_port, any_event_port

	Purpose
	Reference a port instance

	Category
	Unit field, variable or method parameter

	Syntax
	[! | var] port-reference-name: [direction] port-kind [of element-type]
	[! | var] port-reference-name: any-port-kind
	Syntax example:

	Parameters
	port-reference-name
	A unique identifier.
	direction
	One of in, out, or, for simple ports and event ports, inout.
	port-kind
	One of simple_port, buffer_port or event_port.
	any-port-kind
	One of any_simple_port, any_buffer_port or any_event_port.
	element-type
	Required if port-kind is simple_port or buffer_port.

	Description
	Port instances may be referenced by a field, a variable, or a method parameter of the same port type or of an abstract type:
	Abstract port types reference only the port kind, not the port direction or data element. Thus, a method parameter of type any_simple_port accepts all simple ports, including, for example:
	If a port reference is a field, then it must be marked as non-generated or it must be constrained to an existing port instance. Otherwise, a generation error results.
	Port binding is allowed only for port instance fields, not for port reference fields. Trying to apply a keep bind() constraint to a port reference results in an error.

	Notes
	Example
	The print_port() method in the following example can be called with any buffer port. The iterate() method shows an alternative way to print a list of ports.
	6.4.2.5 port$

	Purpose
	Read or write a value to a simple port or event port

	Category
	Operator

	Syntax
	exp$
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port or event port instance.

	Description
	The $ access operator is used to access or update the value held in a simple port or event port. When used on the right-hand sid...
	Without the $ operator an expression of any type port refers to the port itself, not to its value. In particular, an expression without the $ operator can be used for operations involving port references.
	NOTE- You cannot apply the $ access operator to an item of type any_simple_port or any_event_port. Abstract types do not have any access methods. For example, the expression “port_arg$ == 0” in the following code causes a syntax error.

	Example
	See Also
	6.5 Port Attributes
	Ports have attributes that affect their behavior and how they can be used. You assign port attributes using the attribute() syntax in pre-generation constraints, as follows:
	keep [soft] port_instance.attribute() == value;
	You can use soft constraints for attributes that you might want to override later.
	Most port attributes are ignored unless the port is an external port, but it does no harm to specify attributes for ports that a...
	6.5.1 Generic Port Attributes

	Port attributes that are potentially valid for all simulators are described in Table 6-1. However, a particular simulator adapter might not implement some of these attributes.
	NOTE- Depending on the simulator adapter you are using, port attributes might cause additional code to be written to the stubs file. In that case, if you add or change an attribute, you must rewrite the stubs file.
	Table 6-1- Generic Port Attributes
	bind()
	Connects two internal ports or connect a port to an external object
	Type: bool
	Default: none
	See also “bind()” on page 215.
	All kinds of internal and external ports
	buffer_size()
	Specifies the maximum number of elements for a buffer port queue.
	Type: uint
	Default: none
	See also “buffer_size()” on page 217.
	Buffer ports
	declared_range()
	Specifies the bit width of an external multi-bit object.
	Type: string
	Default: none
	See also “declared_range()” on page 219.
	External output simple ports that are bound to some kinds of multi-bit objects
	delayed()
	Specifies whether propagation of a new port value assignment occurs immediately or is delayed to the tick boundary.
	Type: bool
	Default: TRUE
	See also “delayed()” on page 219.
	Internal and external simple ports
	driver()
	When TRUE, an additional resolved HDL driver is created for the corresponding simulator item, and that driver is written to instead of the port.
	Type: bool
	Default: FALSE
	See also “driver()” on page 220.
	External output simple ports
	driver_delay()
	Specifies the delay time for all assignments from e to the port.
	Type: time
	Default: 0
	See also “driver_delay()” on page 221.
	External output simple ports
	edge()
	Specifies the edge on which an event is generated.
	Type: event_port_edge
	Default: change
	See also “edge()” on page 222.
	External input event ports
	hdl_path()
	Specifies a relative path of the corresponding simulated item as a string.
	Type: string
	Default: none
	See also “hdl_path()” on page 223.
	External ports
	pack_options()
	Specifies how the port’s data element is implicitly packed and unpacked.
	Type: pack_options
	Default: global.packing.adapter
	See also “pack_options()” on page 225.
	External simple ports whose data element is a composite type (lists and structs)
	pass_by_pointer
	When TRUE, composite data (structs or lists) are transferred by reference.
	Type: bool
	Default: FALSE (pass by value)
	See also “pass_by_pointer()” on page 225.
	Internal simple or buffer ports whose data element is a composite type (lists and structs)
	6.5.2 Port Attributes for HDL Simulators

	Port attributes that are potentially valid for all HDL simulators are described in Table 6-2. However, a particular simulator adapter might not implement some of these attributes.
	The port attributes in Table 6-2 enable extended functionality. They cause additional information to be written into the HDL stu...
	Some of these attributes are similar to Verilog or VHDL unit members, such as verilog variable or vhdl driver.

	Example
	The following verilog variable declaration
	is equivalent to the following port attributes:
	Table 6-2- Port Attributes for Verilog or VHDL Agents

	driver_initial_value()
	Applies an initial mvl value to the port.
	Type: list of mvl
	Default: {} (empty list)
	See also “driver_initial_value()” on page 222.
	External output simple ports
	verilog_drive()
	Specifies the event on which the data is driven to the Verilog object.
	Type: string
	Default: none
	See also “verilog_drive()” on page 226.
	External output simple ports
	verilog_drive_hold()
	Specifies an event after which the port data is set to Z.
	Type: string
	Default: none
	See also “verilog_drive_hold()” on page 227.
	External output simple ports
	verilog_forcible()
	Allows forcing of Verilog wires.
	Type: bool
	Default: FALSE
	See also “verilog_forcible()” on page 227.
	External output simple ports
	verilog_strobe()
	Specifies the sampling event for the Verilog signal that is bound to the port.
	Type: string
	Default: none
	See also “verilog_strobe()” on page 228.
	External output simple ports
	verilog_wire()
	Binds an external out port to a Verilog wire.
	Type: bool
	Default: FALSE
	See also “verilog_wire()” on page 229.
	External output simple ports
	vhdl_delay_mode()
	Specifies whether pulses whose period is shorter than the delay are propagated through the driver.
	Type: sn_vhdl_delay_mode
	Default: TRANSPORT (all pulses, regardless of length, are propagated)
	See also “vhdl_delay_mode()” on page 229.
	External output simple ports
	vhdl_disconnect_value()
	Applies an mvl value to the port when you restore Specman Elite after issuing a test command but do not restart the simulator.
	Type: list of mvl
	Default: {} (empty list)
	See also “vhdl_disconnect_value()” on page 230.
	External output simple ports
	vhdl_driver()
	This is an alias for the driver() attribute.
	Type: bool
	Default: FALSE
	See also “driver()” on page 220.
	External output simple ports
	6.5.2.1 bind()

	Purpose
	Connect two internal ports or connect a port to an external object

	Category
	Generic port attribute

	Syntax
	bind(exp1, exp2);
	bind(exp1, external);
	bind(exp1, empty | undefined);
	Syntax example:

	Parameters
	exp1, exp2
	One or more expressions of port type. If two expressions are given and the port types are compatible, the two port instances are connected.
	external
	Defines a port as connected to a simulated object, such as a Verilog register, a VHDL signal, or a SystemC object.
	empty
	Defines a disconnected port. Runtime accessing of a port with an empty binding is allowed.
	undefined
	Defines a disconnected port. Runtime accessing of a port with an undefined binding causes an error

	Description
	Ports are connected to other e ports or to external simulated objects such as Verilog registers, VHDL signals, or SystemC method...

	Rules
	NOTE- Dangling ports (ports without bind() attributes) cause an error during elaboration. See “Checking of Ports” on page 216 for more information.
	NOTE- For Verisity adapters, if you add or change this attribute for an external port, you must rewrite the stubs file.

	Checking of Ports
	Binding and checking of ports takes place automatically at the end of the predefined generate_test() test method. This process, ...
	A port that has no bind() constraint is a dangling port. Since all ports must be bound, a dangling port causes an elaboration-time error.

	Disconnected Ports
	A port that is bound using the empty or undefined keyword is called a disconnected port.
	The empty or undefined keyword can only appear as the second argument of the bind() constraint, in place of a second port instance name.
	The same port cannot be both empty and undefined. Attempting to apply such contradicting constraints to one port causes an elaboration-time error.
	Empty binding allows you to define a port that is connected to nothing. Runtime accessing of an empty- bound port is allowed. Its effect depends on the operation and type of the port:
	A subsequent constraint can be used to overwrite the empty binding constraint.
	Like empty binding, undefined binding lets you define a port that is connected to nothing. The difference is that runtime accessing of a port with an undefined binding causes an error.
	A subsequent constraint can be used to overwrite the undefined binding constraint.

	Example 1 : Valid Bindings
	Example 2 : Invalid Bindings
	Example 3
	The bind() method can also be used in procedural code. It returns TRUE if the port in its argument is bound as specified. For example:
	6.5.2.2 buffer_size()

	Purpose
	Specify the size of a buffer port queue

	Category
	Buffer port attribute

	Syntax
	exp.buffer_size() == num
	Syntax example:

	Parameters
	exp
	An expression of type [in | out] buffer_port of type.
	num
	An integer specifying the maximum number of elements for the queue.

	Description
	This attribute determines the number of put() actions that can be performed before a get(). A get() action is required to remove data and make more room in the queue. Specifying a buffer size of 0 means rendezvous- style synchronization.
	No default buffer size is provided. If a buffer size is not specified in a constraint, an error occurs. It is only necessary to ...

	Example
	Like all port attributes, the buffer size can also be used as an expression.

	See Also
	6.5.2.3 declared_range()

	Purpose
	Specify the bit width of a multi-bit external object

	Category
	External port attribute

	Syntax
	exp.declared_range() == string
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	string
	An expression in the form:

	Description
	This string attribute is meaningful for external simple ports that are bound to multi-bit objects. Because it is legal to bind a...
	The interpretation of the string is adapter-specific. For Verisity adapters, the declared range must match the actual range of the signal; it cannot be a part select.

	Example
	6.5.2.4 delayed()

	Purpose
	Specify immediate or delayed propagation of new values

	Category
	Simple port attribute

	Syntax
	exp.delayed() == bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	bool
	Either TRUE or FALSE. The default is TRUE.

	Description
	This boolean attribute specifies whether propagation of a new port value assignment occurs immediately or is delayed.
	When the delayed() attribute is TRUE (the default), propagation of external ports is delayed until the next tick. Propagation of...
	To make assigned values on ports visible immediately, constrain this attribute to be FALSE, for example:
	6.5.2.5 driver()

	Purpose
	Create a resolved driver for an external object

	Category
	External out simple port attribute

	Syntax
	exp.driver() == bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	bool
	Either TRUE or FALSE. The default is FALSE.

	Description
	This boolean attribute is meaningful only for external out ports. When this attribute is set to TRUE, an additional resolved HDL driver is created for the corresponding simulator item, and that driver is written to instead of the port.
	Every port instance associated with the same simulator may create a separate driver, thus allowing HDL resolution to be applied for multiple e resources.

	Notes
	6.5.2.6 driver_delay()

	Purpose
	Specify the delay for assignments to a port

	Category
	External out simple port attribute

	Syntax
	exp.driver_delay() == time
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	time
	A value of type time (64 bits). The default is 0.

	Description
	This attribute of type time is meaningful only for external out ports. It specifies the delay time for all assignments from e to the port. This attribute is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.
	NOTE- For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
	6.5.2.7 driver_initial_value()

	Purpose
	Specify an initial value for an HDL object

	Category
	HDL port attribute

	Syntax
	exp.driver_initial_value() == mvl-list
	Syntax example:

	Parameters
	exp
	An expression that returns a port instance.
	mvl-list
	A lists of mvl values. Possible values are MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N. The default is {} (an empty list).

	Description
	This mvl list type attribute applies an initial mvl value to an external Verilog or VHDL object. This attribute is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.
	When an e program is driving a std_logic signal that is also driven from VHDL, unless an initial value is specified, the adapter creates a VHDL driver that is initialized by MVL_X.
	6.5.2.8 edge()

	Purpose
	Specify the edge on which an event is generated

	Category
	Event port attribute

	Syntax
	exp.edge() == edge-option
	Syntax example:
	keep e.edge() == any_change;

	Parameters
	exp
	An expression of an event port type.
	edge-option
	Possible values are of type event_port_edge:
	The default is change.

	Description
	This attribute of type event_port_edge for an external event port specifies the edge on which an event is generated.

	Example
	6.5.2.9 hdl_path()

	Purpose
	Map port instance to an external object

	Category
	Generic port attribute

	Syntax
	exp.hdl_path() == string
	Syntax example:

	Parameters
	exp
	An expression of a port type.
	string
	The path to the external object, enclosed in double quotes. The default is an empty string.

	Description
	To access an external, simulated object, you must provide a path to the object with the hdl_path() attribute. This path is a con...
	To allow portability between simulators, you can use the e canonical path notation. (See the documentation for the adapter for a description of supported separators.)
	NOTE- For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.

	Example
	In this example, all ports inherit the Verilog simulator specified as the agent for the encoder instance. The clk, data_width, d...
	6.5.2.10 pack_options()

	Purpose
	Specify how an external port’s data element is implicitly packed and unpacked

	Category
	External simple port attribute

	Syntax
	exp.pack_options() == pack-option
	Syntax example:

	Parameters
	exp
	An expression of a simple or buffer port type.
	pack-option
	A predefined or user-defined pack option. The default is global.packing.adapter.

	Description
	This attribute of type pack_options is meaningful only for external ports whose data element is a composite type (lists and stru...
	NOTE- None of the existing simulator adapters supports external simple port of structs.
	6.5.2.11 pass_by_pointer()

	Purpose
	Specify how composite data is transferred by internal ports

	Category
	Internal port attribute

	Syntax
	exp.pass_by_pointer() == bool
	Syntax example:

	Parameters
	exp
	An expression of a simple or buffer port type.
	bool
	Either TRUE or FALSE. The default is FALSE.

	Description
	This boolean attribute specifies how composite data (structs or lists) are transferred by internal simple ports or buffer ports.
	By default, this attribute is FALSE and complex objects are deep-copied upon an internal port access operation. To pass data by ...
	There is also a global config misc option, ports_data_pass_by_pointer. Setting this option influences all internal ports.
	6.5.2.12 verilog_drive()

	Purpose
	Specify timing control for data driven to the Verilog object

	Category
	Verilog port attribute

	Syntax
	exp.verilog_drive() == timing-control
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	timing-control
	A string specifying any legal Verilog timing control (event or delay).

	Description
	This string attribute tells an external output port to drive its data to the Verilog signal when the specified timing occurs. It...

	Notes
	6.5.2.13 verilog_drive_hold()

	Purpose
	Specify when to set the port to Z

	Category
	Verilog port attribute

	Syntax
	exp.verilog_drive_hold() == event
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	event
	A string specifying any legal Verilog timing control.

	Description
	On the first occurrence of the specified event after the port data is driven, the value of the corresponding Verilog signal is s...
	6.5.2.14 verilog_forcible()

	Purpose
	Specifies that a Verilog object can be forced

	Category
	Verilog port attribute

	Syntax
	exp.verilog_forcible() == bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	bool
	Either TRUE or FALSE. The default is FALSE.

	Description
	This boolean attribute allows forcing of Verilog wires. By default Verilog wires are not forcible. This attribute requires that you also specify the verilog_wire() attribute.
	6.5.2.15 verilog_strobe()

	Purpose
	Specify the sampling event for a Verilog object

	Category
	Verilog port attribute

	Syntax
	exp.verilog_strobe() == event
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	event
	A string specifying any legal Verilog timing control.

	Description
	This string attribute specifies the sampling event for the Verilog signal that is bound to an external input port. This attribute is equivalent to the verilog variable ... using strobe declaration.

	Notes
	6.5.2.16 verilog_wire()

	Purpose
	Create a single driver for a port (or multiple ports)

	Category
	Verilog port attribute

	Syntax
	exp.verilog_wire() == bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	bool
	Either TRUE or FALSE. The default is FALSE.

	Description
	This boolean attribute allows an external out port to be bound to a Verilog wire, in a manner similar to a verilog variable using wire declaration.
	The main difference between this attribute and the driver() attribute is that, being backward compatible, the verilog_wire() att...

	Notes
	6.5.2.17 vhdl_delay_mode()

	Purpose
	Specify whether short pulses are propagated through driver

	Category
	HDL port attribute

	Syntax
	exp.vhdl_delay_mode() == mode-option
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.
	mode-option
	Either TRANSPORT (the default) or INERTIAL.

	Description
	This sn_vhdl_delay_mode type attribute applies a VHDL delay mode value to an external out port. This attribute specifies whether...
	This attribute also influences what happens if another driver (either VHDL or another unit) schedules a signal change and before that change occurs, this driver schedules a different change. With INERTIAL, the first change never occurs.
	This attribute is silently ignored unless the driver_delay() attribute is also specified.
	6.5.2.18 vhdl_disconnect_value()

	Purpose
	Specify value to apply on Specman Elite restore

	Category
	HDL port attribute

	Syntax
	exp.vhdl_disconnect_value() == mvl-value-list
	Syntax example:

	Parameters
	exp
	An expression that returns a port instance.
	mvl-value-list
	A list of one or more of the following: MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N.

	Description
	This mvl type attribute applies an mvl value to an external output port when you restore Specman Elite after issuing a test comm...
	This attribute is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.
	6.5.3 Using Port Values and Attributes in Constraints

	Like units, port instances can be created only during pre-run generation. They cannot be created with new, nor generated at runt...
	Another methodological requirement is that you must explicitly specify attribute values in hard constraints if the attributes are used anywhere in bidirectional constraints, including implication constraints. See Example 2 on page 231.

	Example 1
	This example shows the correct way to initialize an out port.
	Trying to constrain the generation of startval to equal the value of the out port does not work because outport$ in this context samples the port value, but does not affect it:

	Example 2
	This example shows how using port attribute values in bidirectional constraints can have undesired effects.
	The implication constraint above requires the following constraint to be set in every specific non-synthesized test, instead of relying on the default value:
	Adding a constraint such as
	silently sets synthesized() to TRUE.
	6.5.4 Buffer Port Methods

	The methods in this section are used to read from or write to buffer ports and to check whether a buffer port queue is empty or full. The methods are:
	6.5.4.1 get()

	Purpose
	Read and remove data from an input buffer port queue

	Category
	Predefined TCM for buffer ports

	Syntax
	in-port-instance-name.get(): port element type
	Syntax example:

	Description
	Reads a data item from the buffer port queue and removes the item from the queue.
	Since buffer ports use a FIFO queue, get() returns the first item that was written to the port.
	The thread blocks upon get() when there are no more items in the queue.
	If the queue is empty, or if it has a buffer size of 0 and no put() has been done on the port since the last get(), then the get() is blocked until a put() is done on the port.
	The number of consecutive get() actions that is possible is limited to the number of items inserted by put().

	Example
	See Also
	6.5.4.2 put()

	Purpose
	Write data to an output buffer port queue

	Category
	Predefined TCM for buffer ports

	Syntax
	out-port-instance-name.put(data: port-element-type)
	Syntax example:

	Parameters
	data
	A data item of the port element type.

	Description
	Writes a data item to the output buffer port queue. The sampling event of this TCM is sys.any.
	The new data item is placed in a FIFO queue in the output buffer port.
	If the queue is full, or if it has a buffer size of 0 and no get() has been done on the port since the last put(), then the put() is blocked until a get() is done on the port.
	The number of consecutive put() actions that is possible is limited to the buffer size.
	The thread blocks upon put() when there is no more room in the queue, that is, when the number of consequent put() operations exceeds the buffer_size() of the port instance.

	Example
	See Also
	6.5.4.3 is_empty()

	Purpose
	Check if an input buffer port queue is empty

	Category
	Pseudo-method for buffer ports

	Syntax
	in-port-instance-name.is_empty(): bool
	Syntax example:

	Description
	Returns TRUE if the input port queue is empty.
	Returns FALSE if the input port queue is not empty.

	Example
	See Also
	6.5.4.4 is_full()

	Purpose
	Check if an output buffer port queue is full

	Category
	Pseudo-method for buffer ports

	Syntax
	out-port-instance-name.is_full(): bool
	Syntax example:

	Description
	Returns TRUE if the output port queue is full.
	Returns FALSE if the output port queue is not full.

	Example
	See Also
	6.5.5 Multi-Value Logic (MVL) Methods for Simple Ports
	The predefined port methods in this section are for reading and writing MVL data between ports, to facilitate communication with objects where MVL values occur.
	These methods operate on data of type mvl, which is defined as follows:
	The enumeration literals are the same as those of VHDL, except for MVL_N, which corresponds to the VHDL ‘-’ (“don’t care”) literal.
	NOTE- Mixed access-accessing a port with MVL methods and accessing it through the $ operator-is allowed.
	The MVL methods are applicable in accordance to the port direction. Methods that write a value to a port are accessible for out and inout simple ports, while methods that read a value from a port are accessible for in and inout simple ports.
	The predefined methods for simple ports are:
	6.5.5.1 put_mvl()

	Purpose
	Put an mvl data on a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.put_mvl(value: mvl)
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.
	value
	A multi-value logic value.

	Description
	Place an mvl value on an output or inout simple port, to initialize an object to a “disconnected” value, for example.
	Placing an mvl value on a port whose element type is list places the value in the LSB of the list.

	Example
	See Also
	6.5.5.2 get_mvl()

	Purpose
	Read mvl data from a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl(): mvl
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.

	Description
	Reads an mvl value from an input or inout simple port, to check that there are no undefined “x” bits, for example.
	Getting an mvl value from a port whose element type is list reads the LSB of the list.

	Example
	See Also
	6.5.5.3 put_mvl_list()

	Purpose
	Put a list of mvl values on a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.put_mvl_list(values: list of mvl)
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.
	values
	A list of mvl values

	Description
	Writes a list of mvl values to an output or inout simple port.
	Putting a list of mvl values on a port whose element type is a single bit writes only the LSB of the list.

	Example
	See Also
	6.5.5.4 get_mvl_list()

	Purpose
	Get a list of mvl values from a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl_list(): list of mvl
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.

	Description
	Reads a list of mvl values from an input or inout simple port.

	Example
	See Also
	6.5.5.5 put_mvl_string()

	Purpose
	Put an mvl value on a port of a non-mvl type when a value is represented as a string

	Category
	Predefined method for simple ports

	Syntax
	exp.put_mvl_string(value: string)
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.
	value
	An mvl value in the form of a base and one or more characters, entered as a string. The mvl values in the string must be lowercase. Use 1 for MVL_1, 0 for MVL_0, z for MVL_Z, and so on.

	Description
	Writes a string representing a list of mvl values to a simple output or inout port. The mvl value consists of any legal base, fo...

	Example
	See Also
	6.5.5.6 get_mvl_string()

	Purpose
	Get a value in form of a string from a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl_string(radix: radix): string
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.
	radix
	One of BIN, OCT, or HEX.

	Description
	Returns a string in which each character represents an mvl value. The characters are lowercase. HDL value ‘1’ is represented by ...

	Example
	See Also
	6.5.5.7 get_mvl4()

	Purpose
	Get an mvl value from a port, converting 9-value logic to 4-value logic

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl4(): mvl
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.

	Description
	Reads a 9-value mvl value from an input simple port and converts it to 4-value subset mvl.
	The predefined mapping from 9-value logic to 4-value logic is:

	Example
	See Also
	6.5.5.8 get_mvl4_list()

	Purpose
	Get a list of mvl values from a port, converting from 9-value logic to 4-value logic

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl4_list(): list of mvl
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.

	Description
	Reads a list of 9-value mvl values from an input simple port and converts them to 4-value MVL.
	The predefined mapping from 9-value logic to 4-value logic is:

	Example
	See Also
	6.5.5.9 get_mvl4_string()

	Purpose
	Get a 4-state value in form of a string from a port of a non-mvl type

	Category
	Predefined method for simple ports

	Syntax
	exp.get_mvl4_string(radix): string
	Syntax example:

	Parameters
	exp
	An expression that returns a simple port instance.
	radix
	One of BIN, OCT, or HEX.

	Description
	Reads a string in which each character represents a 4-value logic digit from a subset of mvl, converted from 9-value logic. The characters are lowercase.
	The predefined mapping from 9-value logic to 4-value logic is the same as it is commonly used when converting from VHDL std_logic to Verilog:
	The returned string always includes all the bits, with no implicit extensions. For example, a port of type int returns a string of 32 characters, since an int is a 32-bit data type.

	Example
	See Also
	6.5.6 Methods for Simple Ports
	These methods are defined for all simple ports, regardless of the type of data element:
	6.5.6.1 has_x()

	Purpose
	Determine if port has X

	Category
	Predefined method for simple ports

	Syntax
	exp.has_x(): bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.

	Description
	Returns TRUE if at least one bit of the port is MVL_X.

	Example
	See Also
	6.5.6.2 has_z()

	Purpose
	Determine if port has Z

	Category
	Predefined method for simple ports

	Syntax
	exp.has_z(): bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.

	Description
	Returns TRUE if at least one bit of the port is MVL_Z.

	Example
	See Also
	6.5.6.3 has_unknown()

	Purpose
	Determine if port has U

	Category
	Predefined method for simple ports

	Syntax
	exp.has_unknown(): bool
	Syntax example:

	Parameters
	exp
	An expression of a simple port type.

	Description
	Returns TRUE if at least one bit of the port is one of the following:

	Example
	See Also
	6.5.7 Global MVL Routines
	The global routines for manipulating MVL values are:
	6.5.7.1 string_to_mvl()

	Purpose
	Convert a string to a list of mvl values

	Category
	Predefined routine

	Syntax
	string_to_mvl(value-string: string): list of mvl
	Syntax example:

	Parameters
	value-string
	A string representing mvl values, consisting of a width and base followed by a series of characters corresponding to mvl values....

	Description
	Converts each character in the input string to an mvl value.

	Example
	See Also
	6.5.7.2 mvl_to_string()

	Purpose
	Convert a list of mvl values to a string

	Category
	Predefined routine

	Syntax
	mvl_to_string(mvl-list: list of mvl, radix: radix): string
	Syntax example:

	Parameters
	mvl-list
	A list of mvl values.
	radix
	One of BIN, OCT, or HEX.

	Description
	Converts a list of mvl values to a string. The mapping is done in the following way:
	NOTE- This routine always returns a sized number as a string.

	Example 1
	Example 2
	See Also
	6.5.7.3 mvl_to_int()

	Purpose
	Convert an mvl value to an integer

	Category
	Predefined routine

	Syntax
	mvl_to_int(mvl-list: list of mvl, mask: list of mvl): uint
	Syntax example:

	Parameters
	mvl-list
	A list of mvl values to convert to an integer value.
	mask
	A list of mvl values that are to be converted to 1.

	Description
	Converts each value in a list of mvl values into a binary integer (1 or 0), using a list of mvl mask values to determine which mvl values are converted to 1.
	When the list is less than 32 bits, it is padded with 0. When it is greater than 32 bits, it is truncated, leaving the 32 least significant bits.

	Example
	See Also
	6.5.7.4 int_to_mvl()

	Purpose
	Convert an integer value to a list of mvl values

	Category
	Predefined routine

	Syntax
	int_to_mvl(value: uint, mask: mvl): list of mvl
	Syntax example:

	Parameters
	value
	An integer value to convert to a list of mvl values.
	mask
	An mvl value that replaces each bit in the integer that has the value 1.

	Description
	Maps each bit that has the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns a list of 32 mvl values. The returned list always has a size of 32.

	Example
	See Also
	6.5.7.5 mvl_to_bits()

	Purpose
	Convert a list of mvl values to a list of bits

	Category
	Predefined routine

	Syntax
	mvl_to_bits(mvl-list: list of mvl, mask: list of mvl): list of bit
	Syntax example:

	Parameters
	mvl-list
	A list of mvl values to convert to bits.
	mask
	A list of mvl values that specifies which mvl values are to be converted to 1.

	Description
	Converts a list of mvl values to a list of bits, using a mask of mvl values to indicate which mvl values are converted to 1 in the list of bits.

	Example
	See Also
	6.5.7.6 bits_to_mvl()

	Purpose
	Convert a list of bits to a list of mvl values

	Category
	Predefined routine

	Syntax
	bits_to_mvl(bit-list: list of bit, mask: mvl): list of mvl
	Syntax example:

	Parameters
	bit-list
	A list of bits to convert to mvl values.
	mask
	An mvl value that replaces each bit in the list that has the value 1.

	Description
	Maps each bit with the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns an mvl list that is bit-list size.

	Example
	See Also
	6.5.7.7 mvl_to_mvl4()

	Purpose
	Convert an mvl value to a 4-value logic value

	Category
	Predefined routine

	Syntax
	mvl_to_mvl4(value: mvl): mvl
	Syntax example:

	Parameters
	value
	An mvl value to convert to a 4-value logic value

	Description
	Converts an mvl value to the appropriate 4-value logic subset value.
	The predefined mapping from 9-value logic to 4-value logic is:

	Example
	See Also
	6.5.7.8 mvl_list_to_mvl4_list()

	Purpose
	Convert a list of mvl values to a list of 4-value logic subset values

	Category
	Predefined routine

	Syntax
	mvl_list_to_mvl4_list(mvl-list: list of mvl): list of mvl
	Syntax example:

	Parameters
	mvl-list
	A list of mvl values to convert to a list of 4-value logic subset values

	Description
	Converts each value in a list of mvl values to the corresponding 4-value logic value.
	The predefined mapping from 9-value logic to 4-value logic is:

	Example
	See Also
	6.5.7.9 string_to_mvl4()

	Purpose
	Convert a string to a list of 4-value logic mvl subset values

	Category
	Predefined routine

	Syntax
	string_to_mvl4(value-string: string): list of mvl
	Syntax example:

	Parameters
	value-string
	A string representing MVL values, consisting of a width and base followed by a series of characters corresponding to 9-value logic values.

	Description
	Converts each character in the string to the corresponding 4-value logic value. If the string contains characters other than ‘0’, ‘1’, ‘x’, ‘z’, ‘h’, ‘l’, ‘u’, ‘w’ or ‘n’ a runtime error is issued.

	Example
	See Also

	7 Generation Constraints
	Test generation is the process that produces values for fields and variables (data items). Constraints are directives that influ...
	1) Value constraints restrict the range of possible values that the generator produces for data items, and they constrain the relationship between multiple items.
	2) Order constraints influence the sequence in which data items are generated. Generation order is important because it affects the distribution of values and the success of generation.

	Both value and order constraints can be hard or soft:
	You can define constraints in many ways:
	You can generate values for particular struct instances, fields, or variables during simulation (on-the-fly generation) with the...
	This chapter contains the following sections:
	7.1 Basic Concepts of Generation

	The following introduce basic concepts related to constraints and generation.
	7.1.1 Generation Order

	The fields in a struct are generated one by one, starting with the first field defined and progressing through the fields in the...
	User-defined constraints can affect generation order. A constraint for a particular item might create a dependency that requires...
	Generation order is important because it influences the distribution of values. For example, in the keep constraint shown below, if “kind” is generated first, “kind” is “tx” about 1/2 the time because there are only two legal values for “kind”:
	On the other hand, if “size” is generated first, there is only a 1 in 16 chance that “size” will be less than or equal to 15, so “kind” will be “tx” about 1/16 of the time.
	7.1.2 Subtype Generation Optimization Constraints

	In a subtype generation optimization constraint like the keep gen_before_subtypes(kind) constraint shown below, you specify a fi...
	A subtype generation optimization constraint may change the order of generation by delaying analysis of constraints under the wh...
	In the example below, the keep gen (size) before (offset) constraint might be ignored if, due to subtype optimization, the “offset” field is generated before the “kind” field is generated.
	See Also
	7.1.3 Unidirectional Constraints
	Value constraints that induce a generation order are called unidirectional constraints. For example, the keep constraint shown b...
	Expressions like “get_size(kind)” are treated like constants within the context of a constraint boolean expression. That is, any...
	Other expressions that are treated as constants within the context of a constraint boolean expression are:
	list slicing
	lob[7..15]
	bitwise operations
	~sigA, sigA | sigB
	most method calls
	my_method(), b.as_a(int), value()
	multiplication, division, and modulo operations
	i.address % 2, 3*b, c/4
	in
	cellA in cellList, cellListA in cellListB
	The only method calls that are not treated as constants are:
	When “my_list” is a generatable list, these expressions are also generatable.
	A unidirectional constraint can cause a runtime contradiction error if it selects a value for a parameter that turns out to conf...
	In some cases you can rewrite the constraints to avoid the contradiction error. To avoid the contradiction illustrated above, fo...
	Unidirectional constraints can also cause a constraint cycle, which results in a runtime contradiction error. A constraint cycle...

	See Also
	7.1.4 Enforceable Expressions
	An enforceable constraint boolean expression is an expression for which the test generator can choose a value that satisfies the...
	The following expressions are not enforceable:

	Example 1
	For a compound constraint boolean expression that uses and, both subexpressions must be enforceable. The expression in this example is not enforceable because “sys.x” is not generatable. A runtime error is issued.

	Example 2
	For a compound constraint boolean expression that uses or, only one subexpression has to be enforceable. In this example, the se...

	Example 3
	This expression is not enforceable because the test generator first generates “address”, then performs the modulo operation, and then cannot constrain the resulting value to zero.

	Example 4
	This expression is not enforceable because the test generator first generates “y”, then passes “y” to the value() method, and then cannot constrain the returned value to zero.

	Example 5
	This expression is enforceable because the test generator first generates “y”, then passes “y” to the value() method, and then generates “x”.

	Example 6
	This expression is enforceable because the test generator first generates “y”, extracts the least significant bit of “y”, and then generates “x”.
	See Also
	7.1.5 Order of Evaluation of Soft Value Constraints
	Soft value constraints on a data item are considered only at the time the data item is generated, after the hard value constrain...
	NOTE- If a soft constraint does not contradict a hard constraint, it will be applied. If your intent is to over-ride a soft constraint with a hard constraint, use reset_soft(). See Example 2 on page 263.

	Example 1
	The evaluation of the constraints is as follows:
	1) The hard constraint is applied, so the range is [1..10].
	2) The last soft constraint in the code order, x < 6, is considered. It does not conflict with the current range, so it is applied. The range is now [1..5].
	3) The next to last soft constraint, x == 8, conflicts with the current range, so it is skipped. The range is still [1..5].
	4) The first soft constraint in the code order, x > 3, does not conflict with the current range, so it is applied. The final range of legal values is [4, 5].

	Example 2
	The constraint shown below sets the default value for num to the range [1..10].
	In order to override the default and change the range with a hard constraint to [10.20] for a particular test, you must also res...
	See Also
	7.1.6 Constraining Struct Instances
	You can constrain two struct instances of the same type to have the same contents. The constraint causes the two struct instance...
	7.1.7 Constraining Lists

	There are several ways that you can constrain a list or its elements. See the following sections for more information:
	7.1.7.1 List Size

	You can constrain the list size of a field either by using a size expression in a field declaration or by using a keep constraint. The following statements both constrain the number of elements in the “pacs” list to 10:
	The key difference between these two methods is that the keep constraint affects only generation, whereas the field declaration ...
	If you unpack data into a field declared as a list, it is better to use the size expression in a field declaration. That way, the list’s size is always exactly as specified. See “Packing and Unpacking Lists” on page 503 for more information.
	To constrain the list size of a variable, you must use the keep constraint. A size expression in a variable declaration is not allowed.
	If there are no explicit constraints on the size of a list, the generated list will have a size between zero and the value of the configuration variable, default_max_list_size. This variable is set initially to 50.
	7.1.7.2 List Item

	You can constrain an individual item in a list of scalar items using the keep constraint as follows.
	You can constrain an individual item in a list of structs using the keep constraint as follows.
	NOTE- Neither multiple list indexing nor index expressions may be used in constraints. For example, top[0].dstruct[0].data is not legal, and dstruct[n+1].data is not legal.
	7.1.7.3 Item in List
	You can constrain a list to keep a specific item in the list. For example:
	This constraint is bidirectional, meaning that it does not imply a generation order for the item and list. However, the item is always at the last place in the list, regardless of which is generated first, the item or the list).
	In this example, x is generated before lu and therefore the last item in lu is 5.
	Therefore, the following code results in a contradiction:
	7.1.7.4 One List to Another List

	You can constrain one list to contain the same items as another list, using the keep constraint.
	This results in two references to two separate lists which initially contain the same values. Changing one of the lists does not...
	7.1.7.5 Multiple List Items

	You can constrain multiple items in a list, using the keep for each constraint.
	7.1.7.6 List of Structs

	You can constrain a list of structs to have all legal values of one or more fields, using the .is_all_iterations() method.
	7.1.7.7 Multiple Lists

	You can constrain a list to be a subset of another list, using the in construct. In this example, all the elements in the “pacs_...
	You can constrain a list to have the same elements as another list using the is_a_permutation() pseudo- method. In this example, the “pacs_dup” list and the “pacs” list have exactly the same elements, but not necessarily in the same order.

	See Also
	7.1.8 Constraining Bit Slices
	You can use the bit slice operator in constraints to achieve a variety of purposes. A simple example is using the bit slice operator to constrain the fields of a CPU instruction:
	Another simple but useful application of the bit slice constraint is to generate a list of even integers:
	NOTE- Using “it%2 == 0” to generate a list of even integers does not work. Since the “%” operator makes the constraint unidirectional, “it” is generated before the constraint is checked, and a contradiction occurs about 50% of the time.
	You can also use a bit constraint to constrain particular bits in relation to each other. For example, the following constraint ensures that only one of the lower four bits of “x” is 1:
	You can use non-constant bit indices in bit slice constraints, as in the following example, which generates a 4-bit integer with 1s in two consecutive bits:

	See Also
	7.1.8.1 Bit Slice Constraints and Generation Order
	A generatable item can contain a bit slice reference; however, there are implications for generation order:

	Non-constant Bit Indices
	Non-constant bit indices must be generated before other entities in the constraint. You cannot override this order.
	For example, the following constraint
	implies
	NOTE- A further implication is that constraints like the following, where the bit indices are non- constant and the other items are constant, cannot be solved.

	Generation of Bit Sliced Items
	By default, bit sliced items are generated after other items in the same constraint. You can override this default with a keep gen constraint.
	For example, the following constraint
	implies
	There can be cases where you need to override this default generation order with a keep gen constraint. For example, to meet the following constraints, “x” must be generated before “y”:
	In order to make this happen, you can add the constraint:
	or you can add the value() routine to the existing constraint:
	7.1.8.2 Bit Slice Constraints and Signed Entities

	Bit slices in e are treated as unsigned. It is possible, however, to constrain the value of a bit slice (or any unsigned entity) relative to a signed entity. In the example below, a bit slice of “x” is constrained by a signed entity, “y”:
	There are several implications of constraints that relate a bit slice to a signed entity:

	Example
	Given the following integers, “x” and “y”,
	any one of the following constraints requires the value of “y” to be a non-negative number no larger than four bits (the bit wid...
	By contrast, the value of “y” in the following constraint must fit into only three bits (the bit width of the bit slice), so “y” and “x[2:0]” are generated in the range [0..7]:
	7.1.8.3 Bit Slice Constraints and Soft Constraints

	A hard constraint on a bit slice of a variable always overrides a soft constraint on that variable. For example, the intention o...
	These constraints will not have the desired effect as the soft constraint will always be overridden. The only way to achieve this purpose is to apply the soft constraint to each individual bit explicitly:
	7.1.8.4 Limitations of Bit Slice Constraints

	If a bit slice is a function of another bit slice of the same field or variable, in many cases a contradiction occurs.
	In the following example, “x” is an argument to the “bit_parity()” function and must be generated before the function is called:
	The result of the function call is then compared to “x[8:8]” and will fail in 50% of the cases.
	The workaround is to assign a new virtual field for “x[7:0]”.
	These constraints cause “y” to be generated first, “x[7:0]” to be constrained to have the value of “y” and “x[8:8]” to be constrained to have the return value from the bit_parity() method.
	7.1.8.5 Debugging Bit Slice Constraints

	For bit slice constraints, the collect gen command displays the item’s range list (enclosed in square brackets) together with the item’s bit value representation (enclosed in angle brackets) as shown below:
	The bit value representation has a single character, either 0, 1, or X, that represents each bit. The characters 0 and 1 indicate that a particular bit must be a 0 or a 1, respectively. The character X indicates that a bit can be either 0 or 1.
	For example, the following display describes an 8-bit odd integer within the range 10 to 20 or 50 to 60:
	7.2 Defining Constraints

	For information on the constructs used to define constraints, see:
	In addition, see the following for helpful information.
	7.2.1 keep

	Purpose
	Define a hard value constraint

	Category
	Struct member

	Syntax
	keep constraint-bool-exp
	Syntax example:

	Parameters
	constraint-bool-exp
	A simple or a compound boolean expression. See “constraint-bool-exp” on page 292 for a full description of this parameter.

	Description
	States restrictions on the values generated for fields in the struct or the struct subtree, or describes required relationships between field values and other items in the struct or its subtree.
	Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a generated struct, the generator either meets the constraint or issues a constraint contradiction message.
	NOTE- If the keep constraint appears under a when construct, the constraint is considered only if the when condition is true.

	Example 1
	This example describes a required relationship between two fields, “kind” and “len”. If the current “pkt” is of kind “tx”, then “len” must be 16.
	This constraint is translated internally into an or constraint:

	Example 2
	This example shows a required relationship between two fields, “kind” and “len”, using a local variable, “p”, to represent “pckt” instances of kind “tx”:

	Example 3
	This example shows another way to describe the required relationship between the two fields, “kind” and “len”. This constraint is also translated into an or constraint:

	Example 4
	This example shows how to call the list.is_a_permutation() method to constrain a list to have a random permutation of items from...

	Example 5
	This example shows a constraint on a single list item (“data[0]”) and the use of path names to identify the item to be constrained.
	See Also
	7.2.2 keep all of {...}

	Purpose
	Define a constraint block

	Category
	Struct member

	Syntax
	keep all of {constraint-bool-exp; ...}
	Syntax example:

	Parameters
	constraint-bool-exp
	A simple or a compound boolean expression. See “constraint-bool-exp” on page 292 for a full description of this parameter.

	Description
	A keep constraint block is exactly equivalent to a keep constraint for each constraint boolean expression in the block. For example, the following constraint block
	is exactly equivalent to
	The all of block can be used as a constraint boolean expression itself, as is shown in Example on page 273.

	Example
	See Also
	7.2.3 keep struct-list.is_all_iterations()

	Purpose
	Cause a list of structs to have all iterations of a field

	Category
	Constraint-specific list method

	Syntax
	keep gen-item.is_all_iterations(.field-name: exp, ...)
	Syntax example:

	Parameters
	gen-item
	A generatable item of type list of struct. See “gen-item” on page 294 for more information.
	field-name
	The name of a scalar field of a struct. The field name must be prefixed by a period. The order of fields in this list does not a...

	Description
	Causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field list. Fields not i...
	Soft constraints on fields specified in the field list are skipped. For example, given the following constraints, packet_list will have all legal iterations of the length field, not just iterations within 10 and 100:
	All other relevant hard constraints on the list and on the struct are applied. If these constraints reduce the ranges of some of the fields in the field list, then the generated list is also reduced.

	Memory Usage and Performance Considerations
	The number of iterations in a list produced by list.is_all_iterations() is the product of the number of possible values in each field in the list. For example, if you list all iterations of a struct with the following fields:
	The number of iterations for the list is:
	The absolute_max_list_size generation configuration option sets the maximum number of iterations allowed in a list. The default ...

	Notes
	Example
	The “sys.packets” list will have six elements (2 “kinds” * 3 “protocols”). The “len” field is not iterated on; it will get any value from its legal range for each of the list items.

	See Also
	7.2.4 keep for each

	Purpose
	Constrain list items

	Category
	Struct member

	Syntax
	keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in gen-item {constraint-bool-exp | nested-for-each; ...}
	Syntax example:

	Parameters
	item-name
	An optional name used as a local variable referring to the current item in the list. The default is it.
	index-name
	An optional name referring to index of the current item in the list. The default is index.
	prev-name
	An optional name referring to the previous item in the list. The default is prev.
	gen-item
	A generatable item of type list. See “gen-item” on page 294 for more information.
	constraint-bool-exp
	A simple or a compound boolean expression. See “constraint-bool-exp” on page 292 for a full description of this parameter.
	nested-for-each
	A nested for each block, with the same syntax as the enclosing for each block, except that “keep” is omitted.

	Description
	Defines a value constraint on multiple list items.

	Notes

	Example 1
	In this example, the “keep for each in dat” constraint in the “pstr” struct constrains all the “dat” fields to be less than 64. Note that referring to the list items in the boolean expression “it < 64” as “dat[index]” rather than “it” generates an error.

	Example 2
	The following example uses an item name “p” and an index name “pi” to constrain the generation of values for the variable “indx”:

	Example 3
	The following example shows the use of index in a nested for each block. The “x” field receives the value of the outer index and each byte of “payload” receives the value of the inner index.
	Result
	See Also
	7.2.5 keep soft

	Purpose
	Define a soft value constraint

	Category
	Struct member

	Syntax
	keep soft constraint-bool-exp
	Syntax example:

	Parameters
	constraint-bool-exp
	A simple boolean expression. See “constraint-bool-exp” on page 292 for a full description of this parameter.

	Description
	Suggests default values for fields or variables in the struct or the struct subtree, or describes suggested relationships between field values and other items in the struct or its subtree.
	Soft constraints are order dependent and will not be met if they conflict with hard constraints or soft constraints that have already been applied. See “Order of Evaluation of Soft Value Constraints” on page 262 for more information on this topic.
	NOTE- The soft keyword can be used in simple boolean expressions, but not in compound boolean expressions. Thus the first constraint below is valid, but the second generates a compile- time error:

	Example 1
	Because soft constraints only suggest default values, it is better not to use them to define architectural constraints, such as ...

	Example 2
	Individual constraints inside a constraint block can be soft constraints.
	See Also
	7.2.6 keep soft... select

	Purpose
	Constrain distribution of values

	Category
	Struct member

	Syntax
	keep soft gen-item==select {weight: value; ...}
	Syntax example:

	Parameters
	gen-item
	A generatable item. See “gen-item” on page 294 for a full description of this parameter.
	weight
	Any uint expression. Weights are proportions; they do not have to add up to 100. A relatively higher weight indicates a greater probability that the value is chosen.
	value is one of the following:
	range-list
	A range list such as [2..7]. A select expression with a range list selects the portion of the current range that intersects with the specified range list.
	exp
	A constant expression. A select expression with a constant expression (usually a single number) selects that number, if it is part of the current range.
	others
	Selects the portions of the current range that do not intersect with other select expressions in this constraint.
	Using a weight of 0 for others causes the constraint to be ignored. That is, the effect is the same as if the others option were not entered at all.
	pass
	Ignores this constraint and keeps the current range as is.
	edges
	Selects the values at the extreme ends of the current range(s).
	min
	Selects the minimum value of the gen-item.
	max
	Selects the maximum value of the gen-item.

	Description
	Specifies the relative probability that a particular value or set of values is chosen from the current range of legal values. The current range is the range of values as reduced by hard constraints and by soft constraints that have already been applied.
	A weighted value will be assigned with the probability of
	Weights are treated as integers. If you use an expression for a weight, take care to avoid a situation where the value of the expression is larger than the maximum integer size (MAX_INT).
	Like other soft constraints, keep soft select is order dependent and will not be met if it conflicts with hard constraints or so...

	Example 1
	The following soft select constraint specifies that there is a 3/6 probability that ADD is selected from the current range, a 2/6 probability for ADDI, and a 1/6 probability that either SUB or SUBI is selected.

	Example 2
	In the following example, “address” is generated in the range [0..49] 10% of the time, as exactly [50] 60% of the time, and in range [51..99] 30% of the time, assuming that the current range includes all these values.

