DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Preliminary
e Language Reference Draft

4 December 2003

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Table of Contents

1

2

About This BOOKottt i i i i i ittt iiiieieenenensanencnnans 1
1.1 Conventions in This BooK 1
1.2 Syntax NOtAtiONottt et e e e e e e 2

@ BaSICS . i i i i i i i i i i e i it i it s s 3
2.1 Lexical CONVENTIONS. . . . ottt et et ettt e e e et e e e e e e ettt 3

2.1.1 File Structureo 3

2.1.2 Code SEgMENLSottt 4

2.1.3 Comments and White Space 4

2.1.4 Literals and ConstantsSttt e e e 4

2.1.4.1 Unsized NUMDETSot e e 5
2.1.42 Sized NUMDETSottt e 5
2.1.43 MVL LIterals 6
2.1.4.4 Predefined Constantsiuinirminti 8
2.1.4.5 Literal String oot 8
2.1.4.6 Literal Characterttt e e et 9
2.1.5 Names, Keywords, and Macros.ttt et 9
2151 Legal @ Namesottt e e 9
2.1.52 e KeyWordso 10
2.1.53 0 MACTOS - . .ottt et 11
2.2 Syntactic Elements. 11

2.2.1 StateMENLSot e 12

2.2.2 Struct Memberso 13

223 AT ONS. . oottt e 14

2.2.3.1 Creating or Modifying Variableso, 15
2.2.3.2 Executing Actions Conditionally 15
2.2.3.3 Executing Actions Iteratively i 16
2.23.4 Controlling Program Flow 16
2.2.3.5 Invoking Methods and Routines, 17
2.2.3.6 Performing Time-Consuming ACHONSc.uumintneeneneenenannn. 17
2.2.3.7 Generating Data [temso .t 18
2.2.3.8 Detecting and Handling Errors 18
2.2.3.9 PrINHNG . .ottt 18
2.2.4 EXPIeSSIONS & . o\ vttt ettt e e e 19

This is an unapproved IEEE Standards Draft, subject to change. i

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

23 Struct Hierarchy and Name Resolution 19
2.3.1 Struct Hierarchy.o 19
2311 Global Struct ... oo 20

2.3. 1.2 Sys SHUCE .ottt 20
2.3.1.3 Packing Structottt 20
2.3.1.4 Files Structo 20
2.3.1.5 Scheduler Struct i 20
2.3.1.6 Simulator StrUCtot e 21
2317 SeSSION SIUCE .. oottt ettt e e e e 21
2.3.1.7.1 session.check 0Kiiiiitiii it i i i it i, 21

23.1.7.2 SESSIOML.EVENLS . .vuvnienneneunenneoneenseasoneosnssneancansannnns 21

2.3.2 Referencing e Entitiesot e e 21
2.3.2.1 Structsand Fields 22
2.3.22 Method and Routine Namesoiiuiiiiniinnenineanenn... 23
2.3.2.3 Enumerated Type Values i 23

233 Implicit Variables 24
2331 o e 24
2332 M8 e 25
2333 reSULL L 26
2334 INACX .t 26

234 Name Resolution Rules. 26
23.4.1 NamesthatIncludeaPath........ 26
2.3.42 Namesthat DoNotIncludeaPath 27

2.4 Operator Precedence i 28
2.5 Evaluation Order of EXpressionsttt e 30
2.6 Bitwise Operators. oottt et e e e e 30
2.6.1 T 31
2.6.2 2 P 32
2.6.3 > e 33
2.7 Boolean Operatorsttt e 35
2.7.1 1T 1 P 35
2.7.2 Q& (ANA) . o o 36
2.7.3 2 T 37
274 e 37
2.7.5 TIOW o e ettt e e e e e e e e e e e e e 38
2.8 ATIthmetic OPeratorsttt ettt e e e e e 40
2.8.1 UDary - o e e 40
2.8.2 R 41
2.9 CompariSON OPEIALOLS vt ottt et e e et e et e e e et e e 42

ii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.9.1 E > e 42
2.9.2 S o e e 43
293 S o e e 45
2.9.4 ~ 47
2.9.5 o L 49
210 String Matchingo 51
2.10.1 Native e Elite String Matching 51
2.10.2 AWK-Style String Matching. 52
2.11 Extraction and Concatenation Operatorsttt ettt 53
7 1 54
0 5 55
2.11.2.1 Slice and Size of the Result 56
2.11.2.2 Accessing Nonexistent Bits 56

8 15 O 58
S P 60
S 62
2,12 Scalar Modifiers.o 63
2.12.1 [range, o e 64
2122 (bits | bytes : Width-€XP)ot i i 65
213 Parentheses.o 65
214 Listmethod()o ot e 66
2.15 Special-Purpose Operators.ttt ittt e 67
2051 S MOt . .ot 67
2.5 MW L 69

2 05,3 71

0 3 73

2 05, 73

R T 1 T) 1 P 75
3.1 Overview of e Data TYPesottt 75
3.1.1 e Data Typeso 75
3111 Scalar TYPES ..o vttt e et 75
3.1.1.2 Scalar SUBtypes oo 76
3.1.1.2.1 Scalar Modifiersoouiui 76

3.1.1.2.2 Named Scalar Subtypes 77

3.1.1.2.3 Unbounded INtegersuriinininetne et 77

3.1.1.3 Enumerated Scalar TYPesttt 77
3.1.1.4 Casting of Enumerated Types in COmMparisonsoveuerernrnenenn... 79

This is an unapproved IEEE Standards Draft, subject to change.
iii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

3115 StUCEt TYPes o .v ettt e 80
3.1.1.6 Struct SUDLYPES .« oottt 80
3.1.1.7 Referencing Fields in When Constructs i, 83
3118 LaSt TyPeS vttt ettt e e e 84
3.LLL8.1 Regular Listso e 85

31,182 Keyed Lists .ottt 85

3119 Thestring TYPE . . .o oottt et e e e 86
3.1.1.10 The external pointer TYPEo\ttt ettt 86

3.1.2 Memory Requirements for Data Typescouiiniinn i, 87
3.1.3 Untyped EXPressions.ovtt ettt e e e 87
3.14 Assignment RUles 89
3.1.4.1 What Is an AsSignment?ttt 89
3.1.4.2 Assignments Create Identical References 90
3.1.4.3 Assignment to Different but Compatible Types 91
3.1.4.3.1 Assignment of Numeric Typesouniniriini e, 91

3.1.43.2 Assignment of Boolean Types i, 91

3.1.43.3 Assignment of Enumerated Typesoiiiiiiiiinenan.. 91

3.1.43.4 Assignment Of Structs 92

3.1.43.5 Assignment of Stringst 92

3.143.6 Assignment of Lists 93

3.1.5 Precision Rules for Numeric Operations.ttt 93
3.1.5.1 Determining the Context of an Expressioncoiiininan.... 94
3.1.5.2 Deciding Precision and Performing Data Conversion and Sign Extension 95
3.1.5.3 Example Application of Precision Rules 95

3.1.6 Automatic Type Castingttt e e e e 96
3.2 Defining and Extending Scalar Typesottt et 98
3.2.1 type enumerated Scalar 98
322 type scalar SUDLYPE . ..ot 100
323 type sized scalar. 101
324 EXENA LYPE . o ottt 103
33 Type Conversion Between Scalars and Stringst enn. .. 104
3.3.1 AS A0 et e e 104
3.3.1.1 Type Conversion Between Scalars and Lists of Scalars 105
3.3.1.2 Type Conversion Between Strings and Scalars or Lists of Scalars 107
3.3.1.3 Type Conversion Between Structs, Struct Subtypes, and Lists of Structs 109
3.3.14 Type Conversion Between Simple Lists and Keyed Lists 109

332 all values() . ..ot 115

4 Structs, Fields, and Subtypesoiiiiiiiiiiiiiiiiiiiieirernserereesosasasanns 117
4.1 SHIUCES OVEIVIEW . o\ vttt ettt et e e e e e e e e e e et e e e et 117

iv This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

4.2 Defining Structs: Struct.o 118
43 Extending Structs: extend type.o 121
4.4 Extending SUbLYPESot 123
4.5 Defining Fields: field 125
4.6 Defining List Fields 127
4.6.1 LSt Of . oo 127
4.6.2 list(key) Of . . . oo 129
4.7 Creating Subtypes with When 133
4.7.1 OVEIVIEW . .« . ettt ettt e e e e e e e e e e e e e 133
4.7.2 W . 133
4.8 Extending When Subtypes. ot 136
4.8.1 Coverage and When Subtypes.t 136
4.8.2 Extending Methods in When Subtypes. i 136
4.9 Defining Attributes.o 139
4.9.1 OVEIVIEW .« . ettt et et e e e e e e e e e e e e 139
49.2 attribute field 139
4.10 Comparison of When and Like Inheritance 142
4.10.1 Summary of When versus Like. 142
4.10.2 A Simple Example of When Inheritance. 143
4.10.3 A Simple Example of Like Inheritance. 144
4.10.4 Advantages of Using When Inheritance for Modeling 145
4.10.5 Advantages of Using Like Inheritance 148
4.10.6 Restrictions on Like Inheritance i 149
4.10.6.1 Restrictions Due to Inherent Differences 149
4.10.6.2 Restrictions Due to Implementation 150
4.10.6.3 Generation Restrictions on Like Inheritance 150
4.10.6.4 Examples of Like Inheritance Restrictions 152
4.10.7 A When Inheritance Example 154

TR 0 111 157
5.1 UNItS OVEIVIEW . . oottt ettt e e e e e e e e e e e e e e e e e e 157
5.1.1 UNits VS. SIIUCES. . . . oottt e 158
5.1.2 HDL Paths and Units.ottt e e e e e 159
5.13 Methodology Recommendations and Limitations 160
5.2 Defining Units and Fields of Type Unit. 160
521 100 161
522 field: unit-type iS INStANCEeot 165

This is an unapproved IEEE Standards Draft, subject to change. A%

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

523 fleld: Unit-type. . ..o 166
524 field: list of unit INStancesttt 167
525 field: list of unit-type.ot 169
53 Predefined Methods for Any Unit 170
5.3.1 hdl path()o 170
532 full hdl path(). oo 172
533 € path() . ..o 173
5.3.4 AZENE() + - o e et e 174
535 get parent UNIE()ottt it e e e 176
5.4 Unit-Related Predefined Methods for Any Struct 177
54.1 L UNTE() . o o ettt 177
54.2 get_enclosing unit() 180
543 try_enclosing unit() 182
54.4 SCE UNIE() .+« oo ottt e e e 183
5.5 Unit-Related Predefined Routines i 184
5.5.1 set config Max().ottt 184
552 get all units()ot 186

T 1) o 189
6.1 Introduction to e POItso i 189
6.1.1 Advantages of Using Ports 189
6.1.2 Creating Port InStances o i 190
6.1.3 Using Portso 190
6.1.4 Ports Exampleo 191
6.2 Using Simple Ports. o 192
6.2.1 Accessing Simple Ports and Their Values., 193
6.2.2 Multi-Value Logic (MVL) on Simple Ports 194
6.2.3 @sim Temporal Expressions with External Simple Ports 196
6.2.4 An Internal Simple Ports Example 197
6.2.5 An External Simple Ports Example. 198
6.3 Using Buffer Ports 199
6.3.1 Rendezvous-Zero Size BufferQueue 200
6.3.2 An Internal Buffer Ports Example. 200
6.4 Using Event Ports. o 201
6.4.1 Accessing Event Ports. 201
6.4.2 Defining and Referencing Ports 202
6.4.2.1 simple POTto 202

vi This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5

vii

6.4.2.2 buffer port 204
6.4.2.3 BVENL POTL . v vttt e ettt e e e e 205
6.4.2.4 any simple port, any buffer port,any event port........................... 207
6.4.2.5 POTtS 209
Port AtIIDULES oot 210
6.5.1 Generic Port Attributes 210
6.5.2 Port Attributes for HDL Simulators i 212
6.52.1 bind() . 215
6.5.2.2 buffer Size() ..ottt 217
6.5.2.3 declared range() 219
6.524 delayed()ot 219
6.5.2.5 driVer() ... e 220
6.5.2.6 driver delay() 221
6.5.2.7 driver initial value() 222
6.52.8 @dZE() i 222
6.52.9 hdl path() ... 223
6.5.2.10 pack OPtionS()ot vt 225
6.5.2.11 pass by pointer()ttt 225
6.5.2.12 verilog drive()t 226
6.5.2.13 wverilog drive hold() 227
6.5.2.14 wverilog forcible() 227
6.5.2.15 verilog Strobe()ot it 228
6.5.2.16 Verilog Wire() vv vttt 229
6.5.2.17 vhdl delay mode()ot 229
6.5.2.18 vhdl disconnect value()t 230
6.5.3 Using Port Values and Attributes in Constraints.coiuiinenennen... 231
6.5.4 Buffer Port Methodso 232
6.5.4. 1 @et() .o i 232
0.54.2 PUL) -t 233
6.5.4.3 IS eMPLY() .ot 234
6544 s full() ..o 235
6.5.5 Multi-Value Logic (MVL) Methods for Simple Ports 235
6.5.5.1 put mVI() ... 236
6.5.52 get MVI() .. 237
6.5.53 put mvL List() 238
6.5.54 get ML LSt) ..ottt 239
6.5.5.5 put mvl String() ... 240
6.5.5.6 get ML String()ot 241
6.5.5.7 get MVIA() ... 241
6.5.5.8 get mvI4 List() . ..o e 242
6.5.5.9 get mvl4 String() 243
6.5.6 Methods for Simple Ports 244

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1

7

7.1

7.2

viii

DRAFT STANDARD FOR e LANGUAGE REFERENCE

6.5.6.1 has X() ..ot 245
6.5.60.2 has Z() .. .i i 245
6.5.6.3 has unknown() 246
6.5.7 Global MVL ROULINESottt e e e et et et 247
6.5.7.1 string to MVI() ... 247
6.5.7.2 mvl to String() 248
6.5.7.3 mVL 10 Int() ..ot 249
6.5.7.4 Int to MVI() . ..o 250
6.5.7.5 mvl 10 Bits() ... 251
6.5.7.6 bits to MVI() 252
6.5.7.7 mvl to mVIA() ... 252
6.5.7.8 mvl list to mvl4 list() 253
6.5.7.9 string to MVIA() 254
Generation Constraintsciiiitieiiiieieiiiieeneneneesentacesencacasencanas 257
Basic Concepts of GENerationiuiuiun ettt 257
7.1.1 Generation OTdET.ottt 257
7.1.2 Subtype Generation Optimization CONStraintsc..vuinerernenenann.. 258
7.1.3 Unidirectional Constraints.uu ittt et e 259
7.1.4 Enforceable EXPressionsuu ettt e 261
7.1.5 Order of Evaluation of Soft Value Constraints.coviiinennen... 262
7.1.6 Constraining Struct INStances vttt e 263
7.1.7 Constraining Liststtt 264
T LT LASESIZE oottt e e e e e e e e e e 264
7172 ListItem 264
7073 Ttemin List . ..o 265
7.1.7.4 OneListto Another List it 265
7.1.7.5 Multiple List Items o e 265
T.1.7.6 List of StrUuCts . ..ottt 266
7177 Multiple Listso 266
7.1.8 Constraining Bit SLices o 266
7.1.8.1 Bit Slice Constraints and Generation Orderccivuuinon... 267
7.1.8.2 Bit Slice Constraints and Signed Entities 268
7.1.8.3 Bit Slice Constraints and Soft Constraintsc.ccoiinenon... 269
7.1.8.4 Limitations of Bit Slice Constraintsc.iiiiiiiirereninenn... 269
7.1.8.5 Debugging Bit Slice Constraintsutiininerennnnanenn.. 269
Defining Constraintsttt e e e 270
7.2.1 1SS 2 270
7.2.2 keep all Of {...} .. i 272
7.2.3 keep struct-list.is_all iterations()uuinin e 274

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

X

7.2.4 keepforeach 275
7.2.5 Keep SOft . .o 278
7.2.6 keep soft... selecto 279
7.2.7 keep gen-item.reset_SOft(). 283
7.2.8 keep gen ... before 284
7.2.9 keep soft gen ... before. 285
7.2.10 keep gen_before subtypes() 287
7.2.11 keepreset gen before Subtypes().ouuiiiit 289
T2.02 Value() . vt e e 290
7.2.13 constraint-bool-eXp 292
T2.04 EN-TLCIMI. . . oottt ettt e e e e e 294
73 Invoking Generation. ottt 296
7.3.1 L5 o U PP 296
7.3.2 PIe_GENETate() - . o . v vttt e e e e e 299
733 POSt_ENETALE() -« . o vttt e et e e e e e e 300
1 303
8.1 Events OVEIVIEWottt e e e et e 303
8.1.1 Causes Of EVeNtSot 304
8.1.2 Scope Of EVents.o 304
8.2 Defining and Emitting Named Events 305
8.2.1 EVEIL . ..o 305
8.2.2 11 L P 307
83 Sampling Events OVerviewttt e e 308
8.4 Predefined Events OVEIVIEWottt e 309
8.4.1 General Predefined Events 310
8.4.2 Events for Aiding Debugging 312
8.4.3 Simulation Time and Ticks 312
Temporal EXpressionsooiiiiiiiiiiiiiiiiiiieieeieneaeneeneasasenenennens 319
9.1 Temporal EXpressions OVervVIEWottt ettt e e e et 319
9.1.1 Evaluating Temporal EXpressions.t 319
9.1.2 Using HDL Objects in Temporal Expressionsooiiiiiann .. 322
9.13 Selected Applications of Temporal Expressions. 323
9.1.3.1 Handling Overlapping Transactionsc..uuuirermrnrneneenenn.. 323
9.1.3.2 Restricting TE Matches i 323

9.14 Forms for Common Temporal Expressionsoiiiiieon... 324
9.1.4.1 Examples of Sequence EXpressionscouvinirirnininenennnn.n. 324

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

9.1.4.2 Examples of Behavioral Rule Checks 325

9.1.5 Translation of Temporal EXpressionso, 326
9.2 Temporal Operators and CONStIUCES.ottt e e 327
9.2.1 Precedence of Temporal Operatorsv vttt et 328
922 10 PN 328
923 2 PP 329
924 AN . . 331
9.2.5 0) PP 333
9.2.6 o> T <>: 4 335
9.2.7 eventually 336
9.2.8 L XD I et e 337
9.2.9 [XD XD I - v ottt 338
0.2.10 XD XD |t e et e 340
L 342
0.2.12 detach. oo 343
0.2.13 delay ... 345
0.2.14 (@ Unary eVent OPETALOT o vttt ettt et e e e e e 346
0.2.15 (@ sampling OPEratorottt it e et et 347
0.2.16 CyCle. . oot 349
0.2.17 HUE(EXP) + v e vt e e ettt e e e e e e 350
9.2.18 change(exp), fall(exp), ISE(EXP) - « « ot vttt e e 351
0.2.19 CONSUME. 353
0.2.20 BREC . i 356
10 Temporal Struct Membersootitiiii it iiiiiiniieiieeienenenesocscnsnenananns 359
| PP 359
10.2 @XPECE | @SSUIME . . .o\ttt ettt et et et e e e e e e e 360
11 Time-Consuming ACtIONS . ..o vttt ittt eneneeeeneneeessensnesessessnsaenensans 365
11.1 Synchronization ACtiONSttt e e e 365
O 7 PP 365
112 Walt oo 367
11.2 Concurrency ACLIONSottt ettt et e e e e e e e e e e 368
T1.2.1 all of oo 369
11.2.2 ISt Of .o 370
12 Coverage ConStrUCESoviuiutnineneieneneeeeeeeenenssscnsncnssscnsnsssnsnnans 373
12.1 Defining Coverage Groups: COVET vttt ettt ettt ettt et e et e e e 373

X This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

12.2 Defining Basic Coverage [tems 378
12.2.1 0 OVEIVIEW . .o ottt e e e e e e e e e e 378
12.2.2 0 eI o ottt e 378

12.3 Defining Cross Coverage Items e e 396
12301 OVEIVIEW . .o oottt e e e e e e e e e e e 396
12.3.2 CIOSS. o ettt e e 396

12.4 Defining Transition Coverage Items 403
12,41 OVEIVIEW . . oottt e e e e e e e e e e e 403
12,42 tranSitiono ottt e 403