	Example 3
	This particular test uses the distribution described in the original definition of “transaction” only 10% of the time and uses the range [200..299] 90% of the time.
	The final distribution is 90% [200..299], 1% [0..49], 6% [50], 3% [51..99].

	Example 4
	This extension to “transaction” sets the current range with a hard constraint. 50% of the time the extreme edges of the range are selected (0, 50, 100, and 150). 50% of the time other values in the range are chosen.

	Example 5
	This extension to “transaction” sets the current range with a hard constraint. About 10% of the values are to be 10 and about 30% of the values are to be 50. The remaining 60% of the values are to be distributed between 10 and 50.

	Example 6
	This example shows how to weight the values of generated elements of a list. The it variable is used to represent a list element...

	Example 7
	This example shows how a runtime value from the simulation can be used to weight the selection of a value. In this case, the generation of the JMPC opcode is controlled by the value of the 'top.carry' signal.
	See Also
	7.2.7 keep gen-item.reset_soft()

	Purpose
	Quit evaluation of soft constraints for a field

	Category
	Struct member

	Syntax
	keep gen-item.reset_soft()
	Syntax example:

	Parameters
	gen-item
	A generatable item. See “gen-item” on page 294 for a full description of this parameter.

	Description
	Causes the program to quit the evaluation of soft value constraints for the specified field. Soft constraints for other fields are still evaluated..

	Example 1
	It is important to remember that soft constraints are considered in reverse order to the order in which they are defined in the ...

	Example 2
	This example shows the use of reset_soft() in the situation where a soft constraint is written with the intent that it will be i...
	In a few tests, “address” should be any value less than 128. The test writer needs to remove the effect of the soft constraint so that it does not reduce the range [0..128] to [0..64].
	See Also
	7.2.8 keep gen ... before

	Purpose
	Modify the generation order

	Category
	Struct member

	Syntax
	keep gen (gen-item: exp, ...) before (gen-item: exp, ...)
	Syntax example:

	Parameters
	gen-item, ...
	An expression that returns a generatable item. The parentheses are required. See “gen-item” on page 294 for more information.

	Description
	Requires the generatable items specified in the first list to be generated before the items specified in the second list. You ca...

	Notes
	Example
	In the following example, the constraint requires the test generator to generate values for “length” and “data” before generating “crc”.

	See Also
	7.2.9 keep soft gen ... before

	Purpose
	Suggest order of generation

	Category
	Struct member

	Syntax
	keep soft gen (gen-item: exp, ...) before (gen-item: exp, ...)
	Syntax example:

	Parameters
	gen-item, ...
	An expression that returns a generatable item. See “gen-item” on page 294 for more information.

	Description
	Modifies the “soft” generation order by recommending that the fields specified in the first field list to be generated before th...
	You can use this constraint to suggest a generation order that you can later override for particular purposes in individual tests with a hard order constraint.
	NOTE- This constraint cannot appear on the left-hand side of a implication operator (=>).

	Example
	This example shows how you can use a soft order constraint to get the distribution of values you want. In the example below, there is a hard value constraint on “length” and “address”.
	However, because “address” is generated first (based on coding order), “length” is generated to 5 only a small percentage of the...
	Since the order constraint is soft, it can be overridden by a hard constraint, such as one that uses a method. The following har...

	See Also
	7.2.10 keep gen_before_subtypes()

	Purpose
	Specify a when determinant field for deferred generation

	Category
	Struct member

	Syntax
	keep gen_before_subtypes(determinant-field: field, ...)
	Syntax example:

	Parameters
	determinant-field
	An expression that evaluates to the name of a field in the struct type. The field must be one that has at least one value that i...
	Multiple field expressions can be entered, separated by commas.

	Description
	To speed up generation of structs with multiple when subtypes, this type of constraint, called a subtype optimization constraint...
	When no subtype optimization constraints are present in a struct, the generator analyzes all of the constraints and fields in th...

	Notes

	Example 1
	This example shows a subtype optimization constraint on the field named format in the instr_s struct. The generator defers analysis and generation of constraints and fields under the FMT_A and FMT_B subtypes, since those are when determinants.
	The generation order for the example above is:
	1) All constraints in the base struct concerning intrpt and format are analyzed.
	2) A value is generated for intrpt.
	3) A value is generated for format.
	4) When format is FMT_A,
	5) A value is generated for size.
	6) A value is generated for offset.

	Notes

	Example 2
	In the following example, the keep op != SUB constraint under the FMT_A subtype might cause a contradiction, since it involves a...
	To avoid the possibility of a contradiction described above, you can elevate the constraint from the subtype to the base struct:
	See Also
	7.2.11 keep reset_gen _before_subtypes()

	Purpose
	Disable all previous keep gen_before_subtypes() subtype optimization constraints

	Category
	Struct member

	Syntax
	keep reset_gen_ before_subtypes()
	Syntax example:

	Description
	When subtype optimization is turned off by default, this constraint causes the generator to ignore all previously defined gen_be...
	When subtype optimization is turned on by default, this constraint turns off subtype optimization for the enclosing struct or unit.
	When subtype optimization is forced on or off, this constraint has no effect.
	NOTE- You can define other subtype optimization constraints following a keep reset_gen_before_subtypes() constraint.

	Example
	This example shows a reset_gen_before_subtypes() constraint, which disables all previous gen_before_subtypes() constraints, followed by a new gen_before_subtypes() constraint which is still effective.

	See Also
	7.2.12 value()

	Purpose
	Modify generation sequence

	Category
	Pseudo-method

	Syntax
	value(item: exp)
	Syntax example:

	Parameters
	item
	A legal e expression.

	Description
	Generates values for any data items that are contained in the expression and returns the value of the expression.
	This method affects generation order and also makes the constraint unidirectional.
	The constraint shown above has two results:
	The value() method is similar to a gen before constraint in that it affects generation order. It can also provide some performan...
	NOTE- Like most other method calls, the value() method cannot be used to constrain the legal values for any data item that it co...
	Thus, although the following example loads without error, a contradiction almost always occurs during generation because “j” is generated before the constraint is applied:

	Result
	In these sample results, “j” was generated as 536940611, and then the constraint was applied, reducing the valid range to [].
	See “Enforceable Expressions” on page 261 for more information.

	Example
	“j” is generated first, then “i”. “i” is always less than the value of “j” shifted one bit to the right.
	The code shown below is equivalent:

	See Also
	7.2.13 constraint-bool-exp

	Purpose
	Define a constraint on a generatable item

	Category
	Expression

	Syntax
	bool-exp [or | and | => bool-exp] ...
	Syntax example:

	Parameters
	bool-exp
	An expression that returns either TRUE or FALSE when evaluated at run time.

	Description
	A constraint boolean expression is a simple or compound boolean expression that describes the legal values for at least one generatable item or constrains the relation of one generatable item with others.
	A compound boolean expression is composed of two or more simple expressions joined with the or, and or implication (=>) operators.
	e has several special constructs that are useful in constraint boolean expressions:
	soft
	A keyword that indicates that the constraint is either a soft value constraint or a soft order constraint. See “Generation Constraints” on page 257 for a definition of these types of constraints.
	soft...select
	An expression that constrains the distribution of values.
	.reset_soft()
	A pseudo-method that causes the test generator to quit evaluation of soft constraints for a field, in effect, removing previously defined soft constraints.
	.is_all_iterations()
	A list method used only within constraint boolean expressions that causes a list of structs to have all legal, non-contradicting iterations of the specified fields.
	.is_a_permutation()
	A list method that can be used within constraint boolean expressions to constrain a list to have the same elements as another list.
	[not] in
	An operator that can be used within constraints boolean expressions to constrain an item to a range of values or a list to be a subset of another list, or, with not, to be outside the range or absent from another list.
	is [not] a
	An operator that checks the subtype of a struct.

	Notes

	Example 1
	The following are examples of simple constraint boolean expressions:

	Example 2
	The following are examples of compound constraint boolean expressions:

	Example 3
	In compound expressions where multiple implication operators are used, the order in which the operations are performed is significant. For example, in the following constraint, the first expression (a => b) is evaluated first by default:
	However, adding parentheses around the expression (b => c) causes it to be evaluated first, with very different results.
	See Also
	7.2.14 gen-item

	Purpose
	Identifies a generatable item

	Category
	Expression

	Syntax
	[me.]field1-name[.field2-name ...]
	| it | [it].field1-name[.field2-name ...]
	Syntax example:

	Parameters
	field-name
	The name of a field in the current struct or struct type.

	Description
	A generatable item is an operand in a boolean expression that describes the legal values for that generatable item or constrains its relation with another generatable item. Every constraint must have at least one generatable item or an error is issued.
	In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct containing the const...
	NOTE- A generatable item cannot have an indexed reference in it except as the last item in the path. Thus, constraints such as “keep a.keys[i] > 10” are legal, while constraints such as “keep packets[0].len > 10” are illegal.
	To work around this restriction, use a keep for each constraint with an implication constraint:

	Example 1
	This example illustrates generatable and non-generatable items within a keep constraint. In the constraint boolean expression “x...

	Example 2
	This example illustrates generatable and non-generatable items within a gen action. In the gen action shown below, it is the only generatable item. “i” is a local variable, and the paths of the other variables do not start with it.
	See Also
	7.3 Invoking Generation
	For information on constructs used to control or invoke generation, see:
	7.3.1 gen

	Purpose
	Generate values for an item

	Category
	Action

	Syntax
	gen gen-item [keeping {[it].constraint-bool-exp; ...}]
	Syntax example:

	Parameters
	gen-item
	A generatable item. If the expression is a struct, it is automatically allocated, and all fields under it are generated recursively, in depth-first order.
	constraint-bool-exp
	A simple or a compound boolean expression. See “constraint-bool-exp” on page 292 for more information.

	Description
	Generates a random value for the instance of the item specified in the expression and stores the value in that instance, while c...
	You can generate values for particular struct instances, fields, or variables during simulation (on-the-fly generation) with the gen action.
	This constraint allows you to specify constraints that apply only to one instance of the item.

	Notes

	Example 1
	This example uses the gen action within a TCM called “gen_next()” to create packets to send to the device under test. A constrai...

	Example 2
	Example 3
	This example shows how to generate a struct containing a list on the fly, while constraining each item in the list.
	NOTE- You must provide a name for the list item that is iterated. In other words substituting “for each in .data” for “for each (item) in .data” causes an error.
	See Also
	7.3.2 pre_generate()

	Purpose
	Method run before generation of struct

	Category
	Method of any struct

	Syntax
	[struct-exp.]pre_generate()
	Syntax example:

	Parameters
	struct-exp
	An expression that returns a struct. The default is the current struct.

	Description
	The pre_generate() method is run automatically after an instance of the enclosing struct is allocated but before generation is p...
	The order of generation is recursively as follows:
	1) Allocate the new struct.
	2) Call pre_generate().
	3) Perform generation
	4) Call post_generate().

	NOTE- Prefix the ! character to the name of any field whose value is determined by pre_generate(). Otherwise, normal generation will overwrite this value.

	Example
	See Also
	7.3.3 post_generate()

	Purpose
	Method run after generation of struct

	Category
	Predefined method of any struct

	Syntax
	[struct-exp.]post_generate()
	Syntax example:

	Parameters
	struct-exp
	An expression that returns a struct. The default is the current struct.

	Description
	The post_generate() method is run automatically after an instance of the enclosing struct is allocated and both pre-generation a...
	The order of generation is recursively as follows:
	1) Allocate the new struct.
	2) Call pre_generate().
	3) Perform generation
	4) Call post_generate().

	Example
	See Also

	8 Events
	The e language provides temporal constructs for specifying and verifying behavior over time. All e temporal language features depend on the occurrence of events, which are used to synchronize activity with a simulator and within the e program.
	This chapter contains the following sections:
	See Also
	8.1 Events Overview
	An example of an event definition is shown in Figure 8-1. An event named “rclk” is defined to be the rising edge of a signal nam...
	Figure 8-1- Event Definition Example

	'top.clk'
	Once an event has been defined, it can be used in as the sampling event in temporal constructs such as temporal expressions (see Chapter 9, “Temporal Expressions”) like the following:
	Events also are used as the sampling points in time-consuming methods (see “Rules for Defining and Extending Methods” on page 459):
	The occurrence of any event is counted as a tick. Ticks are the means by which the e program marks the passage of time.
	Many events are predefined in e. You can use event struct members to define your own events, called named events, like the “rclk” example above.
	All user-defined events are automatically included in functional coverage. A field named events in the session struct holds the user-defined event coverage data.

	See Also
	8.1.1 Causes of Events
	The ways in which an event are made to occur are described below.
	event a is (@b and @c)@d
	Derived from other events (see Chapter 9, “Temporal Expressions”).
	event a is rise('top.b')@sim
	Derived from behavior of a simulated device (see Chapter 9, “Temporal Expressions”).
	event a is { @b; @c; @d }@e
	A sequence of other events (see Chapter 9, “Temporal Expressions”)
	event a; meth_b()@c is { ... ; emit a; ... };
	By the emit action in procedural code (see “emit” on page 307).
	You can use the emit action in any method to cause an event to occur, whether it has an attached temporal expression or not.

	See Also
	8.1.2 Scope of Events
	The scoping rules for events are similar to other struct members, such as fields.
	Events are defined as a part of a struct definition. When a struct is instantiated, each instance has its own event instances. E...
	All references to events are to event instances. The scoping rules are as follows:

	See Also
	8.2 Defining and Emitting Named Events
	This section describes the following constructs:

	See Also
	8.2.1 event

	Purpose
	Define a named event

	Category
	Struct member

	Syntax
	event event-type[is [only] temporal-expression]
	Syntax example:

	Parameters
	event-type
	The name you give the event type. It can be any legal e identifier.
	temporal-expression
	An event or combination of events and temporal operators.
	To use an event name alone as a temporal expression, you must prefix the event name with the @ sign. For example, to define even...

	Description
	Events can be attached to temporal expressions, using the option is [only] temporal-expression syntax, or they can be unattached. An attached event is emitted automatically during any tick in which the temporal expression attached to it succeeds.
	Events, like methods, can be redefined in struct extensions. The is only temporal-expression syntax in a struct extension is use...

	Example 1
	In the following, “start_ct” is an unattached event, and “top_clk” and “stop_ct” are attached events. The “m_str” extension contains a redefinition of the “top_ct” event.

	Example 2
	One way to cause a callback from the simulator is to sample a change, rise, or fall of a simulator object using @sim. The following causes a callback and a “sim_ready” event whenever the value of the simulator object “top/ready” changes.

	Example 3
	The emit action can be used to force any event to occur. The emit action in the following forces the “sim_ready” event to occur even if the “change('top/ready') @sim” temporal expression has not succeeded.
	See Also
	8.2.2 emit

	Purpose
	Cause a named event to occur

	Category
	Action

	Syntax
	emit [struct-exp.]event-type
	Syntax example:

	Parameters
	struct-exp
	An expression referring to the struct instance in which the event is defined.
	event-type
	The type of event to emit.

	Description
	Causes an event of the specified type to occur.
	The simplest usage of emit is to synchronize two TCMs, where one TCM waits for the named event and the other TCM emits it.
	Emitting an event causes the immediate evaluation of all temporal expressions that contain that event.
	The emit event does not consume time. It can be used in regular methods and in TCMs.

	Example
	See Also
	8.3 Sampling Events Overview
	Events are used to define the points at which temporal expressions and TCMs are sampled. An event attached to a temporal expression becomes the sampling event for the temporal expression. The event is attached using the @sampling-event syntax:
	temporal-expression @sampling-event
	The temporal expression is evaluated at every occurrence of the sampling event. The sampling period is the time from after one s...
	In Figure 8-2, Q and R are previously defined events that occur at the points shown. The temporal expression “Q@R” means “evalua...
	Figure 8-2- Sampling Event for a Temporal Expression

	Q
	If “Q” in the figure above is a temporal expression that includes other events, “R” is the default sampling event of the tempora...
	For a TCM, the sampling event is written as:
	time-consuming-method(...)@sampling-event is {...}
	The default sampling event specified for a TCM drives or synchronizes actions within the TCM. It is not a trigger that launches the TCM, but is rather the event to which temporal actions and expressions in the TCM relate.
	The predefined sys.any event occurs every time any other event occurs in the test. Expressions that need the highest time resolution can be attached to the sys.any event. The sys.any event is the default sampling event for all temporal expressions.
	When a callback to is needed upon a change in a simulator variable, you can attach the name sim to the simulator variable. A cha...
	In Figure 8-3, “S” and “T” are previously defined events. Attaching @sim to each of these event names causes the event to occur ...
	Figure 8-3- Occurrences of the sys.any Event

	S@sim

	See Also
	8.4 Predefined Events Overview
	Predefined events are emitted at particular points in time. They are described in the following sections:

	See Also
	8.4.1 General Predefined Events
	Table 8-1 lists the general predefined events. The events are described in more detail after the table.
	Table 8-1- Predefined Events

	sys.any
	Emitted on every tick.
	sys.tick_start
	Emitted at the start of every tick.
	sys.tick_end
	Emitted at the end of every tick.
	session.start_of_test
	Emitted once at test start.
	session.end_of_test
	Emitted once at test end.
	struct.quit
	Emitted when a struct’s quit() method is called. Only exists in structs that contain events or have members that consume time (for example, time- consuming methods and on struct members).
	sys.new_time
	In stand-alone operation (no simulator), this event is emitted on every sys.any event. When a simulator is being used, this event is emitted every time a callback occurs, if the attached simulator’s time has changed since the previous callback.

	sys.any
	Emitted on every tick.
	This is a special event that defines the highest granularity of time. The occurrence of any event in the system causes an occurr...
	In stand-alone e program operation (that is, with no simulator attached), the sys.any event is the only one that occurs automatically. It typically is used as the clock for stand-alone operation, as in the following example.
	Original clock definition for simulation:
	Extension to override the clock to tie it to sys.any for stand-alone operation:

	sys.tick_start
	Emitted at the start of every tick.
	This event is provided mainly for visualizing and debugging the program flow in the event viewer.

	sys.tick_end
	Emitted at the end of every tick.
	This event is provided mainly for visualizing and debugging the program flow in the event viewer. It also can be used to provide visibility into changes of values that are computed during the tick, such as the values of coverage items.

	session.start_of_test
	Emitted once at the start of the test.
	The first action the predefined run() method executes is to emit the session.start_of_test event. This event is typically used to anchor temporal expressions to the beginning of a test.
	For example, in the following, the “watchdog” time is anchored to the beginning of the test by session.start_of_test:

	session.end_of_test
	Emitted once at the end of the test.
	This event is typically used to sample data at the end of the test. This event cannot be used in temporal expressions as it is e...

	struct.quit
	Exists only in structs that contain temporal members (events, on, expect, TCMs). Emitted when the struct’s quit() method is called, to signal the end of time for the struct.
	The first action executed during the check test phase is to emit the quit event for each struct that contains it. It can be used...

	See Also
	8.4.2 Events for Aiding Debugging
	Table 8-2 shows predefined events intended as aids in debugging. By setting trace on event, you can see occurrences of events as...
	NOTE- The predefined events in the session struct are not graded until the end of the test run, unlike user-defined events which are graded during the run. If you look at the session events grades during the run, you will see grades of 0.
	Table 8-2- Predefined Debugging Events
	session.tcm_start
	Emitted when any TCM is started
	session.tcm_end
	Emitted when any TCM finishes
	session.tcm_call
	Emitted when any TCM is called
	session.tcm_return
	Emitted when any TCM returns
	session.call
	Emitted when any method is called
	session.return
	Emitted when any method returns
	session.output
	Emitted when any output is issued
	session.line
	Shows line numbers for all traced events
	session.tcm_wait
	Emitted when a wait action occurs
	session.tcm_state
	Emitted when a state change occurs
	session.sim_read
	Emitted when a simulator variable is read
	session.sim_write
	Emitted when a simulator variable is written to
	session.check
	Emitted when a check action is performed.
	session.dut_error
	Emitted when a dut_error action is performed.

	See Also
	8.4.3 Simulation Time and Ticks
	Using any of the following expressions causes the DUT to be monitored for a change in that expression:
	For each simulation delta cycle in which a change in at least one of these monitored expressions occurs, the simulator passes co...
	Thus, the new_time event corresponds to a new simulation time slot, and a tick corresponds to a simulation delta cycle in which at least one monitored expression changes.
	Multiple ticks can occur in the same simulation time slot under the following conditions:
	NOTE- Glitches that occur in a single simulation time slot are ignored. Only the first occurrence of a particular monitored even...
	For an explanation of when values are assigned, see “<=” on page 493.

	Example 1
	This example shows a clock generator and illustrates how two ticks can occur at the same simulation time.
	clock_gen.v
	clock_gen.e
	Result
	There are two ticks in each simulation time slot. The first tick is caused by the elapse of the wait delay; the second, by the new value applied to top.clk.

	Example 2
	This example shows a clock tree and illustrates how two ticks can occur at the same simulation time.
	tree.v
	tree.e
	In this example, the wait statement marked with a comment is expected to miss one edge of the secondary clock because the old va...

	Result
	There are two ticks in each simulation time slot. The first tick is caused by the primary clock event; the second, by the secondary clock event.

	Example 3
	If multiple edges occur in a single simulation time slot on a signal monitored with @sim, the e program sees only the first one. For example, if you have an event defined as
	and wireA transitions from 1 to 0 and back to 1 in the same time slot, my_event is emitted and stores 0 as the value of wireA. Then, if wireA changes to 0 in a subsequent time slot, the e program does not see this as a change and does not emit my_event.
	There are two ways to handle this situation.
	1) Change the sampling event of wireA to a clock sampling event:
	2) Use the strobe option of verilog variable to filter out the glitch:

	See Also

	9 Temporal Expressions
	Temporal expressions provide a declarative way to describe temporal behavior. The e language provides a set of temporal operators and keywords that you can use to construct temporal expressions.
	This chapter contains the following sections:
	See Also
	9.1 Temporal Expressions Overview
	A temporal expression (TE) is a combination of events and temporal operators that describes behavior. A TE expresses temporal relationships between events, values of fields, variables, or other items during a test.
	Temporal expressions are used to define the occurrence of events, specify sequences of events as checkers, and suspend execution of a thread until the given sequence of events occurs. Temporal expressions are only legal in the following constructs:
	The following sections provide more information about temporal expressions, how they are evaluated over time, and how the context in which they are used affects their interpretation.

	See Also
	9.1.1 Evaluating Temporal Expressions
	Evaluating a temporal expression is more difficult than evaluating an arithmetic or boolean expression since it might require se...
	The “@clk” syntax means “evaluate when clk occurs”. The above expression is a sequence temporal expression containing three simpler temporal expressions:
	Evaluation of this temporal expression commences with a rise of the top.req signal when sampled at the clk event. Evaluation the...
	An evaluation of a TE thus succeeds, fails, or remains open on every occurrence of the sampling event. The period between occurrences of the sampling event is called the sampling period.
	The context in which a TE is used determines when TE evaluation commences. In general a new evaluation commences on every occurr...
	For example, to wait three pclk cycles after a rise on the request line before driving the data:
	A wait TE is first evaluated on the next pclk after the drive() TCM is started or called. When the temporal expression succeeds,...
	The TE in an event definition commences evaluation when the run() method of the struct in which it is declared is invoked, at th...
	The TE in the declaration of an expect commences evaluation when the run() method of the struct in which it is declared is invok...
	A struct is terminated by calling the struct.quit() method, which is predefined for any struct that contains time-consuming cons...
	Figure 9-1 shows the graphical notation used in illustrations in the e language temporals documentation. The illustrations do not show evaluations that start and immediately fail.
	Figure 9-1- Legend for Temporals Graphics

	event emitted
	An example of the graphical notation to represent evaluation of temporal sequences is shown in Figure 9-2.
	Figure 9-2- Evaluation of Three Sequences

	pclk
	Figure 9-2 shows occurrences of three events, pclk, req, and ack. The pclk event is the sampling event for three sequences involving req and ack.
	Some sequences can succeed more than once during a particular evaluation. Figure 9-3 shows an evaluation of a temporal expressio...
	When req occurs again at the fourth pclk occurrence, a new evaluation of the sequence starts. This evaluation succeeds upon the ...
	Figure 9-3- Evaluation of the OR of Two Sequences

	({@req; @ack} // a or {@req; [1]; @ack} // b) @pclk
	9.1.2 Using HDL Objects in Temporal Expressions

	To synchronize an e program to a simulator define an event that depends on a simulator variable (typically a clock), and use the event as the sampling event for a TCM, or as part of a temporal expression.
	To create an event dependent on an HDL object or expression, use the following syntax:
	event event-name is (rise | fall | change) ('HDL-expression') @sim
	Using the @sim syntax activates the e program whenever the HDL-expression changes in the designated way (rises, falls, or changes value). The event is emitted at that time.
	NOTE- For HDL expressions that contain vectors or bit selects of vectors, e detects changes on all bits of the vector. Thus, if ...
	HDL expressions can be used in TEs sampled by any e event, not just @sim. The HDL values are sampled at each occurrence of the given sampling event.
	In the following example, an event named clk is defined as the fall of a simulator signal named xor_top.clk. The clk event is used as the sampling event for a TCM named body() so that every time-consuming action in the TCM is synchronized to clk.
	Verilog events can also be used to create events. To create an event from a Verilog event, use change('VL- event') @sim, as in the following example:

	See Also
	9.1.3 Selected Applications of Temporal Expressions
	This section describes the following:
	9.1.3.1 Handling Overlapping Transactions

	Transactions can overlap in the sense that many of them can be active at the same time. These can be purely pipelined transactions or transactions that are identified by some key.
	Handling pipelined transactions is easy in e. For example, the following is a behavioral rule for a buffer with a latency of three cycles:
	Often data need to be carried with the transaction. These may be input our output data associated with the transaction, or some identification of the specific transaction.
	In such cases the solution is to create a “transaction” struct that carries the data. The struct also contains the temporal rule describing the expected behavior of the struct. A new transaction struct needs to be created every time a transaction starts.
	9.1.3.2 Restricting TE Matches

	A temporal expression is re-evaluated at every occurrence of the sampling event to see if there is any possible match of the behavior it describes. Sometimes a different behavior is expected, where not all matches are considered.
	For example, consider a component that handles fixed length transactions. The basic behavior we want to check for is “every transaction that starts will end after N cycles”:
	However, suppose that the design under test can only handle one transaction at a time. If a new transaction starts while the pre...
	This formulation explicitly states that a transaction start must not occur while a transaction is being processed.

	See Also
	9.1.4 Forms for Common Temporal Expressions
	The natural way to specify future behavior is in terms of “cause yields effect”, which is done with the temporal yield operator ...
	The language also provides a way to maintain information about past events, which you can then use in yield expressions like the...
	The detach() operator causes the embedded temporal expression to be evaluated in parallel with the main temporal expression. See “detach” on page 343.
	Temporal expressions for many situations are shown below. The desired conditions are stated, and then an expression is shown for those conditions. In these expressions, TEn is a temporal subexpression, which can be an event.

	See Also
	9.1.4.1 Examples of Sequence Expressions
	9.1.4.2 Examples of Behavioral Rule Checks

	See Also
	9.1.5 Translation of Temporal Expressions
	Certain temporal expressions that describe unusually complex temporal behavior cannot be processed by the static analysis of the temporal engine. Errors can result from:
	If the e program identifies a failure to translate a complex temporal expression at load or compile time, you will have to decom...

	Examples of Analysis Capacity Overflow
	The following types of temporal expressions may produce complexity beyond the capacity of the static analysis:
	NOTE- There is no complexity issue if the repeat part and the match part are mutually exclusive. For example:
	This may also hold when the match part uses a small constant in a simple repeat temporal expression. For example:

	Examples of Limited Analysis Capability
	The following types of temporal expressions are certain to produce complexity beyond the capabilities of the static analysis:
	NOTE- There is no complexity issue if the repeat part and the match part are mutually exclusive. For example:
	There is no complexity issue if the match part uses a small constant bound in a simple repeat as described in 1.c above. For example:
	9.2 Temporal Operators and Constructs

	This section describes the constructs you can use in temporal expressions:
	In addition, it describes:

	See Also
	9.2.1 Precedence of Temporal Operators
	The precedence of temporal operators is shown in Table 9-1, listed from highest precedence to lowest.
	Table 9-1- Precedence of Temporal Operators

	named event
	@event-name
	exec consume
	TE exec action-block consume (@event-name)
	repeat
	[] * TE
	fail not
	fail TE not TE
	and
	TE1 and TE2
	or
	TE1 or TE2
	sequence
	{TE1 ; TE2}
	yield
	TE1 => TE2
	sample event
	TE @ event-name

	See Also
	9.2.2 not

	Purpose
	Temporal expression inversion operator

	Category
	Temporal expression

	Syntax
	not temporal-expression
	Syntax example:
	not {@ev_b;@ev_c}

	Parameters
	temporal-expression
	A temporal expression.

	Description
	The not temporal expression succeeds if the evaluation of the subexpression does not succeed during the sampling period. Thus not TE succeeds on every occurrence of the sampling event if TE does not succeed.
	NOTE- If an event is explicitly emitted (using “emit” on page 307), a race condition can arise between the event occurrence and the not of the event when used in some temporal expression.

	Example 1
	In the following, the event ev_d occurs every time there is an occurrence of ev_c that is not preceded by an occurrence of ev_a and then two consecutive occurrences of ev_b.
	See “{ exp ; exp }” on page 335 for information about the “;” sequence operator.

	Example 2
	The fail operator (see “fail” on page 329) differs from the not operator. Figure 9-4 on page 331 illustrates the differences in ...
	See Also
	9.2.3 fail

	Purpose
	Temporal expression failure operator

	Category
	Temporal expression

	Syntax
	fail temporal-expression
	Syntax example:
	fail{@ev_b; @ev_c}

	Parameters
	temporal-expression
	A temporal expression.

	Description
	A fail succeeds whenever the temporal expression fails. If the temporal expression has multiple interpretations (for example, fail (TE1 or TE2)), the expression succeeds if and only if all the interpretations fail.
	The expression fail TE succeeds at the point where all possibilities to satisfy TE have been exhausted. Any TE can fail at most once per sampling event.
	NOTE- The not operator differs from the fail operator.

	Example
	The expression
	succeeds for any of the following conditions:
	Figure 9-4 on page 331 illustrates the differences in behavior of not and fail.
	Figure 9-4- Comparison of Temporal not and fail Operators

	@ev_a

	See Also
	9.2.4 and

	Purpose
	Temporal expression and operator

	Category
	Temporal expression

	Syntax
	temporal-expression and temporal-expression
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression.

	Description
	The temporal and succeeds when both temporal expressions start evaluating in the same sampling period, and succeed in the same sampling period.

	Example 1
	Evaluation of the and temporal expression:
	for the following conditions:
	is shown in Figure 9-5 on page 332.
	Figure 9-5- Example 1 of Temporal and Operator Behavior

	(TE1 and TE2)@qclk

	Example 2
	Evaluation of the and temporal expression:
	for the following conditions:
	is shown in Figure 9-6 on page 333,
	Figure 9-6- Example 2 of Temporal and Operator Behavior

	TE3
	See Also
	9.2.5 or

	Purpose
	Temporal expression or operator

	Category
	Temporal expression

	Syntax
	temporal-expression or temporal-expression
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression.

	Description
	The or temporal expression succeeds when either temporal expression succeeds.
	An or operator creates a parallel evaluation for each of its subexpressions. It can create multiple successes for a single temporal expression evaluation.

	Example
	Evaluation of the temporal or operator:
	for the following conditions:
	is shown in Figure 9-7 on page 334.
	Figure 9-7- Example of Temporal or Operator Behavior

	(TE1 or TE2) @qclk

	See Also
	9.2.6 { exp ; exp }

	Purpose
	Temporal expression sequence operator

	Category
	Temporal expression

	Syntax
	{temporal-expression; temporal-expression; ...}
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression.

	Description
	The semicolon (;) sequence operator evaluates a series of temporal expressions over successive occurrences of a specified sampli...
	NOTE- Curly braces ({}) in the scope of a temporal expression define a sequence. They should not be used in any other way.

	Example
	Figure 9-8 on page 336 shows the results of evaluating the temporal sequence:
	over the series of ev_a, ev_b, and ev_c events shown at the top of the figure. Evaluation of the sequence starts whenever event ev_a occurs.
	Figure 9-8- Example Evaluations of a Temporal Sequence

	{@ev_a;@ev_b;@ev_c}@qcl k

	See Also
	9.2.7 eventually

	Purpose
	Temporal expression success check

	Category
	Temporal expression

	Syntax
	eventually temporal-expression
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression.

	Description
	Used to indicate that the temporal expression should succeed at some unspecified time.
	Typically, eventually is used in an expect struct member to specify that a temporal expression is expected to succeed sometime before the quit event occurs for the struct.

	Example
	The following instance of the temporal yield operator (see “=>” on page 342) succeeds after the event ev_c occurs only if event ...

	See Also
	9.2.8 [exp]

	Purpose
	Fixed repetition operator

	Category
	Temporal expression

	Syntax
	[exp] [* temporal-expression]
	Syntax example:

	Parameters
	exp
	A 32-bit, non-negative integer expression, which specifies the number of times to repeat the evaluation of the temporal expression. This cannot contain functions.
	temporal-expression
	A temporal expression. If “* temporal-expression” is omitted, “* cycle” is automatically used in its place.

	Description
	Repetition of a temporal expression is frequently used to describe cyclic or periodic temporal behavior. The [exp] fixed repeat operator specifies a fixed number of occurrences of the same temporal expression.
	If the numeric expression evaluates to zero, the temporal expression succeeds immediately.

	Examples
	The {...;...} syntax used in the examples below specifies a temporal sequence. The expressions are evaluated one after another, in consecutive sampling periods. See “{ exp ; exp }” on page 335 for information about the “;” sequence operator.
	In the following example, the wait action proceeds after the sequence event ev_a, then three occurrences of event ev_b, then event ev_c, all sampled at the default sampling event:
	In the following example, the wait action proceeds after M+2 consecutive pclk cycles in which sys.interrupt occurs. If there is a pclk cycle without a sys.interrupt, the count restarts from 0:
	In the following example, the wait action proceeds on the occurrence of the ev_a event:
	In the following example, the wait action proceeds five sampling event cycles after event ev_a:
	The numeric expression cannot include any functions. The following two examples show how to substitute temporary variables for functions in repeat expressions.
	In a TCM, this is not legal:
	To overcome this restriction, use a variable to hold the function value:
	In expect, assume or event struct members, this is not legal:
	In this situation, use a field to hold the function value and an exec expression to execute the function:

	See Also
	9.2.9 [exp..exp]

	Purpose
	First match variable repeat operator

	Category
	Expression

	Syntax
	{ ... ; [[from-exp]..[to-exp]] [* repeat-expression]; match-expression; ... }
	Syntax example:

	Parameters
	from-exp
	An optional non-negative 32 bit numeric expression that specifies the minimum number of repetitions of the repeat-expression. If the from-exp is missing, zero is used.
	to-exp
	An optional non-negative 32 bit numeric expression that specifies the maximum number of repetitions of the repeat-expression. If the to-exp is missing, infinity is used.
	repeat-expression
	The temporal expression that is to be repeated a certain number of times within the from-exp..to-exp range. If the “*repeat-expression” is omitted, “*cycle” is assumed.
	match-expression
	The temporal expression to match.

	Description
	The first match repeat operator is only valid in a temporal sequence {TE; TE; TE}. The first match repeat expression succeeds on the first success of the match-expression between the lower and upper bounds specified for the repeat-expression.
	First match repeat also enables specification of behavior over infinite sequences by allowing an infinite number of repetitions of the repeat-expression to occur before the match-expression succeeds.
	Where @ev_a is an event occurrence, {[..]*TE1;@ev_a} is equivalent to:

	Examples
	The following examples all make use of the {...;...} syntax for sequence temporal expressions since the first match repeat operator is only allowed inside a sequence. See “{ exp ; exp }” on page 335 for information about the “;” sequence operator.
	In the following example, the wait action proceeds after the first occurrence of ev_a followed by ev_b at pclk:
	In the following example, the wait action proceeds after one or more occurrences of ev_a at consecutive pclk events, followed by one occurrence of ev_b at the next pclk event:
	In the following example, the wait action proceeds after between zero and three occurrences of the sequence {ev_a; ev_b} (sampled by pclk), followed by an occurrence of ev_c at the next pclk event:
	In the following example,
	the wait action proceeds after any one of the three sequences sampled at consecutive sampling events:

	See Also
	9.2.10 ~[exp..exp]

	Purpose
	True match variable repeat operator

	Category
	Expression

	Syntax
	~[[from-exp]..[to-exp]] [* temporal-expression]
	Syntax example:

	Parameters
	from-exp
	An optional non-negative 32 bit numeric expression that specifies the minimum number of repetitions of the temporal expression. If the from-exp is missing, zero is used.
	to-exp
	An optional non-negative 32 bit numeric expression that specifies the maximum number of repetitions of the temporal expression. If the to-exp is missing, infinity is used.
	temporal-expression
	The temporal expression that is to be repeated some number of times within the from-expr..to-exp range. If “*temporal-expression” is omitted, “* cycle” is assumed.

	Description
	You can use the true match repeat operator to specify a variable number of consecutive successes of a temporal expression.
	True match variable repeat succeeds every time the subexpression succeeds. This expression creates a number of parallel repeat evaluations within the range.
	True match repeat also enables specification of behavior over infinite sequences by repeating an infinite number of occurrences of a temporal expression. The expression ~[..]*TE is equivalent to:
	This construct is mainly useful for maintaining information about past events. See “[exp]” on page 337.
	The following are examples of both forms of variable repeats, using implicit and explicit from - to range expressions:

	Example 1
	In the examples below, the {...;...} syntax specifies a temporal sequence. See “{ exp ; exp }” on page 335 for information about the “;” sequence operator.
	The following temporal expression succeeds if A has occurred sometime during an earlier cycle:
	The following temporal expression succeeds after any of the sequences {A}, {A; B}, {A; B; B}, or {A; B; B; B}:

	Example 2
	The following temporal expression succeeds three pclk cycles after reset occurs, again at four pclk cycles after reset, and again five pclk cycles after reset (with reset also sampled at pclk):

	Example 3
	The following temporal expression using the and temporal operator succeeds if A is followed at any time by B, or if A and B both occur during the same initial cycle:
	NOTE- A more efficient way to write the above example is:
	See Also
	9.2.11 =>

	Purpose
	Temporal yield operator

	Category
	Temporal expression

	Syntax
	temporal-expression1 => temporal-expression2
	Syntax example:

	Parameters
	temporal-expression1
	The first temporal expression. The second temporal expression is expected to succeed if this expression succeeds.
	temporal-expression2
	The second temporal expression. If the first temporal expression succeeds, this expression is also expected to succeed.

	Description
	The yield operator is used to assert that success of one temporal expression depends on the success of another temporal expression. The yield expression TE1 => TE2 is equivalent to (fail TE1) or {TE1 ; TE2}.
	The yield expression succeeds without evaluating the second expression if the first expression fails. If the first expression succeeds, then the second expression must succeed in sequence.
	Yield is typically used in conjunction with the expect struct member to express temporal rules.
	The sampling event from the context applies to both sides of the yield operator expression. The entire expression is essentially a single temporal expression, so that
	is effectively
	where TE is the temporal expression made up of TE1 => TE2.

	Example
	The following temporal expression succeeds if acknowledge occurs 1 to 100 cycles after request occurs. (The {...;...} syntax specifies a temporal sequence. See “{ exp ; exp }” on page 335 for information about the “;” sequence operator).

	See Also
	9.2.12 detach

	Purpose
	Detach a temporal expression

	Category
	Temporal expression

	Syntax
	detach(temporal-expression)
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression to be independently evaluated.

	Description
	A detached temporal expression is evaluated independently of the expression in which it is used. It starts evaluation when the m...

	Example 1
	In the following example, both S1 and S2 start with @Q. However, the S1 temporal expression expects E to follow Q, while the S2 temporal expression expects E to precede Q by one cycle.
	The detach() construct causes the temporal expressions to be evaluated separately. As a result, the S3 temporal expression is equivalent to the S2 expression. See Figure 9-9.
	Figure 9-9- Examples Illustrating Detached Temporal Expressions

	Q

	Example 2
	Since a detached expression is evaluated independently and in parallel with the main temporal expression the two events below are not the same:
	The first expression is equivalent to:
	While the second is equivalent to:

	Example 3
	The following two expressions are equivalent:
	See Also
	9.2.13 delay

	Purpose
	Specify a simulation time delay

	Category
	Temporal expression

	Syntax
	delay(int: exp)
	Syntax example:

	Parameters
	int
	An integer expression or time expression no larger than 64 bits. The number specifies the amount of simulation time to delay. The time units are in the timescale used in the HDL simulator.

	Description
	Succeeds after a specified simulation time delay elapses. A callback occurs after the specified time. A delay of zero succeeds immediately.
	Attaching a sampling event to delay has no effect. The delay ignores the sampling event and succeeds as soon as the delay period elapses.
	NOTE- This expression is not legal in standalone mode. It can only be used if the e porgram is being run with an attached HDL simulator.

	Example 1
	The following specifies a delay of 20 simulator time units:

	Example 2
	The following specifies a delay of df*5 simulator time units:

	Example 3
	The following use of the delay expression generates an error:
	See Also
	9.2.14 @ unary event operator

	Purpose
	Use an event as a temporal expression

	Category
	Temporal expression

	Syntax
	@[struct-exp.]event-type
	Syntax example:

	Parameters
	struct-exp.event-type
	The name of an event. This can be either a predefined event or a user- defined event, optionally including the name of the struct instance in which the event is defined.

	Description
	An event can be used as the simplest form of a temporal expression. The temporal expression @event-type succeeds every time the event occurs. Success of the expression is simultaneous with the occurrence of the event.
	The struct-exp is an expression that evaluates to the struct instance that contains the event instance. If no struct expression is specified, the default is the current struct instance.
	NOTE- If a struct expression is included in the event name, the value of the struct expression must not change throughout the evaluation of the temporal expression.

	Examples
	In the following, pclk is a temporal expression:
	The predefined sys.any event occurs at every tick. As a sampling event, use it as follows:

	See Also
	9.2.15 @ sampling operator

	Purpose
	Specify a sampling event for a temporal expression

	Category
	Temporal expression

	Syntax
	temporal-expression @event-name
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression.
	event-name
	The sampling event.

	Description
	Used to specify the sampling event for a temporal expression. The specified sampling event overrides the default sampling event.
	Every temporal expression has a sampling event. The sampling event applies to all subexpressions of the temporal expression. It can be overridden for a subexpression by attaching a different sampling event to the subexpression.
	A sampled temporal expression succeeds when its sampling event occurs with or after the success of the temporal expression.
	The sampling event for a temporal expression is one of the following, in decreasing precedence order:
	1) For any expression or subexpression, a sampling event specified with the @ binary event operator.
	2) For a subexpression, the sampling event inherited from its parent expression.
	3) For an expression in a TCM, the default sampling event of the TCM.
	4) If none of the above applies, the predefined sys.any event.

	Examples
	The reset event is sampled at the pclk event:
	The reset event is sampled by the predefined sys.any event:
	Event ev_a occurs when the reset event occurs, sampled at the rclk event:
	The following is the same as event ev_b is @reset @sys.any:

	See Also
	9.2.16 cycle

	Purpose
	Specify an occurrence of a sampling event

	Category
	Temporal expression

	Syntax
	cycle
	Syntax example:

	Description
	Represents one cycle of some sampling event. With no explicit sampling event specified, this represents one cycle of the samplin...
	In the following, the event named sys.pclk is the sampling event for the TCM named proc(). The wait cycle action is the same as wait @sys.pclk.

	Example 1
	The following event definition replicates sys.clk as the local clk for the struct:
	This is equivalent to “event clk is @sys.clk @sys.clk”. It is also equivalent to “event clk is @sys.clk”, but more efficient.

	Example 2
	The following expression succeeds as soon as ev_a occurs:
	See Also
	9.2.17 true(exp)

	Purpose
	Boolean temporal expression

	Category
	Temporal expression

	Syntax
	true(bool: exp)
	Syntax example:

	Parameters
	bool
	A boolean expression.

	Description
	Use a boolean expression as a temporal expression. Each occurrence of the sampling event causes an evaluation of the boolean expression. The boolean expression is evaluated only at the sampling point.
	The temporal expression succeeds each time the expression evaluates to TRUE.
	NOTE- The expression exp will be evaluated after pclk. Changes in exp after true(exp) @pclk has been evaluated will be ignored.

	Example 1
	The following causes the TCM to suspend until reset is high. The condition is checked for the first time at the first occurrence of clk after the wait is encountered; it is then checked every clk cycle after that. See “wait” on page 367.

	Example 2
	The temporal expression below succeeds when the boolean condition sys.number_of_packets == 5 evaluates to TRUE at the default sampling event. Execution of the TCM containing the wait action suspends until the boolean condition is true.
	See Also
	9.2.18 change(exp), fall(exp), rise(exp)

	Purpose
	Transition or edge temporal expression

	Category
	Temporal expression

	Syntax
	change | fall | rise(scalar: exp) [@event-type]
	change | fall | rise(’HDL-pathname’) @sim
	Syntax example:

	Parameters
	scalar
	A boolean expression or an integer expression.
	event-type
	The sampling event for the expression.
	’HDL-pathname’
	An HDL object enclosed in single quotes (' ').
	@sim
	A special annotation used to detect changes in HDL signals.

	Description
	Detects a change in the sampled value of an expression.
	The behavior of each of the three temporal expressions (change, fall, and rise) is described in Table 9-2, “Edge Condition Options”, on page 351.
	Table 9-2- Edge Condition Options (continued)

	rise(exp)
	Triggered when the expression changes from FALSE to TRUE. If it is an integer expression, the rise() temporal expression succeeds upon any change from x to y>x. Signals wider than one bit are allowed. Integers larger than 32 bits are not allowed.
	fall(exp)
	Triggered when the expression changes from TRUE to FALSE. If it is an integer expression, the fall() temporal expression succeeds upon any change from x to y<x. Signals wider than one bit are allowed. Integers larger than 32 bits are not allowed.
	change(exp)
	Triggered when the value of the expression changes. The change() temporal expression succeeds upon any change of the expression. Signals wider than one bit are allowed. Integers larger than 32 bits are not allowed.
	The expression is evaluated at each occurrence of the sampling event, and is compared to the value it had at the previous sampli...
	A special notation, @sim, can be used in place of a sampling event for rise, fall, or change of HDL objects. If @sim is used, th...
	When a sampling event other than @sim is used, changes to the HDL object are detected only if they are visible at the sampling r...
	Figure 9-10- Effects of the Sampling Rate on Detecting HDL Object Changes

	change('V')@sim
	When applied to HDL variables, the expressions examine the value after each bit is translated from the HDL four-value or nine-va...
	Table 9-3- Transition of HDL Values

	0, X, U, W, L, -
	0
	1, Z, H
	1

	Notes
	Examples
	The following defines an event that occurs at any change in the value of an HDL signal named top.clk:
	The following defines an event that occurs when the boolean expression pkt_size > 20 changes from FALSE to TRUE:
	The following defines an event that occurs at a fall in the value of an HDL signal named ~/top/reset, sampled by an event named rsmp:

	See Also
	9.2.19 consume

	Purpose
	Consume an occurrence of an event

	Category
	Temporal expression

	Syntax
	consume(@event-type)
	Syntax example:

	Parameters
	event-type
	The name of the event that is to be consumed.

	Description
	Removes the occurrence of an event so that it is not available for other temporal expressions. The consume expression succeeds whenever the event occurs. If the event occurs more than once during any given cycle, all occurrences are consumed.
	After an event occurrence is consumed, that occurrence will not be recognized by any temporal expression during the current tick, unless the event is emitted again.
	An event cannot be consumed by more then one consume expression. Care should be used to avoid creating race conditions between multiple events that use an event that is consumed.

	Notes
	Example
	The following code shows how you can use consume() to handle concurrent requests from multiple clients in an orderly manner.
	The example enables the following behaviors:
	In this example there are four client structs and one server struct. The server ensures that all requests are granted and that there are no simultaneous grants.
	When multiple clients issue a request at the same time the server is using a counter to keep track of the number of requests. Th...

	Result
	See Also
	9.2.20 exec

	Purpose
	Attach an action block to a temporal expression

	Category
	Temporal expression side effect

	Syntax
	temporal-expression exec action; ...
	Syntax example:

	Parameters
	temporal-expression
	The temporal expression that invokes the action block.
	action
	A series of actions to perform when the expression succeeds.

	Description
	Invokes an action block when a temporal expression succeeds. The actions are executed immediately upon the success of the expression, but not more than once per tick.
	To support extensibility of your e code, use method calls in the exec action block rather than calling the actions directly.
	The usage of exec is similar to the on struct member, except that:
	You cannot attach an exec action to a first match variable repeat expression:
	However, you can attach an exec action to the repeat expression of a first match variable repeat expression as follows:
	NOTE- The two expressions above are equivalent. They will both execute the exec action once for each occurrence of b.
	An exec action cannot be attached to an implicit repeat expression:
	You must make the implicit repeat expression explicit in order to attach an exec action:

	NOTE- The action block cannot contain any time-consuming actions.

	Example
	The following code maintains a pipeline of instruction instances.

	See Also

	10 Temporal Struct Members
	In addition to the event struct member (see “event” on page 305), there are two struct members used for temporal coding. These struct members are described in this chapter:
	See Also
	10.1 on

	Purpose
	Specify a block of actions that execute on an event

	Category
	Struct member

	Syntax
	on event-type {action; ...}
	Syntax example:

	Parameters
	event-type
	The name of an event that invokes the action block.
	action; ...
	A block of non-time-consuming actions.

	Description
	Defines a struct member that executes a block of actions immediately whenever a specified event occurs. An on struct member is s...
	The on action block is invoked every time the event occurs. The actions are executed in the order in which they appear in the action block.
	You can extend an on struct member by repeating its declaration, with a different action block. This has the same effect as using is also to extend a method.
	The on struct member is implemented as a method, named on_event-type(). You can invoke the action block without the occurrence o...

	Notes
	Example 1
	Example 2
	The following example shows how to invoke an on action block with an event that is defined in a different struct, by defining a local event that uses the nonlocal event as its temporal expression.
	See Also
	10.2 expect | assume

	Purpose
	Define a temporal behavioral rule

	Category
	Struct member

	Syntax
	expect | assume [rule-name is [only]] temporal-expression [else dut_error(string-exp)]
	or
	expect | assume rule-name
	Syntax example:

	Parameters
	rule-name
	An optional name that uniquely identifies the rule from other rules or events within the struct. You can use this name to override the temporal rule later on in the code or change from expect to assume or vice versa.
	temporal-expression
	A temporal expression that is always expected to succeed. Typically involves a temporal yield (=>) operation.
	string-exp
	A string or a method that returns a string. If the temporal expression fails, the string is printed, or the method is executed and its result is printed.

	Description
	Both the expect and assume struct members define temporal rules. If the temporal expression fails at its sampling event, the temporal rule is violated and an error is reported. If there is no dut_error() clause, the rule name is printed.
	If you are not using an e program linked with a formal verification tool, you can use expect and assume interchangeably to define temporal rules with no difference in behavior.
	When using an e program linked with a formal verification (FV) tool, you can use assume to identify temporal sequences that the ...
	Once a rule has been defined, it can be modified using the is only syntax and it can be changed from an expect to an assume or v...
	NOTE- The is also, is undefined, and is empty forms are not supported for this construct.

	Example 1
	This example defines an expect, “bus_cycle_length”, which requires that the length of the bus cycle be no longer than 1000 cycles.
	Result
	If the bus cycle is longer than 1000 cycles, the following message will be issued.

	Example 2
	In this example, the “bus_e” struct from Example 1 on page 361 is extended and two subtypes are created, “Slow” and “Fast”. For ...

	Example 3
	In this example, the “bus_e” struct from Example 1 on page 361 and Example 2 on page 362 is extended. The bus cycle rule is changed from an expect rule to an assume rule.

	Example 4
	In the following example, two expect statements are used to specify that the “transmit_end” event must occur within three to six...
	See Also

	11 Time-Consuming Actions
	This chapter contains the following sections:
	See Also
	11.1 Synchronization Actions
	The following actions are used to synchronize temporal test activities within an e program and between the DUT and the e program:
	11.1.1 sync

	Purpose
	Synchronize an executing TCM

	Category
	Action

	Syntax
	sync [temporal-expression]
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression that specifies what the TCM synchronizes to.

	Description
	Suspends execution of the current TCM until the temporal expression succeeds. Evaluation of the temporal expression starts immed...
	If no temporal expression is provided, the TCM synchronizes to its default sampling event. The TCM suspends until the occurrence of its sampling event, or continues immediately if the sampling event succeeds in the current tick.
	You can use the sync action after a call to another TCM to align the continuation of the calling TCM with its sampling event when the called TCM returns.
	Execution of a thread is atomic: it cannot be interrupted except by a sync action or a wait action. When one of those actions is encountered, control can be passed from the TCM to other TCMs.
	The sync action is similar to the wait action, except that a wait action always requires at least one cycle of the TCM’s sampling event before execution can continue. With a sync action, execution can continue in the same tick.

	Example
	In the following example, the wait action in the “driver()” TCM causes at least a one-cycle delay, since the true() temporal exp...
	On the other hand, the sync action in the “shadow()” TCM does not result in a delay if its true temporal expression succeeds immediately. Execution of the TCM continues at the next occurrence of the “clk” event.

	See Also
	11.1.2 wait

	Purpose
	Wait until a temporal expression succeeds

	Category
	Action

	Syntax
	wait [[until] temporal-expression]
	Syntax example:

	Parameters
	temporal-expression
	A temporal expression that specifies what the TCM is to wait for.

	Description
	Suspend execution of the current time-consuming method until a given temporal expression succeeds. If no temporal expression is ...
	When a VHDL or Verilog simulator is linked to an e program, the syntax wait delay(exp) can be used to wait for a specific simula...
	The TCM cannot continue during the same cycle in which it reaches a wait, unless the temporal expression evaluates to 0. That is, if the temporal expression evaluates to “[0] * something”, execution can continue in the same cycle.
	If the wait action’s temporal expression contains a variable subexpression, such as “wait [var1 + var2] * cycle”, the subexpress...
	Execution of a thread is atomic: it cannot be interrupted except by a wait action or a sync action. When one of those actions is encountered, control can be passed from the TCM to other TCMs.
	The wait action is similar to the sync action, except that a wait action always requires at least one cycle of the TCM’s samplin...
	NOTE- The cycle-based simulator SpeedSim does not support the wait delay(exp) action.

	Example 1
	Several examples of temporal expressions for wait actions are shown below:

	Example 2
	In the following example, the wait action in the “driver()” TCM causes a one-cycle delay even if the true temporal expression su...
	See Also
	11.2 Concurrency Actions
	The actions that control concurrent execution of time-consuming methods are described in this section:
	Both of these actions create parallel action blocks which might start or call TCMs. The first action awaits completion of all “branches”, while the second terminates at the first completion of any “branch”.
	Control of individual branches or TCMs can also be accomplished using predefined methods of the predefined scheduler struct.
	11.2.1 all of

	Purpose
	Execute action blocks in parallel

	Category
	Action

	Syntax
	all of {{action; ...}; ... }
	Syntax example:

	Parameters
	{action; ...}; ...
	Action blocks that are to execute concurrently. Each action block is a separate branch.

	Description
	Execute multiple action blocks concurrently, as separate branches of a fork. The action following the all of action will be reac...

	Example 1
	Execute the following three TCMs concurrently, and continue after they all have finished:

	Example 2
	The all of construct can be used to wait for several events, no matter what order they arrive in. This can be used as an AND relation between events as shown below.
	See Also
	11.2.2 first of

	Purpose
	Execute action blocks in parallel

	Category
	Action

	Syntax
	first of {{action; ...}; ... }
	Syntax example:

	Parameters
	{action; ...}; ...
	Action blocks that are to execute concurrently. Each action block is a separate branch.

	Description
	Execute multiple action blocks concurrently, as separate branches of a fork. The action following the first of action will be re...
	The parallel branches can be thought of as racing each other until one completes. Once one branch terminates, the e program terminates the execution of each of the other branches.
	When two branches finish executing during the same cycle, it is not possible to determine which will prevail. One will complete successfully and the other will terminate.

	Example 1
	The first of construct can be used in order to wait for one of several events. This can be used as an OR relation between events:

	Example 2
	The all of and first of actions can be used together to combine wait actions. In the following, the first of action block terminates when “event2” is seen:

	Example 3
	In the following example, first of is used to create two branches, one of which continues after a “sys.reset” event, and the oth...
	See Also

	12 Coverage Constructs
	This chapter contains the following sections:
	12.1 Defining Coverage Groups: cover

	Purpose
	Define a coverage group

	Category
	Struct member

	Syntax
	cover event-type [using coverage-group-option, ...] is {coverage-item-definition; ...};
	cover event_type is empty;
	Syntax example:

	Parameters
	event-type
	The name of the group. This must be the name of an event type defined previously in the struct. The event must not have been defined in a subtype.
	The event is the sampling event for the coverage group. Coverage data for the group is collected every time the event occurs.
	The full name of the coverage group is struct-exp.event-name. The full name must be specified for the coverage methods.
	coverage-group- option
	The coverage group options listed in Table 12-1 can be specified with the using keyword.
	Each coverage group can have its own set of options. The options can appear in any order after the using keyword.
	coverage-item- definition
	The definition of a coverage item. Coverage items are described in “Defining Basic Coverage Items” on page 378.
	is also
	See “Extending Coverage Groups” on page 412.
	is empty
	The empty keyword can be used to define an empty coverage group that will be extended later, using a cover is also struct member with the same name.
	Table 12-1- Coverage Group Options (continued)

	no_collect
	This coverage group is not displayed in coverage reports and is not saved in the coverage files. This option enables tracing of coverage information and enables event viewing with echo event, without saving the coverage information.
	count_only
	This option reduces memory consumption because the data collected for this coverage group is reduced. You cannot do interactive,...
	text=string
	A text description for this coverage group.
	This can only be a quoted string, not a variable or expression. The text is shown at the beginning of the information for the group in the coverage report.
	when=bool-exp
	The coverage group is sampled only when bool-exp is TRUE. The bool- exp is evaluated in the context of the parent struct.
	global
	A global coverage group is a group whose sampling event is expected to occur only once. If the sampling event occurs more than o...
	radix=DEC|HEX|BIN
	Buckets for items of type int or uint are given the item value ranges as names.This option specifies which radix the bucket names are displayed in.
	The global print radix option does not affect the bucket name radix.
	Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary). The value must be in upper case letters.
	If the radix is not used, int or uint bucket names are displayed in decimal.
	weight=uint
	This option specifies the grading weight of the current group relative to other groups. It is a nonnegative integer with a default of 1.

	Description
	Defines a coverage group. A coverage group is struct member that contains a list of data items for which data is collected over time.
	NOTE- Unless you turn on coverage mode, no coverage results are collected even if cover groups and items are defined. Use the cover configuration option to turn on coverage, as in the following example.
	Once coverage items have been defined in a coverage group, you can use them to define special coverage group items called transi...
	The is keyword is used to define a new coverage group. See “Extending Coverage Groups” on page 412 for information on using is also to extend an existing coverage group.
	All basic items in a coverage group are enabled for echo event.
	Coverage groups should not be initially defined in when constructs, although they can be extended in when constructs.
	If you extend a coverage group in a when construct by adding a per_instance item, then the instances refer only to the when subt...

	Example 1
	A coverage group named “inst_driven” is defined in the example below. The sampling event “inst_driven” is declared earlier in the same struct. The coverage group contains definitions of three basic coverage items named “opcode”, “op1”, and “op2”.

	Example 2
	The code below contains examples of the coverage group options.
	The effects of the options in the example above are:

	Example 3
	The code below shows the radix coverage group option.
	For the “len” item, the bucket names are: 0x0, 0x1, ... 0x7 (using the HEX radix specified for the group).
	For the “data” item, the bucket names are: [0x0..0x03], [0x04..0x07], ... [0xfc..0xff] (using the HEX radix specified for the item).
	For the “mask” item, the bucket names are 0b00, 0b01, 0b10, and 0b11 (since the radix = BIN option is used for this item to override the group’s HEX radix.)

	Example 4
	The code below shows the weight coverage group option.
	The “done” coverage group is assigned a weight of 3. If there are 10 other coverage groups that all have default weights of 1, the “done” group contributes (3/13)*grading(done) to the “all” grade.

	Example 5
	The code below shows how to use the empty coverage group keyword.

	Example 6
	The code below shows how to define coverage items in a when construct, by extending a coverage group defined previously but initially left empty.
	See Also
	12.2 Defining Basic Coverage Items
	12.2.1 Overview

	The item constuct is used to
	12.2.2 item

	Purpose
	Define a coverage item

	Category
	Coverage group item

	Syntax
	item item-name[:type=exp] [using coverage-item-option, ...]
	Syntax example:

	Parameters
	item-name
	The name you assign to the coverage item.
	If you do not specify the optional type=exp, the value of the field named item-name is used as the coverage sample value. The field may be a scalar not larger than 32 bits, or a string.
	If you specify the optional type=exp, the value of the expression is used as the coverage sample value.
	type
	The type of the item. The type expression must evaluate to a scalar not larger than 32 bits, or a string.
	exp
	The expression is evaluated at the time the whole coverage group is sampled. This value is used for the item.
	coverage-item- option
	Coverage item options are listed in Table 12-2. The options can appear in any order after the using keyword.
	Table 12-2- Coverage Item Options (continued)

	per_instance
	Coverage data is collected and graded for all the other items in a separate listing for each bucket of this item. This option can only be used for basic items (not for cross or transition items, or items whose ranges are not known at generation time).
	no_collect
	This coverage item is not displayed in coverage reports and is not saved in the coverage files. This option enables tracing of coverage information and enables event viewing with echo event, without saving the coverage information.
	text=string
	A text description for this coverage item. This can only be a quoted string, not a variable or expression. In the ASCII coverage report the text is shown along with the item name at the top of the coverage information for the item.
	when=bool-exp
	The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the context of the parent struct.
	The sampling is done at run time.
	at_least=num
	The minimum number of samples for each bucket of the item. Anything less than num is considered a hole.
	This option cannot be used with string items or for unconstrained integer items (items that do not have specified ranges).
	You cannot specify a negative number. The default is 1.
	ranges = {range(parameters);…}
	Create buckets for this item’s values or ranges of values. This option cannot be used for string items.
	The range() has up to four parameters. The parameters specify how the values are separated into buckets. The first parameter, range, is required. The other three are optional. The syntax for range options is:
	range(range: range, name: string, every-count: int, at_least-num: int)
	The parameters are:
	ignore=item-bool-exp
	Define values that are to be completely ignored. They do not appear in the statistics at all. The expression is a boolean expression that can contain a coverage item name and constants.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If the ignore expression is TRUE when the data is sampled, the sampled value is ignored (that is, not added to the bucket count).
	If you want to achieve the first effect (ignore specific samples), but you do not want to hide buckets containing holes and you want the grade to reflect all generated values, use the when option instead.
	illegal=item-bool-exp
	Define values that are illegal. An illegal value causes a DUT error. If the check_illegal_immediately coverage configuration opt...
	See “illegal Example” on page 388 for an example of how to set the error effect of this check to WARNING instead of ERROR.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If you want the coverage grades to reflect all bucket contents, use the when option instead to specify the circumstances under which a given value is counted.
	radix=DEC|HEX|BIN
	For items of type int or uint, specifies the radix used in coverage reports for implicit buckets. If the ranges option is not us...
	Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary). The value must be in upper case letters. If the radix is not used, int or uint bucket names are displayed in decimal.
	The global print radix option does not affect the bucket name radix.
	If no radix is specified for an item, but a radix is specified for the item’s group, the group’s radix applies to the item.
	no_trace
	This item will not be traced by the simulator. Use this option to collect data for echo event.
	weight=uint
	Specifies the weight of the current item relative to other items in the same coverage group. It is a non-negative integer with a default of 1.
	name
	Assign an alternative name for a cross or transition item. For example:
	This option cannot be modified by using also.

	Description
	Defines a new basic coverage item with an optional type. Options specify how coverage data is collected and reported for the ite...
	If a value for an item falls outside all of the buckets for the item, that value does not count toward the item’s grade. The ran...
	By default, basic items are enabled for echo event. You can use the no_trace option to disable tracing for an item.
	Below are some general examples of coverage item definitions. For examples of each of using the coverage item options, see “Coverage Item Options Examples” on page 386.
	NOTE- Unless you turn on coverage mode, no coverage results are collected even if cover groups and items are defined. Use the cover configuration option to turn on coverage, as in the following example.

	Coverage Per Instance
	The coverage per instance feature (per_instance option) allows you to collect coverage information for separate instances of structs or units, and to see the coverage data and grade associated with each particular instance.
	When you use the per_instance option in a cover item definition, that item becomes a “per_instance item”. Each bucket of that it...
	Typically, you use per-instance coverage on one item and transition or cross coverage on other items to see transitions or cross...
	An instance is created for every valid bucket of the per_instance item. Any instance that is not sampled is marked as a hole.
	Along with the per_instance item data, coverage data is also collected for the original, per_type item as if it were not a per_i...
	Grading is calculated for each instance separately. The grade of the cover group is the weighted grades of all the per_instance items. The per_type item receives the same grade it would get if there were no per_instance items.
	An instance item name is the name of the per_type item followed by “==” and the name of the instance bucket. For example, the instance item names for the case above are:
	An item my_b of type boolean will have the following instance names:
	An item my_u of type uint(bits:2) will have the following instance names:
	An item my_num of type uint with ranges={range([0], “Zero”); range, [1..1000], “”, 500)} will have the following instance names:
	where others is the bucket for all uint values higher than 1000.
	For integer instances, the decimal radix is used regardless of what the radix is for the cover group.
	You can define more than one per_instance item in the same cover group. In this case, the total number of instances is the sum of all valid buckets for all the per_instance items plus one (the per_instance bucket).
	If a per_instance item definition is changed in an extension, then the coverage data for the original per_type item might not accurately reflect nor agree with the coverage data collected per instance.
	You cannot define a per_instance item under a specific instance.
	You can define items with the same name under two different instances, with the condition that they must have the same definition (type and expression).
	If a per_instance item is participating in a cross item or a transition item, then the cross or transition item is not added to the instances created by the per_instance item.
	You can use the ignore option to ignore a particular instance or the illegal option to define a particular instance as illegal. For example, if an item named port_id has a bucket PORT_3, you can use “ignore = port_id == PORT_3”.
	To cancel per instance coverage collection in an extension, use the also per_instance = FALSE option. For example: item my_item using also per_instance = FALSE.

	Per_Instance Item Errors
	Table 12-3 lists errors that might occur when coverage per instance is used.
	Table 12-3- Coverage Per Instance Errors (continued)

	Using a non-gradeable item as a per_instance item
	User defines a per_instance item option for a non-gradeable item.
	Runtime error, “Items used with per_instance option must be gradable”.
	Using a cross or transition item as a per_instance item
	User defines a per_instance item for a cross item or a transition item.
	Load fails with the message “Not supported”.
	Trying to extend an invalid instance
	User tries to extend (using cover ... is also) a group instance that does not exist.
	Load fails.
	Recursively split instances
	User defines a per_instance item option for an instance group extension.
	Load fails with the message “Not supported”.
	Trying to extend specific instances without using is also
	User tries to extend a specific group instance using is instead of is also.
	Trying to define multiple items with the same name but different definitions under different instances
	User tries to define an item with the same name under two different instances.
	Specifying an invalid instance name
	User specifies an invalid instance name (possibly using wild cards). No matching instance is found.
	Command is ignored.

	Coverage Item Options Examples
	Examples of all the coverage item options are shown below. More examples of coverage item definitions are shown in “Additional Examples” on page 390.

	per_instance Example
	For alu bucket ALU_0, coverage information is collected and graded for all other items, and listed under instance stimulus(alu==...

	no_collect Example
	Coverage information is not collected for item “cb”, but the item can be used in cross coverage, and Verilog tracing can be done on it.

	text Example
	The text is displayed with the data for item “st” in the coverage report.

	when Example
	Coverage information is collected for item “st” only when the boolean expression is TRUE at the time the “state_change” event occurs.

	at_least Example
	The ranges option creates a bucket for each set of 16 values (0-15, 16 -31, ... , 240-255) for item “op3”. Any of those buckets for which fewer than 10 samples is collected is a hole.

	ranges Example
	The range specifications in this example create the following buckets:

	ignore Example
	Any “len” value greater than 32,768 is ignored.

	illegal Example
	Any “len” value less than 16 or greater than 4,096 is illegal. If an illegal “len” value occurs, a DUT error is issued during the check_test phase of the test. The ranges option creates buckets for values from 16 to 4,096.

	radix Example
	For the “len” item, the bucket names are: 0, 1, ... 7 (using the default decimal radix).
	For the “data” item, the bucket names are: [0..15], [16..31], ... [240..255] (using the default decimal radix).
	For the “mask” item, the bucket names are 0b00, 0b01, 0b10, and 0b11 (using the radix = BIN option specified for this item).

	weight Example
	The “mask” item is assigned a weight of 2. Since there are two other items, “len” and “data”, with default weights of 1, the “mask” item contributes (2/4)*grading(done) to the grade for the group.

	no_trace Example
	The “done” event is marked for tracing, but the “mask” item in the “done” coverage group is marked no_trace, so it is not traced in the simulator and is not displayed by echo event.

	Additional Examples

	Example 1
	The following example uses type=exp to define coverage for a list element. In the b0 item definition, the type is byte and exp is b_list[0]. This collects coverage data for the value of the first byte in b_list.
	This example also shows a predefined list method, b_list.size(), used in the item definition expression.

	Example 2
	The following example uses the type=exp parameter in the mem_mode item definition to define coverage for a struct field which is...

	Example 3
	The following example demonstrates a way to cover different combinations of values for particular bits of an item. It uses type=...

	Example 4
	In the following example, coverage data is collected for a field generated on the fly. The field is addr_tmp, which has been add...
	For each addr_tmp value generated in the for loop, the cov_addr event is emitted to take a coverage sample of the addr_tmp value. The the new addr_tmp value is then placed in the addr field in the current packet instance.
	The ranges option is used in the addr_tmp coverage item definition to create four buckets, for values from 0 to 63, 64 to 127, 1...

	Example 5
	The following example specifies that the alu item is a per_instance item. For each of the buckets of the alu item, ALU_0 and ALU...
	Output
	The following is coverage data for Example 5 on page 391.

	Example 6
	The example below shows the ignore option used to ignore particular instances, that is, alu==ALU_0 of the alu item. The coverage...
	Output
	The following is coverage data for Example 6 on page 394.

	Example 7
	The example below shows the illegal option used with a per_instance item.

	Example 8
	The example below shows an extension of the stimulus cover group in Example 6 on page 394, to add the at_least option to the opcode item. For additional information about extending coverage items, see. “Extending Coverage Items” on page 416.
	See Also
	12.3 Defining Cross Coverage Items
	12.3.1 Overview

	Cross items are combinations of items from the same coverage group. The cross coverage construct is used to define cross items.
	12.3.2 cross

	Purpose
	Define a cross coverage item

	Category
	Coverage group item

	Syntax
	cross item-name-1, item-name-2, ... [using coverage-item-option, ...]
	Syntax example:

	Parameters
	item-name-1, item- name-2, ...
	Each item name must be one of the following.
	coverage-item- option
	An option for the cross item. The options are listed in Table 12-4.
	Table 12-4- Cross Coverage Item Options (continued)

	name=label
	Specifies a name for a cross coverage item. No white spaces are allowed in the label. The default is cross__item-a__item-b.
	text=string
	A text description for this coverage item. This can only be a quoted string, not a variable or expression. The text is shown along with the item name at the top of the coverage information for the item.
	when=bool-exp
	The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the context of the parent struct.
	at_least=num
	The minimum number of samples for each bucket of the item. Anything less than num is considered a hole.
	This option cannot be used with string items or for unconstrained integer items (items that do not have specified ranges).
	You cannot specify a number less than 1. The default is 1.
	ignore=item-bool-exp
	Define values that are to be completely ignored. They do not appear in the statistics at all. The expression is a boolean expression that can contain a coverage item name and constants.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If the ignore expression is TRUE when the data is sampled, the sampled value is ignored (that is, not added to the bucket count).
	If you want to achieve the first effect (ignore specific samples), but you do not want to hide buckets containing holes and you want the grade to reflect all generated values, use the when option instead.
	illegal=item-bool-exp
	Define values that are illegal. An illegal value causes a DUT error. If the check_illegal_immediately coverage configuration opt...
	See “illegal Example” on page 388 for an example of how to set the error effect of this check to WARNING instead of ERROR.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If you want the coverage grades to reflect all bucket contents, use the when option instead to specify the circumstances under which a given value is counted.
	weight=uint
	Specifies the weight of the current cross item relative to other items in the same coverage group. It is a non-negative integer with a default of 1.

	Description
	Defines cross coverage between items in the same coverage group. Creates a new item with a name specified using a name option, o...
	You can cross any combination of basic coverage items, cross items and transitions defined in the same coverage group.
	When there is a hole in one of the items of a cross, the whole branch of samples that is spawned under the hole is, by default, ...

	Example 1
	In the following example, cross coverage is collected for the three coverage items “op1”, “op2”, and “opcode”. Constraints are a...
	The coverage group is named “inst_driven”. The “inst_driven” event is emitted elsewhere in the code whenever an instruction is generated.
	The “op2” coverage item definition uses the ranges option with a range of 1 to 16 and “every-count” equal to 4. This creates a b...
	The coverage report will show holes for all instances of “opcode” that are not “ADD” or “SUB”, and for all instances of “op1” that are not “reg0” or “reg1”.
	The cross of opcode, op1, and op2 shows all the combinations of values for those three items, sorted first by opcode value, by op1 under each opcode value, and by op2 under each op1 value.
	For a sample test in which 10 instances of the “inst” struct were generated, the item values are shown in Figure 12-1 on page 400, and a chart of the cross coverage information is shown in Figure 12-2 on page 400.
	Figure 12-1- Description of Generated Instances of “inst”

	1
	SUB
	reg0
	18
	2
	SUB
	reg0
	18
	3
	ADD
	reg0
	17
	4
	ADD
	reg0
	1
	5
	SUB
	reg1
	6
	6
	ADD
	reg0
	14
	7
	ADD
	reg1
	16
	8
	SUB
	reg0
	13
	9
	SUB
	reg1
	4
	10
	ADD
	reg1
	1
	Figure 12-2- Cross Coverage Sample Results

	op2 in 1-4 (1 time, value: 1)
	op2 in 5-8 (0 times)
	op1=reg0 (3 times)
	op2 in 9-12 (0 times)
	op2 in 13-16 (1 time, value: 14)
	op2 in 17-24 (1 time, value: 17)
	opcode=ADD (5 times)
	op2 in 1-4 (1 time, value: 1)
	op2 in 5-8 (0 times)
	op1=reg1 (2 times)
	op2 in 9-12 (0 times)
	op2 in 13-16 (1 time, value: 16)
	op2 in 17-24 (0 times)
	op2 in 1-4 (0 times)
	op2 in 5-8 (0 times)
	op1=reg0 (3 times)
	op2 in 9-12 (0 times)
	op2 in 13-16 (1 time, value: 13)
	op2 in 17-24 (2 times, values: 18, 18)
	opcode=SUB (5 times)
	op2 in 1-4 (1 time, value: 4)
	op2 in 5-8 (1 time, value: 6)
	op1=reg1 (2 times)
	op2 in 9-12 (0 times)
	op2 in 13-16 (0 times)
	op2 in 17-24 (0 times)

	Example 2
	The example below shows the name option. For all occurrences of the “opcode” item together with the “op1” item, the coverage report shows the cross item name and its definition, “code_and_reg (cross opcode, op1)”.

	Example 3
	The example below shows how to define cross coverage for two items sampled at different events. The events named request and gra...
	Since the cover_req_ack event occurs when grant occurs (when the sequence in the cov_req_ack definition succeeds), the items in ...

	Example 4
	The example below shows cross coverage per instance. The alu item is defined as a per_instance item, so coverage is collected for the cross of opcode and operand1 when alu==ALU_0 and when alu==ALU_1.

	Example 5
	The example below shows how to extend a cross coverage item. In this case, the cross item, “cross opcode, operand1”, is initiall...

	Example 6
	The example below shows a cross of two cross items. The items alu and operand1 are crossed, and the items opcode and operand2 are crossed, and then those two cross items are crossed.
	See Also
	12.4 Defining Transition Coverage Items
	12.4.1 Overview

	Transition items are items for which value changes are collected in the coverage data. The transition coverage group item is used to define transition items.
	12.4.2 transition

	Purpose
	Define a coverage transition item

	Category
	Coverage group item

	Syntax
	transition item-name [using coverage-item-option, ...]
	Syntax example:

	Parameters
	item-name
	A coverage item defined previously in the current coverage group.
	coverage-item- option
	The coverage item options are listed in Table 12-5.
	Table 12-5- Transition Coverage Item Options (continued)

	name=string
	Specifies a name for a transition coverage item. The default name is transition__item-name (where two underscores separate “transition” and “item-name”).
	text=string
	A text description for this coverage item. This can only be a quoted string, not a variable or expression. The text is shown along with the item name at the top of the coverage information for the item.
	when=bool-exp
	The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the context of the parent struct.
	at_least=num
	The minimum number of samples for each bucket of each of the transition items. Anything less than num is considered a hole.
	This option cannot be used with string items or for unconstrained integers (items that have no specified ranges).
	You cannot specify a negative number. The default is 1.
	ignore=item-bool-exp
	Define values that are to be completely ignored. They do not appear in the statistics at all. The expression is a boolean expression that can contain a coverage item name and constants.
	The previous value can be accessed as prev_item-name. The prev prefix is predefined for this purpose.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If the ignore expression is TRUE when the data is sampled, the sampled value is ignored (that is, not added to the bucket count).
	If you want to achieve the first effect (ignore specific samples), but you do not want to hide buckets containing holes and you want the grade to reflect all generated values, use the when option instead.
	illegal=item-bool-exp
	Define values that are illegal. An illegal value causes a DUT error. If the check_illegal_immediately coverage configuration opt...
	See “illegal Example” on page 388 for an example of how to set the error effect of this check to WARNING instead of ERROR.
	The boolean expression is evaluated in a global context, not in instances of the struct. In other words, the expression must be ...
	For example, if “i” is a coverage item and “j” is a reference to a struct field, the expression “i > 5” is a valid expression, but “i > me.j” is not legal.
	If you want the coverage grades to reflect all bucket contents, use the when option instead to specify the circumstances under which a given value is counted.
	weight=uint
	Specifies the weight of the current transition item relative to other items in the same coverage group. It is a non-negative integer with a default of 1.

	Description
	Defines coverage for changes from one value to another of a coverage item. If no name is specified for the transition item with ...

	Example 1
	Any change from the previous value of “st” to the current value of “st” that is not one of the listed changes is illegal and cau...

	Example 2
	The example below shows the name option. For all transitions of the “st” item, the coverage report shows the item name and its definition, “st_change (transition st)”.

	Example 3
	The example below shows transition coverage of a cross coverage item (see “Defining Cross Coverage Items” on page 396).

	Example 4
	The example below shows transition coverage per instance. The alu item is defined as a per_instance item, so coverage is collected for the opcode transitions when alu==ALU_0 and when alu==ALU_1.

	Example 5
	The example below shows how to extend a transition coverage item. In this case, the transition item, “transition opcode”, is ini...
	See Also
	12.5 Defining External Coverage Groups
	12.5.1 Overview

	You can import code coverage data from Verisity’s SureCov product into e and view the integrated data in ASCII reports. The code...
	To import SureCov data into an e program, you have to create a SureCov coverage group in e. For information on how to do this, see “cover ... using external=surecov” on page 408.
	For information on how to enable and disable the import and display of SureCov coverage groups, see “set_external_cover()” on page 707.
	12.5.2 cover ... using external=surecov

	Purpose
	Create a customized SureCov cover group

	Category
	Struct member

	Syntax
	cover group-name using external=surecov [,agent_options=SureCov-options] [, e-options] is { item item-name using [,agent_options=SureCov-options] [, e-options] ; ... };

	Parameters
	group-name
	The group-name is informational and can be any name you want-except that it cannot be an event name.
	using external = surecov
	Identifies SureCov as the external coverage tool to integrate with e .
	item-name
	The item-name is informational and can be any name you want
	SureCov-options
	The SureCov-options are the same for both the cover group definition and the item definitions. SureCov concatenates the cover group SureCov-options with each cover item SureCov-options to define the coverage parameters.
	In general:
	However, you can mix the two, as described below and as shown in the examples:
	You must include one of the following either in the group definition or in each item definition:
	If you specify a particular instance (with a path), you can also enter the following option to ask for coverage statistics for the entire subdesign rooted at that instance (rather than for coverage statistics for the instance alone):
	hier
	If you specify module or instance without a name, data is collected for all Verilog modules or all Verilog instances. (The data ...
	You must also include at least one of the following either in the group definition or in each item definition to define the type of code coverage you want to import:
	e- options
	The e-options are also the same for both the cover group definition and the cover item definitions.
	The legal e-options are the regular cover text option and weight option:
	Set the weight for a given cover group or item to reflect the risk associated with low coverage for that group or item compared to other cover groups or items. If the risk is higher, set the weight higher.

	Description
	Defines a SureCov coverage group.
	The mechanism for integrating SureCov with e is e code that defines SureCov coverage groups. If you want to import all types of ...
	You should manually create the SureCov coverage groups if you want to

	Notes
	Cover Group Examples
	Importing data for all modules:
	Importing data for all instances:
	Importing data for the ALU module only:
	Importing data for the ALU_0 instance only:
	cover sv_data using external=surecov, agent_options="instance=top.ALU_0" is ...
	Importing data for the ALU module only and specifying a grading weight of 4 for the current group relative to other groups:
	cover sv_data using external=surecov, agent_options="module=ALU", weight=4 is ...
	Importing block and arc data for all modules. The following example shows the entire cover group definition. Note that this exam...

	Cover Item Examples
	Importing block and arc data for all modules:
	Importing block and arc data for all modules-this example is exactly the same as the previous example:
	Importing block and arc data for the ALU_0 instance and importing state and trans data for the ALU_1 instance:
	Importing block and arc data for the ALU_0 instance and importing state and trans data for the ALU module:

	See Also
	12.6 Extending Coverage Groups
	12.6.1 Overview

	The using also and is also clauses are used to extend existing coverage groups.
	12.6.2 cover ... using also ... is also

	Purpose
	Extend a coverage group

	Category
	Struct member

	Syntax
	cover event-type using also cover-option, ...[is also {coverage-item-definition; ... }]
	Syntax examples:

	Parameters
	event-type
	The name of the coverage group. This must be an event defined previously in the struct. The event is the sampling event for the coverage group.
	coverage-item- definition
	The definition of a coverage item.

	Description
	The using also clause changes, overrides, or extends options previously defined for the coverage group. The is also clause adds ...
	Options for coverage-item-definition are listed in Table 12-1.
	If a coverage group is defined under a when subtype, it can only be extended under that subtype.
	If you have defined per_instance coverage (see “Coverage Per Instance” on page 384), you can extend a particular cover group ins...
	If you extend an instance that never gets created (due to an ignore or illegal option), a warning is issued and no information for the extension is put in the coverage data.
	If you change the coverage options of an instance, the coverage data for the per_type item might no longer reflect or agree with the per-instance coverage data.
	If, in an extension of a cover group, you override a cover group when option, then the overriding condition is only considered a...
	When you use using also to extend or change a when, illegal, or ignore option, a special variable named prev is automatically cr...

	Example 1
	The following example extends a coverage group named “info” by adding two cover items, “op2” and “cross op1, op2”.

	Example 2
	In the following example, the cover done extension in the inst struct extension adds text to the cover group named done, and adds a new item named interrupt to the group for instances of cpu_id==CPU_1:

	Example 3
	In the following example, the using also is used to cancel the global option:

	Example 4
	The following example show how to use using also to override and to narrow a when option:

	Example 5
	This example uses using also to extend the original definition of the cover done group by adding “when = id > 64”, and then uses...

	Example 6
	The following example uses uses using also to set the weight of the per_type cover instance to zero so it will not affect the overall grade.
	See Also
	12.7 Extending Coverage Items
	12.7.1 Overview

	The using also clause is used to extend existing coverage items.
	12.7.2 item ... using also

	Purpose
	Change or extend the options on a cover item.

	Category
	Coverage group item

	Syntax
	item item-name using also coverage-item-option, ...
	Syntax example:

	Parameters
	item-name
	The name you assign to the coverage item.
	If you do not specify the optional type=exp, the value of the field named item-name is used as the coverage sample value.
	type
	The type of the item. The type expression must evaluate to a scalar not larger than 32 bits, or a string.
	exp
	The expression is evaluated at the time the whole coverage group is sampled. This value is used for the item.
	coverage-item- option
	Coverage item options are listed in Table 12-2. The options can appear in any order after the using keyword.

	Description
	Cover item extensibility allows you to extend, change, or override a previously defined coverage item. Coverage item options are listed in Table 12-2.
	To extend a coverage item, you must also use “is also” for its coverage group: “cover event-type is also { item item-name using also ...};”. See “Extending Coverage Groups” on page 412.
	If a coverage item is originally defined under a when subtype, it can only be extended in the same subtype of the base type.
	When you extend an item, you must refer to the item by its full name. If an item with that name does not exist, an error is issued.
	For example, if an item “cross a, b” was defined previously without the name option, then you extend it by creating a new item with the cross item’s default name, cross__a__b:
	If a cross item was defined using the name option, such as “cross a, b using name = c_a_b”, then you extend it by creating a new item using the name “c_a_b”:
	Similarly, for a transition item that was defined without the name option, such as “transition b”, you extend it by creating a new item with the transition item’s default name, transition__b:
	If a transition item was defined using the name option, such as “transition b using name = t_b”, then you extend it by creating a new item using the name “t_b”:
	If an item is defined with an expression assigned to it, do not include the expression when you extend the item:
	When you use using also to extend or change a when, illegal, or ignore option, a special variable named prev is automatically cr...

	Example 1
	In this example, an item named len is defined in the base type, then a new option, radix = HEX, is added, and finally the option is redefined to radix = BIN.

	Example 2
	In this example, an item named good_short is defined using an expression involving two other fields in the struct. The good_shor...

	Example 3
	In this example, the automatic prev variable is used to combine the coverage item option in the original coverage group definiti...

	Example 4
	This example extends the done coverage group in the good packet subtype, to restrict the sampling of the len item to when the port item is either 0 or 1.

	Example 5
	The following shows several examples of coverage group and coverage item extensions, with comments explaining what each one does.
	See Also
	12.8 Coverage API Methods
	This section contains descriptions of the following predefined methods:
	12.8.1 scan_cover()

	Purpose
	Activate the Coverage API and specify items to cover

	Category
	Method

	Syntax
	scan_cover(item-names: string): int;
	Syntax example:

	Parameters
	item-names
	The names of the coverage items that should be scanned by scan_cover(). This is a string of the form struct-name.group-name.item-name (for example, “inst.start.opcode”). Wild cards are allowed.

	Description
	The scan_cover() method initiates the coverage data-scanning process. It goes through all the items in all the groups specified in the item-names parameter in the order that groups and items have been defined.
	For each group, scan_cover() calls start_group(). For each instance in the group, scan_cover() calls start_instance() . For each...
	Before each call to any of the above methods, the relevant fields in the user_cover_struct are updated to reflect the current item (and also the current bucket for scan_bucket()).
	The scan_cover() method returns the number of coverage items actually scanned.
	NOTE- The scan_cover() method cannot be extended. The methods called by scan_cover() - start_group()), start_instance(), start_item(), scan_bucket(), end_item(), end_instance() and end_group() - are initially empty and are meant to be extended.

	Example
	12.8.2 start_group()

	Purpose
	Process coverage group information according to user preferences

	Category
	Method

	Syntax
	start_group();
	Syntax example:

	Description
	When the scan_cover() method initiates the coverage data scanning process for a group, it updates the group-related fields withi...
	The start_group() method is originally empty. It is meant to be extended to process group data according to user preferences.
	NOTE- start_group(), start_instance() and scan_cover() are all methods of the user_cover_struct.

	Example
	12.8.3 start_instance()

	Purpose
	Process coverage instance information according to user preferences.

	Category
	Method

	Syntax
	start_instance();
	Syntax example:

	Description
	When the scan_cover() method initiates the coverage data scanning process for an instance, it updates the instance-related field...
	The start_instance() method is originally empty. It is meant to be extended to process instance data according to user preferences.
	NOTE- start_instance() and scan_cover() are methods of the user_cover_struct.

	Example
	12.8.4 start_item()

	Purpose
	Process coverage item information according to user preferences

	Category
	Method

	Syntax
	start_item();
	Syntax example:

	Description
	When the scan_cover() method initiates the coverage data scanning process for an item, it updates the item- related fields withi...
	The start_item() method is originally empty. It is meant to be extended to process item data according to user preferences.
	NOTE- start_item() and scan_cover() are methods of the user_cover_struct.

	Example
	12.8.5 scan_bucket()

	Purpose
	Process coverage item information according to user preferences

	Category
	Method

	Syntax
	scan_bucket();
	Syntax example:

	Description
	When the scan_cover() method processes coverage data, then for every bucket of the item it updates the bucket-related fields within the containing user_cover_struct and calls scan_bucket().
	The scan_bucket() method is originally empty. It is meant to be extended to process bucket data according to user preferences.
	NOTE- scan_bucket() and scan_cover() are methods of the user_cover_struct.

	Example
	12.8.6 end_item()

	Purpose
	Report end of item coverage information according to user preferences

	Category
	Method

	Syntax
	end_item();
	Syntax example:

	Description
	When the scan_cover() method completes the processing of coverage data for an item, it calls the end_item() method to report the end of item information according to user preferences.
	When all items in the current group have been processed, scan_cover() calls the start_instance() method for the next instance.
	The end_item() method is originally empty. It is meant to be extended so as to process item data according to user preferences.
	NOTE- end_item(), start_instance() and scan_cover() are all methods of the user_cover_struct.

	Example
	12.8.7 end_instance()

	Purpose
	Process end of instance coverage information according to user preferences.

	Category
	Method

	Syntax
	end_instance();
	Syntax example:

	Description
	When the scan_cover() method completes the processing of coverage data for an instance, it calls the end_instance() method to report the end of instance information according to user preferences.
	When all instances in the current group have been processed, scan_cover() calls the start_group() method for the next group.
	The end_instance() method is originally empty. It is meant to be extended so as to process instance data according to user preferences.
	NOTE- end_instance(), start_group() and scan_cover() are all methods of the user_cover_struct.

	Example
	12.8.8 end_group()

	Purpose
	Report end of group coverage information according to user preferences

	Category
	Method

	Syntax
	end_group();
	Syntax example:

	Description
	When the scan_cover() method completes the processing of coverage data for a group, it calls the end_group() method to report the end of group information according to user preferences.
	The end_group() method is originally empty. It is meant to be extended so as to process item data according to user preferences.
	NOTE- end_group() and scan_cover() are both methods of the user_cover_struct.

	Example

	13 Macros
	This chapter describes the constructs used to create and debug e macros. Macro definitions specify a name or a pattern that is to be replaced by e code text. The constructs for defining and debugging macros are:
	See Also
	13.1 define as

	Purpose
	Define a simple replacement macro

	Category
	Statement

	Syntax
	define <macro-name'nonterminal-type> match-string as {“replacement”}
	Syntax example:

	Parameters
	macro-name, nonterminal-type
	A name you give to the macro and the syntactic type for the macro. The macro can be used wherever it is legal to use the nonterm...
	The e nonterminal types are shown in Table 13-1.
	The combination macro-name'nonterminal-type must be unique over all e modules. For example, it is possible to have both a <do_it’statement> and a <do_it’action>, but there cannot be two <do_it’action> macros.
	match-string
	A quoted string containing text and parsing elements. It may be an expression. Items represented by parsing elements in the match-string are passed to corresponding parsing elements in the replacement.
	Parsing elements for both match-string and replacement are shown in Table 13-2. Parsing elements must be used exactly as shown i...
	replacement
	A string containing text and parsing elements, all of which must be legal types in a construct of the nonterminal-type. Each parsing element in the replacement corresponds to a parsing element of the same name in the match-string.
	When the macro is used in the e code, the match-string parsing elements are passed to the replacement.
	The replacement can contain replacement terms in angle brackets. If there are any replacement terms in the replacement string, t...
	Forms for replacement terms are shown in Table 13-3. You can combine the forms in replacement terms.
	Table 13-1- e Language Nonterminal Types (continued)

	statement
	The basic element type of e.
	action
	A procedural element.
	struct_member
	A part of a struct definition.
	exp
	A construct that has a value.
	type
	A type.
	block
	A series of actions enclosed in curly braces ({}).
	num
	A number.
	file
	A file name.
	Table 13-2- e Language Parsing Elements

	<statement>
	Any legal statement.
	<action>
	An action.
	<command>
	A command.
	<struct_member>
	A struct member (event, field, method, coverage group, when struct member, or constraint definition).
	<exp>
	An expression.
	<name>
	A legal name: it must start with a letter, and consist of letters, digits, underscores (_) and single quotes (').
	<file>
	A file name.
	<num>
	A number.
	<block>
	A series of actions enclosed by {}.
	<Type>
	A type name: this can be used any place in the replacement where a type is expected.
	<any>
	Anything: any text can be entered for this item when the macro is used; <any> items in the match-string must have corresponding <any> items in the replacement.
	[]
	Items enclosed in square brackets are optional.
	|
	Items separated by | (OR bar) are alternatives.
	()
	Parentheses group items for associativity or for readability.
	Table 13-3- Replacement Term Syntax for define as

	<x_string>
	A string matching <x_string> in the input.
	<exp> <b'exp>
	<x_string|y_string>
	The y_string is the default value if no match is found for the x_string in the input. This notation can be used only in the replacement, not in the match-string.
	<num|0> <big'num|100>
	<n>
	The number of the nth substring in the input string. Each <x_string> is a substring, and thus can be represented by a number usi...
	<1> <2>
	<?>
	A character sequence of the form __n__, where n is a number that is unique over all expansions of this macro. This is useful for creating unique variable names that will not collide in the various places this macro will be used.
	var a<?>: int;

	Description
	You can use replacement macros to extend the e language, by defining new syntactic elements (actions, commands, and so on). The define as statement creates a new syntactic element for the e parser.
	You assign a macro name and an e nonterminal type (see Table 13-1, “e Language Nonterminal Types”, on page 430) to a string patt...
	To find a definition of a macro it currently is parsing, the e parser searches definitions having the desired nonterminal type, starting with the most recent definitions.

	Notes
	Example 1
	Define a new command with the internal name “dir_lis” that executes the UNIX ls command with any of its flags. The new command is invoked by “lis” with a list of flags. It executes the UNIX ls command with those flags:
	You can enter the following commands, for example, which list files in the current directory. The “-lt” flags and the “*.e” syntax are the same as for the UNIX ls command:

	Example 2
	Define a macro that creates a new action with the internal name “simple_frame” to generate a frame with specified field values, and call a method named “send()”:
	Example of using the “send simple frame” macro:

	Example 3
	Define a new action with the internal name “configure_frame” to generate a frame of a specified “kind” and with an optional “des...
	In the “else” block above, the “| 0” following “dest_addr'num” is required, even though this is the condition where a “dest_addr...
	Because that syntax is not allowed by the e parser, writing just “<dest_addr'num>” in this line of the macro definition results ...