12.5 Defining External Coverage Groupsttt et i 407
12,51 OVEIVIEW . . oottt e e e e e e e e e e 407
12.5.2 cover ... using external=surecovttt 408

12.6 Extending Coverage GIroUPSo tuttitt ettt e e ettt 412
12.6.1 OVEIVIEW . . oottt e e e et e e e e e 412
12.6.2 cover...usingalso ...18alSO 412

12.7 Extending Coverage [tems. 416
12.7.1 0 OVEIVIEW . . oottt e e e e e e e e e e 416
12.7.2 item ... usIng alSO.o 416

12.8 Coverage API Methods e 421
12.8.1 SCAN _COVET() - o v vttt it e et et et e e e e e e e e e e 421
12.8.2 Start GroUP() - o« v v ottt e e e e 422
12.8.3 start inStANCE() - . .o v vttt e e e 423
12.8.4 start Ttem() . . oottt e e e e e e 424
12.8.5 scan _bucket(). oot 424
12.8.6 end tem() . ..o v ettt 425
12.8.7 end InStAnce() . - - o oottt e 426
12.8.8 end group() . . o« vt ie et 427

B G B\ 7 Tl 429
131 defiNe @S . . oot e 429
13.2 defineascomputed. 436

14 Checksand Error Handlingcciuiniiiiiiiiiiiiiiiiiiiieinenenenenenennnns 441

14.1 Handling DUT Errors.ot e e e e e e e 441
14.1.1 checkthat 441
14.1.2 dut error() . . . oot 443
14.1.3 dut_error SIUCT.ottt et e et e e 444

This is an unapproved IEEE Standards Draft, subject to change.
xi

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

14.1.4 set check(). . ..ot 448
142 Handling User Errorso e 450
14.2. 1 WarnIng() . .« oottt et e e e e e 450
14.2.2 @ITOT(). « ottt et e 451
14.2.3 fatal() . .o oot 452
L4204 Y. oot 454
14.3 Handling Programming Errors. 456
T4.3.1 OVEIVIEW . . oottt e e e e e e e e e e e 456

L 0 1 456

IS Methods .ottt ittt ittt iieeieeiteaseeneeneeneensoaneancaneennes 459
15.1 Rules for Defining and Extending Methods. 459
15.1.1 method is [inlin€] 462
15.1.2 method @eVeNnt iSt 464
15.1.3 method [@event] is also | first | only | inlineonly. 467
15.1.4 method [@event] is undefined | empty 472
152 Invoking Methods 474
I5.2.1 0 tem() e 475
15.2.2 start tem() .o 477
15.2.3 method() oot e 478
15.2.4 compute method() 480
1525 TEMUIN o 481
15.3 Parameter Passing i 484
15.3.1 Scalar Parameter Passing. 484
153.2 Compound Parameter Passing 485
15.3.3 Notes on Passing by Reference 486

16 Creating and Modifying e Variablesttt iiiiiiiiiineennns 487
16.1 Aboute Variables.o 487
L16.2 VAT 487
10,3 = e 489
10,4 0P o et 491
10,5 o 493
17 Packingand Unpackingiiuiiiiiiiiiiiiiiiiiiiiiiiiiiitieneenenenennens 497
17.1 Basic Packing. 497
17.1.1 A Simple Example of Packing 498
17.1.2 A Simple Example of Unpacking 500

Xii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

17.1.3 Packing and Unpacking Scalar Expressions, 501
17.1.4 Packing and Unpacking Strings it 501
17.1.5 Packing and Unpacking Structs. i 502
17.1.6 Packing and Unpacking Lists e 503
17.2 Advanced Packing 505
17.2.1 Using the Predefined pack options Instances............... 506
17.2.2 packing.lowo 506
17.2.3 packinglow big endian 507
17.2.4 packing.high 508
17.2.5 packing.high big endian 508
17.2.6 packing.network 509
17.2.7 packing.global default 510
17.2.8 Customizing Pack Options e 510
17.2.9 reverse fields. o 511
17.2.10 reverse LISt ItMSottt 512
17.2.11 scalar reorderttt 512
17.2.12 final_1e0rder o 513
17.2.13 Customizing Packing for a Particular Struct. 514
17.2.14 Bit Slice Operator and Packing 514
17.2.15 Implicit Packing and Unpacking. 515
17.3 Constructs for Packing and Unpacking 516
1731 pack(). . o oot 516
1732 unpack(). . .o oot 521
17.3.3 SWAP() - o v ottt 524
1734 do pack() . ..o 526
17.3.5 do unpack(). . ..o ooi i 529

18 Control FIow AcCtionsiuiuiiiiiiiiii ittt iiiieieieaeneeneasnnenenaanens 533
18.1 Conditional ACtIONSottt e e 533
18.1.1 ifthenelseo 533
18.1.2 case labeled-case-1tem.ttt e 534
18.1.3 case bool-Case-1temottt 536
18.2 THerative ACHIONS. . . . ottt ettt e e e e e e e e 537
18.2.1 While o 538
18.2.2 repeatuntil 539
18.23 foreachin 540
18.2.4 forfromto ... i 543

This is an unapproved IEEE Standards Draft, subject to change.
xiii

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
0 T o) 544
18.3 File Iteration ACHONSottt e e e e et e 545
183.1 foreachlineinfile 545
18.3.2 foreachfile matching 546
18.4 Actions for Controlling the Program Flow 547
18.4.1 break ... 547
18.4.2 CONLINUE ..ottt ettt et e e e e e e e e e 548
19 List Pseudo-Methods Libraryciuiuiniiiiiiiiiiiiiiiieneneneeenenenennnns 551
19.1 Pseudo-Methods OVErVIEW ot e e et 551
19.2 Using List Pseudo-Methods 551
19.3 Pseudo-Methods to Modify Lists. 552
19.3.1 add(item)ot e 552
1932 add(list)ot 554
1933 addO(Item)ottt 555
19.3.4 addO(list)ottt 556
19.3.5 clear(). . oot e 557
19.3.6 delete(). .. oot e 558
19.3.7 fast delete(). . ..o ot 560
19.3.8 insert(indeX, IteIM)ottt e e 561
19.3.9 insert(indeX, LiSt)ottt 562
L9310 POPO) v ottt e e e e e 563
L9311 POPO() - ettt 564
19312 push(). . o oot 565
19313 pushO(). . . oot 565
193,14 1@SIZE() . o v v e et ettt e 566
19.4 General List Pseudo-Methods 570
19.4.1 apPLy() - o v o e ot 571
19.4.2 COPY(). « o vttt e 572
19.4.3 COUNT() « v vttt ettt e e e e e e 573
19.4.4 eXIStS() e ottt e 574
19.4.5 fleld . ..o 575
19.4.6 fIrSt() . . oot 576
19.4.7 first indeX(). . ..ottt 577
19.4.8 et INdICS() - - v v v vt e 579
19.4.9 has() . .. oot 579
19.4.10 is_a permutation().o vttt e e 581

Xiv This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

19.4. 11 4S_ @MPLY() - v oottt e e e 582
19412 1aSt0). o v vttt e e 583
19.4.13 1ast INdeX() - - oottt e e 584
19414 MaX() oo vttt et 585
19.4.15 max indeX(). . . . oottt 587
19.4.16 max value().ottt 588
19.4.17 mMiN() oo on et 589
19.4.18 min INdeX() . . o .ottt et 590
19.4.19 min value()ottt 591
19.4.20 1@VETSE() .« o v v o e ettt e e e e e e e e e e e 593
19421 SIZE() v v ettt e e 594
19422 SOTE() « v v vttt et e e 595
19.4.23 sort_ by field().ot 596
19.4.24 SPIE() . o oottt 597
19.4.25 t0P() -« v v et e 600
19426 t0P0() .« v oottt 601
19.4.27 UNIQUE() -« o v o ettt et e e e e 602
19.5 Sublist Pseudo-Methods. 603
L1951 all) oot 604
19.52 all dndiCeS(). -« v vttt e e e 605
19.6 Math and Logic Pseudo-Methods i 608
19.6.1 and all().ot 608
19.6.2 AVEIAZE() - - v o oottt e 609
19.6.3 or all(). ..ottt e 610
19.6.4 product()ottt 611
19.6.5 SUM() . oottt ettt e e 612
19.7 List CRC Pseudo-Methods.t e 614
19.7.1 CrC B() e v vttt et e e 614
19.7.2 CrC B32() ittt 615
19.7.3 0 erc 32 flip() - oottt 617
19.8 Keyed List Pseudo-Methods 618
L9.8.1 KEY(): o e vttt 619
19.8.2 key IndeX() - - o .ottt e 622
19.8.3 KeY @XISES() - oottt et e 623
19.9 Restrictions on Keyed Lists oo 624

XV

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

20 Preprocessor DIrectivescoeiuiiiiiiiiiiiiieineeieneeeneneenenencnecncnnnens 627
20.1 #ifdef, #ifndef. 627
20.2 Hdefine 630
20.3 Hundef. .. 632

21 Importing e Filesciuininiiiiiiiiiii ittt iiiitineeeneenenenenesscncnnnens 635
211 OVEIVIEW . ottt ettt et e e e e e e e e e e 635
212 IMPOTE. . ottt e e e e e e e e e 635

22 Encapsulation Constructsc.cieiuiiiieieieiieneneneneenencncsesscnsncnsnans 641
22.1 package package-name 641
22.2 package type-declaration 642
22.3 package | protected | private struct-member 643

23 Predefined Methods Libraryciuiiiuiiiiiiiiiiiiiiiiiiienenenecenenenens 645
23.1 Predefined Methods of SyS. 645

23.1.1 Theinit() Method of Sysot 645
23.1.2 Therun() Method of Sysot 646
23.2 Predefined Methods of Any Struct. 647
23.2.1 The copy() Method of any structttt 647
2322 do pack() ... 649
2323 do unpack(). 652
23.2.4 Thedo print() Method of any struct i 655
23.2.5 Theinit() Method of any struct i 656
23.2.6 The print_line() Method of any struct 658
23.2.7 The quit() Method of any struct. i 659
23.2.8 Therun() Methodof any struct.......... 661
23.3 Predefined Methods of Any Unit. e 662
233.1 hdl path()o 663
2332 full hdl path(). oo 664
2333 e path() ..o 666
2334 AgeNt() . o 667
23.3.5 get parent UNit()ttt 669
23.4 Unit-Related Predefined Methods of Any Struct. 670
2341 et UNIE() . . o ot e 670
23.42 get enclosing unit() 672
23.43 try enclosing unit() 674
2344 St UNIH() - o oot 676