	Example 4
	Define a new action named “issue_struct”, which generates a struct and calls a method named “send()”. Constraints may optionally...
	The Type nonterminal represents “transaction” structs. The <?> element attaches “__n__” to the “x” variable, where n is a number...
	To see how “x<?>” is expanded when the macro is parsed, the trace reparse command is entered before the example file is loaded. The following is a printout of the results. For each call to the macro, the <?> element is replaced by a unique number.

	Example 5
	The following is a definition of an action with the internal name “swap_var”. The match string contains two parsing element item...
	See Also
	13.2 define as computed

	Purpose
	Define an advanced replacement macro

	Category
	Statement

	Syntax
	define <macro-name`nonterminal-type> match-string as computed {action; …}
	Syntax example:

	Parameters
	macro-name, nonterminal-type
	A name you give to the macro, and the syntactic type for the macro. The macro-name and nonterminal-type together form a unique internal name for the macro. They must be separated by an apostrophe (').
	The macro can be used wherever it is legal to use the nonterminal-type. The e nonterminal types are shown in Table 13-1, “e Language Nonterminal Types”, on page 430.
	The combination macro-name'nonterminal-type must be unique over all e modules. For example, it is possible to have both a <do_it’statement> and a <do_it’action>, but there cannot be two <do_it’action> macros.
	match-string
	A double-quoted string consisting of text and parsing elements. It may be an expression. Items represented by parsing elements in the match-string are passed to corresponding parsing elements in the replacement.
	Parsing elements for both match-string and replacement are shown in Table 13-2, “e Language Parsing Elements”, on page 431, with...
	action; ...
	A block of actions that are executed each time match-string is found. The action block is treated by the parser as the body of a method. Thus you can use the result variable or the return action to return a result from the action block.
	The action block can contain replacement terms in angle brackets which represent items that will actually be input to the macro ...
	Legal forms for the replacement terms are shown in Table 13-4.
	You cannot use explicit syntactic parameters such as <name> or <string> in the action block or the computed replacement text.
	Table 13-4- Replacement Term Syntax for define as computed

	<n>
	The number of the nth substring in the input string. Each <x_string> is a substring, and thus can be represented by a number usi...
	<1> <2>
	<?>
	A character sequence of the form __n__, where n is a number that is unique over all expansions of this macro. This is useful for creating unique variable names that will not collide in the various places this macro will be used.
	var a<?>: int;

	Description
	This statement creates a new syntactic element that constructs a block of actions based on the inputs to the macro. These action...
	For simple text replacement, use the define as statement rather than define as computed.

	Space Removal in String Patterns
	The preprocessor first compresses all sequences of blanks and tabs into a single blank, before initial matching is done, except that blanks and tabs inside double quotes are not compressed.

	Finding Submatches
	The same text may be part of more than one match. For example, “ exp” matches both “ exp” and “exp”. Thus, “ +sim” matches “ +sim” and “+sim”. If you are not interested in the outer match, you can ignore it.

	Expanding Matches
	Anything that is in “{}”, “()”, “[]”, or inside double quotes is replaced during preprocessing by a notation of the form “_number_”. If you want to further parse the match, use str_expand_dots() to expand it back to its actual string form.

	Notes
	Example
	The macro in this example defines a new “add to list” statement. The statement adds a given number to the list named “num_list” ...
	The following is an example of using this macro:
	1) Load the “def_add_to_list.e” module.
	2) Load a module that contains one or more “add n to list” statements, such as the following:
	3) Execute the program.

	See Also

	14 Checks and Error Handling
	The e language has many constructs that check for errors in the DUT or add exception handling and diagnostics to an e program. This chapter covers these topics:
	14.1 Handling DUT Errors

	There are several constructs you can use to perform data or protocol checks on the DUT and to specify how you want to handle any errors that occur:
	14.1.1 check that

	Purpose
	Perform a data comparison and, depending on the results, print a message

	Category
	Action

	Syntax
	check [that] bool-exp [else dut_error(message: exp, ...)]
	Syntax example:
	NOTE- Keep in mind that check that, as with all actions, must be associated with a method. Checks are also created implicitly from expect struct members.

	Parameters
	bool-exp
	Boolean expression that performs a data comparison.
	message
	String or an expression that can be converted to a string. If the bool-exp is FALSE, the message expressions are converted to strings, concatenated, and printed to the screen (and to the log file if it is open).

	Description
	Performs a data comparison and, depending on the results, prints a message. The following example.
	displays an error message like this one:
	Using check that allows you to:

	Omitting the else Clause
	If you omit the else dut_error clause, the e program uses the check that clause as the error message. For example,
	displays an error message like this one:

	Example
	Result
	14.1.2 dut_error()

	Purpose
	Specify a DUT error message string

	Category
	Action

	Syntax
	dut_error(message: exp, ...)
	Syntax example:

	Parameters
	message
	String or an expression that can be converted to a string. The message expressions are converted to strings, concatenated, and printed to the screen (and to the log file if it is open).

	Description
	Specifies a DUT error message string. This action is usually associated with an if action, a check that action, or an expect str...
	Calling dut_error() directly is exactly equivalent to:
	NOTE- When you call dut_error() directly (not within a check that or an expect), there is no way to see that a check was successfully performed. session.check_ok is always FALSE after a direct call to dut_error().

	Example
	Result
	14.1.3 dut_error_struct

	Purpose
	Define DUT error response

	Category
	Predefined struct

	Syntax
	struct dut_error_struct { message: string; source_struct(): any_struct; source_location(): string; source_struct_name(): string;...
	Syntax example:

	Struct Members
	message
	The message that was defined by the temporal or data DUT check and is printed by dut_error_struct.write().
	source_struct()
	Returns a reference to the struct where the temporal or data DUT check is defined.
	source_location()
	Returns a string giving the line number and source module name, for example, “At line 13 in @checker”.
	source_struct_name()
	Returns a string giving the name of the source struct, for example, “packet”.
	source_method_name()
	Returns a string giving the name of the method containing the DUT data check, for example, “done()”.
	check_effect()
	Returns the check effect of that DUT check, for example, ERROR_AUTOMATIC.
	set_check_effect()
	Sets the check effect in this instance of the dut_error_struct. You can call this method from pre_error() to change the check effect of selected checks.
	pre_error()
	The first method that is called when a DUT error occurs, unless the check effect is IGNORE. This method is defined as empty, unl...
	write()
	The method that is called after dut_error_struct.pre_error() is called when a DUT error happens. This method causes the DUT message to be displayed, unless the check effect is IGNORE. You can extend this method to perform additional actions.

	Description
	The predefined struct dut_error_struct defines the DUT error response. To modify the error response, extend either write() or pre_error().
	Only the write() and pre_error() methods are called directly by e programs, but you can use the other fields and predefined methods of dut_error_struct when you extend write() or pre_error().
	NOTE- Do not use dut_error_struct.write() to change the value of the check effect. Use pre_error() instead.

	Example 1
	The following code implements a parity checker using DUT error checks. dut_error_struct.write() has been extended to print additional information.
	Result
	In this test, 9 DUT errors occur.

	Example 2
	This example extends Example 1, extending pre_error() so that no more than 3 parity errors will be displayed.
	Result

	Example 3
	This example shows how error messages can be handled within units. (See “Units Overview” on page 157 for a description of units and modular verification.)
	To print some unit status information upon any error happening within a unit, you could extend dut_error_struct.write() as shown...
	14.1.4 set_check()

	Purpose
	Set check severity

	Category
	Predefined routine

	Syntax
	set_check(static-match: string, check-effect: keyword)
	Syntax example:

	Parameters
	static-match
	A regular expression enclosed in double quotes. Only checks whose message string matches this regular expression are modified. The match string must use either the native e syntax or an AWK-like syntax. See “String Matching” on page 51.
	NOTE- You must enclose AWK-like syntax in forward slashes, for example, “/Vio/”. Also, the * character in native e syntax matches only non-white characters. Use ... to match white or non-white characters.
	check-effect is one of the following:
	ERROR
	Issues an error message, increases num_of_dut_errors, breaks the run immediately and returns to the simulator prompt.
	ERROR_BREAK_RUN
	Issues an error message, increases num_of_dut_errors, breaks the run at the next cycle boundary.
	ERROR_AUTOMATIC
	Issues an error message, increases num_of_dut_errors, breaks the run at the next cycle boundary, and performs the end of test checking and finalization of test data that is normally performed when stop_run() is called.
	ERROR_CONTINUE
	Issues an error message, increases num_of_dut_errors, and continues execution.
	WARNING
	Issues a warning, increases num_of_dut_warnings and continues execution.
	IGNORE
	Issues no messages, does not increase num_of_dut_errors or num_of_dut_warnings, and continues execution.

	Description
	Sets the severity or the check effect of specific DUT checks, so that failing checks will produce errors or warnings.
	NOTE- This routine affects only checks that are currently loaded.

	Example
	Loading the following extension changes the check effect of all currently defined checks to WARNING during the setup phase.

	Result
	14.2 Handling User Errors
	The e language has several constructs that help you handle user errors, such as file I/O errors or semantic errors. This section describes the constructs used for handling these kinds of errors:
	NOTE- Errors handled by these constructs do not increase the session.num_of_dut_errors and session.num_of_dut_warnings fields th...
	14.2.1 warning()

	Purpose
	Issue a warning message

	Category
	Action

	Syntax
	warning(message: string, ...)
	Syntax example:

	Parameter
	message
	String or an expression that can be converted to a string. When the warning action is executed, the message expressions are converted to strings, concatenated, and printed to the screen.

	Description
	Issues the specified warning error message. Does not halt the methods being currently run.

	Example
	Result
	See Also
	14.2.2 error()

	Purpose
	Issue an error message

	Category
	Action

	Syntax
	error(message: string, ...)
	Syntax example:

	Parameter
	message
	String or an expression that can be converted to a string. When the error action is executed, the message expressions are converted to strings, concatenated, and printed to the screen.

	Description
	Issues the specified error message, halts all methods being currently run. The only exception to this is if the error action app...

	Example
	Result
	See Also
	14.2.3 fatal()

	Purpose
	Issue error message and exit to the OS prompt

	Category
	Action

	Syntax
	fatal(message: string, ...)
	Syntax example:

	Parameter
	message
	String or an expression that can be converted to a string. When the fatal() action is executed, the message expressions are converted to strings, concatenated, and printed to the screen.

	Description
	Issues the specified error message, halts all activity, exits immediately, and returns to the OS prompt.
	fatal() returns a non-zero status to the OS shell.

	Using fatal with config run error_command
	You can use fatal() with the -error_command option of the config run command to automatically stop simulation completely when an error occurs. For example, the following code creates the “error_actions()” method, which is called when any error occurs:
	And the following code defines “sys.error-actions()” to exit with the fatal() action when an error occurs:

	Example
	The following code shows the use of warning(), error(), fatal(), and try. The code is intended to open a log file. If the log fi...

	See Also
	14.2.4 try

	Purpose
	Define an alternative response for fixing or bypassing an error

	Category
	Action

	Syntax
	try {action; ...} [else {action; ...}]
	Syntax example:

	Parameters
	action; ...
	A series of zero or more actions enclosed in curly braces and separated by semicolons.
	The first action block (following try) cannot include the fatal() action. Subsequent action blocks (following else) can.

	Description
	Executes the action block following try. If an error occurs, executes the action block specified in the else clause, in which the error can be fixed or handled. If no error occurs, the else clause is skipped.
	If you do not specify an else clause, execution after errors continues normally from the first action following the try block.

	Example
	The following code example shows the use of warning(), error(), fatal(), and try. The code is intended to open a log file. If th...

	See Also
	14.3 Handling Programming Errors
	14.3.1 Overview

	The e language has a special construct, the assert action, to help you handle programming errors, such as internal contradictions or invalid parameters.
	14.3.2 assert

	Purpose
	Check the e code for correct behavior

	Category
	Action

	Syntax
	assert bool-exp [else error(message: string, ...)]
	Syntax example:

	Parameters
	bool-exp
	Boolean expression that checks the behavior of the code.
	message
	String or an expression that can be converted to a string. If the bool-exp is FALSE, the message expressions are converted to strings, concatenated, and printed to the screen (and to the log file if it is open).

	Description
	Checks the e code for correct behavior. Use this action to catch coding errors. When an assert fails, it prints the specified er...
	NOTE- When an error is encountered, assert stops the method being executed.

	Example
	Result*** Error: Assertion failed (a programming error):
	See Also

	15 Methods
	e methods are similar to C functions, Verilog tasks, and VHDL processes. An e method is an operational procedure containing acti...
	You can define methods that execute within a single point of simulation time (within zero time) or methods that execute over mul...
	Methods defined in one module can later be overwritten, modified or enhanced in subsequent modules using the extend mechanism. See “Rules for Defining and Extending Methods” on page 459 for information on how to define and extend methods.
	Implementing an e method is usually done in e. However, you might want to write a C routine and convert it into an e method. You can do this by declaring an e method that is implemented in C.
	See Also
	15.1 Rules for Defining and Extending Methods
	There are two phases in the declaration of regular methods and time-consuming methods (TCMs):
	You must introduce a method before you extend it. The introduction can be in the same struct as the extension or in any struct that this struct inherits from, but it must precede the extension during file loading.
	To introduce a method, you can use:
	To extend a method, you can use:
	You can also use is to extend a method in the following cases:
	In these cases, using is after is or after is also | first | only in a when or like child is similar to using is only in this co...
	NOTE- As you might expect, if you use is after is or after is also | first | only in a when or like child or in one of their descendents, you cannot subsequently use is to redefine the method in the parent.
	Table 15-1, “Rules for Method Extension”, on page 460 summarizes the rules for introducing and extending methods. Please keep in mind the following:
	Table 15-1- Rules for Method Extension

	none
	undefined
	empty
	is
	only
	undefined
	+
	-
	-
	-
	-
	empty
	+
	-
	-
	-
	-
	is
	+
	+
	+
	C
	C
	only
	-
	+
	+
	+
	+

	Notes
	The following restrictions apply to all methods:

	Example 1
	The following example shows that you can use is to extend a method in a child after the method has been introduced with is in th...

	Example 2
	This example shows that extending a method in a child (FALSE'bye A) is allowed, even though the method has been extended in a sibling’s descendant (stop bye A).

	Example 3
	This example shows that if you use is after is or after is also | first | only in a when or like child or in one of their descen...
	Changing the last line to
	removes the error, but overrides the method definition in all A’s subtypes as well.
	The following sections describe the syntax for defining and extending methods:
	See Also
	15.1.1 method is [inline]

	Purpose
	Declare a regular method

	Category
	Struct member

	Syntax
	method-name ([parameter-list]) [: return-type] is [inline] {action;...}
	Syntax example:

	Parameters
	method-name
	A legal e name. See Chapter 2, “e Basics” for more information on names.
	parameter-list
	A list composed of zero or more parameter declarations of the form param- name: [*]param-type separated by commas. The parentheses around the parameter list are required even if the parameter list is empty.
	param-name
	A legal e name. See Chapter 2, “e Basics” for more information on names.
	*
	When an asterisk is prefixed to a scalar parameter type, the location of the parameter, not its value, is passed. When an asteri...
	param-type
	Specifies the parameter type.
	return-type
	For methods that return values, specifies the data type of the return value. See Chapter 3, “Data Types” for more information.
	inline
	Defines a new inline method and allows the compiler to optimize the inline method code for the best performance.
	action;...
	A list of zero or more actions. Actions that consume time are illegal in the action block of a regular method. For information on actions, see “Actions” on page 14.

	Description
	An e method is an operational procedure containing actions that define its behavior. A method can have parameters, local variabl...
	Defining a method as inline requires the e program to generate code that enables the C compiler to inline the method. The C comp...

	Notes
	In addition to the restrictions on all regular methods (see “Notes” in “Rules for Defining and Extending Methods” on page 459), the following restrictions apply to inline methods:

	Example
	This example shows a method that adds two parameters and returns the result. result is an implicit variable of the declared return type int.
	It is legal to assign to the result variable implicitly by using the following alternate syntax:

	See Also
	15.1.2 method @event is

	Purpose
	Declare a time-consuming method

	Category
	Struct member

	Syntax
	method-name ([parameter-list]) [: return-type]@event is {action;...}
	Syntax example:

	Parameters
	method-name
	A legal e name. See “Chapter 2, “e Basics” for more information on names.
	parameter-list
	A list composed of zero or more parameter declarations of the form param- name: [*]param-type separated by commas. The parentheses around the parameter list are required even if the parameter list is empty.
	param-name
	A legal e name. See “Chapter 2, “e Basics” for more information on names.
	*
	When an asterisk is prefixed to a scalar parameter type, the location of the parameter, not its value, is passed. When an asteri...
	param-type
	Specifies the parameter type.
	return-type
	For methods that return values, specifies the data type of the return value. See Chapter 3, “Data Types” for more information.
	@event
	Specifies a default sampling event that determines the sampling points of the TCM. This event must be a defined event in e and s...
	action;...
	A list of zero or more actions, either time-consuming actions or regular actions. For information on actions, see “Actions” on page 14.

	Description
	Defines a new time consuming method (TCM). e methods are similar to C functions, Verilog tasks, and VHDL processes. An e method ...
	TCMs can execute over multiple cycles and are used to synchronize processes in an e program with processes or events in the DUT....
	The “main()” TCM shown here waits two “pclk” cycles after the event “ready” occurs. It calls a method to initialize the DUT and emits an event when the initialization is complete.
	A TCM can specify events other than the default event as sampling points for actions. For example, adding the “@ready” sampling event to the “wait [2]” causes the TCM to wait two “ready” cycles rather than two pclk cycles:
	For more information on sampling events, see Chapter 8, “Events”. For more information on temporal expressions, see Chapter 9, “Temporal Expressions”.

	Notes
	The following restrictions apply to all TCMs:

	Example
	The “init_dut” TCM shown has two branches running in parallel. The first branch is waiting for a “reset” event. The second branc...

	See Also
	15.1.3 method [@event] is also | first | only | inline only

	Purpose
	Extend a regular method or a TCM

	Category
	Struct member

	Syntax
	method-name ([parameter-list]) [: return-type] [@event-type] is [also|first|only|inline only] {action;...}
	Syntax example:

	Parameters
	method-name
	The name of the original method.
	parameter-list
	Specifies the same parameter list as defined in the original method, or a compile-time error is issued.
	return-type
	Specifies the same return value as defined in the original method, or a compile- time error is issued.
	@event-type
	Specifies the same sampling event as defined in the original method or a compile-time error is issued.
	also
	The new action block is appended to the end of the original action block.
	first
	The new action block is inserted before the original action block.
	only
	The new action block overrides the original action block.
	inline only
	Replaces the original method definition with an inline definition. The original method must be a regular method, not a TCM.
	action;...
	A list of zero or more actions. Actions that consume time are illegal in the action block of a regular method. For information on actions, see “Actions” on page 14.

	Description
	Replaces or extends the action block in the original method declaration with the specified action block. The following example e...
	This example extends the “init_dut()” TCM to start another user-defined TCM, “load_mem”. This TCM is called after all the checking methods in the original method have completed successfully.

	Notes
	Figure 15-1 on page 469 shows how a method with an is also extension is executed. The older version executes first and then the is also extension. Notice that the “This is also2...” statement is not executed because it follows a return.
	Figure 15-1- Execution of is also Method Extension

	is also
	Figure 15-2 on page 470 shows the same method extended again, this time with is first. If a return statement is included in the ...
	Figure 15-2- Execution of is first Method Extension

	return?
	Figure 15-3 on page 470 shows another extension with is also. Notice that this new extension executes, regardless of whether there is a return in the older version of the method or not.
	Figure 15-3- Execution of is first Method Extension

	Example 1
	This example redefines the “increment_cnt()” method as an inline method.

	Example 2
	In this example, the “show()” method is defined originally to identify the kind of packet. The “show()” method extension displays a different version of the message when the packet has an error.

	Example 3
	This example extends the “execute()” method to return immediately if the “top.interrupt” signal is active, without executing any...
	See Also
	15.1.4 method [@event] is undefined | empty

	Purpose
	Declare an abstract method

	Category
	Struct member

	Syntax
	method-name ([parameter-list]) [: return-type] [@event-type] is [undefined|empty]
	Syntax example:

	Parameters
	method-name
	A legal e name. See “Chapter 2, “e Basics” for more information on names.
	parameter-list
	A list composed of zero or more parameter declarations of the form param- name: [*]param-type separated by commas. The parentheses around the parameter list are required even if the parameter list is empty.
	param-name
	A legal e name. See Chapter 2, “e Basics” for more information on names.
	*
	When an asterisk is prefixed to a scalar parameter type, the location of the parameter, not its value, is passed. When an asteri...
	param-type
	Specifies the parameter type.
	return-type
	For methods that return values, specifies the data type of the return value. See Chapter 3, “Data Types” for more information.
	@event-type
	Specifies a default sampling event that determines the sampling points of the TCM. This event must be a defined event in e and s...
	undefined
	No action block is defined for the method yet; an action block must be defined in a subsequent module before this method is called. A runtime error is issued if it is called before it is defined.
	empty
	The action block is empty, but no error is issued if it is called. Empty value- returning methods return the default value for the type.

	Description
	Declares an abstract regular method or an abstract TCM with no defined functionality. Abstract methods are place holders that yo...

	Notes
	The following restrictions apply to all abstract methods:

	Example
	Undefined or empty methods are often used in base types. This example declares an abstract method “show()” in the base struct “packet” and defines the appropriate functionality in the “Ethernet packet” and “IEEE packet” subtypes.

	Result
	Notice that no message is printed by the foreign packet.

	See Also
	15.2 Invoking Methods
	Before invoking a method, you must create an instance of the struct that contains it. The call must conform to the proper syntax and must be made from an appropriate context, as described below.
	The following sections describe the two ways to invoke a TCM:
	The following sections describe how you can call regular methods:
	The last section describes the return action:

	See Also
	15.2.1 tcm()

	Purpose
	Call a TCM

	Category
	Action or expression

	Syntax
	[[struct-exp].]method-name([parameter-list])
	Syntax example:

	Parameters
	struct-exp
	The pathname of the struct that contains the method. If the struct expression is missing, the implicit variable it is assumed. I...
	See “Chapter 2, “e Basics” for more information on naming resolution.
	method-name
	The method name as specified in the method definition.
	parameter-list
	A list of zero or more parameters separated by commas, one parameter for each parameter in the parameter list of the method defi...

	Description
	You can call a TCM only from another TCM.
	A TCM that does not return a value can be started (see “start tcm()” on page 477) or called. A call of a TCM that does not return a value is syntactically an action.
	A call of a TCM that does return a value is an expression, and the return type of the TCM must conform to the type of the variable or field it is assigned to.
	A called TCM begins execution either when its sampling event occurs or immediately, if the sampling event has already occurred for the current tick.
	The calling TCM waits until the called TCM returns before continuing execution. For this reason, a called TCM is considered a su...
	NOTE- You cannot call a TCM from a regular method. To invoke a TCM from within a regular method, use start.

	Example
	This example shows how to call a TCM from another TCM.

	See Also
	15.2.2 start tcm()

	Purpose
	Start a TCM

	Category
	Action

	Syntax
	start [[struct-exp].]method-name([parameter-list])
	Syntax example:

	Parameters
	struct-exp
	The pathname of the struct that contains the method. If the struct expression is missing, the implicit variable it is assumed. I...
	method-name
	The method name as specified in the method definition.
	parameter-list
	A list of zero or more parameters separated by commas, one parameter for each parameter in the parameter list of the method defi...

	Description
	You can use a start action within another method, either a TCM or a regular method. A started TCM begins execution either when its sampling event occurs or immediately, if the sampling event has already occurred for the current tick.
	A started TCM runs in parallel with the TCM that started it on a separate thread. A started TCM has a unique thread handle (thre...
	The recommended way to start an initial TCM, which can then invoke other TCMs, is to extend the related struct’s predefined run() method.
	NOTE- A TCM that has a return value cannot be started with a start action.

	Example
	This example shows how to extend a struct’s run() method to start a TCM. Note that the start syntax omits the default sampling event.

	See Also
	15.2.3 method()

	Purpose
	Call a regular method

	Category
	Action or expression

	Syntax
	[[struct-exp].]method-name([parameter-list])
	Syntax example:

	Parameters
	struct-exp
	The pathname of the struct that contains the method. If the struct expression is missing, the implicit variable it is assumed. I...
	method-name
	The method name as specified in the method definition.
	parameter-list
	A list of zero or more parameters separated by commas, one parameter for each parameter in the parameter list of the method defi...

	Description
	The proper context for calling a regular method depends on whether the method returns a value or not.

	Example 1
	Two common contexts for calling value-returning methods are shown below.
	When placed on the right-hand side of an assignment operator, the method’s return value type must conform to the type of the variable or field it is assigned to.

	Example 2
	In some cases you may want to call a value-returning method without using the value that is returned. To do this, you can use th...

	Example 3
	You can call regular methods that do not return values either from other methods, including TCMs, from action blocks associated with other constructs, as shown below.
	See Also
	15.2.4 compute method()

	Purpose
	Compute a regular method

	Category
	Action

	Syntax
	compute [[struct-exp].]method-name([parameter-list])
	Syntax example:

	Parameters
	struct-exp
	The pathname of the struct that contains the method. If the struct expression is missing, the implicit variable it is assumed. I...
	method-name
	The method name as specified in the method definition.
	parameter-list
	A list of zero or more parameters separated by commas, one parameter for each parameter in the parameter list of the method defi...

	Description
	In some cases you may want to call a value-returning method without using the value that is returned. To do this, you can use the compute action.

	Example
	In the example shown below, the “m()” method increments the “counter” variable, but does not use the value returned.

	See Also
	15.2.5 return

	Purpose
	Return from regular method or a TCM

	Category
	Action

	Syntax
	return [exp]
	Syntax example:

	Parameters
	exp
	In value-returning methods, an expression specifying the return value is required in each return action. In non-value-returning methods, expressions are not allowed in return actions.

	Description
	Returns immediately from the current method to the method that called it. The execution of the calling method then continues.
	It is not always necessary to provide a return action. When a value returning method ends without a return action, the value of result is returned.

	Notes

	Example 1
	This example shows return in a value-returning expression.

	Example 2
	This example shows return in a non-value-returning method named “start_eng()”.

	Example 3
	For value-returning methods, instead of a return, the special variable result can be assigned and its value is returned. In the example below, if “t” is less than 100, the “sqr_1()” method exits, returning “t”. Otherwise, it returns 101.

	Example 4
	This example illustrates that any actions following a return action in a method definition or in a method extension are ignored:
	Result

	Example 5
	The following example shows a method that has a compound type as a return value. In the get_alpha_num() method, the return action calls another method, select_list(), which has an index, slctr, which can have a value from 0 to 3.
	The select_list() method returns a list of strings (“a0”, “a1”, “a2”, “a3”, for example), which is determined by the value (A, B, C, or D) of the ALPHA field.
	In the call to select_list(), the slctr value is used as an index into the list of strings returned from the case action by sele...
	Result
	See Also
	15.3 Parameter Passing
	How a parameter is passed depends on whether the parameter is scalar or compound, as described in these sections:
	15.3.1 Scalar Parameter Passing

	Scalar parameters include numeric, boolean, and enumerated types. When you pass a scalar parameter to a method, by default the v...
	However, since “cnt” is passed by value, the variable “tmp” retains its original value, and the print statement displays:
	To allow a method to modify the parameter, prefix the parameter type with an asterisk. This is called “passing by reference”. If you modify the “increment() “method as follows:
	“tmp” has the value 8 after the method returns. Note that the asterisk is used only in the method definition, not in the method call.
	15.3.2 Compound Parameter Passing

	Compound parameters are either structs or lists. Passing a struct or a list to a method allows the method to modify the struct f...
	and pass a list of integers to it, each item in the list reflects its incremented value after the method returns.
	Placing an asterisk in front of the list or struct type allows the method to completely replace the struct or list. For example,...
	15.3.3 Notes on Passing by Reference

	There are several restrictions that apply when you pass parameters by reference:

	16 Creating and Modifying e Variables
	The following sections describe how to create and assign values to e variables:
	16.1 About e Variables

	An e variable is a named data object of a declared type. e variables are declared and manipulated in methods. They are dynamic; they do not retain their values across subsequent calls to the same method.
	The scope of an e variable is the action block that encloses it. If a method contains nested action blocks, variables in the inn...
	Some e actions create implicit variables. They are described in more detail in “Implicit Variables” on page 24.
	The following sections describe the actions that create and modify e variables explicitly:
	16.2 var

	Title
	Variable declaration

	Category
	Action

	Syntax
	var name [: [type] [= exp]]
	Syntax example:

	Parameters
	name
	A legal e name.
	type
	A declared e type. The type can be omitted if the variable name is the same as the name of a struct type or if the variable is assigned a typed expression.
	exp
	The initial value of the variable. If no initial value is specified, the variables are initialized to 0 for integer types, NULL for structs, FALSE for boolean types, and lists as empty.

	Description
	Declares a new variable with the specified name as an element or list of elements of the specified type, and having an optional initial value.
	The var action is legal in any place that an action is legal, and the variable is recognized from that point on. e variables are dynamic; they do not retain their values across subsequent calls to the same method.
	The scope of an e variable is the action block that encloses it. If a method contains nested action blocks, variables in the inn...

	Example 1
	This example shows the declaration of two variables, one with an assigned initial value:

	Example 2
	This example shows the keywords list of used to create a list.

	Example 3
	This example shows a variable declarations with the type omitted. The variable “packet” is assumed to be of type “packet”.

	Example 4
	In this example, “p” gets type packet, because that is the type of “my_packets[3]”, and “z” gets type int, because 5 has type int.
	16.3 =

	Purpose
	Simple assignment

	Category
	Action

	Syntax
	lhs-exp=exp
	Syntax example:

	Parameters
	lhs-exp
	A legal e expression that evaluates to a variable of a method, a global variable, a field of a struct, or an HDL object. The expression can contain the list index operator [n], the bit access operator [i:j], or the bit concatenation operator %{}.
	exp
	A legal e expression, either an untyped expression (such as an HDL object) or an expression of the same type as the left-hand-side expression.

	Description
	Assigns the value of the right-hand-side expression to the left-hand-side expression.
	NOTE- There are two other places within the e language which make use of the equal sign. These are a double equal sign (==) for ...

	Example 1
	This example shows the operators that are allowed in the left-hand-side expression.
	Result

	Example 2
	This example shows the assignment operator used in initialization.
	See Also
	16.4 op=

	Purpose
	Compound assignment

	Category
	Action

	Syntax
	lhs-exp op=exp
	Syntax example:

	Parameters
	lhs-exp
	A legal e expression that evaluates to a variable of a method, a global variable, a field of a struct, or an HDL object.
	exp
	A legal e expression of the same type as the left-hand-side expression.
	op
	A binary operator, including binary bitwise operators (except ~), the boolean operators and and or, and the binary arithmetic operators.

	Description
	Performs the specified operation on the two expressions and assigns the result to the left-hand-side expression.

	Example 1
	This example shows the compound assignment operator used with arithmetic operators.
	Result

	Example 2
	This example shows the compound assignment operator used with the shift operator.
	Result

	Example 3
	This example shows the compound assignment operator used with a boolean operator.
	Result
	16.5 <=

	Purpose
	Delayed assignment

	Category
	Action

	Syntax
	[struct-exp.]field-name <= exp
	Syntax examples:

	Parameters
	struct-exp
	A legal e expression that evaluates to a struct. The default is me.
	field-name
	A field of the struct referenced by struct-exp.
	exp
	A legal e expression, either an untyped expression (such as an HDL object) or an expression of the same type as the left-hand-side expression.

	Description
	The delayed assignment action assigns a struct field just before the next @sys.new_time after the action. The purpose is to supp...
	Both expressions are evaluated immediately (not delayed) in the current context. The assignment is not considered a time-consuming action, so you can use it in both TCMs and in regular methods, in on action blocks and in exec action blocks.
	If a field has multiple delayed assignments in the same cycle, they are performed in the specified order. The final result is taken from the last delayed assignment action.
	Unlike in HDL languages, the delayed assignment in e does not emit any events; thus, zero delay iterations are not supported.
	NOTE- The left-hand-side expression in the delayed assignment action can only be a field. Unlike the assignment action, the delayed assignment action does not accept assignment to any of the following:

	Example
	The following example shows how delayed assignment provides raceless coding. In this example there is one incrementing() TCM, which repeatedly increments the sys.a and sys.da fields, and one observer() TCM, which observes their value.

	Result
	From the results you can see that the value of sys.a observed by the observer() TCM is order-dependent, depending whether observ...
	If observer() runs before incrementing():
	If incrementing() runs before observer():

	17 Packing and Unpacking
	Packing performs concatenation of scalars, strings, list elements, or struct fields in the order that you specify. Unpacking performs the reverse operation, splitting a single expression into multiple expressions.
	As part of the concatenation or splitting process, packing and unpacking also perform type conversion between any of the following:
	For type conversion, e provides additional techniques. Here are some general recommendations on when to use each technique:
	as_a()
	Recommended for converting a single scalar to another scalar type, for example, from a 32-bit integer to an 8-bit integer. It is also recommended for conversion between strings and lists of ASCII bytes. For more information, see “as_a()” on page 104.
	sublisting with [..]
	Recommended for converting a single scalar to a list of bit. For more information, see Chapter 2, “e Basics”.
	bit extraction with [:]
	Recommended for converting a list of bit into a single scalar. For more information, see Chapter 2, “e Basics”.
	unpacking
	Recommended for converting from a list of bit to strings, lists, structs, or multiple scalars.
	packing
	Recommended for all other purposes.
	This chapter contains the following sections
	17.1 Basic Packing

	Packing and unpacking operate on scalars, strings, lists and structs. The following sections show how to perform basic packing and unpacking of these data types using two of thee basic packing tools, the pack() and unpack() methods.
	For information on two other basic tools for packing, see:
	See Also
	17.1.1 A Simple Example of Packing
	This example shows how packing converts data from a struct into a stream of bits. An “instruction” struct is defined as:
	The post_generate() method of this struct is extended to pack the “opcode” and the “operand” fields into two variables. The order in which the fields are packed is controlled with the packing.low and packing.high options:
	With the packing.low option, the least significant bit of the first expression in pack(), “opcode”, is placed at index [0] in th...
	packing.low is the default packing order.
	Figure 17-1- Simple Packing Example Showing packing.low

	The “instruction” struct with two fields:
	With packing.high, the least significant bit of the last expression, “operand”, is placed at index [0] in the resulting list of ...
	Figure 17-2- Simple Packing Example Showing packing.high

	The “instruction” struct with two fields:
	Pack expressions, like the ones shown in the example above, are untyped expressions. In many cases, as in this example, the e pr...

	See Also
	17.1.2 A Simple Example of Unpacking
	This example shows how packing fills the fields of a struct instance with data from a bit stream. An “instruction” struct is defined as:
	The extension to post_generate() shown below unpacks a list of bits, “packed_data”, into a variable “inst” of type “instruction” using the packing.high option. The results are shown in Figure 17-3.
	Figure 17-3- Simple Unpacking Example Showing packing.high

	The packed data
	In this case, the expression that provides the value, “packed_data”, is a list of bits. When a value expression is not a list of...

	See Also
	17.1.3 Packing and Unpacking Scalar Expressions
	Packing a scalar expression creates an ordered bit stream by concatenating the bits of the expression together. Unpacking a bit ...
	Packing and unpacking of a scalar expression is performed using the expression’s inherent size, except when the expression conta...

	Example
	The example below packs two integers, “int_5” and “int_2” and then unpacks a new list of bit “lob” into the same two integers. I...

	Result
	NOTE-
	If you unpack a list into one or more scalar expressions and there are not enough bits in the list to put a value into each scalar, a runtime error is issued.

	See Also
	17.1.4 Packing and Unpacking Strings
	Packing a string creates an ordered bit stream by concatenating each ASCII byte of the string together from left to right ending...
	To obtain different results, you can use the as_a() method, which converts directly between the string and list of byte types. See “as_a()” on page 104 for more information.

	Example
	In this example, the packed string is implicitly unpacked into a list of byte.
	The last byte is zero since it is the final NULL byte.

	Result
	See Also
	17.1.5 Packing and Unpacking Structs
	Packing a struct creates an ordered bit stream from all the physical fields (marked with %) in the struct, starting by default, ...
	Unpacking a bit stream into a struct fills the physical fields of the struct, starting by default with the first field declared ...
	Unpacking a struct that has not yet been allocated (with new) causes the e program to allocate the struct and run the struct’s init() method. Unlike new, the struct’s run() method is not called.
	A struct is packed or unpacked using its predefined methods do_pack() and do_unpack(). It is possible to modify these predefined methods for a particular struct. See “do_pack()” on page 526 and “do_unpack()” on page 529 for more information.

	Example
	This example packs the two physical fields in “my_struct” into the variable “ms”. The resulting bit stream is 14 bits, which is ...

	Result
	See Also
	17.1.6 Packing and Unpacking Lists
	Packing a list creates a bit stream by concatenating the list items together, starting by default with the item at index 0.
	Unpacking a bit stream into a list fills the list item by item, starting by default with the item at index zero. The size of the list that is unpacked into is determined by whether the list is sized and whether it is empty:
	NOTE- When a struct is allocated, the lists within it are empty. If the lists are sized, unpacking is performed until the defined size is reached.
	See Chapter 2, “e Basics”, for more information on sizing lists.

	Example 1
	This first example shows the effect of packing a list of integers.
	Result

	Example 2
	The list “my_list” is empty, so it is expanded to contain all 32 bits of the integer.
	Result

	Example 3
	The list was not empty because it was initialized to have four items. Thus it is not expanded and the resulting list has four items.
	Result

	Example 4
	The “my_list” field is cleared in order to demonstrate that although the procedural code has corrupted the list’s initial size, it is restored when unpack is performed.
	Result

	Example 5
	Unpacking into an unsized, uninitialized list causes a runtime error message because the list is expanded as needed to consume all the given bits. The field “int_1” remains bit-less.

	Example 6
	This example shows the recommended way to get a variable number of list items. The specification order is important because the ...
	See Also
	17.2 Advanced Packing
	The following sections describe how to use the e advanced packing features and provide you with the concepts you need to use them efficiently:

	See Also
	17.2.1 Using the Predefined pack_options Instances
	Packing and unpacking are controlled using a struct under global named packing. There are five predefined instances of the pack_...
	When you call pack(), unpack(), do_pack() or do_unpack() you pass one of the predefined pack_options instances as the first parameter. In the example below, packing.high is passed as the pack_options instance:
	The following sections describe the pack_options instances:

	See Also
	17.2.2 packing.low
	This pack_options instance traverses the source fields or variables in the order they appear in code, placing the least signific...

	Result
	See Also
	17.2.3 packing.low_big_endian
	This pack_options instance, like packing.low, traverses the source fields or variables in the order they appear in code. In addition, for every scalar field or variable, it
	NOTE- If the scalar’s width is not a multiple of 16, no swapping is performed
	The example below shows the difference between packing.low and packing.low_big_endian.

	Result
	See Also
	17.2.4 packing.high
	This pack_options instance traverses the source fields or variables in the reverse order from the order in which they appear in ...

	Result
	See Also
	17.2.5 packing.high_big_endian
	This pack_options instance, like packing.high, traverses the source fields or variables in the reverse order from the order in which they appear in code. In addition, for every scalar field or variable, it
	NOTE- If the scalar’s width is not a multiple of 16, no swapping is performed.
	The example below shows the difference between packing.high and packing.high_big_endian.

	Result
	See Also
	17.2.6 packing.network
	This packing option is the same as packing.high if the total number of bits that will comprise the target is not a multiple of 8. When it is a multiple of 8, then the target bits of the entire bit stream are byte-order reversed.

	Results
	17.2.7 packing.global_default
	This pack_options instance is used when the first parameter of pack(), unpack(), do_pack(), or do_unpack() is NULL. It has the same flags as packing.low.

	See Also
	17.2.8 Customizing Pack Options
	Each of the predefined instances described in “Using the Predefined pack_options Instances” on page 506 is an instance of the pack_options struct. The pack_options declaration is as follows:
	To customize packing options, you can create an instance of the pack_options struct, modify one or more of its fields, and pass the struct instance as the first parameter to pack(), unpack(), do_pack(), or do_unpack().
	The following sections describe each field of the pack_options struct:

	See Also
	17.2.9 reverse_fields
	If this flag is set to be FALSE, the fields in a struct are packed in the order they appear in the struct declaration; if TRUE, they are packed in reverse order. The default is FALSE.

	Example
	When reverse_fields is FALSE, “first” is packed and then “second”. When the flag is set to TRUE, “second” is packed before “first”. Thus, the first result is 0b01; the second result is 0b10.

	Result
	See Also
	17.2.10 reverse_list_items
	If this flag is set to be FALSE, the items in a list are packed in ascending order; if TRUE, they are packed in descending order. The default is FALSE.

	Example
	The second print statement shows that “my_list” is packed in reverse order.

	Result
	See Also
	17.2.11 scalar_reorder
	You can perform one or more swap() operations on each scalar before packing using the scalar_reorder field.
	The list in the scalar_reorder field must include an even number of items. Each pair of items in the list is the parameter list ...
	Unlike swap(), if the large parameter is not a factor of the number of bits in the list, scalar_reorder ignores it, while swap() gives an error.

	Example 1
	The bits in “mid” and “sma” are swapped using 4 and 2 as parameters. See “swap()” on page 524. Thus, within every four bits the first two bits and the last two are swapped.
	Result

	Example 2
	The bits in “midb” are swapped, first using 8 and 4 as parameters, and then using 16 and 8 as parameters. See “swap()” on page 5...
	Result
	See Also
	17.2.12 final_reorder
	After packing each element in the packing expression you can perform final swapping on the resulting bit stream, using the final_reorder field.
	The list in the final_reorder field must include an even number of items. Each pair of items in the list is the parameter list o...
	Unlike swap(), if the large parameter is not a factor of the number of bits in the list, final_reorder ignores it, while swap() gives an error.

	Example 1
	After performing the second pack, a swap is performed using 4 and 8 as parameters, thus reversing the order of nibbles in every byte. See “swap()” on page 524.
	Result

	Example 2
	The bits in “midb” are swapped, first using 8 and 4 as parameters, and then using 16 and 8 as parameters. See “swap()” on page 5...
	Result
	See Also
	17.2.13 Customizing Packing for a Particular Struct
	You can customize packing for a particular struct by modifying the do_pack() or do_unpack() methods of the struct. These methods...

	See Also
	17.2.14 Bit Slice Operator and Packing
	You can use the bit slice operator [:] to select a subrange of an expression to be packed or unpacked. The bit slice operator does not change the type of the pack or unpack expression.

	Example 1
	In the following example, the result of the first print statement is 20 bits long. However, the pack expression, which extracts only 2 bits of “int_20”, is only 2 bits long.
	Result

	Example 2
	“int_5” did not consume five bits as its type suggests. Because of the bit slice operator, it consumed only two bits. Thus “int_1” gets the third bit from “lob” and remains 0.
	Result
	See Also
	17.2.15 Implicit Packing and Unpacking
	Implicit packing and unpacking is always performed using the parameters of packing.low and takes place in the following cases:
	NOTE- Implicit packing and unpacking is not supported for strings, structs, or lists of non- scalar types. As a result, the following causes a load-time error if “i” is a string, a struct, or a list of a non-scalar type:

	See Also
	17.3 Constructs for Packing and Unpacking
	The following sections describe the constructs used in packing and unpacking:

	See Also
	17.3.1 pack()

	Purpose
	Perform concatenation and type conversion

	Category
	Pseudo-method

	Syntax
	pack(option:pack option, item: exp, ...): list of bit
	Syntax example:

	Parameters
	option
	For basic packing, this parameter is one of the following. See “Using the Predefined pack_options Instances” on page 506 for information on other pack options.
	packing.high
	Places the least significant bit of the last physical field declared or the highest list item at index [0] in the resulting list...
	packing.low
	Places the least significant bit of the first physical field declared or lowest list item at index [0] in the resulting list of ...
	NULL
	If NULL is specified, the global default is used. This global default is set initially to packing.low.
	item
	A legal e expression that is a path to a scalar or a compound data item, such as a struct, field, list, or variable.

	Description
	Performs concatenation of items, including items in a list or fields in a struct, in the order specified by the pack options parameter and returns a list of bits. This method also performs type conversion between any of the following:
	Packing is commonly used to prepare high-level e data into a form that can be applied to a DUT. For other uses, see “Packing and Unpacking” on page 497.
	Packing operates on scalar or compound (struct, list) data items. For more information and examples of how packing operates on different data types, see “Basic Packing” on page 497.
	Pack expressions are untyped expressions. In many cases, the e program can deduce the required type from the context of the pack expression. See “Untyped Expressions” on page 87 for more information.
	NOTE- You cannot pack an unbounded integer.

	Example 1
	The extension to post_generate() shown below packs the “opcode” and the “operand” fields of the “instruction” struct from the lo...
	Figure 17-4- Packed Instruction Data

	The “instruction” struct:

	Example 2
	In this example, post_generate() is extended to pack the packet data. The “header” field of the “packet” struct is a struct itself, so this is a recursive pack. The results are shown in Figure 17-5 on page 520.
	Result
	Note that the “out()” action displays the bytes from least significant to most significant (from left to right), whereas the print action displays the bytes from most significant to least significant (from left to right).
	Figure 17-5- Packed Packet Data

	0

	See Also
	17.3.2 unpack()

	Purpose
	Unpack a bit stream into one or more expressions

	Category
	Pseudo-method

	Syntax
	unpack(option: pack option, value: exp, target1: exp [, target2: exp, ...])
	Syntax example:

	Parameters
	option
	For basic packing, this parameter is one of the following. See “Using the Predefined pack_options Instances” on page 506 for information on other pack options.
	packing.high
	Places the most significant bit of the list of bit at the most significant bit of the first field or lowest list item. The least significant bit of the list of bit is placed into the least significant bit of the last field or highest list item.
	packing.low
	Places the least significant bit of the list of bit into the least significant bit of the first field or lowest list item. The most significant bit of the list of bit is placed at the most significant bit of the last field or highest list item.
	NULL
	If NULL is specified, the global default is used. This global default is set initially to packing.low.
	value
	A scalar expression or list of scalars that provides a value that is to be unpacked.
	target1, target2
	One or more expressions separated by commas. Each expression is a path to a scalar or a compound data item, such as a struct, field, list, or variable.

	Description
	Converts a raw bit stream into high level data by storing the bits of the value expression into the target expressions.
	If the value expression is not a list of bit, it is first converted into a list of bit by calling pack() using packing.low. (See...
	The value expression is allowed to have more bits than are consumed by the target expressions. In that case, if packing.low is used, the extra high-order bits are ignored; if packing.high is used, the extra low-order bits are ignored.
	Unpacking is commonly used to convert raw bit stream output from the DUT into high-level e data.
	Unpacking operates on scalar or compound (struct, list) data items. For more information and examples of how packing operates on different data types, see “Basic Packing” on page 497.

	Example 1
	The extension to post_generate() shown below unpacks a list of bits into a variable “inst”. The results are shown in Figure 17-6 on page 522.
	Figure 17-6- Unpacked Instruction Data

	The packed data

	Example 2
	The extension to post_generate() shown below unpacks a list of bytes into a variable “pkt” using packing.low. This is a recursive unpack because the “header” field of “packet” is a struct itself. The results are shown in Figure 17-7 on page 523.
	Figure 17-7- Unpacked Packet Data

	0

	Example 3
	This example uses unpack() sequentially to set up virtual fields that are required for the full unpack.
	See Also
	17.3.3 swap()

	Purpose
	Swap small bit chunks within larger chunks

	Category
	Pseudo-method

	Syntax
	list-of-bit.swap(small: int, large: int): list of bit
	Syntax example:

	Parameters
	small
	An integer that is a factor of large.
	large
	An integer that is either UNDEF or a factor of the number of bits in the entire list. If UNDEF, the method reverses the order of small chunks within the entire list. Thus, “lob.swap(1, UNDEF)” is the same as “lob.reverse()”.

	Description
	This predefined list method accepts a list of bits, changes the order of the bits, and then returns the reordered list of bits. ...

	Notes

	Example 1
	This example shows two swaps. The first swap reverses the order of nibbles in every byte. The second swap reverses the whole list.
	0

	Example 2
	This example shows swap() used with unpack() to reorder the bits before unpacking them.
	Results
	See Also
	17.3.4 do_pack()

	Purpose
	Pack the physical fields of the struct

	Category
	Predefined method of any struct

	Syntax
	do_pack(options:pack options, l: *list of bit)
	Syntax example:

	Parameters
	options
	This parameter is an instance of the pack options struct. See “Using the Predefined pack_options Instances” on page 506 for information on this struct.
	l
	An empty list of bits that is extended as necessary to hold the data from the struct fields.

	Description
	The do_pack() method of a struct is called automatically whenever the struct is packed. This method appends data from the physic...
	For example, the following assignment to “lob”
	makes the following calls to the do_pack method of each struct, where tmp is an empty list of bits:
	You can extend the do_pack() method for a struct in order to create a unique packing scenario for that struct. You should handle...

	Notes

	Example 1
	This example shows how to override the do_pack() method for a struct called “cell”. The extension to do_pack() overrides any packing option passed in and always uses packing.low. It packs “operand2” first, then “operand1” and “operand3”.
	Result

	Example 2
	In the following example, the do_pack() method for “cell” is overwritten to use the low_big_endian packing option by default.
	Result

	Example 3
	This example swaps every pair of bits within each 4-bit chunk after packing with the packing options specified in the pack() call.
	Result
	See Also
	17.3.5 do_unpack()

	Purpose
	Unpack a packed list of bit into a struct

	Category
	Predefined method of any struct

	Syntax
	do_unpack(options:pack options, l: list of bit, from: int): int
	Syntax example:

	Parameters
	options
	This parameter is an instance of the pack options struct. See “Using the Predefined pack_options Instances” on page 506 for information on this struct.
	l
	A list of bits containing data to be stored in the struct fields.
	from
	An integer that specifies the index of the bit to start unpacking.
	int (return value)
	An integer that specifies the index of the last bit in the list of bits that was unpacked.

	Description
	The do_unpack() method is called automatically whenever data is unpacked into the current struct. This method unpacks bits from ...
	For example, the following call to unpack()
	makes the following calls to the do_unpack method of each struct:
	The method returns an integer, which is the index of the last bit unpacked into the list of bits.
	The method issues a runtime error message if the struct has no physical fields. If at the end of packing there are leftover bits...
	You can extend the do_unpack() method for a struct in order to create a unique unpacking scenario for that struct. You should ha...

	Notes

	Example 1
	This first example shows how to modify do_unpack() to change the order in which the fields of a struct are filled. In this case,...
	Result

	Example 2
	This example modifies the do_unpack method of the “frame” struct to first calculate the length of the “data” field. The calculation uses “from”, which indicates the last bit to be unpacked, to calculate the length of “data”.
	Results
	See Also

	18 Control Flow Actions
	The following sections describe the control flow actions:
	18.1 Conditional Actions

	The following conditional actions are used to specify code segments that will be executed only if a certain condition is met:
	18.1.1 if then else

	Purpose
	Perform an action block based on whether a given boolean expression is TRUE

	Category
	Action

	Syntax
	if bool-exp [then] {action; ...} [else if bool-exp [then] {action; ...}] [else {action; ...}]
	Syntax example:

	Notes
	Parameters
	bool-exp
	A boolean expression.
	action; ...
	A series of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	If the first bool-exp is TRUE, the then action block is executed. If the first bool-exp is FALSE, the else if clauses are execut...
	The else if then clauses are used for multiple boolean checks (comparisons). If you require many else if then clauses, you might prefer to use a case bool-case-item action.

	Example 1
	Following is the syntax example expressed as a multi-line example rather than a single-line example.

	Example 2
	The following example includes an else if clause:
	See Also
	18.1.2 case labeled-case-item

	Purpose
	Execute an action block based on whether a given comparison is true

	Category
	Action

	Syntax
	case case-exp {labeled-case-item; ... [default: {default-action; ...}]}
	Syntax example:

	Parameters
	case-exp
	A legal e expression.
	labeled-case-item
	label-exp[:] action-block
	Where
	Note that the entire labeled-case-item is repeatable, not just the action- block related to the label-exp.
	default-action; ...
	A sequence of zero or more default actions separated by semicolons and enclosed in curly braces.

	Description
	Evaluates the case-exp and executes the first action-block for which label-exp matches the case-exp. If no label-exp equals the case-exp, executes the default-action block, if specified.
	After an action-block is executed, the e program proceeds to the line that immediately follows the entire case statement.

	Example
	See Also
	18.1.3 case bool-case-item

	Purpose
	Execute an action block based on whether a given boolean comparison is true

	Category
	Action

	Syntax
	case {bool-case-item; ... [default {default-action; ...}]}
	Syntax example:

	Parameters
	bool-case-item
	bool-exp[:] action-block
	Where
	Note that the entire bool-case-item is repeatable, not just the action-block related to the bool-exp.
	default-action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	Evaluates the bool-exp conditions one after the other; executes the action-block associated with the first TRUE bool-exp. If no bool-exp is TRUE, executes the default-action-block, if specified.
	After an action-block is executed, the e program proceeds to the line that immediately follows the entire case statement.
	Each of the bool-exp conditions is independent of the other bool-exp conditions, and there is no main case- exp to which all cases refer (unlike the “case labeled-case-item” on page 534).
	This case action has the same functionality as a single if then else action in which you enter each bool-case- item as a separate else if then clause.

	Example
	The bool-exp conditions are totally independent, and can refer to many arbitrary fields and attributes (not only to a single field as in the example above). For example, here is a set of independent boolean conditions:

	See Also
	18.2 Iterative Actions
	This section describes the following iterative actions, which are used to specify code segments that will be executed in a loop, multiple times, in a sequential order:
	18.2.1 while

	Purpose
	Execute a while loop

	Category
	Action

	Syntax
	while bool-exp [do] {action; ...}
	Syntax example:

	Parameters
	bool-exp
	A boolean expression.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Example 1
	The while loop in the following example adds 10 to “ctr” as many times as it takes it to get from 100 to the value of SMAX in steps of 1.

	Example 2
	The while loop in the following example assigns “top.inc” to “ctr” every two cycles, as long as “done” remains FALSE.

	Example 3
	The while loop in the following example assigns “top.inc” to “ctr” every two cycles, in an endless loop. It loops until the test run is stopped.
	Description
	Executes the action block repeatedly in a loop while bool-exp is TRUE. You can use this construct to set up a perpetual loop as “while TRUE {}”.

	See Also
	18.2.2 repeat until

	Purpose
	Execute a repeat until loop

	Category
	Action

	Syntax
	repeat {action; ...} until bool-exp
	Syntax example:

	Parameters
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.
	bool-exp
	A boolean expression.

	Description
	Execute the action block repeatedly in a loop until bool-exp is TRUE.
	NOTE- A repeat until action performs the action block at least once. A while action might not perform the action block at all.

	Example
	See Also
	18.2.3 for each in

	Purpose
	Execute a for each loop

	Category
	Action

	Syntax
	for each [type] [(item-name)] [using index (index-name)] in [reverse] list-exp [do] {action; ...}
	Syntax example:

	Parameters
	type
	A type of the struct comprising the list specified by list-exp. Elements in the list must match this type to be acted upon.
	item-name
	A name you give to specify the current item in list-exp.
	If you do not include this parameter, the item is referred to with the implicit variable “it”. We recommend that you explicitly name the item to avoid confusion about the contents of “it”.
	index-name
	A name you give to specify the index of the current list item.
	If you do not include this parameter, the item is referred to with the implicit variable “index”. We recommend that you explicitly name the item to avoid confusion about the contents of “index”.
	list-exp
	An expression that results in a list.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	For each item in list-exp, if its type matches type, execute the action block. Inside the action block, the implicit variable it...

	The it and index Implicit Variables
	Each for each in action defines two new local variables for the loop, named by default it and index. Keep the following in mind:

	Example 1
	Example 2
	Example 3
	This example has two for each loops, each of which invokes a method and an out() routine for the particular subtype (ATM cell or IP cell).
	See Also
	18.2.4 for from to

	Purpose
	Execute a for loop for the number of times specified by from to

	Category
	Action

	Syntax
	for var-name from from-exp [down] to to-exp [step step-exp] [do] {action; ...}
	Syntax example:

	Parameters
	var-name
	A temporary variable of type int.
	from-exp, to-exp, step- exp
	Valid e expressions that resolve to type int.
	The default value for step-exp is one.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	Creates a temporary variable var-name of type int, and repeatedly executes the action block while incrementing (or decrementing if down is specified) its value from from-exp to to-exp in interval values specified by step-exp (defaults to 1).
	In other words, the loop is executed until the value of var-name is greater than the value of to-exp. For example, the following line of code prints “in” one time:
	NOTE- The temporary variable var-name is visible only within the for from to loop in which it is created.

	Example
	See Also
	18.2.5 for

	Purpose
	Execute a C-style for loop

	Category
	Action

	Syntax
	for {initial-action; bool-exp; step-action} [do] {action; ...}
	Syntax example:

	Parameters
	initial-action
	An action.
	bool-exp
	A boolean expression
	step-action
	An action.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	The for loop works similarly to the for loop in the C language. This for loop executes the initial-action once, and then checks ...

	Notes
	Example
	See Also
	18.3 File Iteration Actions
	This section describes the following two loop constructs, which are used to manipulate general ASCII files:
	18.3.1 for each line in file

	Purpose
	Iterate a for loop over all lines in a text file

	Category
	Action

	Syntax
	for each [line] [(name)] in file file-name-exp [do] {action; ...}
	Syntax example:

	Parameters
	name
	Variable referring to the current line in the file.
	file-name-exp
	A string expression that gives the name of a text file.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	Executes the action block for each line in the text file file-name. Inside the block, it (or optional name) refers to the current line (as string) without the final “\n” (the final new line character, CR).

	Example
	This example reads each line of a file and prints the line if it is not blank. String matching is used to see if the line is blank: “l !~ "/^$/"” means “l does not match the beginning of a line, ^, followed immediately by the end of a line, $”.
	If the file cannot be opened, an error message similar to the following appears.

	See Also
	18.3.2 for each file matching

	Purpose
	Iterate a for loop over a group of files

	Category
	Action

	Syntax
	for each file [(name)] matching file-name-exp [do] {action; ...}
	Syntax example:

	Parameters
	name
	Variable referring to the current line in the file.
	file-name-exp
	A string expression giving a file name.
	action; ...
	A sequence of zero or more actions separated by semicolons and enclosed in curly braces.

	Description
	For each file (in the file search path) whose name matches file-name-exp execute the action block. Inside the block, it (or optional name) refers to the matching file name.

	Example
	See Also
	18.4 Actions for Controlling the Program Flow
	The actions described in this section are used to alter the flow of the program in places where the flow would otherwise continue differently. The e language provides the following actions for controlling the program flow:
	18.4.1 break

	Purpose
	Break the execution of a loop

	Category
	Action

	Syntax
	break
	Syntax example:

	Description
	Breaks the execution of the nearest enclosing iterative action (for or while). When a break action is encountered within a loop,...
	You cannot place break actions outside the scope of a loop (the compiler will report an error).

	Example
	See Also
	18.4.2 continue

	Purpose
	Stop executing the current loop iteration and start executing the next loop iteration

	Category
	Action

	Syntax
	continue
	Syntax example:

	Description
	Stops the execution of the nearest enclosing iteration of a for or a while loop, and continues with the next iteration of the sa...
	You cannot place continue actions outside the scope of a loop (the compiler will report an error).

	Example
	See Also

	19 List Pseudo-Methods Library
	This chapter describes pseudo-methods used to work with lists. It contains the following sections:
	19.1 Pseudo-Methods Overview

	A pseudo-method is a type of method unique to the e language. Pseudo-methods are e macros that look like methods. They have the following characteristics:
	See Also
	19.2 Using List Pseudo-Methods
	Once a list field or variable has been declared, you can operate on it with a list pseudo-method by attaching the pseudo-method ...
	Many of the list pseudo-methods take expressions as parameters, an operate on every item in the list.
	For example, the following calls the apply() pseudo-method for the list named “p_list”, with the expression “.length + 2” as a parameter. The pseudo-method returns a list of numbers found by adding 2 to the “length” field value in each item in the list.
	It is important to put a period (.) in front of field names being accessed by pseudo-methods, as in “.length +2”, above.
	In pseudo-methods that take expressions as parameters, the it variable can be used in the expression to refer to the current list item, and the index variable can be used to refer to the current item’s list index number.
	Pseudo-methods that return values can only be used in expressions.

	See Also
	19.3 Pseudo-Methods to Modify Lists
	This section describes the pseudo-methods that change one or more items in a list.
	The pseudo-methods in this section are:

	See Also
	19.3.1 add(item)

	Purpose
	Add an item to the end of a list

	Category
	Pseudo-method

	Syntax
	list.add(item: list-type)
	Syntax example:

	Parameters
	list
	A list.
	item
	An item of the same type as the list type, which is to be added to the list. The item is added at index list.size(). That is, if...

	Description
	Adds the item to the end of the list.
	If the item is a struct, no new struct instance is generated, a pointer to the existing instance of the struct is simply added t...

	Example 1
	The following adds 2 to the end of the list named “i_list” (that is, to index position 3).
	Result

	Example 2
	The following generates an instance of a “packet” struct and adds it to the list of packets named “p_lst”.
	See Also
	19.3.2 add(list)

	Purpose
	Add a list to the end of another list

	Category
	Pseudo-method

	Syntax
	list_1.add(list_2: list)
	Syntax example:

	Parameters
	list_1
	A list.
	list_2
	A list of the same type as list_1, which is to be added to the end of list_1. The list is added at index list.size(). That is, i...

	Description
	Adds list_2 to the end of list_1.

	Example 1
	The following adds “blue”, “green”, and “red” to the list named “colors_1”.

	Example 2
	The following example adds the literal list {“blue”; “green”; “red”} to the list named “colors_3”. The “colors_3” list then contains “red”, “red”, “blue”, “blue”, “green”, “red”.
	See Also
	19.3.3 add0(item)

	Purpose
	Add an item to the head of a list

	Category
	Pseudo-method

	Syntax
	list.add0(item: list-type)
	Syntax example:

	Parameters
	list
	A list.
	item
	An item of the same type as the list items, which is to be added to the head of the list.

	Description
	Adds a new item to an existing list. The item is placed at the head of the existing list, as the first position (that is, at index 0). All subsequent items are then reindexed by incrementing their old index by one.
	If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is simply added t...

	Example
	The following example adds 1 to the beginning of the list named “i_list”. The “i_list” then contains 1, 1, 2, 3, 4, 5.

	See Also
	19.3.4 add0(list)

	Purpose
	Add a list to the head of another list

	Category
	Pseudo-method

	Syntax
	list_1.add0(list_2: list)
	Syntax example:

	Parameters
	list_1
	A list.
	list_2
	A list of the same type as list_1, which is to be added to the beginning of list_1 (at list_1 index 0)

	Description
	Adds a new list to an existing list. The list_2 list is placed at the head of the existing list_1 list, starting at the first list_1 index. All subsequent items are then reindexed by incrementing their old index by the size of the new list being added.

	Example
	The following adds 1, 2, 3, and 4 to the beginning of the list named “b_list”. The “b_list” then contains 1, 2, 3, 4, 5, 6.
	NOTE- b_list.add0(a) returns the same result as a_list.add(b) in the above example, except that in the example, “b_list” is added into “a_list”, while b_list.add0(a) adds “a_list” into “b_list”.

	See Also
	19.3.5 clear()

	Purpose
	Delete all items from a list

	Category
	Pseudo-method

	Syntax
	list.clear()
	Syntax example:

	Parameters
	list
	A list.

	Return Value
	None

	Description
	Deletes all items in the list.

	Example
	The following removes all items from the list named “l_list”.

	See Also
	19.3.6 delete()

	Purpose
	Delete an item from a list

	Category
	Pseudo-method

	Syntax
	list.delete(index: int)
	Syntax example:

	Parameters
	list
	A list.
	index
	The index of the item that is to be deleted from the list.

	Description
	Removes item number index from list (indexes start counting from 0). The indexes of the remaining items are adjusted to keep the numbering correct.
	If the index does not exist in the list, an error is issued.

	Example 1
	The following deletes 7 from index position 1 in the list named “y_list”. The list then consists of 5 (index 0) and 9 (index 1).

	Example 2
	Since list.delete() only accepts a single item as its argument, you cannot use it to delete a range of items in one call. This example shows a way to do that.
	The following shows a user-defined method named del_range() which, given a list, a from value, and a to value, produces a new li...
	See Also
	19.3.7 fast_delete()

	Purpose
	Delete an item without adjusting all indexes

	Category
	Pseudo-method

	Syntax
	list.fast_delete(index: int)
	Syntax example:

	Parameters
	list
	A list.
	index
	The index that is to be deleted from the list.

	Description
	Removes item number index from list (indexes start counting from 0). The index of the last item in the list is changed to the in...
	If the index does not exist in the list, an error is issued.

	Example
	The following deletes “C” from index position 2 in the list named “y_list”, and changes the index of the last item from 4 to 2. The new “y_list” is “A”, “B”, “E”, “D”.

	See Also
	19.3.8 insert(index, item)

	Purpose
	Insert an item in a list at a specified index

	Category
	Pseudo-method

	Syntax
	list.insert(index: int, item: list-type)
	Syntax example:

	Parameters
	list
	A list.
	index
	The index in the list where the item is to be inserted.
	item
	An item of the same type as the list.

	Description
	Inserts the item at the index location in the list. If index is the size of the list, then the item is simply added at the end of the list. All indexes in the list are adjusted to keep the numbering correct.
	If the number of items in the list is smaller than index, an error is issued.
	If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is simply added t...

	Example
	In the following example, 10 is first inserted into position 2 in “s_list”, and then 77 is inserted into position 1. The resulting list contains 5, 77, 1, 10.

	See Also
	19.3.9 insert(index, list)

	Purpose
	Insert a list in another list starting at a specified index

	Category
	Pseudo-method

	Syntax
	list_1.insert(index: int, list_2: list)
	Syntax example:

	Parameters
	list_1
	A list.
	index
	The index of the position in list_1 where list_2 is to be inserted.
	list_2
	A list that is to be inserted into list_1.

	Description
	Inserts all items of list_2 into list_1 starting at index. The index must be a positive integer. The size of the new list size is equal to the sum of the sizes of list_1 and list_2.
	If the number of items in list_1 is smaller than index, an error is issued.

	Example
	In the following example, “blue”, “green”, and “red” are inserted after “red” in the “colors_1” list. The “colors_l” list is then “red”, “blue”, “green”, “red”, “green”, “blue”.

	See Also
	19.3.10 pop()

	Purpose
	Remove and return the last list item

	Category
	Pseudo-method

	Syntax
	list.pop(): list-type
	Syntax example:

	Parameters
	list
	A list.

	Description
	Removes the last item (the item at index list.size() - 1) in the list and returns it. If the list is empty, an error is issued.
	NOTE- Use list.top() to return the last item in list without removing it from the list.

	Example
	In the following example, the “s_item” variable gets “d”, and the “s_list” becomes “a”, “b”, “c”.

	See Also
	19.3.11 pop0()

	Purpose
	Remove and return the first list item

	Category
	Pseudo-method

	Syntax
	list.pop0(): list-type
	Syntax example:

	Parameters
	list
	A list.

	Description
	Removes the first item (the item at index 0) from the list and returns it. Subtracts 1 from the index of each item remaining in the list. If the list is empty, an error is issued.
	NOTE- Use list.top0() to return the first item in list without removing it from the list.

	Example
	In the following example, the “s_item” variable gets “a” and “s_list” becomes “b”, “c”, “d”.

	See Also
	19.3.12 push()

	Purpose
	Add an item to the end of a list (same as “add(item)” on page 552)

	Category
	Pseudo-method

	Syntax
	list.push(item: list-type)
	Syntax example:

	Parameters
	list
	A list.
	item
	An item of the same type as the list type, which is to be added to the list. The item is added at index list.size(). That is, if...

	Description
	This pseudo-method performs the same function as “add(item)” on page 552.
	If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is simply added t...

	See Also
	19.3.13 push0()

	Purpose
	Add an item to the head of a list (same as “add0(item)” on page 555)

	Category
	Pseudo-method

	Syntax
	list.push0(item: list-type)
	Syntax example:

	Parameters
	list
	A list.
	item
	An item of the same type as the list items, which is to be added to the head of the list.

	Description
	This pseudo-method performs the same function as “add0(item)” on page 555.
	If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is simply added t...

	See Also
	19.3.14 resize()

	Purpose
	Change the size of a list

	Category
	Pseudo-method

	Syntax
	list.resize(size: int [, full: bool, filler: exp, keep_old: bool])
	Syntax example:

	Parameters
	list
	A list.
	size
	A positive integer specifying the desired size.
	full
	A boolean value specifying all items will be filled with filler. Default: TRUE.
	filler
	An item of the same type of the list items, used as a filler when FULL is TRUE.
	keep_old
	A boolean value specifying whether to keep existing items already in the list. Default: FALSE.

	Description
	Allocates a new list of declared size, or resizes an old list if keep_old is TRUE. If full is TRUE, sets all new items to have filler as their value.
	If only the first parameter, size, is used, this method allocates a new list of the given size and all items are initialized to the default value for the list type.
	If any of the three parameters after size are used, all three of them must be used.
	To resize and list and keep its old values, set both full and keep_old to TRUE. If the list is made longer, additional items with the value of filler are appended to the list.
	Following is the behavior of this method for all combinations of full and keep_old.

	Example 1
	The following example puts 200 NULL “packet” instances into “q_list”. The initial size of the list is 0 when it is created by the var action. The packets are NULL because that is the default value for a struct instance.
	Result

	Example 2
	The following example puts 20 NULL strings in “r_list”. The initial size of the list is 0 when it is created by the var action.
	Result

	Example 3
	The following example makes “s_list” an empty list, but allocates space for it to hold 20 integers. The initial size of the list is 0 when it is created by the var action, since “full” is FALSE.
	Result

	Example 4
	The following example adds four items to an existing list.
	Result

	Example 5
	This example shortens an existing list.
	Result
	See Also
	19.4 General List Pseudo-Methods
	This section describes the syntax for pseudo-methods that perform various operations on lists.
	The pseudo-methods in this section are:

	See Also
	19.4.1 apply()

	Purpose
	Perform a computation on each item in a list

	Category
	Pseudo-method

	Syntax
	list.apply(item: exp): list
	Syntax example:

	Parameters
	list
	A list.
	item
	Any expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Applies the exp to each item in the list and returns the changed list.
	NOTE- The expression “list.apply(it.field)” is the same as “list.field” when field is a scalar type. For example, the following expressions both return a concatenated list of the “addr” field in each packet item:
	The two expressions are different, however, if the field not scalar. For example, assuming that “data” is a list of byte, the fi...

	Example 1
	In the following example, the “n_list” in the sys struct gets a list of integers resulting from adding 1 to each “len” value in the list of packets.

	Example 2
	In the following example, the “packet” struct contains a “get_crc()” method that calls the predefined “crc_32()” on page 615. The “crc_plus” list gets the values returned by applying the “get_crc()” method to every packet in the “p_list” list.

	Example 3
	In the following example, the “ind_list” gets the indexes (0, 1, 2) of the items in the “l_list”.
	See Also
	19.4.2 copy()

	Purpose
	Make a shallow copy of a list

	Category
	Predefined method of any struct or unit

	Syntax
	list.copy(): list
	Syntax example:

	Description
	This is a specific case of exp.copy(), where exp is the name of a list. See “The copy() Method of any_struct” on page 647 for additional information and examples.
	19.4.3 count()

	Purpose
	Return the number of items that satisfy a given condition

	Category
	Pseudo-method

	Syntax
	list.count(exp: bool): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the number of items for which the exp is TRUE.
	NOTE- The syntax list.all(exp).size() returns the same result as the list.count(exp) pseudo- method, but list.all(exp).size() creates a new list and is faster.

	Example 1
	The following example prints 3, since there are three items in “l_list” with values greater than 3.

	Example 2
	The following example prints the number of “packet” struct instances in the “packets” list that have a “length” field value smaller than 5.
	See Also
	19.4.4 exists()

	Purpose
	Check if an index exists in a list

	Category
	Pseudo-method

	Syntax
	list.exists(index: int): bool
	Syntax example:

	Parameters
	list
	A list.
	index
	An integer expression representing an index to the list.

	Description
	Returns TRUE if an item with the index number exists in the list, or returns FALSE if the index does not exist.

	Example
	The first print action in the following prints TRUE, because the “int_list” contains an item with an index of 1. The second print action prints FALSE, because there is no item with index 7 in the list.

	See Also
	19.4.5 field

	Purpose
	Specifying a field from all items in a list

	Category
	Pseudo-method

	Syntax
	list.field-name
	Syntax example:

	Parameters
	list
	A list of structs.
	field-name
	A name of a field or list in the struct type.

	Description
	Returns a list containing the contents of the specified field-name for each item in the list. If the list is empty, it returns an empty list. This syntax is the same as list.apply(field).
	An error is issued if the field name is not the name of a struct or if the struct type does not have the specified field

	Example
	The following prints the values of the “length” fields in all the items in the “packets” list.

	See Also
	19.4.6 first()

	Purpose
	Get the first item that satisfies a given condition

	Category
	Pseudo-method

	Syntax
	list.first(exp: bool): list-type
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the first item for which exp is TRUE. If there is no such item, the default for the item’s type is returned (see “e Data Types” on page 75).
	For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a value found, it is safer to use list.first_index() for lists of scalars.

	Example 1
	The first line below creates a list of five integers. The second line prints the first item in the list smaller than 5 (that is, it prints 3).

	Example 2
	In the following example, the list.first.() pseudo-method is used to make sure all items in the “packets” list contain non-empty “cells” lists.
	See Also
	19.4.7 first_index()

	Purpose
	Get the index of the first item that satisfies a given condition

	Category
	Pseudo-method

	Syntax
	list.first_index(exp: bool): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the index of the first item for which exp is TRUE or return UNDEF if there is no such item.

	Example 1
	The first line below creates a list of five integers. The second line prints 1, which is the index of the first item in the list smaller than 5.

	Example 2
	In the following example, the list.first_index.() pseudo-method is used to make sure all items in the “packets” list contain non-empty “cells” lists.
	See Also
	19.4.8 get_indices()

	Purpose
	Return a sublist of another list

	Category
	Pseudo-method

	Syntax
	list.get_indices(index-list: list of int): list-type
	Syntax example:

	Parameters
	list
	A list.
	index-list
	A list of indexes within the list. Each index must exist in the list.

	Description
	Copies the items in list that have the indexes specified in index-list and returns a new list containing those items. If the index-list is empty, an empty list is returned.

	Example
	The following example puts “green” and “orange” in the list named “o_list”.

	See Also
	19.4.9 has()

	Purpose
	Check that a list has at least one item that satisfies a given condition

	Category
	Pseudo-method

	Syntax
	list.has(exp: bool): bool
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns TRUE if the list contains at least one item for which the exp is TRUE, or returns FALSE if the expression is not TRUE for any item.

	Example 1
	The first line below creates a list containing the integers 8, 3, 7, and 3. The second line checks that the list contains 7, and prints TRUE.

	Example 2
	The line below checks that there is no packet in the “packets” list that contains an empty “cells” list.
	See Also
	19.4.10 is_a_permutation()

	Purpose
	Check that two lists contain exactly the same items

	Category
	Pseudo-method

	Syntax
	list_1.is_a_permutation(list_2: list): bool
	Syntax example:

	Parameters
	list_1
	A list.
	list_2
	A list that is to be compared to list_1. Must be the same type as list_1.

	Description
	Returns TRUE if list_2 contains the same items as list_1, or FALSE if any items in one list are not in the other list. The order...

	Notes

	Example 1
	In the following example, the “l_comp” variable is TRUE because the two lists contain the same items.

	Example 2
	In the following example, the keep constraint causes the list named “l_2” have the same items the generator puts in the list nam...
	See Also
	19.4.11 is_empty()

	Purpose
	Check if a list is empty

	Category
	Pseudo-method

	Syntax
	list.is_empty(): bool
	Syntax example:

	Parameters
	list
	A list.

	Description
	Returns TRUE if list is empty, or FALSE if the list is not empty.
	NOTE- You can use “list is empty” as a synonym for “list.is_empty()”.
	Similarly, you can use “list is not empty” to mean “not(list.is_empty())”.

	Example 1
	In the following example, the first print action prints TRUE because the “int_lst” is initially empty. After an item is added, the second print action prints TRUE because the list is not empty.

	Example 2
	The following gives the same result as the “ck_instr()” method in the previous example.
	See Also
	19.4.12 last()

	Purpose
	Get the last item that satisfies a given condition

	Category
	Pseudo-method

	Syntax
	list.last(exp: bool): list-type
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the last item in the list that satisfies the boolean expression. If there is no such item, the default for the item’s type is returned (see “e Data Types” on page 75).
	For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a found value, it is safer to use list.last_index() for lists of scalars.

	Example 1
	The first line below creates a list containing the integers 8, 3, 7, 3, and 4. The second line prints 4.

	Example 2
	The check that line below checks that there is no packet in the “packets” list that contains an empty “cells” list.
	See Also
	19.4.13 last_index()

	Purpose
	Get the index of the last item that satisfies a given condition

	Category
	Pseudo-method

	Syntax
	list.last_index(exp: bool): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the index of the last item for which exp is TRUE, or returns UNDEF if there is no such item.

	Example 1
	The first lilne below creates a list containing the integers 8, 3, 7, 3, and 4. The second line prints 3.

	Example 2
	The code below checks that every packet in the “packets” list has a non-empty “cells” list: if the index of the last packet that has a non-empty “cells” list is one less than the size of the list, the check succeeds.
	See Also
	19.4.14 max()

	Purpose
	Get the item with the maximum value of a given expression

	Category
	Pseudo-method

	Syntax
	list.max(exp: int): list-type
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the item for which the exp evaluates to the largest value. If more than one item results in the same maximum value, the item latest in the list is returned.
	If the list is empty, an error is issued.

	Example
	In the example below, the “high_item” variable gets the “instr” instance that has the largest value of the sum of “op1” and “op2”.

	See Also
	19.4.15 max_index()

	Purpose
	Get the index of the item with the maximum value of a given expression

	Category
	Pseudo-method

	Syntax
	list.max_index(exp: int): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the index of the item for which the exp evaluates to the largest value. If more than one item results in the same maximum value, the index of the item latest in the list is returned.
	If the list is empty, and error is issued.

	Example
	In the example below, the “high_indx” variable gets the index of the “instr” instance that has the largest value of the sum of “op1” and “op2”.

	See Also
	19.4.16 max_value()

	Purpose
	Return the maximum value found by evaluating a given expression for all items

	Category
	Pseudo-method

	Syntax
	list.max_value(exp: int): (int | uint)
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the largest integer value found by evaluating the exp for every item in the list. If more than one item results in the same maximum value, the value of the expression for the item latest in the list is returned.
	For lists of integer types, one of the following is returned if the list is empty:
	signed integer
	MIN_INT (see “Predefined Constants” on page 8)
	unsigned integer
	zero
	long integer
	error

	Example 1
	The example below prints the largest absolute value in the list of integers named “i_list”.

	Example 2
	In the example below, the “high_val” variable gets the “instr” instance that has the largest value of the sum of “op1” and “op2”.
	See Also
	19.4.17 min()

	Purpose
	Get the item with the minimum value of a given expression

	Category
	Pseudo-method

	Syntax
	list.min(exp: int): list-type
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the item for which the exp evaluates to the smallest value. If more than one item results in the same minimum value, the item latest in the list is returned.

	Example
	In the example below, the “low_item” variable gets the “instr” instance that has the smallest value of the sum of “op1” and “op2”.

	See Also
	19.4.18 min_index()

	Purpose
	Get the index of the item with the minimum value of a given expression

	Category
	Pseudo-method

	Syntax
	list.min_index(exp: int): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Return the index of the item for which the specified exp gives the minimal value. If more than one item results in the same minimum value, the index of the item latest in the list is returned.
	If the list is empty, an error is issued.

	Example
	In the example below, the “low_indx” variable gets the index of the “instr” instance that has the smallest value of the sum of “op1” and “op2”.

	See Also
	19.4.19 min_value()

	Purpose
	Return the minimum value found by evaluating a given expression for all items

	Category
	Pseudo-method

	Syntax
	list.min_value(exp: int): (int | uint)
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the smallest integer value found by evaluating the exp for every item in the list. If more than one item results in the same minimum value, the value of the expression for the item latest in the list is returned.
	For lists of integer types, one of the following is returned if the list is empty:
	signed integer
	MAX_INT (see “Predefined Constants” on page 8)
	unsigned integer
	zero
	long integer
	error

	Example
	In the example below, the “low_val” variable gets the “instr” instance that has the smallest value of the sum of “op1” and “op2”.

	See Also
	19.4.20 reverse()

	Purpose
	Reverse the order of a list

	Category
	Pseudo-method

	Syntax
	list.reverse(): list
	Syntax example:

	Parameters
	list
	A list.

	Description
	Returns a new list of all the items in list in reverse order.

	Example 1
	In the following example the “r_packets” field gets a list that contains all the items in the “packets” list, but in reverse order.

	Example 2
	The following example prints 2, 1, 2, 4.
	See Also
	19.4.21 size()

	Purpose
	Return the size of a list

	Category
	Pseudo-method

	Syntax
	list.size(): int
	Syntax example:

	Parameters
	list
	A list.

	Description
	Returns an integer equal to the number of items in the list.
	A common use for this method is in a keep constraint, to specify an exact size or a range of values for the list size. The defau...
	The list[n] index syntax is another way to specify an exact size of a list, when you use it in the list declaration, such as “p_list[n]: list of p”.
	See “List Size” on page 264 for more information about constraining the size of lists.

	Example 1
	In the following example, the “lsz” variable gets the number of items in the list named “s_list”.

	Example 2
	In the following example, a list of packets named p_list will be generated. A keep constraint is used to set the size of the list to exactly 10 packets.
	See Also
	19.4.22 sort()

	Purpose
	Sort a list

	Category
	Pseudo-method

	Syntax
	list.sort(sort-exp: exp): list
	Syntax example:

	Parameters
	list
	A list of integers, strings, enumerated items, or boolean values to sort.
	sort-exp
	A scalar or nonscalar expression. The expression may contain references to fields or structs. The it variable can be used to refer to the current list item.

	Description
	Returns a new list of all the items in list, sorted in increasing order of the values of the sort-exp.
	If the sort-exp is a scalar value, the list is sorted by value. If the sort-exp is a nonscalar, the list is sorted by address.

	Example 1
	The following example prints 1, 2, 2, 4.

	Example 2
	In the following example, the “s_list” variable gets the items in the “packets” list, sorted in increasing value of the product of the “length” and “width” fields.
	See Also
	19.4.23 sort_by_field()

	Purpose
	Sort a list of structs by a selected field

	Category
	Pseudo-method

	Syntax
	struct-list.sort_by_field(field: field-name): list
	Syntax example:

	Parameters
	struct-list
	A list of structs.
	field
	The name of a field of the list’s struct type. Enter the name of the field only, with no preceding “.” or “it.”.

	Description
	Returns a new list of all the items in struct-list, sorted in increasing order of their field values.
	NOTE- The list.sort() pseudo-method returns the same value as the list.sort_by_field() pseudo- method, but list.sort_by_field() is more efficient.

	Example
	In the following example, the “sf_list” variable gets the items in the “packets” list, sorted in increasing value of the “ptype” field (first “ATM”, then “ETH”, then “foreign”).

	See Also
	19.4.24 split()

	Purpose
	Splits a list at each point where an expression is true

	Category
	Pseudo-method

	Syntax
	list.split(split-exp: exp): list, ...
	Syntax example:

	Parameters
	list
	A list of type struct-list-holder.
	split-exp
	An expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Splits the items in list into separate lists, each containing consecutive items in list which evaluate to the same exp value.
	Since e does not support lists of lists, this pseudo-method returns a list of type struct-list-holder. The struct- list-holder t...
	Each struct-list-holder in the returned list contains consecutive items from the list that have the same split- exp value.
	NOTE- Fields used in the expression must be defined in the base type definition, not in when subtypes.

	Example 1
	Suppose “packets” is a list that contains packet instances that have the following “length” values:
	The “packets.split(.length)” pseudo-method in the following creates a list of four lists by splitting the “packets” list at each point where the “length” value changes, that is, between 3 and 5, between 5 and 7, and between 7 and 5.
	The struct-list-holder variable “sl_hold” then contains four lists:
	The “print sl_hold[2].value” action prints the third list, which is the one containing three items whose “length” values are 7.
	The print sl_hold.value[4]” action prints the fifth item in the “sl_hold” list, which is the same as the fifth item in the “packets” list.

	Example 2
	In the following example, the “length” field values used in Example 1 on page 598, are assigned to a list of seven “packet” stru...
	The “sl_hold” list values are then printed in the for loop.
	The output of the “print sl_hold[i].value” loop is shown below. The “length” field values for the “packet” items are in the column on the right.

	Example 3
	The following splits the list in the preceding example at each point where the value of the expression “.length > 5” changes, that is, between 5 and 7 and between 7 and 5.
	The struct-list-holder variable “sl_hold” then contains three lists:

	Example 4
	To sort the list before you split it, you can use the following syntax.
	See Also
	19.4.25 top()

	Purpose
	Return the last item in a list

	Category
	Pseudo-method

	Syntax
	list.top(): list-item
	Syntax example:

	Parameters
	list
	A list.

	Description
	Returns the last item in the list without removing it from the list. If the list is empty, an error is issued.

	Example
	The following example prints the contents of the last packet in the “packets” list.

	See Also
	19.4.26 top0()

	Purpose
	Return the first item of a list

	Category
	Pseudo-method

	Syntax
	list.top0(): list-item
	Syntax example:

	Parameters
	list
	A list.

	Description
	Returns the first item in the list without removing it from the list. If the list is empty, an error is issued.
	This pseudo-method can be used with pop0() to emulate queues.

	Example
	The following example prints the contents of the first packet in the “packets” list.

	See Also
	19.4.27 unique()

	Purpose
	Collapse consecutive items that have the same value into one item

	Category
	Pseudo-method

	Syntax
	list.unique(select-exp: exp): list
	Syntax example:

	Parameters
	list
	A list.
	select-exp
	An expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns a new list of all the distinct values in list. In the new list, all consecutive occurrences of items for which the value of exp are the same are collapsed into one item.

	Example 1
	In the following example, the list.unique() pseudo-method collapses the consecutive 5s and the consecutive 7s in “i_list” into a single 5 and a single seven. The example prints 3, 5, 7, 5.

	Example 2
	Suppose the “packets” list contains seven packets with the following “length” field values: 3, 5, 5, 7, 7, 7, 5. The list.unique...

	Example 3
	In the following example, the list.unique() pseudo-method removes any packet items with repeated “length” values from the “packets” list before the list is sorted using the list.sort() pseudo-method.
	See Also
	19.5 Sublist Pseudo-Methods
	This section describes the syntax for pseudo-methods that construct a new list from all the items in another list that satisfy specified conditions.
	The pseudo-methods in this section are:

	See Also
	19.5.1 all()

	Purpose
	Get all items that satisfy a condition

	Category
	Pseudo-method

	Syntax
	list.all(exp: bool): list
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current item, and the index variable can be used to refer to its index number.

	Description
	Returns a list of all the items in list for which exp is TRUE. If no items satisfy the boolean expression, an empty list is returned.

	Example 1
	The following example prints 7, 9, 11, since those are the values in “l_list” that are greater than 5.

	Example 2
	The following example creates a list named “pl” of all packets that have a “length” field value less than 5, and prints the “pl” list.

	Example 3
	The following creates a list named “pt” of all packets that have a “ptype” field value of “ETH”, and prints the “pt” list. This example uses the “it is a type” syntax to specify which subtype of the packet struct to look for.
	See Also
	19.5.2 all_indices()

	Purpose
	Get indexes of all items that satisfy a condition

	Category
	Pseudo-method

	Syntax
	list.all_indices(exp: bool): list of int
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression.

	Description
	Returns a list of all indexes of items in list for which exp is TRUE. If no items satisfy the boolean expression, an empty list is returned.

	Example 1
	The following example creates a list name “tl” that contains the index numbers of all the “instr” instances in the list named “i_list” which have “op1” field values greater than 63.
	Results

	Example 2
	In the following example, the list.all_indices() pseudo-method is used to create a list named “pl” of the indexes of the “packets” list items that are of subtype “small packet”.
	Results

	Example 3
	Using all_indices() on an empty list produces another empty list. Trying to use this result in a gen keeping constraint can cause a generation contradiction error. To avoid this, you can use a check like “if !test_ix.is_empty()” in the following example.
	Results
	See Also
	19.6 Math and Logic Pseudo-Methods
	This section describes the syntax for pseudo-methods that perform arithmetic or logical operations to compute a value using all items in a list.
	The pseudo-methods in this section are:

	See Also
	19.6.1 and_all()

	Purpose
	Compute the logical AND of all items

	Category
	Pseudo-method

	Syntax
	list.and_all(exp: bool): bool
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns a TRUE if all values of the exp are true, or returns FALSE if the exp is false for any item in the list.

	Example
	The following line prints TRUE if the “length” field value of all items in the “packets” list is greater than 63. If any packet has a length less than or equal to 63, it prints FALSE.

	See Also
	19.6.2 average()

	Purpose
	Compute the average of an expression for all items

	Category
	Pseudo-method

	Syntax
	list.average(exp: int): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the integer average of the exp computed for all the items in the list. Returns UNDEF if the list is empty.

	Example 1
	The following example prints 6 ((3 + 5 + 10)/3).

	Example 2
	The following example prints the average value of the “length” fields for all the items in the “packets” list.
	See Also
	19.6.3 or_all()

	Purpose
	Compute the logical OR of all items

	Category
	Pseudo-method

	Syntax
	list.or_all(exp: bool): bool
	Syntax example:

	Parameters
	list
	A list.
	exp
	A boolean expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns a TRUE if any value of the exp is true, or returns FALSE if the exp is false for every item in the list. Returns FALSE if the list is empty.

	Example
	The following code prints TRUE if the “length” field value of any item in the “packets” list is greater than 150. If no packet has a length greater than 150, it prints FALSE.

	See Also
	19.6.4 product()

	Purpose
	Compute the product of an expression for all items

	Category
	Pseudo-method

	Syntax
	list.product(exp: int): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the integer product of the exp computed over all the items in the list. Returns 1 if the list is empty.

	Example 1
	The following example prints 150 (3 * 5 * 10).

	Example 2
	The following example prints the product of the “mlt” fields in all the items in the “packets” list.
	See Also
	19.6.5 sum()

	Purpose
	Compute the sum of all items

	Category
	Pseudo-method

	Syntax
	list.sum(exp: int): int
	Syntax example:

	Parameters
	list
	A list.
	exp
	An integer expression. The it variable can be used to refer to the current list item, and the index variable can be used to refer to its index number.

	Description
	Returns the integer sum of the exp computed over all the items in the list. Returns 0 if the list is empty.
	The following example prints 18 (3 + 5 + 10).

	Example
	The following example prints the sum of the “length” field values for all the items in the “packets” list.

	See Also
	19.7 List CRC Pseudo-Methods
	This section describes the syntax for pseudo-methods that perform CRC (cyclic redundancy check) functions on lists.
	The pseudo-methods in this section are:

	See Also
	19.7.1 crc_8()

	Purpose
	Compute the CRC8 of a list of bits or a list of bytes

	Category
	Pseudo-method

	Syntax
	list.crc_8(from-byte: int, num-bytes: int): int
	Syntax example:

	Parameters
	list
	A list of bits or bytes.
	from-byte
	The index number of the starting byte.
	num-bytes
	The number of bytes to use.

	Description
	Reads the list byte-by-byte and returns the integer value of the CRC8 function of a list of bits or bytes. Only the least significant byte (LSB) is used in the result.
	The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not in the range of the list, an error is issued.
	NOTE- The algorithm for computing CRC8 is specific for the ATM HEC (Header Error Control) computation. The code used for HEC is a cyclic code with the following generating polynomial:

	Example
	In the example below, the “e_crc” variable gets the CRC8 of the bytes 2, 3, 4, and 5 in the list named “b_data”.

	Results
	See Also
	19.7.2 crc_32()

	Purpose
	Compute the CRC32 of a list of bits or a list of bytes

	Category
	Pseudo-method

	Syntax
	list.crc_32(from-byte: int, num-bytes: int): int
	Syntax example:

	Parameters
	list
	A list of bits or bytes.
	from-byte
	The index number of the starting byte.
	num-bytes
	The number of bytes to use.

	Description
	Reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes. Only the least significant word is used in the result.
	The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not in the range of the list, an error is issued.
	NOTE- The algorithm for computing CRC32 generates a 32-bit CRC that is used for messages up to 64 kilobytes in length. Such a CR...

	Example 1
	In the example below, the “b_data” variable gets the packed “packet” struct instance as a list of bytes, and the CRC32 of bytes 2, 3, 4, and 5 of “b_data” is printed.

	Example 2
	In the example below, the CRC32 value is calculated for the data field value. The “is_good_crc()” method checks the value and returns TRUE if it is good, FALSE if it is bad.
	See Also
	19.7.3 crc_32_flip()

	Purpose
	Compute the CRC32 of a list of bits or a list of bytes, flipping the bits

	Category
	Pseudo-method

	Syntax
	list.crc_32_flip(from-byte: int, num-bytes: int): int
	Syntax example:

	Parameters
	list
	A list of bits or bytes.
	from-byte
	The index number of the starting byte.
	num-bytes
	The number of bytes to use.

	Description
	Reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes, with the bits flipped. Only the least significant word is used in the result.
	The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not in the range of the list, an error is issued.
	The bits are flipped as follows:
	1) The bits inside each byte of the input are flipped.
	2) The bits in the result are flipped.

	Example
	In the example below, the “tc_crc” variable gets the CRC32 of the bytes 2, 3, 4, and 5 in the list named “b_data”, with the bits flipped.

	See Also
	19.8 Keyed List Pseudo-Methods
	This section describes the syntax for pseudo-methods that can be used only on keyed lists.
	Keyed lists are list in which each item has a key associated with it. For a list of structs, the key typically is the name of a ...
	While creating a keyed list, you must ensure that the key has a unique value for each item.
	Keyed lists can be searched quickly, by searching on a key value.
	This section contains descriptions of pseudo-methods that can only be used for keyed lists. Using one of these methods on a regular list results in an error.
	The pseudo-methods in this section are:

	See Also
	19.8.1 key()

	Purpose
	Get the item that has a particular key

	Category
	Pseudo-method

	Syntax
	list.key(key-exp: exp): list-item
	Syntax example:

	Parameters
	list
	A keyed list.
	key-exp
	The key of the item that is to be returned.

	Description
	Returns the list item that has the specified key, or NULL if no item with that key exists in the list.
	For a list of scalars, a value of zero is returned if there is no such item. Since zero might be confused with a found value, it is not advisable to use zero as a key for scalar lists.