XVi This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

23.5 Pseudo-Methods. oo 676
23.5.1 declared type() - .. oot 677
23.5.2 PO« e e 677
2353 f1eld() . . o 678
23.5.4 UnSAfe() ... 678
23.5.5 source location().ottt 679
23.5.6 source_ method() 680

23.6 Semaphore Methods 680

23.7 How to Use the Semaphore Struct. i 682
23.7.1 up() and down() L 682
23.7.2 try up()and try_down() . 685
23.7.3 set_value() and get value() ... 687
23.7.4 set_max_value() and get max_value() 688
23.7.5 lock() and release() e 689

23.8 TCM Related Methods. oo 692
23.8.1 get current handle() 692
23.8.2 get handles by name().ottt 693
23.8.3 get handles by type()o vttt 695
23.8.4 Kil) 696
23.8.5 terminate branch()t 698
23.8.6 terminate thread().t 699

23.9 Coverage Methods o 700
23.9.1 Anclude testS()ottt 701
23.9.2 set WeIght() . - oot 702
2393 set at least() i i 702
2394 SEE COVEI() .« o vttt et e e e 703
23.9.5 get contributing runs().t e 705
23.9.6 get unique buckets() 706
23.9.7 set_external COVEI()ottt 707
23.9.8 write_ cover file() 708
2399 get overall grade()ttt 709
23.9.10 get €COV NAME() -+« v vttt e et e e e e e e e e e e e e 710
23.9.11 get test NAME() - . . o vttt et e e e e e 711
23.9.12 et SEEA() . - ittt 711

24 Predefined Routines Library ...ttt i ittt it iieineaes 713

24.1 Deep Copy and Compare Routines 713

Xvii

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

24 1.1 deep COPY() e - v ettt e 713
24.1.2 deep compPare(). . . .ot e e e e e 716
24.1.3 deep _compare physical() e 720
242 Arithmetic ROUtINES o 721
2421 MIN() v ettt e e 722
24.2.2 MAK() et e e e e e e 723
24.2.3 ADS() . e e 724
2424 0dd() .o 724
24.2.5 VN i 725
24.2.6 A10@2() - ot 726
2427 AlOgLO() oot 727
24.2.8 APOW() - ottt 728
2429 ASQIE() « - et 729
24210 div_round UpP() - ..o e e 729
243 Bitwise ROULINESo 730
243 1 OVEIVIEW . o o ottt et e et et e e e e e e e e e 730
24.3.2 DIWISE OP(): -« v e et e e 730
24.4 Unit-Related Predefined Routines 732
2441 set_ config Max(). . .« v vttt et e 733
2442 get all UnitS() . .o .ot 735
24.5 String ROULINES.ot 736
2451 append(). . . oo e 737
2452 appendfl) . ..o 739
24.53 DIN() - o et 740
2454 deC() . o e 741
24.5.5 REX(): « e 742
2456 QUOTE() -« v ottt e e e e 743
2457 St ChOP). -« oot 744
2458 S CMPLY() « oot 745
24.59 St eXACHLY(). -« oo 745
24.5.10 str_expand dotS()t 746
24.5.11 Str INSENSItIVE() - - . o vttt et et e 747
24512 S JOIN() « vt vttt et e e e e e 748
24513 St en() . .o oot 749
24514 St IOWeEI() . - oottt e 750
24515 str match(). . ..ot 751
XViii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

24516 St pad(). . .o ot 753
24517 St 1ePlace(). - - . ot tee 754
24518 St SPI() . o o ottt 756
24.5.19 strosplit_all()ot 758
24520 St SUD() . . o oot 759
24521 St UPPCI() .+« o e et e e e e e e e 760
24522 0 SING() « o ottt 761
246 Output ROULINES oo 762
24.6.1 OUL) - o et 762
24.6.2 0UL) .o 764
24.6.3 Format String. oottt e 765
247 Configuration ROUtINES 766
2471 St CONTIZ() « - v vttt e e 766
2472 get config() . - ot 781
2473 write config()o 782
2474 read config()ot 784
24.8 OSInterface ROULINGSottt e e 785
24.8.1 SPAWN() . o ottt 786
24.8.2 spawn_check(). ot 786
24.8.3 SYSIEIM() -« o v et 787
24.8.4 output from() 788
24.8.5 output from check().ot 789
24.8.6 get SYMbBOL() . ..ot 790
24.8.7 date timMe(). . ..ot 791
24.8.8 getPId() - .ot 792
249 On-the-Fly Garbage Collection Routine: do otf gc().. 792
24.10 Calling Predefined Routines: routine()iuiiinmnn ... 793
25 Simulation-Related Constructsttt iiiiiiiiiiiiiieiieneneaennenenns 795
25.1 Verilog Statements or Unit Members. 795
25. 1.1 verilog code. . ..o 795
25.1.2 werilog function 797
25.1.3 verilog ImMpPOrto 799
25.1.4 wverilogtask 801
25.1.5 verilog timeot 803
25.1.6 verilog variable reg | WIrettt e 804
25.1.7 wverilog variable MemOIYot 810

XiX

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

25.2 VHDL Statements and Unit Membersttt 812
2521 wvhdlcode. 813
2522 vhdldriver. 815
2523 wvhdlfunction 819
2524 wvhdlprocedure. 822
2525 wvhdltime 829

25.3 Simulation-Related ACHONSt 830
253 1 HOTCC. .t 830
2532 elASE . .. i 834

25.4 Simulation-Related EXpressions it 838
25.4.1 'HDL-pathname'.o e e e 838
2542 specmandeferred. 839

25.5 Simulation-Related Routines 840
25.5.1 simulator command() 840
2552 StOP _TUN() oottt ettt e e e e e e 841

26 Predefined File Routines Libraryccouiiiiiiiiiiiiiiiiiiiiiiiiiiiiienenenens 843

20.1 OVEIVIEW . . .ttt ettt et e e e e e e e e e e e e 843

26.2 File Names and Search Paths. 843

26.3 File DeSCIIPtorsS . . . oottt e e e e 843

26.4 Low-Level File Routines i e 843
26.4.1 add file type() - .. oot 844
26.4.2 ClOSE() .ot 846
26.4.3 TUSh() . ..o 847
20.4.4 OPCN(). - o e et e 848
26.4.5 reaAd() . . . 850
26.4.6 read 1ob() . ..ot 851
260.4. 7 WITEE() .« o et ettt e 852
26.4.8 write 1oD(). . ..o 853
26.4.9 WIItef(). . oo e 855

26.5 General File Routines. 856
260.5.1 file age() . ..ot 857
26.5.2 file append()o 858
26.53 file COPY() -« ottt 859
26.54 file delete()ot 860
26.5.5 file eXIStS() - - it 861
26.5.6 file eXtension()ttt 862

XX This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

26.5.7 file is dir() . ..o 863
26.5.8 file is IInK() ..o oo ot 864
26.5.9 file is readable(). 865
26.5.10 file is regular().o 866
26.5.11 file is tempP() . - oot 868
26.5.12 file 1S teXE() ..ot t 869
26.5.13 file rename()t e 870
26.5.14 file SIZE(). . . o oot 871
26.5.15 new_temp file() oo 872
26.5.16 write_string List()ot 873
26.6 Reading and Writing Structs ittt 874
26.6.1 read ascii_StrUCH()ttt i e e e e 874
26.6.2 read binary Struct()t 875
26.6.3 write_ascii SIUCH()ottt 877
26.6.4 write binary StruCt().ottt e 880
27 State Machines Libraryco.iuiiiiiiiiiiiiiiiiiiiiiiiiiiiinenenenncncncnenens 883
27.1 State Machine OVeIVIEWttt e ettt 883
27.2 State Machine Constructs.ottt e 883
27.2.1 statemachine.ttt 883
27.2.2 StAte = StAle . . . o e 886
27.2.3 K S . L L e e e 887
2724 StAt@ ACHION. . . o .ottt ettt e e e e 887
27.3 Sample State Machine 888
27.4 Using State Machines. i 889
27.4.1 Initializing a State Machine. 889
27.4.2 Terminating a State Machine. i 890
27.4.3 Rules for State TransSitions ittt 891
27.4.4 Nested State Machinest e 892
27.4.5 Parallel State Machines e 892
1 T T G 895

XX1

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

XXii This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

1 About This Book

The e language is an object-oriented programming language. Although e can be used to create any general-
purpose software program, it has been designed to facilitate the verification of electronic designs. The verifi-
cation-specific constructs that distinguish e from other object-oriented languages such as C++ include:

— Constructs to define legal values for data items (constraints)

— Constructs to describe sequences over time (temporal constructs)
— Constructs to support concurrency (multi-threaded execution)
— Constructs to support connectivity (bit-level access)

The e language also is designed to reduce the effort required to write tests and to make the high-level intent
of the test readily apparent. In contrast to other object-oriented programming languages, e’s unique extensi-
bility lets you modify multiple data objects in a single, separate test file that is layered on top of the base ver-
ification environment. This extensibility feature allows you to address systemic, test-specific concerns that

are not localized to a single data object’s boundaries in a way that does not sacrifice modularity or readabil-

ity.

This manual provides detailed information on the e programming language.

1.1 Conventions in This Book

This manual uses visual cues to help you locate and interpret information easily. These cues are explained in
Table 1-1 on page 1.

Table 1-1—Document Conventions

Visual Cue Represents

courier The Courier font indicates e or HDL code. For example, the fol-
lowing line indicates e code:

keep opcode in [ADD, ADDI];

bold The bold font is used in descriptive text to indicate keywords. For
example, the following sentence contains the keyword “keep”:

Use the keep construct to define legal values for items.
The bold font is used in syntax descriptions to indicate text that
must be typed exactly as it appears. For example, in the following
sentence the keywords “keep” and “reset_soft”, as well as the

period and the parentheses must be typed as they appear:

keep item.reset_soft()

italic The italic font represents user-defined variables that you must pro-
vide. For example, the following line instructs you to type “keep”
as it appears, and then specify a boolean expression:

keep constraint-bool-exp

This is an unapproved IEEE Standards Draft, subject to change. 1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 1-1—Document Conventions (continued)

Visual Cue Represents

[]1square brack- Square brackets indicate optional parameters. For example, in the
ets following construct the keywords “list of”” are optional:

var name: [list of] type

[] bold brackets Bold square brackets are required. For example, in the following
construct you must type the bold square brackets as they appear:

extend enum-type-name: [name.,...|

construct, ... An item, followed by a separator (usually a comma or a semicolon)
and an ellipsis is an abbreviation for a list of elements of the speci-
fied type. For example, the following line means you can type a list
of zero or more names separated by commas.

extend enum-type-name: [name,...]

The | character indicates alternative syntax or parameters. For
example, the following line indicates that either the bits or bytes
keyword should be used:

type scalar-type (bits | bytes: num)

1.2 Syntax Notation

Each construct section starts with the syntax for the construct. The syntax shows the construct, any argu-
ments it accepts with their types, and the construct’s return type if it has one.

When using the construct, terms in bold in the syntax are to be entered exactly as shown. Terms in italics are
to be replaced by terms of your own. The argument types and the construct return type are for information
only and are not entered.
For example, the syntax notation for the predefined pseudo-method named “first()”” on page 576 is
list.first(exp: bool): list-type

This is what the notation means:

— The bold “.first” and the parentheses must be entered exactly.

— The parts in italics, “list” and “exp”, must be replaced by a list name and an expression.

— “: bool” indicates that the expression must be a boolean expression.

— “ list-type” means that the pseudo-method returns an item of the list element type.

An example of a call to the list.first() pseudo-method is shown below, where “numbers” is a list of integer
items and “my number” is an integer. The pseudo-method returns the first integer in the list greater than 5:

my number = numbers.first (it > 5)

2 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2 ¢ Basics

This chapter describes the structure of an e program, starting with the organization of e code into one or
more files and the four categories of e constructs, and ending with a description of the struct hierarchy. This
chapter also describes the e operators. It contains the following sections:

— “Lexical Conventions” on page 3

— “Syntactic Elements” on page 11

— “Struct Hierarchy and Name Resolution” on page 19
— “Operator Precedence” on page 28

— “Evaluation Order of Expressions” on page 30

— “Bitwise Operators” on page 30

— “Boolean Operators” on page 35

— “Arithmetic Operators” on page 40

— “Comparison Operators” on page 42

— “String Matching” on page 51

— “Extraction and Concatenation Operators” on page 53
— “Scalar Modifiers” on page 63

— “Parentheses” on page 65

— “Special-Purpose Operators” on page 67

See Also

— Chapter 9, “Temporal Expressions”
— Chapter 3, “Data Types”
— Chapter 24, “Predefined Routines Library”

2.1 Lexical Conventions
The following sections describe the lexical conventions of e:

“File Structure” on page 3
— “Code Segments” on page 4
— “Comments and White Space” on page 4
— “Literals and Constants” on page 4
— “Names, Keywords, and Macros” on page 9

2.1.1 File Structure

e code can be organized in multiple files. File names must be legal e names. The default file extension is

.e”. e code files are sometimes referred to as “modules” Each module contains at least one code segment
and can also contain comments.

See Also

— “Names, Keywords, and Macros” on page 9
— “Code Segments” on page 4
“Comments and White Space” on page 4

This is an unapproved IEEE Standards Draft, subject to change. 3

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.1.2 Code Segments

A code segment is enclosed with a begin-code marker <' and an end-code marker ">. Both the begin-code
and the end-code markers must be placed at the beginning of a line (left most), with no other text on that
same line (no code and no comments). For example, the following three lines of code form a code segment:

< !
import cpu_test env;
1
>

Several code segments can appear in one file. Each code segment consists of one or more statements.

See Also

— “Comments and White Space” on page 4
— “Statements” on page 12

2.1.3 Comments and White Space
e files begin as a comment which ends when the first begin-code marker <' is encountered.
Comments within code segments can be marked with double dashes (--) or double slashes (//):

a=5; -- This is an inline comment
b =17; // This is also an inline comment

The end-code "> and the begin-code <' markers can be used in the middle of code sections, to write several
consecutive lines of comment:

Import the basic test environment for the CPU...

< 1
import cpu_test env;

'>

This particular test requires the code that bypasses bug#72 as
well as the constraints that focus on the immediate instructions.

< 1
import bypass bug72;
import cpu test0012;

">
See Also
— “Code Segments” on page 4
2.1.4 Literals and Constants

Literals are numeric, character and string values specified literally in e. Operators can be applied to literals
to create compound expressions. The following categories of literals and constants are supported in e:

— “Unsized Numbers” on page 5

— “Sized Numbers” on page 5
— “MVL Literals” on page 6

4 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— “Predefined Constants” on page 8
“Literal String” on page 8
“Literal Character” on page 9

2.1.4.1 Unsized Numbers

Unsized numbers are always positive and zero-extended unless preceded by a hyphen. Decimal constants are
treated as signed integers and have a default size of 32 bits. Binary, hex, and octal constants are treated as
unsigned integers, unless preceded by a hyphen to indicate a negative number, and have a default size of 32
bits. If the number cannot be represented in 32 bits then it is represented as an unbounded integer. See
“Unbounded Integers” on page 77 for more information.

The notations shown in Table 2-1 can be used to represent unsized numbers.

Table 2-1—Representing Unsized Numbers in Expressions

Notation Legal Characters Examples

Decimal integer Any combination of 0-9 possibly pre- 12,55 32,-764
ceded by a hyphen - for negative num-
bers. An underscore (_) can be added
anywhere in the number for readability.

Binary integer Any combination of 0-1 preceded by 0b. 0b100111,
An underscore (_) can be added anywhere 0b1100_0101
in the number for readability.

Hexadecimal integer =~ Any combination of 0-9 and a-f preceded 0xff,
by 0x. An underscore (_) can be added 0x99 aa bb cc
anywhere in the number for readability.

Octal integer Any combination of 0-7 preceded by 0Oo. 0066 123
An underscore (_) can be added anywhere
in the number for readability.

K (kilo: multiply by A decimal integer followed by a K or k. 32K, 32k, 128k

1024) For example, 32K = 32768.
M (mega: multiplyby A decimal integer followed by an Morm. 1m, 4m, 4M
1024*1024) For example, 2m = 2097152.

See Also

— “Literals and Constants” on page 4

2.1.4.2 Sized Numbers
A sized number is a notation that defines a literal with a specific size in bits. The syntax is as follows:
width-number ' (b|o|d|h|x) value-number

The width number is a decimal integer specifying the width of the literal in bits. The value number is the
value of the literal and can be specified in one of four radixes, as shown in Table 2-2.

This is an unapproved IEEE Standards Draft, subject to change. 5

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

NOTE— If the value number is more than the specified size in bits, its most significant bits are
ignored. If the value number is less that the specified size, it is padded by zeros.

Table 2-2—Radix Specification Characters

Radix Represented By Example
Binary A leading 'b or 'B 8'b11001010
Octal A leading 'o or 'O 6'045
Decimal A leading 'd or 'D 16'd63453
Hexadecimal Aleading'hor'Hor'xor'X 32'h12ffab04
See Also

— “Literals and Constants” on page 4

2.1.4.3 MVL Literals

An MVL literal is based on the mvl type, which is a predefined enumerated scalar type in e. The mvl type is
defined as follows:

type mvl: [MVL UMVL XMVL 0MVL I, MVL ZMVL WMVL LMVL HMVL NJ;
NOTE— MVL N represents “don’t care”.

The mvl type is a superset of the capabilities provided by the @x and @z syntax allowed in HDL tick nota-
tion. For example, if a port is defined as type list of mvl, you can assign values with the $ access operator:

sig$ = {MVL X;MVL X;MVL X} ; -- HDL tick notation is 'sigex' = 0x3

If the port is a numeric type (uint, int, and so on), you can assign mvl values using the predefined MVL
methods for ports. For example:

sig.put_mvl list ({MVL X;MVL X;MVL X});

An MVL literal, which is a literal of type list of mvl, provides a more convenient syntax for assigning MVL
values. The syntax of an MVL literal is as follows:

width-number ' (b|o|h) value-number

The width number is an unsigned decimal integer specifying the size of the list. The value number is any
sequence of digits that are legal for the base, plus x, z, u, 1, h, w, n.

Syntax rules:

— A single digit represents 4 bits in hexadecimal base, 3 bits in octal base and 1 bit in binary base. Sim-
ilarly, the letters x, z, u, 1, h, w, n represent 4 identical bits (for hexadecimal), 3 identical bits (for
octal), or 1 bit (for binary). For example, 8’h1x is equivalent to 8’b0001xxxx.

— If the size of the value is smaller than the width, the value is padded to the left. A most significant bit
(MSB) of 0 or 1 causes zero padding. If the MSB of the literal is x, z, u, 1, h, w or n, then that mvl
value is used for padding.

6 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— If the size of the value is larger than the size specified for the list, the value is truncated leaving the
LSB of the literal.

— Anunderscore can be used for breaking up long numbers to enhance readability. It is legal inside the
size and inside the value. It is illegal at the beginning of the literal, between the base and the value,
and between the single quote (') and the base.

Examples

32'"hffffxxxx

32 '"HFFFFXXXX

//16' bll0Ouuuuu --illegal because (_) is between (') and base
19'0L0001

14'D123

64'bz 1111 0000 1111 0000

Notes

— Decimal literals are not supported.

— White space is not allowed as a separator between the width number and base or between the base
and the value.

— The base and the value are not case sensitive.

— Size and base have to be specified.

— In the context of a Verilog comparison operator (!== or ===) or HDL tick access ('data’ = 32'bx),
only the 4-value subset is supported (0, 1, u, x).

— Verilog simulators support only the 4-value logic subset.