	Example 1
	The following example uses a list of integers for which the key is the item itself. This example prints 5.

	Example 2
	In the following example, the “mklist()” method generates a list of 10 “location” instances with even numbered address from 2 to...
	Results

	Example 3
	The following example shows how to use a keyed list on the lefthand side of assignment. The “mklist()” method generates a list of 10 “location” instances with even-numbered address values from 2 to 20.
	The “locations” list is a list of “location” instances with “address” as its key. The “l_item” variable is a location instance w...
	Results
	See Also
	19.8.2 key_index()

	Purpose
	Get the index of an item that has a particular key

	Category
	Pseudo-method

	Syntax
	list.key_index(key-exp: exp): int
	Syntax example:

	Parameters
	list
	A keyed list.
	key-exp
	The key of the item for which the index is to be returned.

	Description
	Returns the integer index of the item that has the specified key, or returns UNDEF if no item with that key exists in the list.

	Example 1
	The following example uses a list of integers for which the key is the item itself. This example prints 1, since that is the index of the list item with a value of 2.

	Example 2
	The locations.key_index() pseudo-method in the following gets the index of the item in the “locations” list that has an address of 9, if any item in the list has that address.
	See Also
	19.8.3 key_exists()

	Purpose
	Check that a particular key is in a list

	Category
	Pseudo-method

	Syntax
	list.key_exists(key-exp: exp): bool
	Syntax example:

	Parameters
	list
	A keyed list.
	key
	The key that is to be searched for.

	Description
	Returns TRUE if the key exists in the list, or FALSE if it does not.

	Example 1
	The following example uses a list of integers for which the key is the item itself. The first print action prints TRUE, since 2 exists in the list. The second print action prints FALSE, since 7 does not exist in the list.

	Example 2
	The locations.key_exists() pseudo-method in the following example returns TRUE to “k” if there is an item in the “locations” list that has a key value of 30, or FALSE if there is no such item.
	See Also
	19.9 Restrictions on Keyed Lists

	See Also

	20 Preprocessor Directives
	This chapter contains the following sections:
	See Also
	20.1 #ifdef, #ifndef

	Purpose
	Define a preprocessor directive

	Category
	Statement, struct member, action

	Syntax
	#if[n]def [`]name then {e-code} [#else {e-code}]
	Syntax example:
	NOTE- The import statement in the syntax example above must be on a line by itself. The syntax “#ifdef MEM_LG then {import mml.e};”, where the import statement is part of the #ifdef statement line, will not work.

	Parameters
	name
	Without a backtick, a name defined in a define statement. For information about define, see Chapter 13, “Macros”.
	With a backtick (`name), a name defined with a Verilog `define directive, or in a define statement where the macro is defined in Verilog style.
	e-code
	e code to be included based on whether the name macro has been defined.

	Description
	The #ifdef and #ifndef preprocessor directives are used together with define name macros to cause the e parser to process particular code or ignore it, depending on whether a given name macro has been defined.
	The optional #else syntax provides an alternative statement when the #ifdef or #ifndef is not true. For #ifdef, if the name macr...
	NOTE- Except when it is within an #else block, the #ifdef or #ifndef keyword must be the first keyword on the line.

	Example 1
	In this example, #ifdef is used as statements. The module named “t_1.e” contains the statement “define test_C”. Neither “test_A” nor “test_B” is defined anywhere. Thus, only the “t_4.e” module is imported by the #ifdef statements.

	Example 2
	In this example, #ifdef is used as a struct member. The module contains the statement “define test_C”. Neither “test_A” nor “tes...

	Example 3
	In this example, #ifdef is used as an action. The module contains the statement “define test_C”. Neither “test_A” nor “test_B” is defined anywhere. Thus, only the “gen t_data keeping it in [300..399]” action is applied by the #ifdef statements.
	See Also
	20.2 #define

	Purpose
	Define a name macro

	Category
	Statement

	Syntax
	[#]define [`]name [replacement]
	Syntax example:

	Parameters
	name
	Any e name.
	This is used with no replacement parameter for conditional code processing. An #ifdef preprocessor directive later in the e code that has the name as its argument evaluates to TRUE. See “#ifdef, #ifndef” on page 627 for more information.
	When a replacement is given, the parser substitutes the replacement for the macro name everywhere name appears, except inside strings.
	The name can be preceded with a backtick, `. This makes the name look like a Verilog `define name, but it is treated the same as a name without a backtick.
	The name is case sensitive: “LEN” is not the same as “len”.
	replacement
	Any syntactic element, for example, an expression or an HDL variable. This replaces the name wherever the name appears in the e code that follows the define statement.

	Notes
	Description
	With a replacement, defines a macro that replaces the name wherever it occurs in the e code. With no replacement, specifies a na...

	Notes

	Example 1
	The following are name macro definitions:

	Example 2
	To use a #define macro, refer to the name. Given the definitions above, you could use them as in the following:
	See Also
	20.3 #undef

	Purpose
	Undefine a name macro

	Category
	Statement

	Syntax
	undef [`]name
	Syntax example:

	Parameters
	name
	Any e name.
	This is used with no replacement parameter for conditional code processing. An #ifdef preprocessor directive later in the e code that has the name as its argument evaluates to TRUE. See “#ifdef, #ifndef” on page 627 for more information.
	When a replacement is given, the parser substitutes the replacement for the macro name everywhere name appears, except inside strings.
	The name can be preceded with a backtick, `. This makes the name look like a Verilog `define name, but it is treated the same as a name without a backtick.
	The name is case sensitive: “LEN” is not the same as “len”.

	Description
	Removes a name macro that was defined using the #define statement. The #undef statement can appear anywhere in the e code. The n...

	Notes
	Example
	Say you have two e files, my_design.e and external_code.e, and the following appears in the my_design.e module:
	The following appears in the external_code.e module:
	In the external_code.e file, the built-in semaphore struct is used. In order to be able to use the built-in semaphore struct, yo...

	See Also

	21 Importing e Files
	21.1 Overview
	Imports (import statement, verilog import statement) load a given e file or Verilog file This chapter describes the import statement.
	See Also
	21.2 import

	Purpose
	Load other e modules

	Category
	Statement

	Syntax
	import file-name, ... | (file-name, ...)
	Syntax example:

	Parameters
	file-name, ...
	The names of files, separated by commas, that contain e modules to be imported. If no extension is given for a file name, an “.e” extension is assumed.
	The (file-name, ...) syntax is for cyclic importing, in which one module references a field in a second module, and the second module references a field in the first module.
	File names can contain references to environment variables using the UNIX notation “$name” or “${name}”.
	Relative path indicators “./” and “../” can be used in filenames.

	Description
	Loads additional e modules before continuing to load the current file.
	If a specified module has already been loaded or compiled, the statement is ignored. For modules not already loaded or compiled, the search sequence is:
	1) Directories specified by the PATH environment variable.
	2) The current directory.
	3) The directory in which the importing module resides.

	If you need to refer in struct A to a struct member of struct B, and you also need to refer in struct B to a struct member of struct A, that is called a cyclic reference. The import statement can handle cyclic references if you do the following:
	1) Before the definition of struct A in module A, add an import of module B in which struct B is defined.
	2) Before the definition of struct B in module B, add an import of module A.

	This is called implicit cyclic importing.
	Another way to do a cyclic import is to use the import (file-name, ...) syntax, which resolves cycles by loading the two or more modules as one.
	When multiple modules are loaded together, the behavior is as if the files are concatenated.
	No module is imported more than once. If an import statement includes a module that has already been loaded, that module is not imported.

	Notes
	Example 1
	The following UNIX commands are executed prior to loading the e module shown below:
	All of the import statements in the following e module are legal:

	Example 2
	In the following example, a struct named “pci_transaction” is defined in one module, which is then imported into another module where additional fields and constraints are added in an extension to the struct definition.

	Example 3
	In the following example, three modules are involved in cyclic referencing:
	You only need to load the switch.e module. The switch.e module imports the packet.e module, which imports the cell.e module. The...

	Example 4
	This example shows the explicit cyclic import syntax, import (file-name, ...), using the same modules as Example 3 on page 637. ...

	Example 5
	This example shows how to load the files in Example 3 on page 637 while avoiding the loss of modularity that results from cyclic importing.
	In Example 3, the cell.e module relies on a type (switch) that is defined in the switch.e module. This means that a cell struct cannot be used without also using a switch struct, so that cell.e cannot stand alone.
	In this example, the switch struct instance has been moved from the cell.e module to an extension of cell in the switch.e module, so that the cell.e module does not rely on the presence of the switch.e module.

	Example 6
	The case of an import followed by an #ifdef which, in turn, imports another module causes a load error if the second imported mo...
	Trying to load top.e results in this load error. The type statement preceding the #ifdef statement in the defs.e module is seen as out of order with respect to the import venus.e statement. The error is shown below:
	This error can be avoided by simply moving the define VENUS statement above the type statement in the defs.e module:
	See Also

	22 Encapsulation Constructs
	This chapter contains syntax and descriptions of the e statements that are used to create packages and modify access control. The constructs are:
	22.1 package package-name

	Purpose
	Associates a module with a package.

	Category
	Statement

	Syntax
	package package-name
	Syntax example:

	Parameters
	package- name
	A standard e identifier which assigns a unique name to the package. It is legal for a package name to be the same as a module or type name.

	Description
	Only one package statement can appear in a file, and it must be the first statement in the file.
	A file with no package statement is equivalent to a file beginning with the statement, package main.

	Example
	See Also
	22.2 package type-declaration

	Purpose
	Modifies access to a type or a struct.

	Category
	Statement

	Syntax
	[package] type-declaration
	Syntax example:

	Parameters
	type-declaration
	An e type declaration (for a struct, unit, enumerated list, or other type).

	Description
	The package modifier means that code outside the package files cannot access the defined struct member. This includes declaring ...
	NOTE- The package type does not determine the visibility of a package, but only its access control.
	Without the package modifier, the type or struct has no access restriction.
	A derived struct (using like inheritance) must be explicitly declared package if its base struct is declared package. It can be declared package even if its base struct is not.
	Definition of a when subtype (using a when or extend clause) does not allow for an access modifier. A when subtype is public unless either its base struct or one of its determinant fields is declared package.
	A when subtype cannot have a private or protected determinant field. Any reference to a when subtype, even in a context in which the when determinant field is accessible, results in a compilation error.

	Example
	See Also
	22.3 package | protected | private struct-member

	Purpose
	Modifies access to a struct field, method, or event.

	Category
	Keyword

	Syntax
	package struct-member-definition
	protected struct-member-definition
	private struct-member-definition
	Syntax examples:

	Parameters
	struct- member- definition
	A struct or unit field, method, or event definition. SeeChapter 4, “Structs, Fields, and Subtypes” for the syntax of struct and unit member definitions.

	Description
	A struct member declaration may include a package, protected, or private keyword to modify access to the struct member.
	If no access modifier exists in the declaration of a struct member, the struct member has no access restriction (the default is public).
	The package modifier means that code outside the package files cannot access the struct member. It is equivalent to the default (package) access level for fields and methods in Java.
	The protected modifier means that code outside the struct family scope cannot access the struct member. It is similar (although not equivalent) to the protected semantics in other object-oriented languages.
	The private modifier means that only code within both the package and the struct family scope can access the struct member. This...
	An extension of a struct member can restate the same access modifier as the declaration has, or omit the modifier altogether. If a different modifier appears, the compiler issues an error.
	All references to a struct member outside its accessibility scope result in an error at compile time. Using an enumerated field’s value as a when determinant is considered such a reference, even if the field name is not explicitly mentioned.
	A field must be declared package or private if its type is package, unless it is a member of struct which is declared package.
	A method must be declared package or private if its return type or any of its parameter types are package, unless it is a method of a struct which is declared package.
	Only fields, methods and events can have access restrictions. There are other named struct members in e, namely cover groups and...

	Example
	See Also

	23 Predefined Methods Library
	A significant part of e functionality is implemented as set of predefined methods defined directly under the global and sys structs.
	Furthermore, every struct that is already available to you or is defined by you inherits a set of predefined methods. Some of these methods can be extended to add functionality, and some of them are empty, allowing you to define their function.
	Three other predefined structs, semaphore, locker, and scheduler, provide predefined methods that are useful in controlling TCMs...
	Finally, there are pseudo-methods. Calls to pseudo-methods look like method calls. However, they are associated not with struct expressions, but with other kinds of expressions.
	The following sections describe the predefined methods:
	See Also
	23.1 Predefined Methods of sys
	This section contains descriptions of the extendable methods of sys:
	It is not recommended to extend sys.generate(). Instead, you should extend the related pre_generate() or post_generate() method of a particular struct or unit. See “Predefined Methods of Any Struct” on page 647 for more information on these methods.
	23.1.1 The init() Method of sys

	Purpose
	Perform general preparations for the test

	Category
	Predefined method for sys

	Syntax
	[sys.]init()
	Syntax example:

	Description
	This method is called when you load an e file or when you invoke an extended executable that contains compiled e code.
	It is not invoked when you restore an environment from a save file.
	You can extend this method to perform general preparations for the test.

	See Also
	23.1.2 The run() Method of sys

	Purpose
	Recommended place for starting TCMs

	Category
	Predefined method for sys

	Syntax
	[sys.]run()
	Syntax example:

	Description
	Can be extended to start user-defined TCMs. The method is initially empty.
	NOTE- Starting a TCM before the end of start_test() causes a runtime error.

	Example
	See Also
	23.2 Predefined Methods of Any Struct
	The following methods are available for any instantiated user-defined struct or unit.
	23.2.1 The copy() Method of any_struct

	Purpose
	Make a shallow copy

	Category
	Predefined method of any struct or unit

	Syntax
	exp.copy(): exp
	Syntax example:

	Parameters
	exp
	Any legal e expression.

	Description
	Returns a shallow, non-recursive copy of the expression. This means that if the expression is a list or a struct that contains other lists or structs, the second-level items are not duplicated. Instead, they are copied by reference.
	The following list details how the copy is made, depending on the type of the expression:
	scalar
	The scalar value is simply assigned as in a normal assignment.
	string
	The whole string is copied.
	scalar list
	If exp is a scalar list, a new list with the same size as the original list is allocated. The contents of the original list is duplicated.
	list of structs
	A new list with the same size as the original list is allocated. The contents of the list is copied by reference, meaning that each item in the new list points to the corresponding item in the original list.
	struct
	If exp is a struct instance, a new struct instance with the same type as the original struct is allocated. All scalar fields are...

	Notes
	Example
	Result
	This example shows that any changes in value to lists and structs contained in the copied struct instance (“pmv”) are reflected in the original struct instance (“pmi”) because these items are copied by reference.

	See Also
	23.2.2 do_pack()

	Purpose
	Pack the physical fields of the struct

	Category
	Predefined method of any struct

	Syntax
	do_pack(options:pack options, l: *list of bit)
	Syntax example:

	Parameters
	options
	This parameter is an instance of the pack options struct. See “Using the Predefined pack_options Instances” on page 506 for information on this struct.
	l
	An empty list of bits that is extended as necessary to hold the data from the struct fields.

	Description
	The do_pack() method of a struct is called automatically whenever the struct is packed. This method appends data from the physic...
	For example, the following assignment to “lob”
	makes the following calls to the do_pack method of each struct, where tmp is an empty list of bits:
	You can extend the do_pack() method for a struct in order to create a unique packing scenario for that struct. You should handle...

	Notes
	Example 1
	This example shows how to override the do_pack() method for a struct called “cell”. The extension to do_pack() overrides any packing option passed in and always uses packing.low. It packs “operand2” first, then “operand1” and “operand3”.
	Result

	Example 2
	In the following example, the do_pack() method for “cell” is overwritten to use the low_big_endian packing option by default.
	Result

	Example 3
	This example swaps every pair of bits within each 4-bit chunk after packing with the packing options specified in the pack() call.
	Result
	See Also
	23.2.3 do_unpack()

	Purpose
	Unpack a packed list of bit into a struct

	Category
	Predefined method of any struct

	Syntax
	do_unpack(options:pack options, l: list of bit, from: int): int
	Syntax example:

	Parameters
	options
	This parameter is an instance of the pack options struct. See “Using the Predefined pack_options Instances” on page 506 for information on this struct.
	l
	A list of bits containing data to be stored in the struct fields.
	from
	An integer that specifies the index of the bit to start unpacking.
	int (return value)
	An integer that specifies the index of the last bit in the list of bits that was unpacked.

	Description
	The do_unpack() method is called automatically whenever data is unpacked into the current struct. This method unpacks bits from ...
	For example, the following call to unpack()
	makes the following calls to the do_unpack method of each struct:
	The method returns an integer, which is the index of the last bit unpacked into the list of bits.
	The method issues a runtime error message if the struct has no physical fields. If at the end of packing there are leftover bits...
	You can extend the do_unpack() method for a struct in order to create a unique unpacking scenario for that struct. You should ha...

	Notes

	Example 1
	This first example shows how to modify do_unpack() to change the order in which the fields of a struct are filled. In this case,...
	Result

	Example 2
	This example modifies the do_unpack method of the “frame” struct to first calculate the length of the “data” field. The calculation uses “from”, which indicates the last bit to be unpacked, to calculate the length of “data”.
	Results
	See Also
	23.2.4 The do_print() Method of any_struct

	Purpose
	Print struct info

	Category
	Predefined method of any struct or unit

	Syntax
	[exp.]do_print()
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct.

	Description
	Controls the printing of information about a particular struct. You can extend this method to customize the way information is displayed.
	This method is called by the print action whenever you print the struct.

	Example
	Result
	23.2.5 The init() Method of any_struct

	Purpose
	Initialize struct

	Category
	Predefined method of any struct or unit

	Syntax
	[exp.]init()
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct.

	Description
	The init() method of a struct is called when a new instance of the struct is created.
	You can extend the init() method of a struct to set values for fields that you want to have a different value than the default v...
	You should consider initializing the non-generated fields of a struct, especially fields of an enumerated scalar type or unsized...
	If a field is initialized but not marked as non-generated, the initialization is overwritten during generation. To mark a field as non-generated, place a ! character in front of the field name.

	Example
	Result
	See Also
	23.2.6 The print_line() Method of any_struct

	Purpose
	Print a struct or a unit in a single line

	Category
	Predefined method of any struct or unit

	Syntax
	[exp.]print_line(NULL | struct-type.type())
	Syntax example:

	Parameters
	exp
	An expression that returns a struct or a unit.
	NULL | struct- type.type()
	To print a row representation of the struct or unit, the parameter is NULL.To print the header for the list, the parameter is of the form:

	Description
	You can call this method to print lists of structs of a common struct type in a tabulated table format. Each struct in the list is printed in a single line of the table.
	When printing the structs, there is a limit on the number of fields printed in each line. The first fields that fit into a singl...

	Example
	Result
	23.2.7 The quit() Method of any_struct

	Purpose
	Kill all threads of a struct or unit instance

	Category
	Predefined method of any struct or unit

	Syntax
	[exp.]quit()
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct.

	Description
	Deactivates a struct instance, killing all threads associated with the struct and enabling garbage collection. The quit() method...
	A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of the started TCM thread, and the quit() method kills those subthreads, too.
	If a struct has more than one started TCM, each TCM runs on a separate, parallel thread. Each thread shares a unique identifier,...
	The quit() method is called by the global.stop_run() method. You can also call it explicitly.

	Example
	This example shows the quit() method used in conjunction with the stop_run() routine to stop a run cleanly. When a “packet” stru...

	Result
	See Also
	23.2.8 The run() Method of any_struct

	Purpose
	Recommended place for starting TCMs

	Category
	Method of any struct or unit

	Syntax
	[exp.]run()
	Syntax example:

	Parameters
	exp
	An expression that returns a unit or a struct.

	Description
	Can be extended to start user-defined TCMs. The method is initially empty.
	The run() methods of all structs under sys are called, starting from sys in depth-first search order, by the global.run_test() method, when you execute a test.
	After this initial pass, when any struct is generated (with the gen action) or allocated (with new), its run() method is also invoked. This ensures that:
	If you run multiple tests in the same session, the run() method is called once for each test in the session. The init() method is called only once before the first test.

	Example
	See Also
	23.3 Predefined Methods of Any Unit
	The following methods are available for any instantiated user-defined unit.
	23.3.1 hdl_path()

	Purpose
	Return a relative HDL path for a unit instance

	Category
	Predefined pseudo-method for any unit

	Syntax
	[unit-exp.]hdl_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the HDL path of a unit instance. The most important role of this method is to bind a unit instance to a particular compo...
	Although absolute HDL paths are allowed, relative HDL paths are recommended if you intend to follow a modular verification strategy.
	This method always returns an HDL path exactly as it was specified in constraints. If, for example, you use a macro in a constraint string, then hdl_path() returns the original and not substituted string.

	Notes

	Example 1
	This example shows how you can use relative paths in lower-level instances in the unit instance tree. To create the full HDL pat...

	Example 2
	This example shows how hdl_path() returns the HDL path exactly as specified in the constraint. Thus the first print action prints “`TOP.router_i”. The second print action, in contrast, accesses “top.router_i.clk”.
	Result
	See Also
	23.3.2 full_hdl_path()

	Purpose
	Return an absolute HDL path for a unit instance

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]full_hdl_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational messages. Like the hd...

	Example
	This example uses full_hdl_path() to display information about where a mutex violation has occurred.

	Result
	See Also
	23.3.3 e_path()

	Purpose
	Returns the location of a unit instance in the unit tree

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]e_path(): string
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns the location of a unit instance in the unit tree. This method is used mainly in informational messages.

	Example
	Result
	See Also
	23.3.4 agent()

	Purpose
	Maps the DUT’s HDL partitions into e code

	Category
	Predefined pseudo-method for any unit

	Syntax
	keep [unit-exp.]agent() == string;
	Syntax example:

	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.
	string
	One of the following predefined agent names: verilog, vhdl, mti_vlog, mti_vhdl, ncvlog and ncvhdl. Specifying the agent name as ...

	Description
	Specifying an agent identifies the simulator that is used to simulate the corresponding DUT component. Once a unit instance has ...
	An agent name may be omitted in a single-HDL environment but it must be defined implicitly or explicitly in a mixed HDL environm...
	Given the hdl_path() and agent() constraints, a correspondence map is established between the unit instance HDL path and its age...
	It is possible to access Verilog signals from a VHDL unit instance code and vice-versa. Every signal is mapped to its HDL domain according to its full path, regardless of the specified agent of the unit that the signal is accessed from.
	When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the agent string is exactly as specified in the corresponding constraint.

	Notes

	Example 1
	In the following example, the driver instance inherits an agent name implicitly from the enclosing router unit instance.

	Example 2
	In this example, the signal ‘top.rout.packet_valid’ is sampled using the Verilog PLI because the path “top.rout” is specified as...
	23.3.5 get_parent_unit()

	Purpose
	Return a reference to the unit containing the current unit instance

	Category
	Predefined method for any unit

	Syntax
	[unit-exp.]get_parent_unit(): unit type
	Syntax example:
	Parameters
	unit-exp
	An expression that returns a unit instance. If no expression is specified, the current unit instance is assumed.

	Description
	Returns a reference to the unit containing the current unit instance.

	Example
	See Also
	23.4 Unit-Related Predefined Methods of Any Struct
	The unit-related predefined methods of any struct are:

	See Also
	23.4.1 get_unit()

	Purpose
	Return a reference to a unit

	Category
	Predefined method of any struct

	Syntax
	[exp.]get_unit(): unit type
	Syntax example:
	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.

	Description
	When applied to an allocated struct instance, this method returns a reference to the parent unit-the unit to which the struct is bound. When applied to a unit, it returns the unit itself.
	Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is generated during pre-r...
	This method is useful when you want to determine the parent unit instance of a struct or a unit. You can also use this method to...

	Example 1
	This example shows that get_unit() can access predefined unit members, while get_enclosing_unit() must be used to access user-defined unit members.
	Result

	Example 2
	The first call to get_unit() below shows that the parent unit of the struct instance “p” is sys. The second call shows that the parent unit has been changed to “XYZ_router”.

	Example 3
	In this example, the trace_inject() method displays the full HDL path of the “XYZ_dlx” unit (not the “XYZ_tb” unit) because “instr_list” is generated by the run method of “XYZ_dlx”.
	Result
	See Also
	23.4.2 get_enclosing_unit()

	Purpose
	Return a reference to nearest unit of specified type

	Category
	Predefined pseudo-method of any struct

	Syntax
	[exp.]get_enclosing_unit(unit-type: exp): unit instance
	Syntax example:
	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.
	NOTE- If get_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and not the parent unit instance.
	unit-type
	The name of a unit type or unit subtype.

	Description
	Returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access fields of the parent unit in a typed manner.
	You can use the parent unit to store shared data or options such as packing options that are valid for all its associated subunits or structs. Then you can access this shared data or options with the get_enclosing_unit() method.

	Notes

	Example 1
	In the following example, get_enclosing_unit() is used to print fields of the nearest enclosing unit instances of type “XYZ_cpu”...
	Result

	Example 2
	Result
	See Also
	23.4.3 try_enclosing_unit()

	Purpose
	Return a reference to nearest unit instance of specified type or NULL

	Category
	Predefined method of any struct

	Syntax
	[exp.]try_enclosing_unit(unit-type: exp): unit instance
	Syntax example:
	Parameters
	exp
	An expression that returns a unit or a struct. If no expression is specified, the current struct or unit is assumed.
	NOTE- If try_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and not the parent unit instance.
	unit-type
	The name of a unit type or unit subtype.

	Description
	Like get_enclosing_unit(), this method returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access fields of the parent unit in a typed manner.
	Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified type is found. Inst...

	Example
	See Also
	23.4.4 set_unit()

	Purpose
	Change the parent unit of a struct

	Category
	Predefined method of any struct

	Syntax
	[struct-exp.]set_unit(parent: exp)
	Syntax example:
	Parameters
	struct-exp
	An expression that returns a struct. If no expression is specified, the current struct is assumed.
	parent
	An expression that returns a unit instance.

	Description
	Changes the parent unit of a struct to the specified unit instance.
	NOTE- This method does not exist for units because the unit tree cannot be modified.

	Example
	23.5 Pseudo-Methods
	Pseudo-methods calls look like method calls, but unlike methods they are not associated with structs and are applied to other types of expressions, such as lists.
	Pseudo-methods cannot be changed or extended through use of the is only, is also or is first constructs.
	The following sections provide descriptions of the pseudo-methods:

	See Also
	23.5.1 declared_type()

	Purpose
	Get a handle for the declared type of an expression

	Category
	Pseudo-method

	Syntax
	exp.declared_type(): type_descriptor
	Syntax example:
	Parameters
	exp
	Any legal e expression.

	Description
	Returns a handle for the declared type of an expression
	The use of this pseudo-method is strongly discouraged.
	23.5.2 type()

	Purpose
	Get a handle for the type of an expression

	Category
	Pseudo-method

	Syntax
	exp.type(): type_descriptor
	Syntax example:
	Parameters
	exp
	Any legal e expression.

	Description
	Returns a handle for the type of an expression.
	The use of this pseudo-method is strongly discouraged.
	23.5.3 field()

	Purpose
	Get the handle for a field

	Category
	Pseudo-method

	Syntax
	struct-exp.field(field-name): field
	Parameters
	struct-exp
	An expression that returns a struct.

	Description
	Returns the handle for the specified field.
	The use of this pseudo-method is strongly discouraged.
	23.5.4 unsafe()

	Purpose
	Bypass type checking

	Category
	Pseudo-method

	Syntax
	exp.unsafe(): type
	Parameters
	exp
	Any legal e expression.

	Description
	Passes the expression with no type checking or auto-casting.
	This method should be used only when calling C routines that perform their own type checking.

	See Also
	23.5.5 source_location()

	Purpose
	Get source reference string

	Category
	Pseudo-method

	Syntax
	source_location(): string
	Syntax example:

	Description
	Returns the source location string. The string describes the line number and the module name in which the source_location() method was invoked. The format of the string is:

	Example
	Result
	See Also
	23.5.6 source_method()

	Purpose
	Get name of executing method

	Category
	Pseudo-method

	Syntax
	source_method(): string
	Syntax example:

	Description
	Returns the name of the enclosing method. The string describes the line number and the module name in which the source_method() method was invoked. The format of the string is:

	Example
	Result
	See Also
	23.6 Semaphore Methods
	The e language provides three predefined structs that are useful in controlling resource sharing between TCMs:
	A locker is useful when a single entity needs to prevent others from a shared resource. lock() and release() must be issued by t...
	Table 23-1 gives a brief description of the predefined methods of the semaphore and rdv_semaphore structs. Table 23-2 describes the predefined methods of the locker struct.
	Table 23-1- Semaphore Methods

	up()
	Increments the semaphore's value. Blocks if the value is already the maximum possible.
	down()
	Decrements the semaphore's value. Blocks if the value is already 0.
	try_up()
	Increments the semaphore's value. If the value is already the maximum possible, returns without blocking.
	try_down()
	Decrements the semaphore's value. If the value is already 0, returns without blocking.
	set_value()
	Sets the initial value of the semaphore.
	get_value()
	Returns the current value of the semaphore.
	set_max_value()
	Sets an upper limit to the possible value of the semaphore.
	get_max_value()
	Returns the maximum possible value.
	Table 23-2- Locker Methods (continued)

	lock()
	The first TCM to call the lock() method of a field of type locker gets the lock and can continue execution. The execution of the other TCMs is blocked.
	release()
	When a TCM that has the lock calls release(), control goes to the next TCM serviced by the scheduler that is waiting on the locker. The order in which the lock is granted is by a FIFO (First In First Out) order of client lock() requests.

	See Also
	23.7 How to Use the Semaphore Struct
	A field of type semaphore typically serves as a synchronization object between two types of TCMs: producer and consumer.
	Any consumer TCM uses the predefined down() time-consuming method of the semaphore to gain control of a new resource managed by ...
	Any producer TCM uses the predefined up() time consuming method of the semaphore to increase the amount of available resources o...
	The amount of available resources is zero by default but can be set otherwise using the set_value() method. The current amount of available resources can be obtained using the get_value() method.
	There is a limit to the possible number of available resources. Typically, the maximum is MAX_INT, but it can be set to other va...
	Any producer TCM is blocked if the semaphore already holds the maximum number of available resources.
	23.7.1 up() and down()

	Purpose
	Synchronize producer and consumer TCMs

	Category
	Predefined TCM of semaphore struct

	Syntax
	semaphore.up()
	semaphore.down()
	Syntax example:
	Parameters
	semaphore
	An expression of type semaphore or rdv_semaphore

	Description
	The up() time-consuming method increases the number of available resources of the semaphore by 1. If the number of available res...
	The down() time consuming method decreases the number of resources of the semaphore by 1. If no resources are available, the TCM is blocked. Blocked calls to down() are serviced according to their request order (on a First In First Out basis).
	With an rdv_semaphore, up() and down() are blocked unless they coincide. The down() TCM always breaks the block first.

	Example 1
	The following example shows how you can use a semaphore to handle concurrent requests for exclusive access from multiple clients...
	When both clients issue a request at the same time the semaphore keeps track of the order of the requesting TCMs. The first clie...

	Result:
	Example 2
	The following example shows how to use an rdv_semaphore to synchronize several reading TCMs that share a common input source.
	In this example there is one writer and two readers. It takes the writer 3 cycles to write its data, and then it calls the up() ...

	Result:
	See Also
	23.7.2 try_up() and try_down()

	Purpose
	Synchronize producer and consumer methods

	Category
	Predefined method of semaphore struct

	Syntax
	semaphore.try_up(): bool
	semaphore.try_down(): bool
	Syntax example:
	Parameters
	semaphore
	An expression of type semaphore or rdv_semaphore.

	Description
	The try_up() and try_down() methods try to increment or decrement the number of available resources by 1, respectively. If the n...
	NOTE- Being regular methods (not TCMs), try_up() and try_down() never generate a context switch.

	Example
	The following example shows a driver that sends information at each clock. If there is valid data in reg that is protected by the semaphore reg_sem, it sends its contents. Otherwise, it sends 0.

	See Also
	23.7.3 set_value() and get_value()

	Purpose
	Set and get the number of available resources of a semaphore

	Category
	Predefined method of semaphore struct

	Syntax
	semaphore.set_value(new_value: int)
	semaphore.get_value(): int
	Syntax example:
	Parameters
	new_value
	An expression of type signed int

	Description
	The set_value() method sets the number of available resources of the semaphore. By default, a semaphores are initialized with zero available resources.
	The new value must be a non-negative integer, no larger than MAX_INT. If the set_max_value() method of the struct was used, the ...
	set_value() cannot be called if either up() or down() was previously called. In such case, an erroris issued. Setting the value of an rdv_semaphore to something other than zero also results in a runtime error.
	The get_value() method returns the current number of available resources of the semaphore.

	Example
	Result:
	See Also
	23.7.4 set_max_value() and get_max_value()

	Purpose
	Set and get the maximum number of available resources of a semaphore

	Category
	Predefined method of semaphore struct

	Syntax
	semaphore.set_max_value(new_value: int)
	semaphore.get_max_value(): int
	Syntax example:
	Parameters
	new_value
	An expression of type signed int

	Description
	The set_max_value() method sets the maximum number of available resources of the semaphore. By default, a semaphore is initialized with a maximum of MAX_INT available resources.
	The new value must be a positive integer, no larger than MAX_INT. If set_value() was used, the new value must not be smaller than the number of available resources. If these conditions do not hold, a runtime error is issued.
	The value of an rdv_semaphore is constantly zero. Therefore its default maximum value is zero, and it cannot be set to a value other than that. Trying to do so also results in a runtime error.
	set_max_value() cannot be called if either up() or down() was previously called. In such case, an error is issued.
	It is safer to invoke the set_max_value() method before any other semaphore method.
	The get_max_value() method returns the current limit for available resources of the semaphore.

	Example
	Result:
	See Also
	23.7.5 lock() and release()

	Purpose
	Control access to a shared resource

	Category
	Predefined TCM of locker struct

	Syntax
	locker-exp.lock()
	locker-exp.release()
	Syntax example:
	Parameters
	locker-exp
	An expression of type locker.

	Description
	locker is a predefined struct with two predefined methods, lock() and release(). These methods are TCMs.
	Once a field is declared to be of type locker, that field can be used to control the execution of TCMs by making calls from the TCMs to locker.lock() and locker.release().
	If you call locker.lock() from multiple TCMs, the first TCM gets the lock and can continue execution. The execution of the other TCMs is blocked. Thus any resources that are shared between the TCMs will be available only to the TCM that gets the lock.
	When a TCM calls release(), control goes to the next TCM serviced by the scheduler that is waiting on the locker. The order in which the lock is granted is by a FIFO (First In First Out) order of client lock() requests.
	An e program uses non-preemptive scheduling, which means that thread execution is interrupted only when the executing thread reaches a wait, sync, TCM call, release(), or lock() request. This has two implications:
	NOTE-

	Example 1
	This example illustrates how the execution of two TCMs are controlled using a field of type locker.
	Result
	Note that tcm2 gets the lock first, then the first all of branch of tcm1 and finally the last all of branch of tcm1.

	Example 2
	Result
	23.8 TCM Related Methods
	The scheduler is a predefined struct containing methods that let you access active TCMs and terminate them.
	A TCM that is invoked with a start action is a thread. If a started TCM calls other TCMs, those TCMs are considered subthreads o...
	The following sections describe how to retrieve the handle for active threads:
	The following sections describe how to terminate active threads:
	23.8.1 get_current_handle()

	Purpose
	Obtain the handle of the current TCM

	Category
	Predefined method

	Syntax
	scheduler.get_current_handle(): thread handle
	Syntax example:

	Description
	Returns the handle of the currently running TCM. The handle is of the predefined type named “thread_handle”.
	This method must ultimately be invoked from a TCM. You can call it from a non-TCM method, but that method must, at some point, b...
	NOTE- A runtime error is produced if get_current_handle() is called from within a regular (not time-consuming) method, if that method is not ultimately called from a TCM.

	Example
	Result
	See Also
	23.8.2 get_handles_by_name()

	Purpose
	Get list of thread handles on a struct instance basis

	Category
	Predefined method

	Syntax
	scheduler.get_handles_by_name(struct-inst: exp, method-name: string): list of thread handle
	Syntax example:
	Parameters
	struct-exp
	NULL, or an expression of type struct that specifies the owning struct instance for the started TCMs with the specified name.
	method-name
	NULL, or the name of a method in the specified struct, enclosed in double quotes.

	Description
	Returns a list of handles of all started TCMs of the specified name associated with the specified struct instance.
	When the struct expression is NULL the resulting list contains handles for all the started TCMs of the given name. When the meth...
	A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of the started TCM thread. ...

	Example
	Result
	See Also
	23.8.3 get_handles_by_type()

	Purpose
	Get list of thread handles on a struct type basis

	Category
	Predefined method

	Syntax
	scheduler.get_handles_by_type(struct-inst: exp, method-name: string): list of thread handle
	Syntax example:
	Parameters
	struct-exp
	NULL, or an expression of type struct that specifies the owning struct type for the top-level TCMs of the specified method.
	method-name
	NULL, or the name of a method in the specified struct, enclosed in double quotes

	Description
	Returns handles to all TCMs associated with the specified struct type.
	When the struct expression is NULL the resulting list contains handles for all the started TCMs of the given name. When the meth...
	A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of the started TCM thread. ...

	Example
	Result
	See Also
	23.8.4 kill()

	Purpose
	Kill a specified thread

	Category
	Predefined method

	Syntax
	scheduler.kill(handle: thread handle)
	Syntax example:
	Parameters
	handle
	The handle for the thread, as returned by scheduler.get_current_handle(), scheduler.get_handles_by_name(), or scheduler.get_handles_by_type().

	Description
	Kills a started TCM (a thread) and any TCMs that it has called (its subthreads). A killed method cannot be revived.

	Notes
	Example
	Result
	See Also
	23.8.5 terminate_branch()

	Purpose
	Terminate a specific branch in a first of action

	Category
	Predefined method

	Syntax
	scheduler.terminate_branch()
	Syntax example:

	Description
	This method can be used only within a first of action to terminate the branch. When a branch is terminated using this method, the rest of the branches within the first of action remain active.

	Example
	The TCM “monitor()” in the example below begins several threads. Each waits for a sequence of events. Under some conditions, some of the sequences should be halted.

	Result
	See Also
	23.8.6 terminate_thread()

	Purpose
	Terminate the current thread

	Category
	Predefined method

	Syntax
	scheduler.terminate_thread()
	Syntax example:

	Description
	Terminates the current thread immediately, not at the end of the current tick. To terminate the current thread at the end of the current tick, use quit().
	A thread is any started TCM. If a started TCM calls other TCMs, those TCMs are considered subthreads of the started TCM thread. ...

	Example
	The TCM inject() in the example below assigns the DUT signals. There are some conditions during the run that indicate that the injection should stop.

	Result
	See Also
	23.9 Coverage Methods
	The covers struct is a predefined struct containing methods that you use for coverage and coverage grading. With the exception of the set_external_cover() and write_cover_file() methods, all of these methods are methods of the covers struct.

	See Also
	The following section describes another predefined method you use for coverage:
	23.9.1 include_tests()

	Purpose
	Specify which test runs coverage information will be displayed for.

	Category
	Predefined method

	Syntax
	covers.include_tests(full-run-name: string, bool: exp)
	Syntax example:
	Parameters
	full-run-name
	The name of the test to include or exclude.
	bool-exp
	Set to TRUE to include the specified test, FALSE to exclude it.

	Description
	This method allows you to specify which test runs you want to see coverage information for.
	If you are reading in .ecov files to load coverage information, this method should be called only after the .ecov files have been read.

	Example
	The following example shows several ways to specify test runs for display by show coverage.
	23.9.2 set_weight()

	Purpose
	Specify the coverage grading weight of a group or item

	Category
	Predefined method

	Syntax
	covers.set_weight(entity-name: string, value: int, bool: exp)
	Syntax example:
	Parameters
	entity-name
	The group or item to set the weight for. May include wild cards.
	value
	The integer weight value to set.
	bool
	When this is FALSE, it changes the weights of all matching groups or items to value. When this is TRUE, the weights of all matching groups or items are multiplied by value.

	Description
	Coverage grading uses weights to emphasize the affect of particular groups or items relative to others. The weights can be speci...
	If you are reading in .ecov files to load coverage information, this method should be called only after the .ecov files have been read.

	See Also
	23.9.3 set_at_least()

	Purpose
	Set the minimum number of samples needed to fill a bucket

	Category
	Predefined method

	Syntax
	covers.set_at_least(entity-name: string, value: int, exp: bool)
	Syntax example:
	Parameters
	entity-name
	The group or item to set the at_least number for. May include wild cards.
	value
	The “at-least” integer value to set.
	bool
	When this is FALSE, it sets the “at-least” number for all matching items to value. When this is TRUE, it multiplies the “at-least” number for all matching items by value.

	Description
	The minimum number of samples required to fill a bucket can be set in the coverage group or item definitions. This method can be used to set the number procedurally. It overrides the numbers set in the group or item definitions.
	If the entity-name is a coverage group name, all items in the group are affected. If the entity-name matches items within a coverage group, only those items are affected.
	If you are reading in .ecov files to load coverage information, this method should be called only after the .ecov files have been read.

	See Also
	23.9.4 set_cover()

	Purpose
	Turns coverage data collection and display on or off for specified items or events

	Category
	Predefined method

	Syntax
	covers.set_cover(item|event: string, bool: exp)
	Syntax example:
	Parameters
	item
	A string, enclosed in double quotes, specifying the coverage item you want to turn on or off. This may include wild cards.
	event
	A string, enclosed in double quotes, specifying the event you want to turn on or off. This may include wild cards.
	Enter the name of the event using the following syntax:
	session.events.struct_type__event_name
	where the struct type and the event name are separated by two underscores. Wild cards may be used.
	If you enter only one name, it is treated as a struct type, and the method affects all events in that struct type.
	bool
	Set to TRUE to turn on coverage for the item or FALSE to turn coverage off.

	Description
	By default, coverage data is collected for all defined coverage items and groups, and for all user-defined events. This method selectively turns data collection on or off for specified items, groups, or events.
	After coverage data has been collected and written by a test or set of tests, this method can be used to selectively turn on or off the display of the coverage data for specified items, groups, or events.
	Although this method can be used to filter samples during periods in which they are not valid, for performance reasons, filtering should be done using when subtypes instead.
	Additionally, if the test ends while coverage collection is turned off by set_cover() for one or more coverage groups, then set_...

	Example 1
	The following example turns off coverage data collection for all items in all coverage groups defined in the “inst” struct, and then turns back on the collection of data for the “len” item in the “done” group in that struct.

	Example 2
	The following example turns off coverage data collection for an event named “my_event” defined in the “inst” struct.

	Example 3
	The following example turns off coverage data collection for all events in the struct named my_struct:.
	23.9.5 get_contributing_runs()

	Purpose
	Return a list of the test runs that contributed samples to a bucket

	Category
	Predefined method

	Syntax
	covers.get_contributing_runs(item-name: string, bucket-name: string): list of string
	Syntax example:
	Parameters
	item-name
	A string, enclosed in double quotes, specifying the coverage item that contains bucket-name.
	bucket-name
	A string, enclosed in double quotes, specifying the bucket for which contributing test run names are to be listed.

	Description
	This method returns a list of strings that are the full run names of the test runs that placed samples in a specified bucket. Fo...

	Example
	The following example shows several ways to list test runs that put samples in particular buckets.
	23.9.6 get_unique_buckets()

	Purpose
	Return a list of the names of unique buckets from specific tests.

	Category
	Predefined method

	Syntax
	covers.get_unique_buckets(file-name: string): list of string
	Syntax example:
	Parameters
	file-name
	A string, enclosed in double quotes, specifying the coverage database files for which you want to see unique buckets. You cannot use wild cards in the file name.

	Description
	A unique bucket is a bucket that is covered by only one test. This method reports, for each specified test, the full names of its unique buckets, if there are any.
	NOTE- You must rank the tests with the before calling covers.get_unique_buckets().

	Example
	The following example shows how to display a list of unique buckets that are covered by a test. The results of the test ranking ...

	See Also
	23.9.7 set_external_cover()

	Purpose
	Enable or disable the import and display of SureCov data

	Category
	Predefined method

	Syntax
	set_external_cover(“surecov”, bool);
	Syntax example:
	Parameters
	bool
	TRUE, the default, enables the import of all SureCov data. FALSE disables the import.

	Description
	By default, coverage data is collected for all defined SureCov coverage items and groups. This method disables all import of Sur...
	You can call set_external_cover() at any time during a run.

	Example
	This example shows how to turn off the import and display of SureCov data.

	See Also
	23.9.8 write_cover_file()

	Purpose
	Write the coverage results during a test

	Category
	Predefined method

	Syntax
	write_cover_file();
	Syntax example:

	Description
	This method writes the coverage results .ecov file during a test run. It can only be invoked during a test, not before the run starts nor after it ends.
	The coverage file written by this method does not contain the session.end_of_test or session.events coverage groups.

	Example
	This example writes the current coverage results to the .ecov file whenever the event named sys.cntr is emitted.
	23.9.9 get_overall_grade()

	Purpose
	Return the normalized overall coverage grade

	Category
	Predefined method

	Syntax
	covers.get_overall_grade(): int;
	Syntax example:

	Description
	This method returns an integer that represents the overall coverage grade for the current coverage results. Since e does not han...

	Example
	See Also
	23.9.10 get_ecov_name()

	Purpose
	Return the name of the .ecov file

	Category
	Predefined method

	Syntax
	covers.get_ecov_name(): string;
	Syntax example:

	Description
	This method returns the name of the .ecov file in which the current coverage results will be stored.

	Example
	See Also
	23.9.11 get_test_name()

	Purpose
	Return the name of the current test

	Category
	Predefined method

	Syntax
	covers.get_test_name(): string;
	Syntax example:

	Description
	This method returns the identifier of the current test run.

	Example
	See Also
	23.9.12 get_seed()

	Purpose
	Return the value of the seed for the current test

	Category
	Predefined method

	Syntax
	covers.get_seed(): int
	Syntax example:

	Description
	This method returns the current test seed.

	Example
	See Also

	24 Predefined Routines Library
	Predefined routines are e macros that look like methods. The distinguishing characteristics of predefined routines are:
	The following sections describe the predefined routines:
	See Also
	24.1 Deep Copy and Compare Routines
	The following routines perform recursive copies and comparisons of nested structs and lists:
	24.1.1 deep_copy()

	Purpose
	Make a recursive copy of a struct and its descendants

	Category
	Predefined routine

	Syntax
	deep_copy(struct-inst: exp): struct instance
	Syntax example:

	Parameters
	struct-inst
	An expression that returns a struct instance.

	Description
	Returns a deep, recursive copy of the struct instance. This routine descends recursively through the fields of a struct and its ...
	The return type of deep_copy() is the same as the declared type of the struct instance.
	The following table details how the copy is made, depending on the type of the field and the deep_copy attribute (normal, reference, ignore) set for that field. For an example of how field attributes affect deep_copy(), see “attribute field” on page 139.
	scalar
	The new field holds a copy of the original value.
	The new field holds a copy of the original value.
	The new field holds a copy of the original value.
	string
	The new field holds a copy of the original value.
	The new field holds a copy of the original value.
	The new field holds a copy of the original value.
	scalar list
	A new list is allocated with the same size and same elements as the original list.
	The new list field holds a copy of the original list pointer.
	A new list is allocated with zero size.
	struct
	A new struct instance with the same type as the original struct is allocated. Each field is copied or ignored, depending on its deep_copy attribute.
	The new struct field holds a pointer to the original struct. *
	A new struct instance is allocated and it is NULL.
	list of structs
	A new list is allocated with the same number of elements as the original list.
	New struct instances are also allocated and each field in each struct is copied or ignored, depending on its deep_copy attribute.
	The new list field holds a copy of the original list pointer. *
	A new list is allocated with zero size.