— An MVL literal of size 1 is of type list of mvl that has one element. It is not of type mvl. Thus, you
cannot assign an MVL literal to a variable or field of type mvl:

var m: mvl = 1'bz; -- illegal; MVL_Z must be assigned

Syntactically, the same expression may be of a numeric type or MVL literal. For example, 1°b1 may repre-
sent either the number 1 or a list of MVL with the value {MVL _1}. A literal is considered to be an MVL lit-
eral when:

— The literal is assigned to a list of mvl, for example:

var v2: list of mvl = 16'bl;
— When the literal is passed to a method that receives a list of mvl
— When the literal is assigned to a port of type list of mvl using the $ operator
— When the literal is compared to list of mvl, for example:

check that v == 4'buuuu;
— When the literal is compared using the === and !== operators, for example:
check that 's' === 4'bz; -- limited to the 4-value subset

— When the literal is used in an HDL tick access assignment, for example:

's' = 8'bx1lz; -- limited to the 4-value subset

— When the literal is an argument for a Verilog task, for example:

'taskl' (8'hlx) ;)
— When the literal is used in a list operation, for example

1.add(32'b0)

If the type of the expression, according to the context, is numeric, or if the type cannot be extracted from the
context, the default type remains uint, for example:

This is an unapproved IEEE Standards Draft, subject to change. 7

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

print 2'bll; -- prints unsigned integer wvalue 3
print 2'bxx; -- syntax error
pack (NULL, 32'z) -- error

NOTE— The type-casting operations as_a() and is a do not propagate the context.
See Also

“Scalar Types” on page 75
2.1.4.4 Predefined Constants

A set of constants is predefined in e, as shown in Table 2-3.

Table 2-3—Predefined Constants

Constant Description
TRUE For boolean variables and expressions.
FALSE For boolean variables and expressions.
NULL For structs, specifies a NULL pointer. For character strings, specifies
an empty string.
UNDEF UNDEF indicates NONE where an index is expected.
MAX_INT Represents the largest 32-bit int (23 S
MIN_INT Represents the smallest 32-bit int (-23 1).

MAX UINT Represents the largest 32-bit uint (232—1).

See Also
— “Literals and Constants” on page 4
2.1.4.5 Literal String
A literal string is a sequence of zero or more ASCII characters enclosed by double quotes (“ ™).

The special escape sequences shown in Table 2-4 are allowed.

Table 2-4—Escape Sequences in Strings

Escape Sequence Meaning
\n New-line
\t Tab
\f Form-feed
\”? Quote
\ Backslash
\r Carriage-return

8 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example
This example shows escape sequences used in strings.

extend sys {

m() is {

var header: string =
"Name\tSize in Bytes\n----\t------------- \n";

var p: packet = new;
var pn: string = p.type() .name;
var ps: uint = p.type() .size in bytes;
outf ("%$s%s\t%d", header, pn, ps);

}i

Vi

Result

Name Size in Bytes

packet 20
See Also

— “Literals and Constants” on page 4

2.1.4.6 Literal Character
A literal character is a single ASCII character, enclosed in quotation marks and preceded by Oc. This expres-
sion evaluates to the integer value that represents this character. For example, the literal character shown
below is the single ASCII character “a” and evaluates to 0x0061.

var u: uint (bytes:2) = O0c"a"

NOTE— Literal characters can only be assigned to integers or unsigned integers without explicit
casting.

See Also
— “Literals and Constants” on page 4
2.1.5 Names, Keywords, and Macros
The following sections describe the legal syntax for names and macros:
“Legal e Names” on page 9

— “e Keywords” on page 10
“Macros” on page 11

2.1.5.1 Legal ¢ Names
User-defined names in e code consist of a case-sensitive combination of any length of the characters A-Z, a-

z, 0-9, and underscore. They must begin with a letter. Names beginning with an underscore have a special
meaning in e and are not recommended for general use. Names beginning with a number are not allowed.

This is an unapproved IEEE Standards Draft, subject to change. 9

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

The syntax of an e module name (a file name) is the same as the syntax of UNIX file names, with the follow-
ing exceptions:

— ‘@’ and ‘~’ are not allowed as the first character of a file name.
— 57, ¢, ¢} are not allowed in file names.
— Only one ‘.’ is allowed in a file name.

NOTE— Many ASCII characters are not handled correctly by some UNIX commands when used
in file names. These characters include control characters, spaces, and characters reserved for
command line parsing, such as ‘-°, ‘", and ‘<‘.

NOTE— Naming an e module “patch.e” or “test.e” can cause problems when you try to load the
compiled file. If the module is to be compiled, do not name it patch.e or test.e.

2.1.5.2 e Keywords

The keywords listed below are the components of the e language. Some of the terms are keywords only
when used together with other terms, such as “key” in “list(key:key)”, “before” in “keep gen x before y”’, or
“computed” in “define def as computed ”.

all of all values and asa as a
assert assume async attribute before

bit bits bool break byte
bytes ¢ export case change check that
compute computed consume continue cover
Ccross cvl call cvl callback cvl method cycle
default define delay detach do

down to dut_error each edges else

emit event exec expect extend
fail fall file first of for

force from gen global hdl pathname
if #ifdef #ifndef in index

int is isa is also is ¢ routine
is empty is first is inline is instance isnot a

is not empty is only is undefined item keep
keeping key like line list of
matching me nand new nor

not not in now on only

or others pass prev print
range ranges release repeat return
reverse rise routine select session
soft start state machine step struct
string sync Sys that then

time to transition true try

type uint unit until using

10

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

var verilog code verilog function verilog import verilog simulator
verilog task verilog time verilog timescale verilog trace verilog variable
vhdl code vhdl driver vhdl function vhdl procedure vhdl driver

vhdl simulator ~ vhdl time when while with

within

2.1.5.3 Macros

e macros (created with the define statement) can be defined with or without an initial * character. There are
two important characteristics of e macros defined with an initial * character:

— They share the same name space as Verilog macros.
— You must always include the * character when you reference the name.

Thus, if you import a file of Verilog macros containing the following macro:
“define WORD WIDTH 8

defining the following e macro results in a name conflict:
define “WORD WIDTH 16;

With either macro defined, the correct way to reference it is as follows:

struct t {
f: uint (bits: “WORD WIDTH) ;
bi

See Also

— Chapter 20, “Preprocessor Directives”

2.2 Syntactic Elements

Every e construct belongs to a construct category that determines how the construct can be used. There are
four categories of e constructs:

Statements Statements are top-level constructs and are valid within the begin-code <'
and end-code "> markers. See “Statements” on page 12 for a list and brief
description of e statements.

Struct members Struct members are second-level constructs and are valid only within a
struct definition. See “Struct Members” on page 13 for a list and brief
description of e struct members.

Actions Actions are third-level constructs and are valid only when associated with
a struct member, such as a method or an event. See “Actions” on page 14
for a list and brief description of e actions.

Expressions Expressions are lower-level constructs that can be used only within
another e construct. See “Expressions” on page 19 for a list and brief
description of e expressions.

This is an unapproved IEEE Standards Draft, subject to change.
11

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

The syntax hierarchy roughly corresponds to the level of indentation shown below:

statements
struct members
actions
expressions

See Also

— “Statements” on page 12

— “Struct Members” on page 13
— “Actions” on page 14

— “Expressions” on page 19

2.2.1 Statements

Statements are the top-level syntactic constructs of the e language and perform the functions related to
extending the e language and interface with the simulator.

Statements are valid within the begin-code <' and end-code "> markers. They can extend over several lines
and are separated by semicolons. For example, the following code segment has two statements:

< 1
import bypass_bug72;
import cpu test0012;

">

In general, within a given e module, statements can appear in any order except that import statements must
appear before any other statements. No statements other than verilog import, preprocessor directives or
defines (#ifdef, #ifndef, define, define as, define as computed) can precede import statements. See
“import” on page 635 for an example of a special case where this restriction also applies to import state-
ments in different ¢ modules.

Here is the complete list of e statements:

struct Defines a new data structure. See “Defining Structs:
struct” on page 118.

type Defines an enumerated data type or scalar subtype.
See “type enumerated scalar” on page 98, “type sca-
lar subtype” on page 100, or “type sized scalar” on
page 101

extend Modifies a previously defined struct or type. See
“Extending Structs: extend type” on page 121 or
“extend type” on page 103

define Extends the e language by defining new commands,
actions, expressions, or any other syntactic element.
See Chapter 13, “Macros”, “define as” on page 429,
or “define as computed” on page 436.

#ifdef, #ifndef Used together with define statements to place condi-
tions on the e parser. See “#ifdef, #ifndef” on
page 627.

import Reads in an e file. See “import” on page 635.

12 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

verilog import

verilog code

verilog time

verilog variable reg | wire

verilog variable memory

verilog function

verilog task

vhdl code

vhdl driver

vhdl function

vhdl procedure

vhdl time

See Also

P1647/D0.1

Reads in Verilog macro definitions from a file.
See“verilog import” on page 799 .
Writes Verilog code to the stubs file, which is used to

interface e programs with a Verilog simulator. See
“verilog code” on page 795.

Specifies Verilog simulator time resolution. See‘“ver-
ilog time” on page 803 .

Specifies a Verilog register or wire that you want to
drive from e. See “verilog variable reg | wire” on
page 804.

Specifies a Verilog memory that you want to access
from e. See “verilog variable memory” on page 810.

Specifies a Verilog function that you want to call
from e. See “verilog function” on page 797.

Specifies a Verilog task that you want to call from e.
See “verilog task” on page 801.

Writes VHDL code to the stubs file, which is used to
interface e programs with a VHDL simulator. See
“vhdl code” on page 813.

Used to drive a VHDL signal continuously via the
resolution function. See “vhdl driver” on page 815.

Declares a VHDL function defined in a VHDL pack-
age. See “vhdl function” on page 819.

Declares a VHDL procedure defined in a VHDL
package. See “vhdl procedure” on page 822.

Specifies VHDL simulator time resolution. See “vhdl
time” on page 829.

“Struct Members” on page 13
— “Actions” on page 14
“Expressions” on page 19

2.2.2 Struct Members

Struct member declarations are second-level syntactic constructs of the e language that associate the entities

of various kinds with the enclosing struct.

Struct members can only appear inside a struct type definition statement (see “Defining Structs: struct” on
page 118). They can extend over several lines and are separated by semicolons. For example, the following

struct “packet” has two struct members, len and data:

<l
struct packet

$len: int;

%data[len] : list of byte;
Vi

">

This is an unapproved IEEE Standards Draft, subject to change.