	Notes
	Example
	Result
	This example shows that any changes in value to lists and structs contained in the copied struct instance (pmv) are not propagated to the original struct instance (pmi) because the struct has been recursively duplicated.

	See Also
	24.1.2 deep_compare()

	Purpose
	Perform a recursive comparison of two struct instances

	Category
	Predefined routine

	Syntax
	deep_compare(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string
	Syntax example:

	Parameters
	struct-inst1, struct-inst2
	An expression returning a struct instance.
	max-diffs
	An integer representing the maximum number of differences you want reported.

	Description
	Returns a list of strings, where each string describes a single difference between the two struct instances. This routine descen...
	The two struct instances are “deep equal” if the returned list is empty.
	“Deep equal” is defined as follows:
	Topology is taken into account. If two non-scalar instances are not in the same location in the deep compare graphs, they are no...
	The following table details the differences that are reported, depending on the type of the field and the deep_compare attribute...
	scalar
	Their values, if different, are reported.
	Their values, if different, are reported.
	The fields are not compared.
	string
	Their values, if different, are reported.
	Their values, if different, are reported.
	The fields are not compared.
	scalar list
	Their sizes, if different, are reported. All items in the smaller list are compared to those in the longer list and their differences are reported.
	The fields are equal if their addresses are the same. The items are not compared.
	The fields are not compared.
	struct
	If two structs are not of the same type, their type difference is reported. Also, any differences in common fields is reported.
	If two structs are of the same type, every field difference is reported.
	The fields are equal if they point to the same struct instance.
	If the fields do not point to the same instance, only the addresses are reported as different; the data is not compared.
	The fields are not compared and no differences for them or their descendants are reported.
	list of structs
	Their sizes, if different, are reported. All structs in the smaller list are deep compared to those in the longer list and their differences are reported.
	The fields are equal if their addresses are the same and they point to the same struct instance. †
	The fields are not compared and no differences for them or their descendants are reported.

	Difference String Format
	The difference string is in the following format:
	path
	A list of field names separated by periods (.) from (and not including) the struct instances being compared to the field with the difference.
	value
	For scalar field differences, value is the result of out(field).
	For struct field type differences, type() is appended to the path and value is the result of out(field.type()).
	For list field size differences, size() is appended to the path and value is the result of out(field.size()).
	For a shallow comparison of struct fields that point outside the deep compare graph, value is the struct address.
	For a comparison of struct fields that point to different locations in the deep compare graphs (topological difference), value is struct# appended to an index representing its location in the deep compare graph.
	NOTE- The same two struct instances or the same two list instances are not compared more than once during a single call to deep_compare().

	Example
	This example uses deep_compare() to show the differences between copying nested structs by reference (with copy()) and copying nested structs by allocation (with deep_copy()).

	Result
	The results show the differences between the two ways of copying. The c2 instance is copied by deep_copy(), so when the value of...

	See Also
	24.1.3 deep_compare_physical()

	Purpose
	Perform a recursive comparison of the physical fields of two struct instances

	Category
	Predefined routine

	Syntax
	deep_compare_physical(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string
	Syntax example:

	Parameters
	struct-inst1, struct-inst2
	An expression returning a struct instance.
	max-diffs
	An integer representing the maximum number of differences you want reported.

	Description
	Returns a list of strings, where each string describes a single difference between the two struct instances. This routine descen...
	This routine is the same as the deep_compare() routine except that only physical fields (indicated with the % operator prefixed to the field name) are compared.
	The two struct instances are “deep equal” if the returned list is empty.
	“Deep equal” is defined as follows:
	NOTE- Adding a field under a when construct causes the parent type and the when subtype to be different, even if the field added under the when is a virtual field.

	Example
	Result
	This example shows the differences between the physical fields of the packet instances. The differences between the protocol fields are not reported.

	See Also
	24.2 Arithmetic Routines
	The following sections describe the predefined arithmetic routines in e:
	24.2.1 min()

	Purpose
	Get the minimum of two numeric values

	Category
	Pseudo method

	Syntax
	min(x: numeric-type, y: numeric-type): numeric-type
	Syntax example:

	Parameters
	x
	A numeric expression.
	y
	A numeric expression.

	Description
	Returns the smaller of the two numeric values.

	Example
	Result
	See Also
	24.2.2 max()

	Purpose
	Get the maximum of two numeric values

	Category
	Pseudo method

	Syntax
	max(x: numeric-type, y: numeric-type): numeric-type
	Syntax example:

	Parameters
	x
	A numeric expression.
	y
	A numeric expression.

	Description
	Returns the larger of the two numeric values.

	Example
	Result
	See Also
	24.2.3 abs()

	Purpose
	Get the absolute value

	Category
	Routine

	Syntax
	abs(x: numeric-type): numeric-type
	Syntax example:

	Parameters
	x
	A numeric expression.

	Description
	Returns the absolute value of the expression.

	Example
	Result
	See Also
	24.2.4 odd()

	Purpose
	Check if an integer is odd

	Category
	Routine

	Syntax
	odd(x: int): bool
	Syntax example:

	Parameters
	x
	An integer expression.

	Description
	Returns TRUE if the integer is odd, FALSE if the integer is even.

	Example
	Result
	See Also
	24.2.5 even()

	Purpose
	Check if an integer is even

	Category
	Routine

	Syntax
	even(x: int): bool
	Syntax example:

	Parameters
	x
	An integer expression.

	Description
	Returns TRUE if the integer passed to it is even, FALSE if the integer is odd.

	Example
	Result
	See Also
	24.2.6 ilog2()

	Purpose
	Get the base-2 logarithm

	Category
	Routine

	Syntax
	ilog2(x: uint): int
	Syntax example:

	Parameters
	x
	An unsigned integer expression.

	Description
	Returns the integer part of the base-2 logarithm of x.

	Example
	Result
	See Also
	24.2.7 ilog10()

	Purpose
	Get the base-10 logarithm

	Category
	Routine

	Syntax
	ilog10(x: uint): int
	Syntax example:

	Parameters
	x
	An unsigned integer expression.

	Description
	Returns the integer part of the base-10 logarithm of x.

	Example
	Result
	See Also
	24.2.8 ipow()

	Purpose
	Raise to a power

	Category
	Routine

	Syntax
	ipow(x: int, y: int): int
	Syntax example:

	Parameters
	x
	An integer expression.
	y
	An integer expression.

	Description
	Raises x to the power of y and returns the integer result.

	Example
	Result
	See Also
	24.2.9 isqrt()

	Purpose
	Get the square root

	Category
	Routine

	Syntax
	isqrt(x: uint): int
	Syntax example:

	Parameters
	x
	An unsigned integer expression.

	Description
	Returns the integer part of the square root of x.

	Example
	Result
	See Also
	24.2.10 div_round_up()

	Purpose
	Division rounded up

	Category
	Routine

	Syntax
	div_round_up(x: int, y: int): int
	Syntax example:

	Parameters
	x
	An integer expression. to use as the dividend.
	y
	An integer expression to use as the divisor.

	Description
	Returns the result of x / y rounded up to the next integer.

	Example
	Result
	See Also
	24.3 Bitwise Routines
	24.3.1 Overview

	The predefined bitwise routines perform boolean operations bit-by-bit and return a single-bit result.
	24.3.2 bitwise_op()

	Purpose
	Perform a Verilog-style unary reduction operation

	Category
	Pseudo-method

	Syntax
	bitwise_op(exp: int|uint): bit
	Syntax example:

	Parameters
	op
	One of and, or, xor, nand, nor, xnor.
	exp
	A 32-bit numeric expression.

	Description
	Performs a Verilog-style unary reduction operation on a single operand to produce a single bit result. There is no reduction ope...
	For bitwise_nand(), bitwise_nor(), and bitwise_xnor(), the result is computed by inverting the result of the bitwise_and(), bitwise_or(), and bitwise_xor() operation, respectively.
	Table 24-1 shows the predefined pseudo-methods for bitwise operations.
	Table 24-1- Bitwise Operation Pseudo-Methods

	bitwise_and()
	Boolean AND of all bits
	bitwise_or()
	Boolean OR of all bits
	bitwise_xor()
	Boolean XOR of all bits
	bitwise_nand()
	!bitwise_and()
	bitwise_nor()
	!bitwise_or()
	bitwise_xnor()
	!bitwise_xor()
	NOTE- These routines cannot be used to perform bitwise operations on unbounded integers.

	Example 1
	Result

	Example 2
	Result

	Example 3
	Result
	See Also
	24.4 Unit-Related Predefined Routines
	The predefined routines that are useful for units include:
	24.4.1 set_config_max()

	Purpose
	Increase values of numeric global configuration parameters

	Category
	Predefined routine

	Syntax
	set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])
	Syntax example:

	Parameters
	category
	Is one of the following: coverage, generation, memory, and run.
	option
	The valid coverage options are:
	The valid generation options are:
	These options are described in the generation option of “set_config()” on page 766.
	The valid memory options are:
	These options are described in the memory option of “set_config()” on page 766.
	The valid run options are:
	value
	The valid values are different for each option and are described in “set_config()” on page 766.

	Description
	Sets the numeric options of a particular category to the specified maximum values.
	If you are creating a modular verification environment, it is recommended to use set_config_max() instead of set_config() in ord...

	Example
	See Also
	24.4.2 get_all_units()

	Purpose
	Return a list of instances of a specified unit type

	Category
	Routine

	Syntax
	get_all_units(unit-type: exp): list of unit instances
	Syntax example:

	Parameters
	unit-type
	The name of a unit type. The type must be defined or an error occurs.

	Description
	This routine receives a unit type as a parameter and returns a list of instances of this unit type as well as any unit instances contained within each instance.

	Example
	This example uses get_all_units() to print a list of the instances of XYZ_router. Note that the display also shows that this instance of XYZ_router contains “channels”, which is a list of three unit instances.

	Result
	See Also
	24.5 String Routines
	None of the string routines in e modify the input parameters. When you pass a parameter to one of these routines, the routine makes a copy of the parameter, manipulates the copy, and returns the copy.
	You can use the as_a() casting operator to convert strings to integers or bytes. See Table 3-5 on page 107.
	Routines that convert expressions into a string:
	Routines that manipulate substrings:
	Routines that manipulate regular expressions:
	Routines that change the radix of a numeric expression:
	Routines that manipulate the length of an expression:
	Routines that are useful within macros:
	Routines that manipulate the case of characters within a string:

	See Also
	24.5.1 append()

	Purpose
	Concatenate expressions into a string

	Category
	Routine

	Syntax
	append(): string
	append(item: exp, ...): string
	Syntax example:

	Parameters
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed. If no items are passed to append(), it returns an empty string.

	Description
	Calls “to_string()” on page 761 to convert each expression to a string using the current radix setting for any numeric expressions, then concatenates them and returns the result as a single string.
	NOTE- If you are concatenating a very large number of strings (for example, a long list of strings) into a single string, it is ...
	In contrast, the following will create a string of the right length and do a single copy operation:

	Example
	Result
	The radix setting for this example was hex.

	See Also
	24.5.2 appendf()

	Purpose
	Concatenate expressions into a string according to a given format

	Category
	Routine

	Syntax
	appendf(format: string, item: exp, ...): string
	Syntax example:

	Parameters
	format
	A string expression containing a standard C formatting mask for each item. See “Format String” on page 765 for more information.
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed.

	Description
	Converts each expression to a string using the current radix setting for any numeric expressions and the specified format, then concatenates them and returns the result as a single string.
	NOTE- If the number and type of masks in the format string does not match the number and type of expressions, an error is issued.

	Example
	Result
	The radix setting for this example was DEC.

	See Also
	24.5.3 bin()

	Purpose
	Concatenate expressions into string, using binary representation for numeric types

	Category
	Routine

	Syntax
	bin(item: exp, ...): string
	Syntax example:

	Parameters
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed.

	Description
	Concatenates one or more expressions into a string, using binary representation for any expressions of numeric types, regardless of the current radix setting.

	Example
	Result
	See Also
	24.5.4 dec()

	Purpose
	Concatenate expressions into string, using decimal representation for numeric types

	Category
	Routine

	Syntax
	dec(item: exp, ...): string
	Syntax example:

	Parameters
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed.

	Description
	Concatenates one or more expressions into a string, using decimal representation for any expressions of numeric types, regardless of the current radix setting.

	Example
	Result
	See Also
	24.5.5 hex()

	Purpose
	Concatenate expressions into string, using hexadecimal representation for numeric types

	Category
	Routine

	Syntax
	hex(item: exp, ...): string
	Syntax example:

	Parameters
	item
	A list of one or more legal e expressions. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed.

	Description
	Concatenates one or more expressions into a string, using hexadecimal representation for any expressions of numeric types, regardless of the current radix setting.

	Example
	Result
	See Also
	24.5.6 quote()

	Purpose
	Enclose a string in double quotes

	Category
	Routine

	Syntax
	quote(text: string): string
	Syntax example:

	Parameters
	text
	An expression of type string.

	Description
	Returns a copy of the text, enclosed in double quotes (" "), with any internal quote or backslash preceded by a backslash (\).
	This routine is useful when creating commands with define.

	Example
	Result
	See Also
	24.5.7 str_chop()

	Purpose
	Chop the tail of a string

	Category
	Routine

	Syntax
	str_chop(str: string, length: int): string
	Syntax example:

	Parameters
	str
	An expression of type string.
	length
	An integer representing the desired length.

	Description
	Returns str (if its length is <= length), or a copy of the first length chars of str.
	Removes characters from the end of a string, returning a string of the desired length. If the original string is already less than or equal to the desired length, this routine returns a copy of the original string.

	Example
	Result
	See Also
	24.5.8 str_empty()

	Purpose
	Check if a string is empty

	Category
	Routine

	Syntax
	str_empty(str: string): bool
	Syntax example:

	Parameters
	str
	An expression of type string.

	Description
	Returns TRUE if the string is uninitialized or empty.

	Example
	Result
	See Also
	24.5.9 str_exactly()

	Purpose
	Get a string with exact length

	Category
	Routine

	Syntax
	str_exactly(str: string, length: int): string
	Syntax example:

	Parameters
	str
	An expression of type string.
	length
	An integer representing the desired length.

	Description
	Returns a copy of the original string, whose length is the desired length, by adding blanks to the right or by truncating the ex...

	Example
	Result
	See Also
	24.5.10 str_expand_dots()

	Purpose
	Expand strings shortened by the parser

	Category
	Routine

	Syntax
	str_expand_dots(str: string): string
	Syntax example:

	Parameters
	str
	An expression of type string.

	Description
	Returns a copy of the original string, expanding any dot place holders into the actual code they represent.
	This routine is useful only in context of define as [computed] statements. When preprocessing an e file, any sequence of charact...

	Example
	To retrieve the original string passed to my_macro, the str_expand_dots() routine is called.

	Result
	See Also
	24.5.11 str_insensitive()

	Purpose
	Get a case-insensitive AWK-style regular-expression

	Category
	Routine

	Syntax
	str_insensitive(regular_exp: string): string
	Syntax example:

	Parameters
	regular-exp
	An AWK-style regular expression.

	Description
	Returns an AWK-style regular expression string which is the case-insensitive version of the original regular expression.

	Example
	Result
	See Also
	24.5.12 str_join()

	Purpose
	Concatenate a list of strings

	Category
	Routine

	Syntax
	str_join(list: list of string, separator: string): string
	Syntax example:

	Parameters
	list
	A list of type string.
	separator
	The string that will be used to separate the list elements.

	Description
	Returns a single string which is the concatenation of the strings in the list of strings, separated by the separator.

	Example
	Result
	See Also
	24.5.13 str_len()

	Purpose
	Get string length

	Category
	Routine

	Syntax
	str_len(str: string): int
	Syntax example:

	Parameters
	str
	An expression of type string.

	Description
	Returns the number of characters in the original string, not counting the terminating NULL character \0.

	Example
	Result
	See Also
	24.5.14 str_lower()

	Purpose
	Convert string to lowercase

	Category
	Routine

	Syntax
	str_lower(str: string): string
	Syntax example:

	Parameters
	str
	An expression of type string.

	Description
	Converts all upper case characters in the original string to lower case and returns the string.

	Example
	Result
	See Also
	24.5.15 str_match()

	Purpose
	Match strings

	Category
	Routine

	Syntax
	str_match(str: string, regular-exp: string): bool
	Syntax example:

	Parameters
	str
	An expression of type string.
	regular-exp
	An AWK-style or native e regular expression. If not surrounded by slashes, the expression is treated as a native style expression. See “String Matching” on page 51 for more information on these types of expressions.

	Description
	Returns TRUE if the strings match, or FALSE if the strings do not match. The routine str_match() is fully equivalent to the operator ~.

	Example 1
	After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthesized pieces of the match. $0 stores the entire matched piece of the string.
	This example uses AWK-style regular expressions. See “AWK-Style String Matching” on page 52 for more information on these types of expressions.
	Result

	Example 2
	This example uses native e regular expressions. See “Native e Elite String Matching” on page 51 for more information on these ty...
	Result
	See Also
	24.5.16 str_pad()

	Purpose
	Pad string with blanks

	Category
	Routine

	Syntax
	str_pad(str: string, length: int): string
	Syntax example:

	Parameters
	str
	An expression of type string.
	length
	An integer representing the desired length, no greater than 4000.

	Description
	Returns a copy of the original string padded with blanks on the right, up to desired length. If the length of the original string is greater than or equal to the desired length, then the original string is returned (not a copy) with no padding.

	Example
	Result
	See Also
	24.5.17 str_replace()

	Purpose
	Replace a substring in a string with another string

	Category
	Routine

	Syntax
	str_replace(str: string, regular-exp: string, replacement: string): string
	Syntax example:

	Parameters
	str
	An expression of type string.
	regular-exp
	An AWK-style or native e regular expression. If not surrounded by slashes, the expression is treated as a native style expression. See “String Matching” on page 51 for more information on these types of expressions.
	replacement
	The string that you want to replace all occurrences of the regular expression.

	Description
	A new copy of the original string is created, and then all the matches of the regular expression are replaced by the replacement string. If no match is found, a copy of the source string is returned.
	To incorporate the matched substrings in the replacement string, use back-slash escaped numbers \1, \2, ...
	In native e regular expressions, the portion of the original string that matches the * or the ... characters is replaced by the replacement string.
	In AWK-style regular expressions, you can mark the portions of the regular expressions that you want to replace with parentheses. For example, the following regular expression marks all the characters after “on”, up to and including “th” to be replaced.

	Example 1
	This example uses AWK-style string matching.
	Result

	Example 2
	Another AWK-style example, using \1, \2:
	Result

	Example 3
	This example uses a e -style regular expression.
	Result

	Example 4
	This example uses a e -style regular expression with \1.
	Result
	See Also
	24.5.18 str_split()

	Purpose
	Split a string to substrings

	Category
	Routine

	Syntax
	str_split(str: string, regular-exp: string): list of string
	Syntax example:

	Parameters
	str
	An expression of type string.
	regular-exp
	An AWK-style or native e -style regular expression that specifies where to split the string. See “String Matching” on page 51 for more information on these types of expressions.

	Description
	Splits the original string on each occurrence of the regular expression, and returns a list of strings. If the regular expression occurs at the beginning or the end of the original string, an empty string is returned.
	If the regular expression is an empty string, it has the effect of removing all blanks in the original string.

	Example 1
	Result

	Example 2
	Result
	See Also
	24.5.19 str_split_all()

	Purpose
	Split a string to substrings, including separators

	Category
	Routine

	Syntax
	str_split_all(str: string, regular-exp: string): list of string
	Syntax example:

	Parameters
	str
	An expression of type string.
	regular-exp
	An AWK-style or native e -style regular expression that specifies where to split the string. See “String Matching” on page 51 for more information on these types of expressions.

	Description
	Splits the original string on each occurrence of the regular expression, and returns a list of strings. If the regular expression occurs at the beginning or the end of the original string, an empty string is returned.
	This routine is similar to str_split(), except that it includes the separators in the resulting list of strings.

	Example
	Result
	See Also
	24.5.20 str_sub()

	Purpose
	Extract a substring from a string

	Category
	Routine

	Syntax
	str_sub(str: string, from: int, length: int): string
	Syntax example:

	Parameters
	str
	An expression of type string.
	from
	The index position from which to start extracting. The first character in the string is at index 0.
	length
	An integer representing the number of characters to extract.

	Description
	Returns a substring of the specified length from the original string, starting from the specified index position.

	Example
	Result
	See Also
	24.5.21 str_upper()

	Purpose
	Convert a string to uppercase

	Category
	Routine

	Syntax
	str_upper(str: string): string
	Syntax example:

	Parameters
	str
	An expression of type string.

	Description
	Returns a copy of the original string, converting all lower case characters to upper case characters.

	Example
	Result
	See Also
	24.5.22 to_string()

	Purpose
	Convert any expression to a string

	Category
	Method

	Syntax
	exp.to_string(): string
	Syntax example:

	Parameters
	exp
	A legal e expression.

	Description
	This method can be used to convert any type to a string.
	If the expression is a struct expression, the to_string() method returns a unique identification string for each struct instance...
	If the expression is a list of strings, the to_string() method is called for each element in the list. The string returned contains all the elements with a newline between each element.
	If the expression is a list of any type except string, the to_string() method returns a string containing all the elements with a space between each element.
	If the expression is a numeric type, the expression is converted using the current radix with the radix prefix.
	If the expression is a string, the to_string() method returns the string.
	If the expression is an enumerated or a boolean type, the to_string() method returns the value.

	Example
	Result
	See Also
	24.6 Output Routines
	The predefined output routines print formatted and unformatted information to the screen and to open log files. The following sections describe the output routines:
	24.6.1 out()

	Purpose
	Print expressions to output, with a new line at the end

	Category
	Routine

	Syntax
	out()
	out(item: exp, ...)
	Syntax example:

	Parameters
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed. If no item is passed to out(), an empty string is printed, followed by a new line.

	Description
	Calls to_string() to convert each expression to a string and prints them to the screen (and to the log file if it is open), followed by a new line.

	Example
	This first example shows that if the expression is a struct, out() prints the ID of the struct. If the expression is a list, out...

	Result
	See Also
	24.6.2 outf()

	Purpose
	Print formatted expressions to output, with no new line at the end

	Category
	Routine

	Syntax
	outf(format: string, item: exp, ...)
	Syntax example:

	Parameters
	format
	A string containing a standard C formatting mask for each item. See “Format String” on page 765 for more information.
	item
	A legal e expression. String expressions must be enclosed in double quotes. If the expression is a struct instance, the struct ID is printed. If the expression is a list, an error is issued.

	Description
	Converts each expression to a string using the corresponding format string and then prints them to the screen (and to the log file if it is open).
	To add a new line, add the \n characters to the format string.

	Notes

	Example 1
	This example has similar results to the in the description of “out()” on page 762. Note that outf() allows you to add the new lines where needed. Printing of lists is not supported with outf().
	Result

	Example 2
	This example shows the control over formatting of strings that outf() allows. The fields have been enclosed in double “:” characters so that you can easily see how wide the field is.
	Result
	See Also
	24.6.3 Format String
	The format string for the outf() and for the appendf() routine uses the following syntax:
	where:
	0
	Pads with 0 instead of blanks. Padding is only done when right alignment is used, on the left end of the expression.
	-
	Aligns left. The default is to align right.
	#
	Adds 0x before the number. Can be used only with the x (hexadecimal) format specifier. Examples: %#x, %#010x
	min_width
	A number that specifies the minimum number of characters. This number determines the minimum width of the field. If there are no...
	max_chars
	A number that specifies the maximum number of characters to use from the expression. Characters in excess of this number are truncated. If this number is larger than min_width, then the min_width number is ignored.
	In the following example, min_width is 7 and max_chars is 5, so the outf() method prints five characters from “abcdefghi” in a field seven characters wide, padding the two unused spaces with blanks:
	In the following example, min_width is 8 and max_chars is 3, so the outf() method prints three characters from “abcdefghi” in a ...
	s
	Converts the expression to a string. The routine “to_string()” on page 761 is used to convert a non-string expression to a string.
	d
	Prints a numeric expression in decimal format.
	x
	Prints a numeric expression in hex format. With the optional # character, adds 0x before the number.
	b
	Prints a numeric expression in binary format.
	o
	Prints a numeric expression in octal format.
	u
	Prints integers (int and uint) in uint format.
	24.7 Configuration Routines

	The configuration routines set options that allow you to control printing, memory usage, runtime characteristics, coverage, generation, and debug from within the e code.
	24.7.1 set_config()

	Purpose
	Set configuration options

	Category
	Routine

	Syntax
	set_config(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...]) [[with] {action; ...}]
	Syntax example:

	Parameters
	category
	Is one of the following: cover[age], data[browser], debug[ger], gen[eration], gui, mem[ory], misc, print, run, and wave.
	option
	The valid options are different for each category. The options for each category are listed in the following tables:
	value
	The valid values are different for each option and are described in the tables listed above.
	Table 24-2- Coverage Configuration Options

	at_least_multiplier, n
	An integer that is multiplied by the at-least specification for each coverage bucket to determine the smallest number of samples...
	grading_formula, type
	Selects the type of grading formula used to calculate bucket grades, either linear (the default) or root_mean_square.
	mode, value
	Legal values are default, off, on, on_interactive. The default is on if coverage groups exist in the e code. If no coverage groups exist, the default is off.
	default If coverage groups exist in the e code, the mode switches to on just before simulation (in the setup phase). If no coverage groups exist, the mode switches to off.
	off No coverage collection is done.
	on Collects coverage summary only. Using this mode, post run cross coverage is disabled. This is the default mode. It can be overridden by the no_collect option of each cover group.
	on_interactive Coverage information is fully collected. It can be overridden by the no_collect option of each cover group.
	verbose_interface, TRUE | FALSE
	Turns on verbose mode, in which a prompt is issued to confirm the effects of coverage actions and methods. The affected methods are:
	dir,string
	The directory in which to save coverage files.
	file_name,string
	The file in which to store coverage data at the end of the test. The default is run_name (see above). If no extension is given with the string, the .ecov extension is added automatically.
	test_name,string
	With run_name and tag_name, an identifier for the coverage data for a particular test run.
	The default is the name of the top module (the e module loaded last).
	run_name, string
	With test_name and tag_name, an identifier for the coverage data for a particular test run.
	The default is test_name_seed.
	tag_name, string
	With test_name and run_name, an identifier for the coverage data for a particular test run.
	The initial default is dir (see -dir option, below).
	max_int_buckets, n
	An integer that applies to integer items such as int or byte, with no explicit ranges. If the maximum number of possible values ...
	absolute_max_buckets, n
	An integer that specifies the maximum number of buckets that can be created for a range specified using the range cover item option.
	This limit prevents problems due to excessive memory usage when there are too many buckets to display. For example, if a cover i...
	The default is 4096. The range is MIN_INT to 0.
	max_gui_buckets, n
	An integer that specifies the maximum number of buckets that will be shown for any coverage item.
	The Coverage GUI can display up to about 50,000 buckets. Since that is a very large number of buckets to browse interactively, a...
	For any coverage item whose number of buckets exceeds this value, the item’s buckets are not shown in the Coverage GUI. However, the item name and its grade are shown.
	The range is 0 to 200,000. The default is 10,000.
	show_mode, value
	Determines whether holes are shown. Possible value are holes_only, full, and both. The default is both.
	holes_only Shows only buckets whose number of samples is less than the at- least number for this bucket multiplied by the at_least_multiplier factor.
	full Shows all buckets with a grade of 1. Invalid buckets are not reported.
	both Shows all full buckets and buckets with holes. Invalid buckets are not reported
	sorted, bool
	If TRUE displayed buckets are sorted by decreasing samples count. The default value is FALSE.
	show_file_names, bool
	If TRUE (the default), then all coverage file names are displayed as the coverage files are read in.
	If a coverage file contains data from more than one test, the number of test runs is displayed with the file name.
	show_sub_holes
	A cross coverage item might have empty subtrees if any of the combinations of cross items consists only of empty buckets. When this option is TRUE, all of the item values for empty subtrees are displayed even though they have only empty buckets.
	When this option is FALSE (the default), the item value which has only empty buckets is displayed as a dash (-).
	show_instances_only
	Determines what information is shown for per-instance coverage.
	If this option is TRUE, for cover groups that have per_instance items, coverage data is only shown for the instances. The grading does not include data for the original item.
	If this option is FALSE, coverage data is shown for the original item and for all instances.
	The default is FALSE.
	show_partial_grade
	Enables displaying the fully calculated grade for part of the coverage database. When this option is set to TRUE, if you use wil...
	surecov_config
	Sets filtering options for SureSight. The options are:
	You can enter either option alone or both of them, in either order.
	NOTE- The --filter_reset and --filter_file options are available in SureCov version 3.1 or later.
	ranking_cost, option
	Use this option to specify a metric for the cost of coverage. The metric option can be one of the following:
	ranking_precision, value
	Use this option to specify the number of digits after the floating point that are to be used for test ranking results. The value can be from 0 to 4, and has a default of 2.
	This option affects only the test ranking output display, and not the actual computation of the results.
	Table 24-3- Generation Configuration Options

	seed, n | random
	The initial seed used for every generation in the run. random specifies a new initial seed that is based on the time of day, the user id, and so on. The range for n is MIN_INT to MAX_INT. The default is 1.
	default_max_list_size, n
	An integer value that specifies the maximum number of items in a generated list. The default value is 50. You can override the default max list size with a hard value constraint, or cancel it with a reset_soft() constraint. The range is 0 to MAX_INT.
	absolute_max_list_size, n
	This is a watchdog field, which simply helps you get a clear error message rather than undesirable results. If while generating ...
	The default is 524282. The range is 0 to MAX_INT.
	max_depth, n
	This is another watchdog field. It guards against an infinite generation loop, which usually results from not constraining a back-pointer to point back at the parent struct. The default value is 30. The range is 0 to MAX_INT.
	max_structs, n
	This is another watchdog field. If the total number of structs generated for any particular field during a single test (both pre...
	collect_gen, bool
	Starts or stops tracing of generation data. The default is FALSE.
	collect_all, bool
	This option has no effect when the collect_gen option is FALSE. When this option is TRUE, all generation executions are traced. When it is FALSE, only the last unnested generation execution is traced. The default is FALSE.
	reorder_fields, bool
	By default this is TRUE and the following algorithm is used to determine the order in which it generates the fields within a struct:
	Setting reorder_fields to FALSE causes the third rule above to be ignored, and generation to always be done by field order and gen before order. Use this flag to help debugging.
	check_unsatisfied_cons
	If TRUE (the default), at the end of generation for each struct, checks that the constraints defined in this struct are satisfied. If FALSE, some constraints may be ignored by the generator without warning.
	long_max_width, n
	Determines the maximum size (in bits) of a long integer that is used with bit-constraints. By default n is 128.
	You should increase the maximum size of long integers if you have bit slice constraints on integers that are longer than 128 bit...

	NOTE- Increasing the size has performance impact.
	determinants_before_ subtypes, bool | option
	To turn on global subtype generation optimization, setting this option to TRUE activates subtype optimization for all structs.
	For more specific subtype generation optimization control, the option can be one of the following:
	See “keep gen_before_subtypes()” on page 287 for information about the purpose and usage of subtype generation optimization.
	warn, bool
	Turns on warnings if set to TRUE. Generation warnings, including warnings on single constraints, on ordering, and on size, are i...
	resolve_cycles, bool
	A constraint cycle occurs when two or more unidirectional constraints impose order relations inconsistent with each other. With ...
	bool_exp_is_bidir, bool
	When TRUE (the default), constraints of the form are bidirectional:
	where complex-bool-exp is an expression involving only a single comparison operator between fields or constants.
	To maintain compatibility with previous releases, you can set this flag to FALSE.
	Setting this option to FALSE makes such constraints unidirectional, which might cause an order cycle or a contradiction.
	unit_reference_rule, bool
	When TRUE (the default), requires the generator to recognize constraints on fields within a unit reference and set those constra...
	keep name == driver.name;

	NOTE- This option does not apply to unit instances used to point to other unit instances or to unit references that are generated and then assigned.
	static_analysis_opt, TRUE
	Performs optimizations to decrease the memory consumption and run time of static analysis.

	Notes
	Random stability is not preserved when the optimizations are activated.
	If it is used, the static_analysis_opt configuration option must be set no later than the setup() test phase.
	The configuration option is FALSE by default, and cannot be set to FALSE. The only possible user setting is TRUE.
	This option is for beta testing purposes only, and will be deprecated in future releases.
	Table 24-4- Memory Configuration Options

	absolute_max_size, n
	An integer value that determines the maximum amount of memory that the program will consume before issuing a fatal error message...
	The default for absolute_max_size is 200Mb. The range is 100M to MAX_UINT. There is no automatic update for the value of absolute_max_size.
	gc_increment, n
	An integer value that determines the automatic increase in the value of the gc_threshold option after a regular garbage collecti...
	The default is 16Mb. The range is 0 to MAX_UINT.
	the e automatically updates the value of gc_increment after performing a regular garbage collection (and before updating the value of gc_threshold). The updated value of gc_increment is as follows:
	Where memory_size is the amount of memory after garbage collection.
	The value of gc_increment is not updated after on-the-fly garbage collection.
	gc_threshold, n
	An integer value that determines how much memory the program can allocate before performing a regular garbage collection. Increa...
	The default is 80Mb. The range is 0 to MAX_UINT.
	The program automatically updates the value of gc_threshold after performing a regular garbage collection. The updated value of gc_threshold is as follows:
	Where memory_size is the amount of memory and updated_gc_increment is the updated value of gc_increment after the garbage collection takes place.
	The value of gc_threshold is not updated after on-the-fly garbage collection.
	max_size, n
	Maximum amount of memory that the program can use. When the memory to be allocated reaches this limit, the program performs on- ...
	The default for max_size is 180Mb. The range is 100M to MAX_UINT. There is no automatic update for the value of max_size.
	print_msg, bool
	When TRUE, causes the program to print garbage collection information whenever regular (non-on-the-fly) garbage collection occurs.
	The default is TRUE
	print_otf_msg, bool
	When TRUE, causes the program to print garbage collection information whenever on-the-fly garbage collection occurs.
	The default is FALSE.
	retain_printed_structs, bool
	When FALSE, allows normal garbage collection to be performed on printed struct instances-unless pointed to by existing objects or retained by another option (such as retain_trace_structs).
	Printed struct instances are instances whose value you can print. In other words, they are struct instances for which to_string(...
	When TRUE, retain_printed_structs prevents the garbage collector from collecting and destroying printed struct instances.
	Setting this option to FALSE speeds up simulation. Setting it to TRUE retains printed struct instances, which can increase runtime memory consumption.
	The default is TRUE.
	retain_trace_structs, bool
	When FALSE, allows normal garbage collection to be performed on structs displayed in the waveform viewer-unless pointed to by existing objects or retained by another option (such as retain_printed_structs).
	When TRUE, prevents the garbage collector from collecting and destroying any struct that is displayed in the waveform viewer.
	Setting this option to FALSE speeds up simulation.
	The default is FALSE
	Table 24-5- Run Configuration Options

	error_command, string
	Specifies a command that is executed if an error occurs during the run. The command is executed for all types of errors including:
	exit_on, exit-mode
	Specifies the conditions under which teh program exits. exit-mode is one of the following:
	command (the default) - Exits only when you execute the simulator exit command. This option is recommended for interactive runs.
	normal_stop - Exits only when the run completes without an error. If any error occurs, the program does not exit until you execu...
	error -Exits when an error of any kind occurs. If the error is a pre- run error, such as a load error or an error during the gen...
	all - Exits when a call to stop_run() is made from e code or when an error of any kind occurs. If neither of these occurs, the program does not exit until you execute the simulator exit command. This option is recommended for batch runs.
	tick_max, n
	Determines the maximum number of ticks before the test stops. The purpose is to keep the simulation from running longer than nec...
	use_manual_tick, bool
	Adds the ability to use the manually cause a tick. This is usually used for debugging without a simulator. When not running with...

	Description
	This form of the set_config() action sets the specified options of a particular category to the specified values.
	If an action block is specified, the options are set only temporarily during the execution of the action block.
	For the configuration options to be effective, they must be set before the run test phase. The recommended place to use set_config() is in the sys.setup() method, as follows:

	Example 1
	In the following example, the setup() method is extended to set configuration options.
	Result

	Example 2
	Example 3
	The following example demonstrates the difference between setting the show_sub_holes coverage configuration option to TRUE versus the default setting of FALSE.
	Two coverage items, i1 and i2 are defined, both for boolean fields. A cross item is also defined for the two items.
	In the test, i1 gets FALSE and i2 gets TRUE.
	The cross i1, i2 section of the coverage data with show_sub_holes = FALSE is shown below. In this example, since i1 = TRUE is an empty top bucket, the coverage report does not show the non-existent sub-buckets for i1 = TRUE, i2 = X.
	The cross i1, i2 section of the coverage data with show_sub_holes = TRUE is shown below. In this example, the coverage data show...
	See Also
	24.7.2 get_config()

	Purpose
	Get the configuration option settings

	Category
	Routine

	Syntax
	get_config(category: exp, option: exp)
	Syntax example:

	Parameters
	category
	Is one of the following: cover, generation, memory, and run.
	option
	The valid options are different for each category. See “set_config()” on page 766 for more information:

	Description
	Returns the value of the configuration option. The type of the returned value depends on the specified option.

	Example
	Results
	See Also
	24.7.3 write_config()

	Purpose
	Save configuration options in a file

	Category
	Routine

	Syntax
	write_config(filename: string)
	Syntax example:

	Parameters
	filename
	A string enclosed in double quotes and containing the name of a file. If a filename is entered with no filename extension, the default extension .ecfg is used.

	Description
	Creates a file with the specified name and writes the current configuration options to the file.
	The read_config() method can be used to read the configuration options back in from the file.

	Example
	Result
	See Also
	24.7.4 read_config()

	Purpose
	Read configuration options from a file

	Category
	Routine

	Syntax
	read_config(filename: string)
	Syntax example:

	Parameters
	filename
	A string enclosed in double quotes and containing the name of a file. If a filename is entered with no filename extension, the default extension .ecfg is used.

	Description
	Read configuration options from a file with the specified name. The configuration options must previously have been written to the file using the write_config() method.

	Example
	Result
	See Also
	24.8 OS Interface Routines
	The routines in this section enable use of operating system commands from within the e programming language. These routines work on all supported operating systems.
	The OS interface routines in this section are:
	24.8.1 spawn()

	Purpose
	Send commands to the operating system

	Category
	Pseudo-routine

	Syntax
	spawn()
	spawn(command: string, ...)
	Syntax example:

	Parameters
	command
	An operating system command, with or without parameters and enclosed in double quotes.

	Description
	Takes a variable number of parameters, concatenates them together, and executes the string result as an operating system command via system().

	Example
	See Also
	24.8.2 spawn_check()

	Purpose
	Send a command to the operating system and report error

	Category
	Routine

	Syntax
	spawn_check(command: string)
	Syntax example:

	Parameters
	command
	A single operating system command, with or without parameters and enclosed in double quotes.

	Description
	Executes a single string as an operating system command via system(), then calls error() if the execution of the command returned an error status.

	Example
	Result
	See Also
	24.8.3 system()

	Purpose
	Send a command to the operating system

	Category
	Routine

	Syntax
	system(command: string): int
	Syntax example:

	Parameters
	command
	A single operating system command, with or without parameters and enclosed in double quotes.

	Description
	Executes the string as an operating system command using the C system() call and returns the result.

	Example
	Result
	See Also
	24.8.4 output_from()

	Purpose
	Collect the results of a system call

	Category
	Routine

	Syntax
	output_from(command: string): list of string
	Syntax example:

	Parameters
	command
	A single operating system command, with or without parameters and enclosed in double quotes.

	Description
	Executes the string as an operating system command and returns the output as a list of string. Under UNIX, stdout and stderr go to the string list.

	Example
	Result
	See Also
	24.8.5 output_from_check()

	Purpose
	Collect the results of a system call and check for errors

	Category
	Routine

	Syntax
	output_from_check(command: string): list of string
	Syntax example:

	Parameters
	command
	A single operating system command with or without parameters and enclosed in double quotes.

	Description
	Executes the string as an operating system command, returns the output as a list of string, and then calls error() if the execution of the command returns an error status. Under UNIX, stdout and stderr go to the string list.

	Example
	Result
	See Also
	24.8.6 get_symbol()

	Purpose
	Get UNIX environment variable

	Category
	Routine

	Syntax
	get_symbol(env-variable: string): string
	Syntax example:

	Parameters
	env-variable
	A UNIX environment variable enclosed in double quotes.

	Description
	Returns the environment variable as a string.

	Example
	Result
	See Also
	24.8.7 date_time()

	Purpose
	Retrieve current date and time

	Category
	Routine

	Syntax
	date_time(): string
	Syntax example:

	Description
	Returns the current date and time as a string.

	Example
	See Also
	24.8.8 getpid()

	Purpose
	Retrieve process ID

	Category
	Routine

	Syntax
	getpid(): int
	Syntax example:

	Description
	Returns the current process ID as an integer.

	Example
	See Also
	24.9 On-the-Fly Garbage Collection Routine: do_otf_gc()

	Purpose
	Perform on-the-fly garbage collection

	Category
	Routine

	Syntax
	do_otf_gc()
	Syntax example:

	Description
	This routine performs on-the-fly garbage collection. It can be called at any time from either a regular method or a TCM. It takes no arguments and returns no value.
	Use this routine at any point when reducing the e program memory heap would be beneficial. For example, use this routine between ticks, when significant memory can accumulate. (Regular garbage collection does not occur between ticks.)

	Notes
	Example
	This example calls do_otf_gc() from a TCM. However, it can also be called from a regular method.

	See Also
	24.10 Calling Predefined Routines: routine()

	Purpose
	Call a predefined routine

	Category
	Action

	Syntax
	routine-name()
	routine-name(param, ...)
	Syntax example:

	Parameters
	routine-name
	The name of the routine.
	param
	One or more parameters separated by commas, one parameter for each parameter in the parameter list of the routine definition. Pa...

	Description
	Calls a predefined routine passing it the specified parameters.

	Example
	This example shows how to call a predefined routine.

	Result

	25 Simulation-Related Constructs
	This chapter describes the following e constructs:
	25.1 Verilog Statements or Unit Members

	Some basic functionality of the Verilog simulator interface, such as setting or sampling the values of some Verilog objects, is ...
	25.1.1 verilog code

	Purpose
	Write Verilog code directly to the stubs file

	Category
	Statement or unit member

	Syntax
	verilog code {list-of-strings}
	Syntax examples:
	Parameters
	list-of-strings
	Any list of strings that after concatenation creates any sequence of legal Verilog code. Verilog syntax errors are identified only when you compile or interpret the file with the Verilog compiler.
	The curly braces are required only if the list of strings contains more than one string.

	Description
	Specifies a list of Verilog strings to be included in the Verilog stubs file each time it is generated. The stubs file contains ...
	When verilog code is used as a unit member, any non-constant expressions in the list of strings are calculated within the contex...
	NOTE- Whenever you add or modify a verilog code statement or unit member or add an instance of a unit containing a verilog code unit member, you must create a new stubs file.

	Example 1
	This example uses a verilog code statement to define a Verilog event, clk_rise, in the stubs file. The Verilog clk_rise event is...
	top.v
	clk.e
	Result

	Example 2
	This example initializes an HDL clock by adding code to the stubs file. It uses verilog code as a unit member so that the clock name and its initial value can be configured on a unit instance basis.
	25.1.2 verilog function

	Purpose
	Declare a Verilog function

	Category
	Statement or unit member

	Syntax
	verilog function 'HDL-pathname' (verilog-function-parameter[, ...]): result-size-exp
	Syntax examples:

	Parameters
	HDL-pathname
	The full path to the Verilog function. If this name is not a constant, it is calculated after the final step of pre-run generation. See “'HDL-pathname'” on page 838 for a complete description of HDL path syntax.
	verilog-function- parameter
	The syntax for each parameter is parameter_name:size_exp. The parameter name need not match the name in Verilog. All parameters ...
	The size-exp must be a legal unsigned integer expression specifying the size in bits of the parameter. No default size is assumed. If the size expression is not a constant, it is calculated after the final step of pre-run generation.
	result-size-exp
	A legal unsigned integer expression specifying the size in bits of the returned value. No default size is assumed. If the size expression is not a constant, it is calculated after the final step of pre-run generation.

	Description
	Declares a Verilog function in e so that it can be called from a time-consuming method (TCM).
	When verilog function is used as a unit member, any non-constant expressions in the list of strings are calculated within the co...

	Notes
	Example
	The following function has two 32-bit inputs and returns a 32-bit error status. The memory_driver unit calls the top.write_mem() function.

	See Also
	25.1.3 verilog import

	Purpose
	Read in Verilog text macros

	Category
	Statement

	Syntax
	verilog import file-name
	Syntax example:
	Parameters
	file-name
	The e program searches for imported files in the directories specified in $PATH. If the file is not found in $PATH, the e program then searches the directory where the importing file resides.

	Description
	Reads in a file that includes Verilog `define text macros. After reading in the file, you can use these text macros in e expressions.
	An e program understands several Verilog language constructs when reading the `define macros:

	Notes
	For example, if you use a Verilog macro to specify the width of the parameters in a task identified with verilog task, then you need to recreate the stubs file if the macro is redefined.

	Example 1
	To import more than one file, you must use multiple verilog import statements or use the Verilog compiler directive `include. Yo...
	The following example shows how to import multiple files. Note that once X is used in the x.e file, its value of 7 (the last loaded definition before it is used) cannot be changed.
	a.v
	b.v
	x.e
	y.e
	z.e

	Example 2
	You can use Verilog macros everywhere an e macro is allowed. For example, you can use Verilog macros in width declarations or when assigning values to enumerated items.
	macros.v
	dut_driver.e
	25.1.4 verilog task

	Purpose
	Declare a Verilog task

	Category
	Statement or unit member

	Syntax
	verilog task 'HDL-pathname' (verilog-task-parameter[, ...])
	Syntax examples:
	Parameters
	HDL-pathname
	The full path to the Verilog task. If this name is not a constant, it is calculated after the final step of pre-run generation. See “'HDL-pathname'” on page 838 for a complete description of HDL path syntax.
	verilog-task-parameter
	The verilog-task-parameter has the syntax name:size-exp[:direction].
	The name need not match the name in Verilog. All parameters are passed by position, not name. The number of parameters must match the number of parameters in the task declaration in Verilog.
	The size-exp must be a legal unsigned integer expression specifying the size in bits of the parameter. No default size is assumed. If the size expression is not a constant, it is calculated after the final step of pre- run generation.
	The direction is one of the following keywords: input (or in), output (or out), inout. The default is input.

	Description
	Declares a Verilog user-defined task or system task in e so that it can be called from a TCM. In the following example, “addr” is a 64-bit input and “cell” is a 128-bit output. $display is a Verilog system task.
	When verilog task is used as a unit member, any non-constant expressions in the list of strings are calculated within the contex...

	Notes
	Example
	This task is similar to the Verilog function “write_mem” shown in the example for the verilog function unit member (“verilog function” on page 797). This task returns an error status as an output parameter.

	See Also
	25.1.5 verilog time

	Purpose
	Set the Verilog time resolution

	Category
	Statement

	Syntax
	verilog time verilog-time-scale
	Syntax examples:
	Parameters
	verilog-time-scale
	The Verilog specification for time scale has the syntax time-exp unit / precision-exp unit.
	time-exp and precision-exp must be integer expressions. If the expression is not a constant, it is calculated after the final st...
	unit is any unit of time measurement. According to Verilog standards, the valid character strings are s, ms, us, ns, ps, and fs, but the e program does not check whether the value is legal or not.

	Description
	Sets the time resolution in the Verilog stubs file to the specified verilog-time-scale.
	The verilog time statement can be used to scale the following:

	Notes

	Example 1
	Example 2
	25.1.6 verilog variable reg | wire
	Purpose
	Identify a Verilog register or wire

	Category
	Statement or unit member

	Syntax
	verilog variable 'HDL-pathname' using option, ...
	Syntax examples:
	Parameters
	HDL-pathname
	The complete path to the Verilog object, a register or a net.If this name is not a constant, it is calculated after the final step of pre-run generation. See “'HDL-pathname'” on page 838 for a complete description of HDL path syntax.
	NOTE- If the register or wire has a width greater than 1, the bit range must be explicitly declared in order to create internal temporary registers of the correct width.
	The width range has the syntax [right-bound-exp:left-bound-exp]
	where right-bound-exp and left-bound-exp are any legal integer expressions. The width range must be the same (including the desc...
	option
	A list of one or more of the following options separated by commas.
	drive=string-exp
	Specifies that the Verilog object is driven when the event specified by string-exp occurs. string-exp is any legal string expres...
	drive_hold=string-exp
	Specifies a Verilog event after which the HDL object’s value is set to z. string-exp is any legal string expression specifying a...
	net,
	wire
	Specifies that the Verilog object is a net (wire). Some simulators (VCS and ModelSim) require this option anytime you drive a Ve...
	forcible
	Allows forcing of Verilog wires. By default Verilog wires are not forcible. This option requires that you also specify the net or wire option.
	strobe=string-exp
	Specifies that the value of the Verilog object is sampled at the event specified using string-exp. string-exp is any legal strin...

	Description
	Allows access to the Verilog object named in 'HDL-pathname', a register or a net. In general, you can access Verilog objects using the 'HDL-pathname' expression. The verilog variable statement is necessary only when you want to
	Some simulators (VCS and ModelSim) require this option anytime you drive a Verilog wire from e. Other simulators require this op...
	If you have not included verilog variable statement and one is required, you will see an error message such as
	verilog variable declarations for the same object can be repeated (to allow incremental building of e code), but each repeated declaration must be identical.
	When verilog variable is used as a unit member, any non-constant expressions in the list of strings are calculated within the co...

	Notes

	Example 1
	The following example sets drive and drive_hold timing controls on a register:
	If, for example, the e event “reset_request” is emitted at time 100ns, then the Verilog top-level register “reset_request” is set at time 105ns, and it is disconnected (assigned Z value) at the next negative edge of the clock.

	Example 2
	The following example sets strobe and drive delays for a wire using a verilog variable unit member and a non-constant expression.
	The verilog variable ... using strobe statement creates an additional temporary variable in the Verilog stubs file that strobes ...

	Example 3
	Here is a complete example of how to drive a clock wire.
	clk.e
	clk.v

	Example 4
	This example shows how to use verilog variable as a unit member with a relative path. In this case, the full HDL path of the uni...
	enet_env.e
	top.v
	Result
	See Also
	25.1.7 verilog variable memory

	Purpose
	Identify a Verilog memory

	Category
	Statement or unit member

	Syntax
	verilog variable 'HDL-pathname [mem-range] [verilog-reg-range]' [using vcs_pli]
	Syntax example:
	Parameters
	HDL-pathname
	The full path to the Verilog memory. If this name is not a constant, it is calculated after the final step of pre-run generation. See “'HDL-pathname'” on page 838 for a complete description of HDL path syntax.
	mem-range
	A legal expression specifying the range of the memory elements. A legal expression has the syntax [exp:exp]. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	verilog-reg-range
	A legal expression specifying the width of each memory element. A legal expression has the syntax [exp:exp]. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	using vcs_pli
	Enables the propagation of Verilog memory updates with VCS. If the e program is not linked to the VCS simulator, this option is ignored.
	NOTE- Due to a limitation of the VCS simulator extension, changes to bits containing x or z values are not propagated.

	Description
	Allows access to a Verilog memory. verilog variable declarations for the same memory can be repeated (to allow incremental building of e code), but each repeated declaration must be identical.
	Note that the order of the range specifiers in the e syntax is the reverse of the Verilog declaration order.
	For example, if a memory is defined in Verilog as follows:
	The corresponding verilog variable statement is:
	When verilog variable is used as a unit member, any non-constant expressions in the list of strings are calculated within the co...

	Notes
	Example
	This example shows one possible way of initializing a Verilog memory at the beginning of the simulation.

	xmem.v
	memstarter.e
	See Also
	25.2 VHDL Statements and Unit Members
	Some basic functionality of the VHDL simulator interface, such as setting or sampling the values of some VHDL objects, is enable...
	25.2.1 vhdl code

	Purpose
	Write VHDL code directly to the stubs file

	Category
	Statement or unit member

	Syntax
	vhdl code {list-of-strings}
	Syntax example:
	Parameters
	list-of-strings
	Any list of strings that after concatenation creates any sequence of legal VHDL code. the e program does not check for VHDL syntax errors. VHDL syntax errors are identified only when you compile the file with the VHDL compiler.
	The curly braces are required only if the list of strings contains more than one string.

	Description
	Specifies a list of VHDL strings to be included in the stubs file (“sim.vhd”). The stubs file contains code that enables some si...
	When vhdl code is used as a unit member, any non-constant expressions in the list of strings are calculated within the context o...
	NOTE- Whenever you add or modify a vhdl code statement or unit member or add an instance of a unit containing a vhdl code unit member, you must create a new stubs file.

	Example 1
	A common use for the vhdl code statement is to include packages. For example, parameter types may be declared in a different pac...
	The sim.vhd file generated with this statement looks like this:

	Example 2
	You can also use non-constants in vhdl code expressions. The following example configures the DUT clock differently for each channel instance.
	This vhdl code unit member inserts the following VHDL code into the sim.vhd file:
	See Also
	25.2.2 vhdl driver

	Purpose
	Drive a VHDL signal continuously via the resolution function

	Category
	Unit member

	Syntax
	vhdl driver 'HDL-pathname' using option, ...
	Syntax examples:
	Parameters
	HDL-pathname
	A full or a relative VHDL path to the signal. If the signal has more than one driver, one driver in the DUT and one in the e pro...
	See “'HDL-pathname'” on page 838 for a complete description of HDL path syntax.
	option
	A list of one or more of the following options separated by commas. None of the options is required.
	disconnect_value= [integer-expression | verilog-literal]
	Any legal integer expression specifying the value to be used on the e program restore to disconnect the driver. The default is z. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	This value is used when you restore Specman Elite after issuing a test command but do not restart the simulator. This value shou...
	NOTE- If the VHDL signal name is a computed name then it will be computed again at the before the restore. Thus, in order to cor...
	Use a Verilog literal to specify values containing x or z. A Verilog literal is a sized literal that can contain 0, 1, x, and z, for example 16'bx.
	delay= integer-expression
	Any legal integer expression specifying a delay for all assignments. The delay time units are determined by the current time uni...
	mode=[INERTIAL | TRANSPORT]
	Used only when delay is also specified, this option specifies whether pulses whose period is shorter than the delay are propagat...
	The mode option also influences what happens if another driver (either VHDL or another unit) schedules a signal change and before that change occurs, this driver schedules a different change. With INERTIAL, the first change never occurs.
	initial_value= [integer-expression | verilog-literal]
	Any legal integer expression specifying an initial value for the signal. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	When the e program is driving a resolved signal that is also driven from VHDL, unless an initial value is specified, the signal value is X until the first value is driven from he e program, even if a 0 or a 1 is driven from VHDL.
	Use a Verilog literal to specify values containing x or z. A Verilog literal is a sized literal that can contain 0, 1, x, and z, for example 16'bx.

	Description
	The vhdl driver unit member identifies a VHDL signal that, when assigned to by an e method of that unit, is driven continuously ...
	Any non-constant expressions in the list of strings are calculated within the context of a unit instance. Each unit instance adds a separate fragment of Verilog code to the stubs file.
	To require resolution between VHDL process assignments and an e method assignment or between e method assignments, you can use t...
	You can create multiple drivers for the same signal by making multiple instances of a unit that contains a vhdl driver unit memb...
	Note that there is a significant semantic difference between a verilog variable using drive statement/unit member and a vhdl dri...

	Notes
	Example
	top.vhd
	driver.e
	Result (ModelSim waveform)
	See Also
	25.2.3 vhdl function

	Purpose
	Declare a VHDL function defined in a VHDL package

	Category
	Statement or unit member

	Syntax
	vhdl function 'identifier' using option, ...
	Syntax examples:
	Parameters
	identifier
	The operator symbol (for example '"and”') or the name of the VHDL function as specified in the package. If the identifier is not a constant, it is calculated after the final step of pre-run generation.
	option
	A comma-separated list of two or more of the following options. The interface, library and package options are required.
	interface= “(string-exp) return return-subtype”
	A legal string expression that specifies the interface list for the function. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	The legal syntax for this string is [parameter-class] identifier :subtype[;...]
	The only output of the function is the returned value.
	The optional parameter class is constant or signal - as specified in the VHDL declaration - and is transparent for the e program.
	The identifier does not have to be the name of the parameter as specified in the package but the parameter subtype must match exactly the package specification.
	The type of the returned value must match exactly the package specification. The type must also be one of the types supported by the e language.
	library=string-exp
	A legal string expression specifying the name of the VHDL library containing the package where the function is defined. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	package= string-exp
	A legal string expression specifying the package name. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	alias=string-exp
	A legal string expression that specifies the name with which the function will be called from e. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	There are various reasons to use aliases. For example, an alias is required when there are overloaded functions with the same na...
	declarative_item=string-exp
	A legal string expression that specifies one or more use clauses that are placed in the stubs file at the local scope of the fun...
	This option may prevent unwanted overwriting of declarations in the stubs file. See Example 1 on page 825 for an example of declarative_item used with vhdl procedure.

	Description
	Declares a VHDL function in e so that it can be called from a time-consuming method (TCM).
	When there is a call to a procedure with a constant or signal parameter, the value of the constant or signal is passed.
	If there are functions in a single package that have the same name but different numbers or types of parameters, make a separate declaration in e for each one you plan to call and specify a unique alias for each declaration.
	When vhdl function is used as a unit member, any non-constant expressions in the list of strings are calculated within the conte...

	Notes

	Example 1
	VHDL allows overloading of subprogram names. It is possible, for example, to define two functions with the name “increment” where the number and type of arguments or the return type may differ:
	In cases like this, you must create an alias for each version that you intend to call.

	Example 2
	Another case where aliasing may be required is when a subprogram contains unconstrained array parameters or unconstrained return...
	In order to support subprograms with unconstrained array parameters or return values, the e program must be notified about all (...
	You must create an alias for each of the possible lengths of the returned value.
	See Also
	25.2.4 vhdl procedure

	Purpose
	Declare a VHDL procedure defined in a VHDL package

	Category
	Statement or unit member

	Syntax
	vhdl procedure 'identifier' using option, ...
	Syntax example:
	Parameters
	identifier
	The name of the VHDL procedure as specified in the package. If this identifier is not a constant, it is calculated after the final step of pre-run generation.
	option
	A comma-separated list of two or more of the following options. The library and package options are required.
	interface= “(string-exp)”
	A legal string expression that specifies the interface list for the procedure. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	The legal syntax for this string is [parameter_class] identifier : [mode] subtype[;...]
	The optional parameter class is constant, variable, or signal - as defined in the VHDL declaration - and is transparent for the e program.
	Mode is in, inout or out. The default mode is in.
	The identifier does not have to be the name of the parameter as specified in the package but the subtype must match exactly the specification in the package. The subtype must also be one of the types supported by e.
	library= string-exp
	A legal string expression specifying the name of the library containing the package where the procedure is defined. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	package= string-exp
	A legal string expression specifying the package name. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	alias= string-exp
	A legal string expression that specifies the name with which the procedure will be called from e. If this expression is not a constant, it is calculated after the final step of pre-run generation.
	There are various reasons to use aliases. For example, an alias is required when there are overloaded procedures with the same n...
	declarative_item= string-exp
	A legal string expression that specifies a use clause that is placed at the local scope of the procedure call rather than at the...
	This option prevents unwanted overwriting of declarations in the stubs file. See Example 1 on page 825.

	Description
	Declares a VHDL procedure in e so that it can be called from a time-consuming method (TCM).
	When vhdl procedure is used as a unit member, any non-constant expressions in the list of strings are calculated within the cont...
	When there is a call to a procedure with a constant or variable parameter, the value of the constant or variable is passed. Signal parameters are handled differently.
	When there is a call to a procedure with a signal parameter of mode in, instead of passing the value of the signal, it passes th...
	When there is a call to a procedure with a signal parameter of mode out, the procedure receives a reference for the signal. When...
	If there are procedures in a single package that have the same name but different numbers or types of parameters, you must make a separate declaration in e for each one you plan to call and specify a unique alias for each declaration.
	In order to allow multiple e program threads to call the same time-consuming VHDL procedure simultaneously and in parallel, you ...
	There is a significant semantic difference between VHDL procedure/function and Verilog task/function unit members. Verilog tasks...
	The fact that VHDL subprogram unit members are not bound to HDL paths causes a difference in how these subprograms may be called...

	Notes

	Example 1
	This example shows how to handle the case where two different types from two different packages have the same name (“state”). Using the declarative_item option to specify a use clause at the scope local to the procedure avoids name collision.
	Result
	The qvh.vhd file has the following structure. Note that the library declarations appear at the global scope. Any use clauses inc...
	This example shows how to allow parallel invocation of the same procedure. There are two instances of the unit “transactor”, whi...

	Example 2
	This example illustrates the transmitting and receiving of a one-byte packet. The unit “driver” uses the VHDL procedure “transmi...
	The unit “receiver” uses the VHDL procedure “receive_packet” for reading the data. This procedure accepts two input signal param...
	The VHDL package:
	The entity and architecture:
	The receiver unit
	See Also
	25.2.5 vhdl time

	Purpose
	Sets VHDL time resolution

	Category
	Statement

	Syntax
	vhdl time integer-exp time-unit
	Syntax example:
	Parameters
	integer-exp
	A legal integer expression. If the expression is not a constant, it is calculated after the final step of pre-run generation.
	time-unit
	Any valid VHDL time unit.

	Description
	Sets the time resolution to the specified time scale. This time scale is used to scale:
	If you use NC simulator and do not specify a time resolution, the default resolution for the e program is 1ns. (NC VHDL always uses a time scale of 1 fs.)
	If you use ModelSim, the default resolution always matches the settings chosen on the simulator side in the initialization file or with the simulator invocation option.

	Notes

	Example 1
	The following statement sets the time resolution to 100ns.

	Example 2
	In this example, the time resolution is not calculated until after the final step of pre-run generation.
	See Also
	25.3 Simulation-Related Actions
	There are two simulation-related actions in e:
	25.3.1 force

	Purpose
	Force a value on an HDL object

	Category
	Action

	Syntax
	force 'HDL-pathname' = exp
	Syntax example:
	Parameters
	HDL-pathname
	The full path name of an HDL object, optionally including expressions. See “'HDL-pathname'” on page 838 for more information.
	exp
	Any scalar expression or literal constant, as long as it is composed only of 1's and 0's. No x or z values are allowed. Thus “16'hf0f1” or (sys.my_val + 5) are legal.

	Description
	Forces an HDL object to a specified value, overriding the current value and preventing the DUT from driving any value. The HDL object remains at the specified value until a subsequent force action from e or until freed by a release action.
	When an e program is linked with a Verilog simulator, you can apply a force action to any net or wire that has been declared forcible with the verilog variable statement.
	When an e program is linked with a VHDL simulator, you can force signals of a scalar integer or enumerated type as well as binary array type, such as arrays of std_logic and bit vectors. No declaration is required for VHDL objects.
	When an e program is linked with ModelSim VHDL simulator, you can force single elements of an array of a scalar integer or enumerated type using the predefined routine simulator_command().
	If you force a part of a vectored object, the force action is propagated to the rest of the object. If a force action is applied...
	If there are multiple assignments to a VHDL object from e, every new (not necessarily forced) assignment overrides the previous ...

	Notes
	To enable forcing in VCS, you need to add the force option manually to the pli.tab by changing “acc=rw,cbk:*” to “acc=frc,cbk:*”...

	Example 1
	This example shows the effect of force and release actions in a Verilog environment.
	top.v
	test.e
	verilog.e
	Result (ModelSim transcript)

	Example 2
	This example shows the effect of force and release actions in a VHDL environment.
	top.vhd
	test.e
	Result (ModelSim waveform)
	See Also
	25.3.2 release

	Purpose
	Remove a force action from an HDL object

	Category
	Action

	Syntax
	release 'HDL-pathname'
	Syntax example:
	Parameters
	HDL-pathname
	The full path name of an HDL object previously specified in a force action.

	Description
	Releases the HDL object that you have previously forced.
	In a VHDL environment, a release action is only required to allow the object to be driven by the DUT. Each new action from e overrides the previous one without an explicit release action.
	If the object is a Verilog wire and it has no other driver from within the model, it floats to high-impedance (all z).
	NOTE- The interface with SpeedSim does not support force or release.

	Example 1
	This example shows the effect of force and release actions in a Verilog environment.
	top.v
	test.e
	verilog.e
	Result (ModelSim transcript)

	Example 2
	This example shows the effect of force and release actions in a VHDL environment.
	top.vhd
	test.e
	Result (ModelSim waveform)
	See Also
	25.4 Simulation-Related Expressions
	This section contains:
	25.4.1 'HDL-pathname'

	Purpose
	Accessing HDL objects, using full-path-names

	Category
	Expression

	Syntax
	'HDL-pathname[index-exp | bit-range] [@(x | z | n)]'
	Syntax example:
	Parameters
	HDL-pathname
	The full path name of an HDL object, optionally including expressions and composite data.
	bit-range
	A bit range has the format [high-bit-num:low-bit-num] and is extracted from the object from high bit to low bit. Slices of buses...
	index-exp
	Accesses a single bit of a Verilog vector, a single element of a Verilog memory, or a single vector of a VHDL array of vectors.
	@x | z
	Sets or gets the x or z component of the value. When this notation is not used in accessing an HDL object, the e program translates the values of x to zero and z to one.
	When reading HDL objects using @x (or @z), the e program translates the specified value (x or z) to one, and all other values to...
	@n
	When this specifier is used for driving HDL objects, the new value is visible immediately (now). The default mode is to buffer p...

	Description
	Accesses Verilog and VHDL objects from e.
	NOTE- In general, you can access HDL objects using the 'HDL-pathname' expression. In order to enable some non-trivial capabilities, however, you must also use verilog or vhdl statements.
	25.4.2 specman deferred

	Purpose
	Identify a deferred Verilog `define

	Category
	Verilog expression

	Verilog Syntax
	`define macro-name default-value // specman deferred
	Syntax example:
	Parameters
	macro-name
	Any legal Verilog identifier.
	default-value
	A constant expression. This value is used as the definition of the `define unless you over-write it with another value. The size...
	// specman deferred
	The “// specman deferred” comment must appear on the same line of the file that specifies the `define. This comment can contain any number of spaces or tabs.

	Description
	Deferred Verilog `defines let you use Verilog definitions without specifying their final values at compile time. Instead, you can redefine their values just prior to use.
	This feature lets you compile and link a single executable for all tests and then load in different Verilog `defines definitions for different tests.
	All non-deferred `defines are substituted in place during parsing. References to deferred `defines are resolved at run time.

	Notes
	The following lines define a `define with the default width of 32 bits:
	If later on during the run MY_MASK is defined with a different type or length, for example:
	an error occurs.

	See Also
	25.5 Simulation-Related Routines
	The following routines perform functions related to simulation:
	25.5.1 simulator_command()

	Purpose
	Issue a simulator command

	Category
	Predefined routine

	Syntax
	simulator_command(command: string)
	Syntax example:
	Parameters
	command
	A valid simulator command, enclosed in double quotes. Commands that change the state of simulation, such as run, restart, restore, or exit, cannot be passed to the simulator with simulator_command().

	Description
	Passes a command to the HDL simulator from e. The command returns no value. The output of the command is sent to standard output and to the log file.
	NOTE- This routine can be used only with the ModelSim, SpeedSim, and NC (VHDL) simulators.

	See Also
	25.5.2 stop_run()

	Purpose
	Stop a simulation run cleanly

	Category
	Predefined routine

	Syntax
	stop_run()
	Syntax example:

	Description
	Stops the simulator and initiates post-simulation phases. The following things occur when stop_run() is invoked:
	1) The quit() method of each struct under sys is called. Each quit() method emits a “quit” event for that struct instance at the end of the current tick.
	2) The scheduler continues running all threads until the end of the current tick.
	3) At the end of the current tick, the extract, check, and finalize test phases are performed.
	4) If a simulator is linked in to the e programe, the e program terminates the simulation cleanly after the test is finalized.

	Notes
	Example
	See Also

	26 Predefined File Routines Library
	26.1 Overview
	The global struct named files contains predefined routines for working with files. This chapter contains information about using...
	General information about working with files is provided in the following sections.
	Syntax for the predefined file routines is described in the following sections.
	See Also
	26.2 File Names and Search Paths
	Many of the file routines require a file-name parameter. The following are restrictions on file-name parameters for most routines.
	The exception to the above restrictions is the files.add_file_type() routine. This routine accepts ~, wild cards (*), or $PATH a...
	26.3 File Descriptors

	For every open file, a file descriptor struct exists which contains information about the file. The routine “open()” on page 848...
	26.4 Low-Level File Routines

	This section contains descriptions of the file routines that use file descriptor structs.
	To write strings to a file, the simplest routine is “write_string_list()” on page 873.
	The following file routines are described in this section.

	See Also
	26.4.1 add_file_type()

	Purpose
	Get a file name

	Category
	Method

	Syntax
	files.add_file_type(file-name: string, file-ext: string, exists: bool): string
	Syntax example:
	Parameters
	file-name
	The name of the file to access. A wild card pattern can be used.
	file-ext
	The file extension, including the dot (.) may be empty.
	exists
	Sets checking for existence of the file.

	Description
	Returns a string holding the file name.
	This routine assigns a string consisting of file-name and file-ext to a string variable. If file-name already contains an extension, then file-ext is ignored. If file-ext is empty, the file-name is used with no extension.
	If exists is FALSE, the routine returns the file-name string without checking for the existence of the file. Wild cards, ~, and $PATH are not evaluated.
	If exists is TRUE, the e program checks to see if there is a file that matches the file-name in the current directory. The file-...

	Examples
	For the following examples, assume files named “ex_file” and “ex_file.tmp” exist in the current directory, and a file named “ex_file.e” exists under /prog/docs (which is included in the $PATH definition).
	The following assigns ex_file.e to the f1 variable, without checking to see if the ex_file.e file exists.
	The following statement tries to assign ex_file.e to the f2 variable, but issues an error when it checks for the existence of ex_file.e.
	The error is shown below.
	The following action assigns ex_file to the f3 variable.
	Although ex_file.e does not exist in the current directory, it does exist in the /prog/docs directory, which is in the $PATH. Therefore, the following action assigns /prog/docs/ex_file.e to the f4 variable.
	The following action assigns ex* to the f5 variable.
	The following action checks for files that match the ex* pattern.
	Since more than one file in the current directory matches the pattern, the names of the matching files are printed and an error is issued:

	See Also
	26.4.2 close()

	Purpose
	Close a file

	Category
	Method

	Syntax
	files.close(file: file-descriptor)
	Syntax example:
	Parameters
	file
	The file descriptor of the file to be closed.

	Description
	Flushes the file buffer and closes the file specified by file-descriptor. The file must previously have been opened using “open(...

	Example
	The WrAndFlush() user-defined method in the following example opens a file named “ex_file.txt” as the m_file variable, writes a ...
	The files.flush() routine writes the “AaBaCa 0123” string to the disk immediately, so that the read routine can read it. If ther...

	See Also
	26.4.3 flush()

	Purpose
	Flush file buffers

	Category
	Method

	Syntax
	files.flush(file: file-descriptor)
	Syntax example:
	Parameters
	file
	The file descriptor of the file to flush.

	Description
	Flushes all the operating system buffers associated with file to the disk.
	File data is buffered in memory and only written to disk at certain times, such as when the file is closed. This routine causes data to be written to the disk immediately, instead of later when the file is closed.
	This can be useful if two processes are using the same disk file, for example, to make sure that the current data from one process is written to the file before the other process reads from the file.

	Example
	The WrAndFlush() user-defined method in the following example opens a file named “ex_file.txt” as the m_file variable, writes a ...
	The files.flush() routine writes the “AaBaCa 0123” string to the disk immediately, so that the read routine can read it. If ther...

	See Also
	26.4.4 open()

	Purpose
	Open a file for reading or writing or both

	Category
	Method

	Syntax
	files.open(file-name: string, mode: string, file-role: string): file
	Syntax example:
	Parameters
	file-name
	The name of the file to open. Wild cards, ~, and $PATH are not allowed in the file name. To use them to select files, see “add_file_type()” on page 844.
	mode
	The read/write mode for the file. The mode may be one of the following.
	r - open the file for reading.
	w - open the file for writing (overwrite the existing contents)
	rw - open the file for reading and writing (add to the end of the existing contents)
	a - open the file for appending (add to the end of the existing contents)
	file-role
	A text description used in error messages about the file.

	Description
	Opens the file for reading, writing, both reading and writing, or append, according to mode (r, w, rw, a) and returns the file descriptor of the file. The file-role is a description of the file, for example, “source file”.
	If the file cannot be opened, an error like the following is issued.

	Example 1
	The following example opens a file named “/users/a_file.txt” in write mode as file variable m_file, writes a line to the file, and then closes the file.

	Example 2
	The following actions perform the same operations as Example 1, above.
	See Also
	26.4.5 read()

	Purpose
	Read an ASCII line from a file

	Category
	Method

	Syntax
	files.read(file: file-descriptor, string-var: *string): bool
	Syntax example:
	Parameters
	file
	The file descriptor of the file that contains the text to read.
	string-var
	A variable into which the ASCII text will be read.

	Description
	Reads a line of text from a file into a string variable. The file must have been opened with “open()” on page 848. The line from the file is read into the variable without the final \n newline character.
	The routine returns TRUE on success. If the method cannot read a line (for example, if the end of the file is reached), it returns FALSE.
	The files.read() routine is a low level routine. For performance considerations, it is generally recommended to use the for each line in file action, rather than this routine.

	Example
	The following example opens a file named “a_file.txt” as variable m_f, reads lines one by one from the file into a variable named “m_string”, and displays each string as it reads it.

	See Also
	26.4.6 read_lob()

	Purpose
	Read from a binary file into a list of bits

	Category
	Method

	Syntax
	files.read_lob(file: file-descriptor, size-in-bits: int): list of bit
	Syntax example:
	Parameters
	file
	The file descriptor of the file to read from.
	size-in-bits
	The number of bits to read. Should be a multiple of 8

	Description
	Reads data from a binary file into a list of bits and returns the list of bits. The file must already have been opened with “open()” on page 848. To read an entire file, use UNDEF as the size-in-bits.

	Example 1
	The following example opens a file named “a_file.dat” with the file descriptor m_f, and reads the first 16 bits from the file into a list of bits named “b_list”.

	Example 2
	The following actions perform the same operations as Example 1, above.
	See Also
	26.4.7 write()

	Purpose
	Write a string to file

	Category
	Method

	Syntax
	files.write(file: file-descriptor, text: string)
	Syntax example:
	Parameters
	file
	The file descriptor of the file to write into.
	text
	The text to write to the file.

	Description
	Adds a string to the end of an existing, open file. A new-line \n is added automatically at the end of the string. The file must already have been opened using “open()” on page 848. If the file is not open, an error message is issued.
	If the file is opened in write mode (w), this routine overwrites the existing contents. To avoid overwriting the existing file, open it in append mode (a).
	NOTE- The >> concatenation operator can be used to append information to the end of a file.

	Example
	The following example opens a file named “/users/a_file.txt” in write mode as file variable m_file, writes two lines to the file, and then closes the file.

	See Also
	26.4.8 write_lob()

	Purpose
	Write a list of bits to a binary file

	Category
	Method

	Syntax
	files.write_lob(file: file-descriptor, bit-list: list of bit)
	Syntax example:
	Parameters
	file
	The file descriptor of the file to write into.
	bit-list
	A list of bits to write to the file. The size of the list must be a multiple of 8 bits.

	Description
	Writes all the bits in the bit list (whose size should be a multiple of 8) to the end of the file specified by file. The file must already have been opened with “open()” on page 848.
	Lists of bits are always written in binary format.

	Example
	The following example opens a file named “a_file.dat” as file descriptor m_f_1 in write mode (w). The files.write_lob() routine writes the contents of a list of bits named “b_list” into the file.
	The files.read_lob() routine reads the contents of the file into a variable named “b_2” as a list of bits, which is then printed.
	The print action in the example above displays the following.

	See Also
	26.4.9 writef()

	Purpose
	Write to a file in a specified format

	Category
	Pseudo-method

	Syntax
	files.writef(file: file-descriptor, format: string, item: exp, ...)
	Syntax example:
	Parameters
	file
	The file descriptor of the file to write into.
	format
	A string containing a standard C formatting mask for each item. See “Format String” on page 765 for information about formatting masks.
	item
	An e expression to write to the file.

	Description
	Adds a formatted string to the end of the specified file. No newline is automatically added. (Use “\n” in the formatting mask to add a newline).
	The file must already have been opened with “open()” on page 848, otherwise an error is issued.
	If the number of items in the formatting mask is different than the number of item expressions, an error is issued.
	How the data is written to the file is affected by the open() mode “w” or “a” option and by whether or not the file already exists, as follows:

	Example
	In the following example, a file named “pkts_file.txt” is opened in write (“w”) mode, with file descriptor mypkts. The writef() ...

	Result
	This is what the contents of the pkts_file.txt file look like:

	See Also
	26.5 General File Routines
	This section contains descriptions of the following routines.

	See Also
	26.5.1 file_age()

	Purpose
	Get a file’s modification date

	Category
	Method

	Syntax
	files.file_age(file-name: string): int
	Syntax example:
	Parameters
	file-name
	The file whose age is to be found.

	Description
	Returns the modification date of the file as an integer. This routine can be used to compare the modification dates of files. Th...
	If the file does not exist, an error like the following is issued.

	Example
	In the following example, the files.file_age() routine derives a number from the modification date of a file whose variable is m...
	The example above prints the following.

	See Also
	26.5.2 file_append()

	Purpose
	Append files

	Category
	Method

	Syntax
	files.file_append(from-file-name: string, to-file-name: string)
	Syntax example:
	Parameters
	from-file-name
	The name of the file that will be appended to the to-file.
	to-file-name
	The name of the file to which the from-file will be appended.

	Description
	Adds the contents of the file named from-file-name to the end of the file named to-file-name. If either of the files does not exist, an error is issued.
	NOTE- The >> concatenation operator can be used to append information to the end of a file.

	Example
	The following example appends the contents of f_2.txt to the end of f_1.txt.

	See Also
	26.5.3 file_copy()

	Purpose
	Create a copy of a file

	Category
	Method

	Syntax
	files.file_copy(from-file-name: string, to-file-name: string)
	Syntax example:
	Parameters
	from-file-name
	The name of the file to copy.
	to-file-name
	The name of the copy of the file.

	Description
	Makes a copy of the file named from-file-name, with the name to-file-name. If a files already exists with the to-file-name, the ...

	Example
	The following example copies the contents of f_1.txt into f_1.bak.

	See Also
	26.5.4 file_delete()

	Purpose
	Delete a file

	Category
	Method

	Syntax
	files.file_delete(file-name: string)
	Syntax example:
	Parameters
	file-name
	The file to be deleted.

	Description
	Deletes a specified file. If the file cannot be found, an error like the following is issued.

	Example
	The following example deletes the f_1.txt file.

	See Also
	26.5.5 file_exists()

	Purpose
	Check if a file exists

	Category
	Method

	Syntax
	files.file_exists(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Check if the file-name exists in the file system. Return TRUE if the file exists or issues an error if it does not exist. Also returns TRUE if the file is a directory. The routine does not check whether the file is readable or not.
	NOTE- This routine only checks for the existence of a file with the exact name you specify. For a routine that can check for multiple similarly named files, see “add_file_type()” on page 844.

	Example
	The following example prints “file f_1.txt exists” if there is a file named “f_1.txt” in the current directory. If the file does not exist, an error is issued.

	See Also
	26.5.6 file_extension()

	Purpose
	Get the extension of a file

	Category
	Method

	Syntax
	files.file_extension(file-name: string): string
	Syntax example:
	Parameters
	file-name
	The name of the file.

	Description
	Returns a string containing the file extension, which is the sequence of characters after the last period (.).

	Example
	The following example prints “get_ext = “.bak””.

	See Also
	26.5.7 file_is_dir()

	Purpose
	Check if a file is a directory

	Category
	Method

	Syntax
	files.file_is_dir(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file exists and is a directory. Returns FALSE if the file does not exist or is not a directory.

	Example
	The following example prints TRUE if f_1 is a directory, or FALSE if f_1 does not exist or if it is not a directory.

	See Also
	26.5.8 file_is_link()

	Purpose
	Check if a file is a symbolic link

	Category
	Method

	Syntax
	files.file_is_link(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file exists and is a symbolic link. Returns FALSE if the file does not exist or is not a symbolic link.

	Example
	The following example prints TRUE if f_1 is a symbolic link, or FALSE if f_1 does not exist or if it is not a symbolic link.

	See Also
	26.5.9 file_is_readable()

	Purpose
	Check if a file is readable

	Category
	Method

	Syntax
	files.file_is_readable(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file exists and is readable. Returns FALSE if the file does not exist or is not readable.

	Example
	The following example prints TRUE if f_1.dat is readable, or FALSE if f_1.dat does not exist or if it is not readable.

	See Also
	26.5.10 file_is_regular()

	Purpose
	Check if a file is a regular file (not a directory or link)

	Category
	Method

	Syntax
	files.file_is_regular(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file exists and is a regular file. Returns FALSE if the file does not exist or if it is a directory or a symbolic link.

	Example
	The following example prints TRUE if f_1 is a regular file, or FALSE if f_1 does not exist or if it is a link or directory.

	See Also
	26.5.11 file_is_temp()

	Purpose
	Check if a file name starts with “/tmp”

	Category
	Method

	Syntax
	files.file_is_temp(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file name starts with “/tmp”, otherwise returns FALSE.

	Example
	The following example prints “/tmp/f_1.dat is_temp = TRUE”.

	See Also
	26.5.12 file_is_text()

	Purpose
	Check if a file is a text file

	Category
	Method

	Syntax
	files.file_is_text(file-name: string): bool
	Syntax example:
	Parameters
	file-name
	The name of the file to be checked.

	Description
	Returns TRUE if the file is a text file (that is, if it contains more than 20% printable characters). Returns FALSE if the file does not exist or if it is a not a text file.

	Example
	The following example prints TRUE if f_1.dat is a text file, or FALSE if f_1.dat does not exist or if it is not a text file.

	See Also
	26.5.13 file_rename()

	Purpose
	Rename a file

	Category
	Method

	Syntax
	files.file_rename(from-file-name: string, to-file-name: string)
	Syntax example:
	Parameters
	from-file-name
	The file to rename.
	to-file-name
	The new file name.

	Description
	Renames the file named from-file-name to to-file-name. If any files already exists with to-file-name, that file is overwritten by the contents of the file named from-file-name.
	If the file or directory is not writable, an error is issued.

	Example
	The following example changes the name of the f_1.dat file to f_old.dat. If the f_1.dat file does not exist, the files.add_file_type() routine issues an error.

	See Also
	26.5.14 file_size()

	Purpose
	Get the size of a file

	Category
	Method

	Syntax
	files.file_size(file-name: string): int
	Syntax example:
	Parameters
	file-name
	The name of the file.

	Description
	Returns the integer number of bytes in the file. If the file does not exist, an error is issued.

	Example
	The following example gets and displays the number of bytes in the file named “f_1.dat”.

	See Also
	26.5.15 new_temp_file()

	Purpose
	Create a unique temporary file name

	Category
	Method

	Syntax
	files.new_temp_file(): string
	Syntax example:

	Description
	Computes a file name. Each file name this routine produces contains the name of the process, so names are unique across processes. Returns a string with a period at the end.
	The files are saved in the /tmp directory.
	This routine only creates a file name. To create a file with this name, use the files.open() routine.

	Example
	The example below creates two file names in the /tmp directory and prints them.
	The example above prints the following.

	See Also
	26.5.16 write_string_list()

	Purpose
	Write a list of strings to a file

	Category
	Method

	Syntax
	files.write_string_list(file-name: string, strings: list of string)
	Syntax example:
	Parameters
	file-name
	The file name to write into.
	strings
	A list of strings to write to the file.

	Description
	Writes a list of strings into a file. Every string is written on a separate line in the file, with \n appended to the end of the string. If the file already exists, it is overwritten.
	If the list of strings contains a NULL, an error is issued.

	Example
	The following example writes three lines of text into a file named “f_1.txt”.

	See Also
	26.6 Reading and Writing Structs
	Structs in e can be read from files and written to files in either binary or ASCII format.
	The routines that read structs from files and write structs to files are listed below and described in this section.

	See Also
	26.6.1 read_ascii_struct()

	Purpose
	Read ASCII file data into a struct

	Category
	Method

	Syntax
	files.read_ascii_struct(file-name: string, struct: struct-type): struct
	Syntax example:
	Parameters
	file-name
	The name of the file to read from. The file may have been created either with files.write_ascii_struct() or in a similar format with an editor.
	struct
	The struct type to read data into.

	Description
	Reads the ASCII contents of file-name into a struct of type struct, and returns a struct. The struct being read must be cast to the correct data type (see “as_a()” on page 104). If the file does not exist, an error is issued.

	Example
	The following example creates a variable named “str” to hold an instance of the s_st struct type, reads ASCII contents of a file named “a_s.out” into the struct variable, and prints the contents.

	See Also
	26.6.2 read_binary_struct()

	Purpose
	Read the contents of a binary file into a struct

	Category
	Method

	Syntax
	files.read_binary_struct(file-name: string, struct: struct-type, check-version: bool): struct
	Syntax example:
	Parameters
	file-name
	The name of the file to read from. The file must have been created by “write_binary_struct()” on page 880.
	struct
	The struct type to read data into.
	check-version
	Set to TRUE to compare the contents of the file being read with the definition of the struct in the currently running module. Set to FALSE to allow minor changes.

	Description
	Reads the binary contents of file-name into a struct of the specified type, and returns a struct. The struct being read must be cast to the correct data type (see “as_a()” on page 104).
	If check-version is FALSE, the routine can run even if the order of fields in the file struct is different from the order of fie...

	Example
	The following example creates a variable named “str” to hold an instance of the s_st struct type, reads binary contents of a fil...

	See Also
	26.6.3 write_ascii_struct()

	Purpose
	Write the contents of a struct to a file in ASCII format

	Category
	Method

	Syntax
	files.write_ascii_struct(file-name: string, struct: struct, comment: string, indent: bool, depth: int, max-list-items: int)
	Syntax example:
	Parameters
	file-name
	The name of the file to write into. If you do not specify a file name extension, the default extension is .erd, which stands for e-readable data.
	struct
	The name of the struct instance to write to the file.
	comment
	A string for a comment at the beginning of the file.
	indent
	Boolean selector for indentation to the struct’s field depth.
	depth
	The number of levels of nested structs to write.
	max-list-items
	For lists, how many items from each list to write.

	Description
	Recursively writes the contents of the struct to the file-name in ASCII format. If the struct contains other structs, those stru...
	If the file already exists, it is overwritten.
	This routine will not write any of the e program internal structs. It will write the sys struct, but not any predefined structs within sys.
	The .erd default file name extension is automatically added to the file name only if the file name you specify has no extension ...

	Example
	In the following example, there are three levels of hierarchy under the sys struct: the w_st struct contains a s_st struct, which contains a list of dat_s structs. The ss_i instance of the s_st struct is written to an ASCII file with these options:
	The following is the a_s.out file created by the example above.
	Changing depth from 1 to 2 in the example above adds a level of hierarchy to the results, which produces the following file.

	See Also
	26.6.4 write_binary_struct()

	Purpose
	Write the contents of a struct to a file in binary format

	Category
	Method

	Syntax
	files.write_binary_struct(file-name: string, struct: struct)
	Syntax example:
	Parameters
	file-name
	The name of the file to write structs into.
	struct
	The name of the struct instance to write to the file.

	Description
	Recursively writes the contents of the struct to the file-name in binary format. If the struct contains other structs, those structs are also written to the file. If the file already exists, it is overwritten.

	Example
	The following example creates a struct instance named “str” and writes the struct’s contents in binary format to a file named “b_s.out”.

	See Also

	27 State Machines Library
	This chapter contains descriptions of how to create state machines and of the constructs used in them. It contains the following sections.
	See Also
	27.1 State Machine Overview
	The e language state machine action provides constructs for modeling state machines in e .
	A state machine definition consists of the state machine action followed by a state holder expression and a block that specifies the ways the state machine can get from one state to another (see “state machine” on page 883).
	State machines can be defined only within time-consuming methods (TCMs). When the execution of a TCM reaches a state machine act...

	See Also
	27.2 State Machine Constructs
	The e state machine constructs are used to define state machines and the transitions between their states. This section contains descriptions of the following constructs.
	27.2.1 state machine

	Purpose
	Define a state machine

	Category
	Action

	Syntax
	state machine state-holder-exp [until final-state] {(state-transition | state) {action; ...}; ...}
	Syntax example:

	Parameters
	state-holder-exp
	Stores the current state of the state machine. This can be a variable in the current TCM, a field under sys, or any assignable expression. It typically is an enumerated type field of the struct in which the TCM is defined.
	final-state
	The state at which the state machine terminates.
	state-transition
	A state transition, which occurs when the associated action block finishes. See “state => state” on page 886 and “* => state” on page 887.
	state
	A state. When this state is entered, the associated action block is invoked. See “state action” on page 887.
	action; ...
	One of the following:

	Description
	Defines a state machine using an enumerated state-holder-exp to hold the current state of the machine.
	The state machine must be defined in a time-consuming method (TCM). When the state machine action is reached, the state machine starts, in the first state listed in the enumerated state holder expression type definition.
	During the execution of the state machine action the current state is stored in the state-holder-exp.
	If the optional until final-state exit condition is used, the state machine runs until that state is reached. The final state must be one of the enumerated values declared with the state machine name.
	If the until clause is not used, the state machine runs until the TCM is terminated, or, if the state machine is in an all of or first of action, it runs until the all of or first of action completes (see “Terminating a State Machine” on page 890).
	The state-transition block is a list of the allowed transitions between states of the state machine. Each state transition conta...
	The transition only occurs after both events happen, in order.
	The action block can contain a regular method, as in the following.
	Once change(p_clk) happens, the method executes immediately, and then the transition occurs.

	Example
	In the following example, the struct field expression used for the state machine is the “status” field declaration. The state ma...
	Since the “start” field is listed first in the list of states, that is the initial state for the state machine. The state change...
	A more complex state machine is shown below. The name of the state machine is “arbiter_state”, and it is declared with states “idle”, “busy”, “grant”, and “reject”.
	This state machine has no “until finish-state” exit condition, so it runs until it the “watcher()” TCM is terminated.
	The “* => idle” syntax means “from any other state to the idle state”. The condition for this transition is that 10 cycles of “sys.pclk” have elapsed since the state machine entered the any state.

	See Also
	27.2.2 state => state

	Purpose
	One-to-one state transition

	Category
	State transition

	Syntax
	current-state=>next-state {action; ...}
	Syntax example:

	Parameters
	current-state
	The state from which the transition starts.
	next-state
	The state to which the transition changes.
	action; ...
	The sequence of actions that precede the transition. It usually contains at least one time-consuming action.

	Description
	Specifies how a transition occurs from one state to another. The action block starts executing when the state machine enters the current state. When the action block completes, the transition to the next state occurs.

	Example
	The example below shows a definition of a transition for the “initial” state to the “running” state. If the 'top.start' HDL signal changes while the state machine is in the “initial” state, the state changes to “running”.

	See Also
	27.2.3 * => state

	Purpose
	Any-to-one state transition

	Category
	State transition

	Syntax
	*=>next-state {action; ...}
	Syntax example:

	Parameters
	next-state
	The state to which the transition changes.
	action; ...
	The sequence of actions that precede the transition. It usually contains at least one time-consuming action.

	Description
	Specifies how a transition occurs from any defined state to a particular state. The action block starts executing when the state machine enters a new state. When the action block completes, the transition to the next state occurs.

	Example
	The example below shows a definition of a transition for any state to the “running” state. From any state, if the 'top.start' HDL signal rises and later the 'top.hold' signal falls, the state changes to “running”.

	See Also
	27.2.4 state action

	Purpose
	Execute actions upon entering a state, with no state transition

	Category
	State action block

	Syntax
	current-state {action; ...}
	Syntax example:

	Parameters
	current-state
	The state for which the action block is to be executed.
	action; ...
	The sequence of actions that is executed upon entering the current state. It usually contains at least one time-consuming action.

	Description
	Specifies an action block that is executed when a specific state is entered. No transition occurs when the action block completes. The state machine stays in the current state until some other transition takes place.

	Example
	The last two lines in the following example contain an action block that is to be executed when the state machine enters the “ru...

	See Also
	27.3 Sample State Machine
	The following example shows a single state machine. The state machine is declared in the “sm_1” field, with possible states named “initial”, “running”, and “done”.
	The “sm_1” state machine is defined in the “tcm_1()” TCM. Note that the TCM contains other actions besides the state machine. There is a 10-cycle wait before the state machine starts, and an out() that is executed after the state machine is finished.
	The “until done” clause means that the state machine will run until it reaches the “done” state.
	The transition definitions are as follows:
	initial => running
	A rise of the 'top.a' HDL signal causes a transition from “initial” to “running”.
	initial => done
	A change in the 'top.r1' signal followed eventually by a rise in the 'top.r2' signal causes a transition from “initial” to “done”.
	running => done
	A fall of the 'top.b' signal causes a transition from “running” to “done”.
	running
	When the state machine enters the “running” state, continuously execute the “{out(“Running”); wait cycle};” action block until the state changes.

	See Also
	27.4 Using State Machines
	This section contains the following topics.
	27.4.1 Initializing a State Machine

	State machines start by default in the first state specified in the enumerated type definition of the state- holder-exp (see “St...
	If the state machine is entered several times in the same TCM, it is initialized to the starting state each time it is entered. ...

	See Also
	27.4.2 Terminating a State Machine
	You can terminate a state machine in any of the following ways.
	A state machine defined as follows will exit when it reaches the “done” state. The TCM continues execution.
	The following state machine is enclosed in a first of action. The other thread of the first of action terminates after wait [MAXN] * cycle. If the state machine runs for MAXN cycles, the wait thread finishes and the TCM terminates.
	The quit() method of the struct can be used in another TCM to terminate all active TCMs and their state machines. This method ca...

	See Also
	27.4.3 Rules for State Transitions
	If the state machine specifies:
	and both ‘cpu.clock’ and ‘alu.clock’ are high within the same cycle, the two transitions both occur within the same cycle.

	See Also
	27.4.4 Nested State Machines
	A state machine is just an action like all others, so it can appear anywhere an action can appear. This makes nested and paralle...
	Whenever the “sm_5” state machine enters the “run” state, it starts the nested “run_to_finish” state machine. When that machine finally reaches its “s_b3” state it exits, and the “sm_5” state machine enters its “finish” state.
	If “sys.reset” becomes TRUE, the “sm_5” state machine enters its “begin” state regardless of the current state of the “run_to_finish” state machine. This is an example of preempting a state machine from the outside.

	See Also
	27.4.5 Parallel State Machines
	An example of parallel state machines is shown below.
	The two state machines in the example above are entered at the same time, and each proceeds independently of the other. Because they are started in an all of construct, both state machines must exit before the out() action can be executed.
	In the following example, the two state machines are started in a first of rather than all of construct.
	Parallel state machines can be nested within another state machine, as in the following.

	See Also

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