13

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

A struct can contain multiple struct members of any type in any order. Here is a brief description of e struct

members:

field declaration

method declaration

subtype declaration

constraint declaration

coverage declaration

temporal declaration

See Also

Defines a data entity that is a member of the enclosing
struct and has an explicit data type.

Defines an operational procedure that can manipulate the
fields of the enclosing struct and access runtime values in
the DUT.

Defines an instance of the parent struct in which specific
struct members have particular values or behavior.

Influences the distribution of values generated for data enti-
ties and the order in which values are generated.

Defines functional test goals and collects data on how well
the testing is meeting those goals.

Defines e events and their associated actions.

— “Defining Fields: field” on page 125

— “Rules for Defining and Extending Methods” on page 459
— “Creating Subtypes with When” on page 133

— “Defining Constraints” on page 270

— “Defining Coverage Groups: cover” on page 373

— Chapter 10, “Temporal Struct Members”

2.2.3 Actions

e actions are lower-level procedural constructs that can be used in combination to manipulate the fields of a
struct or exchange data with the DUT.

Actions can extend over several lines and are separated by semicolons. An action block is a list of actions
separated by semicolons and enclosed in curly brackets, { }.

Actions must be associated with a struct member, specifically a method or an event, or issued interactively
as commands at the command line. Here is an example of an action (an invocation of a method, “transmit()”)
associated with an event, xmit_ready. Another action, out() is associated with the transmit() method.

< 1
struct packet

event xmit ready is rise('top.ready');
on xmit ready {transmit();};
transmit () is {

out ("transmitting packet...");

}i

-

The following sections describe the e actions:

— “Creating or Modifying Variables” on page 15
“Executing Actions Conditionally” on page 15
— “Executing Actions Iteratively” on page 16

14 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— “Controlling Program Flow” on page 16

— “Invoking Methods and Routines” on page 17

— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18

— “Detecting and Handling Errors” on page 18

— “Printing” on page 18

2.2.3.1 Creating or Modifying Variables

“var” on page 487 Defines a local variable.

“=" on page 489 Assigns or samples values of fields, local variables, or HDL objects.

“op="on page 491 Performs a complex assignment (such as add and assign, or shift and
assign) of a field, local variable, or HDL object.

“force” on page 830 Forces a Verilog net or wire to a specified value, over-riding the value
from driven from the DUT.

“release” on page 834 Releases the Verilog net or wire that was previously forced.

See Also

— “Executing Actions Conditionally” on page 15

— “Executing Actions Iteratively” on page 16

— “Controlling Program Flow” on page 16

— “Invoking Methods and Routines” on page 17

— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18

— “Detecting and Handling Errors” on page 18

— “Printing” on page 18

2.2.3.2 Executing Actions Conditionally

“if then else” on page 533 Executes an action block if a condition is met and a different action
block if it is not.

“case labeled-case-item” on Executes one action block out of multiple action blocks depending

page 534 on the value of a single expression.
“case bool-case-item” on Evaluates a list of boolean expressions and executes the action block
page 536 associated with the first expression that is true.

See Also

“Creating or Modifying Variables” on page 15
— “Executing Actions Iteratively” on page 16
— “Controlling Program Flow” on page 16
— “Invoking Methods and Routines” on page 17
— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18
— “Detecting and Handling Errors” on page 18
— “Printing” on page 18

This is an unapproved IEEE Standards Draft, subject to change.
15

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.2.3.3 Executing Actions lteratively

“while” on page 538 Executes an action block repeatedly until a boolean expression
becomes FALSE.

“repeat until” on page 539 Executes an action block repeatedly until a boolean expression
becomes TRUE.

“for each in” on page 540 For each item in a list that is a specified type, executes an action
block.

“for from to” on page 543 Executes an action block for a specified number of times.

“for” on page 544 Executes an action block for a specified number of times.

“for each line in file” on Executes an action block for each line in a file.

page 545

“for each file matching” on Executes an action block for each file in the search path.
page 546

See Also

“Creating or Modifying Variables” on page 15
— “Executing Actions Conditionally” on page 15
— “Controlling Program Flow” on page 16
— “Invoking Methods and Routines” on page 17
— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18
— “Detecting and Handling Errors” on page 18
— “Printing” on page 18

2.2.3.4 Controlling Program Flow

“break” on page 547 Breaks the execution of the enclosing loop.

“continue” on page 548 Stops execution of the enclosing loop and continues with the next itera-
tion of the same loop.

See Also

“Creating or Modifying Variables” on page 15
— “Executing Actions Conditionally” on page 15
— “Executing Actions Iteratively” on page 16
— “Invoking Methods and Routines” on page 17
— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18
— “Detecting and Handling Errors” on page 18
— “Printing” on page 18

16 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.2.3.5 Invoking Methods and Routines

“method()” on page 478 Calls a regular method.

“tcm()” on page 475 Calls a TCM.

“start tem()” on page 477 Launches a TCM as a new thread (a parallel process).

“Calling Predefined Routines: rou- Calls an e predefined routine.

tine()” on page 793

“compute method()” on page 480 Calls a value-returning method without using the value
returned.

“return” on page 481 Returns immediately from the current method to the
method that called it.

See Also

“Creating or Modifying Variables” on page 15

— “Executing Actions Conditionally” on page 15

— “Executing Actions Iteratively” on page 16

— “Controlling Program Flow” on page 16

— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18

— “Detecting and Handling Errors” on page 18

— “Printing” on page 18

2.2.3.6 Performing Time-Consuming Actions

“emit” on page 307 Causes a named event to occur.

“sync” on page 365 Suspends execution of the current TCM until the temporal expression
succeeds.

“wait” on page 367 Suspends execution of the current time-consuming method until a given

temporal expression succeeds.

“all of” on page 369 Executes multiple action blocks concurrently, as separate branches of a
fork. The action following the all of action is reached only when all
branches of the all of have been fully executed.

“first of” on page 370 Executes multiple action blocks concurrently, as separate branches of a
fork. The action following the first of action is reached when any of the
branches in the first of has been fully executed.

‘“state machine” on Defines a state machine.
page 883

See Also

17

“Creating or Modifying Variables” on page 15

— “Executing Actions Conditionally” on page 15
— “Executing Actions Iteratively” on page 16
— “Controlling Program Flow” on page 16

— “Invoking Methods and Routines” on page 17
— “Generating Data Items” on page 18

— “Detecting and Handling Errors” on page 18
— “Printing” on page 18

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.2.3.7 Generating Data Items

“gen” on page 296 Generates a value for an item, while considering all relevant constraints.

See Also

“Creating or Modifying Variables” on page 15
— “Executing Actions Conditionally” on page 15
— “Executing Actions Iteratively” on page 16
— “Controlling Program Flow” on page 16
— “Invoking Methods and Routines” on page 17
— “Performing Time-Consuming Actions” on page 17
— “Detecting and Handling Errors” on page 18
— “Printing” on page 18

2.2.3.8 Detecting and Handling Errors

“check that” on page 441 Checks the DUT for correct data values.
“dut_error()” on page 443 Defines a DUT error message string.
“assert” on page 456 Issues an error message if a specified boolean expression is not true.

“warning()” on page 450 Issues a warning message.

“error()” on page 451 Issues an error message when a user error is detected.
“fatal()” on page 452 Issues an error message, halts all activities, and exits immediately.
“try” on page 454 Catches errors and exceptions.

See Also

— “Creating or Modifying Variables” on page 15

— “Executing Actions Conditionally” on page 15

— “Executing Actions Iteratively” on page 16

— “Controlling Program Flow” on page 16

— “Invoking Methods and Routines” on page 17

— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18

— “Printing” on page 18

2.2.3.9 Printing

“set_config()” on page 766 Sets options for various categories, including printing.

See Also

“Creating or Modifying Variables” on page 15
— “Executing Actions Conditionally” on page 15
— “Executing Actions Iteratively” on page 16
— “Controlling Program Flow” on page 16
— “Invoking Methods and Routines” on page 17
— “Performing Time-Consuming Actions” on page 17
— “Generating Data Items” on page 18
— “Detecting and Handling Errors” on page 18

18 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.2.4 Expressions

Expressions are constructs that combine operands and operators to represent a value. The resulting value is a
function of the values of the operands and the semantic meaning of the operators.

A few e expressions, such as expressions that restrict the range of valid values of a variable, must evaluate to
constants at compile time. More typically, expressions are evaluated at run time, resolved to a value of some
type, and assigned to a variable or field of that type. Strict type checking in e is enforced.

Each expression must contain at least one operand, which can be:

— A literal value

— A constant

— An e entity, such as a method, field, list, or struct
— An HDL entity, such as a signal

A compound expression applies one or more operators to one or more operands.

See Also

— Chapter 3, “Data Types”

2.3 Struct Hierarchy and Name Resolution

The following sections explain the struct hierarchy of an e program and how to reference entities within the
program:

— “Struct Hierarchy” on page 19

— “Referencing e Entities” on page 21
— “Implicit Variables” on page 24

— “Name Resolution Rules” on page 26

2.3.1 Struct Hierarchy

Because structs can be instantiated as the fields of other structs, a typical e program has many levels of hier-
archy. Every e program contains several predefined structs as well as user-defined structs. Figure 2-1 on
page 20 shows the partial hierarchy of a typical e program. The predefined structs are shown in bold.

This is an unapproved IEEE Standards Draft, subject to change.
19

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Figure 2-1—Diagram of Struct Hierarchy

| files | | packing | | sys | |scheduler| |simulator| | session |

|

| | | [
| ctrl_stub | |p01“c_stub1| |p0rt_stub2| |p0rt_stub3| |p0rt_stub4|

| sender || listener |

2.3.1.1 Global Struct

The predefined struct global is the root of all e structs. All predefined structs and most predefined methods
are part of the global struct.

It is highly recommended that you do not extend the global struct.

2.3.1.2 Sys Struct
The system struct is instantiated under global as sys.

All fields and structs in sys not marked by an exclamation point (!) are generated automatically during the
generate_test phase. Any structs or fields outside of sys that need generation must be generated explicitly.

Time is stored in a 64-bit integer field named sys.time. When e is linked with an event-driven simulator,
sys.time shows the current simulator time. When e is linked with a cycle-based simulator, sys.time shows

the current simulator cycle. sys.time is influenced by the current timescale. See “verilog time” on page 803
and “vhdl time” on page 829 for information on how the timescale is determined.

2.3.1.3 Packing Struct

Packing and unpacking are controlled by a predefined struct under global named packing. Packing and
unpacking prepare e data sent to or received from the DUT. Under the packing struct are five predefined
structs. You can create your own packing order by copying one of these structs and modifying one or more
of its parameters.

2.3.1.4 Files Struct

The files struct provides predefined methods for manipulating files.

2.3.1.5 Scheduler Struct

The scheduler struct contains predefined methods that allow you to access active TCMs and terminate
them.

20 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.3.1.6 Simulator Struct

The simulator struct controls the HDL simulator and has a predefined method that allows access to Verilog
macros at run time.

2.3.1.7 Session Struct

The session struct holds the status of the current simulator session, related information, and events. Fields
available in the session struct that are of general interest include:

— session.user_time
— session.system_time
— session.check ok
— session.events

The first three fields listed above help you determine the time and memory used in a particular session. The
following sections describe the check ok field and the events field.

2.3.1.7.1 session.check_ok

This field is of boolean type, and is set TRUE after every check, if the check succeeds. Otherwise, it is set to
FALSE. This field allows you to extend checking of a behavior without the need to duplicate the if clause.

The following example show how this is accomplished.
post_generate() is also {
check that mlist.size() > 0 else dut error ("Empty list");

if session.check ok then ({
check that mlist[0] == Oxa else dut error ("Error at index 0");

Vi
Vi
2.3.1.7.2 session.events
This field contains the names of all user-defined events that occurred during the test, and how many times
each user-defined event occurred. The name of the event is preceded by the struct type and a double under-
score:

struct_type event name

If an event is defined in a when subtype, the name of the event in the session.events field is prefixed by the
subtype and a double underscore:

subtype _struct_type _event name

2.3.2 Referencing ¢ Entities
The following sections describe how to reference e entities:
“Structs and Fields” on page 22

— “Method and Routine Names” on page 23
— “Enumerated Type Values” on page 23

This is an unapproved IEEE Standards Draft, subject to change.
21

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.3.2.1 Structs and Fields

Any user-defined struct can be instantiated as a field of the sys struct or of another struct. Thus every instan-
tiated struct and its fields have a place in the struct hierarchy and their names include a path reflecting that
place.

The keep constraints in the following example show the use of paths to identify the fields u and kind:

< 1

struct switch {
ctrl: ctrl stub;
port: port stub;

keep soft port.sender.cell.u == Oxff;
keep ctrl.init command.kind == RD;

}i

struct ctrl stub {
init command: ctrl cmd;

Vi

struct simplex {
kind: [TX, RX];
cell: cell;

bi

struct port_stub {
sender: TX simplex;
listener: RX simplex;

}i

struct cell {
u: uint;

Vi

struct ctrl _cmd {
kind: [RD, WR];
addr: int;

bi

extend sys {
switch : switch;

— The name of the global struct can be omitted from the path to a field or a struct.

— The name of the enclosing struct is not included in the path if the current struct is the enclosing
struct. For example, prefixing the name port.sender.cell.u in the example above with the name of the
enclosing struct, switch, is an error.

— In certain contexts, you can use the implicit variables me or it in the path to refer to the enclosing
struct. For example, prefixing the name port.sender.cell.u in the example above with me is legal. See
“Implicit Variables” on page 24 for more information.

— A special syntax is required to reference struct subtypes and fields under struct subtypes. This syntax
is described in “Struct Subtypes” on page 80.

See Also

— “Struct Subtypes” on page 80
— “Implicit Variables” on page 24

[73E2]

.” on page 71

22 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.3.2.2 Method and Routine Names

The names of all methods and routines must be followed immediately by parentheses, both when you define
the method and when you call it.

The predefined methods of any struct, such as pre_generate() or init(), and all user-defined methods, are
associated with a particular struct. Thus, like structs and fields, every user-defined method has a place in the
struct hierarchy and its name includes a path reflecting that place.

The example below illustrates the names used to call user-defined and predefined methods.

< 1

struct meth {
%$size: int;
%$taken: int;

get free(size: int, taken: int): int is inline ({
result = size - taken;};
extend sys {
larea: int;
mi: meth;

post_generate() is also {
sys.area = sys.mi.get free(sys.mi.size, sys.mi.taken);
print sys.area;

>

Some predefined methods, such as the methods used to manipulate lists, are pseudo-methods. They are not
associated with a particular struct. These methods are called by appending their name to the expression that
you want to manipulate. Here is an example of how to call the list pseudo-method .size():

<|
struct meth {
%$data: list of int;

keep data.size() <= 10;

Vi

">

User-defined routines, like predefined routines, are associated with the global struct. You can omit global
from the path when the context is unambiguous. See “Name Resolution Rules” on page 26 for more infor-
mation.

See Also
— “Invoking Methods and Routines” on page 17
2.3.2.3 Enumerated Type Values

Names for enumerated type values must be unique within each type. For example, defining a type as

€90

“my_type: [a, a, b]” results in an error because the name “a” is not unique.

This is an unapproved IEEE Standards Draft, subject to change.

23

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

However, the same name can be used in more than one enumerated type. For example, the following two
enumerated types define the same value names:

type destination: [a, b, ¢, dl;
type source: [a, b, ¢, dl;

To refer to an enumerated type value in a struct where no values are shared between the enumerated types,
you can use just the value name. In structs where more than one enumerated field can have the same value,
you must use the following syntax to refer to the value when the type is not clear from the context:

type name'value

In the following keep constraint, it is clear that the type of “dest” is “destination”, so you can use just the
value name “b”:

type destination: [a, b, c, dl;
type source: [a, b, ¢, dl;
struct packet ({

dest: destination;

keep me.dest == Db;

However, because the type of the variable “tmp” below is not specified, it is necessary to use the full name
for the enumerated type value “destination'b”:

m() is {
var tmp := destination'b;
Vi
See Also

“Enumerated Scalar Types” on page 77

2.3.3 Implicit Variables

Many e constructs create implicit variables. The scope of these implicit variables is the construct that creates
them. Two of these implicit variables, me and it, are used in pathnames when referencing e entities.

This section describes the implicit variables:
— “it” on page 24
— “me” on page 25
— “result” on page 26

— “index” on page 26

NOTE— With the exception of result, you cannot assign values to implicit variables. An
assignment such as “me = packet” generates an error.

2331t
The constructs that create the implicit variable it are:
— list pseudo-methods

— for each
— gen...keeping

24 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— keep for each

— keep .is_all_iterations()
— new with

— list with key declaration

The implicit variable it always refers to the current item.

Wherever it.field can be used, the shorthand notation .field can be used in its place. For example, it.len can
be abbreviated to .len, with a leading dot. A typical use of it is to refer to each item in a list within a loop.

for each in sys.packets{
it.len = 5;
.good = TRUE;

Vi
In the code above, .good is shorthand for it.good. The scope of the it variable is restricted to the for loop.

In many places it is legal to designate and use a name other than the implicit it. In the following example, it
is replaced with a variable name, “p”, that is declared in the iterating action.

for each (p) in sys.packets do {
print p.len;
Vi

See Also

“Implicit Variables” on page 24

2.3.3.2 me

The implicit variable me refers to the current struct and can be used anywhere in the struct. In the following
example, me refers to the current instance of the packet struct, and it refers to the current value of tmp.

struct packet {
data: uint;
stm() is {
var tmp: uint;
gen tmp keeping {it < me.data};
print data, tmp using hex;
}i
bi

When referring to a field from another member of the same struct, the me. can be omitted. In the keep con-
straint shown below, the name “me.header.dest” is equivalent to the name “header.dest”.

struct packet ({
%$header : header;

keep header.dest == 0x55;
bi
struct header ({

%$dest : int (bits : 8);
}i

This is an unapproved IEEE Standards Draft, subject to change.

25

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “Implicit Variables” on page 24

2.3.3.3 result

The result variable returns a value of the method’s return type. If no return action is encountered, result is
returned by default. The following method returns the sum of “a” and “b”:

sum(a: int, b: int): int is {
result = a + b;

bi

See Also

— “Implicit Variables” on page 24

2.3.3.4 index

The constructs that create the implicit variable index are:
— list pseudo-methods
— for each

— keep for each

The index variable is a non-negative integer that holds the current index of the item referred to by it. The
scope of the index variable is limited to the action block.

The following loop assigns 5 to the len field of every item in the packets list and also assigns the index value
of each item to its id field.

for each in packets do {
packets[index] .len = 5;
.id = index;

Vi
See Also
“Implicit Variables” on page 24
2.3.4 Name Resolution Rules

The following sections describe how names are resolved, depending on whether the names include a path or
not.

“Names that Include a Path” on page 26
“Names that Do Not Include a Path” on page 27

2.3.4.1 Names that Include a Path
To resolve names that include a path, an entity of that name is searched for at the specified scope and an

error message is issued if it is not found. In the following example, the names “sys.b.u” and “.u” in the keep
constraints cannot be resolved, and an error is issued an error if those names are not commented out.

26 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

< 1

struct b {

bi

u:
m (

}i

uint;

) is {

print u;

struct c {

bi

u:

uint;

keep u > sys.bi.u;
keep me.u > 5;

m (

}i

keep u < sys.b.u; // 'sys’ does not have a field 'b’
keep .u < sys.bi.u; // no such variable ’it’

) is {
print u;

extend sys {

Vi

">

bi:
ci:

b;
c;

post_generate() is also

sys.bi.m();
ci.m();

NOTE— If the path begins with a period (.), the path is assumed to begin with the implicit variable

it.

See Also

“Names that Do Not Include a Path” on page 27

2.3.4.2 Names that Do Not Include a Path

To resolve names that do not include a path, the following checks are performed, in order. The program stops
after the first check that identifies the named object.

27

1))
2)
3)

4)

5)

Check whether the name is a macro. If there are two macro definitions, choose the most recent
one.
Check whether the name is one of the predefined constants. There cannot be two identical pre-
defined constants.
Check whether the name is an enumerated type. There cannot be two identical enumerated
types.
Check whether the name identifies a variable used in the current action block. If not, and if the
action is nested, check whether the name identifies a variable in the enclosing action block. If
not, this search continues from the immediately enclosing action block outwards to the bound-
ary of the method.
Check whether the name identifies a member of the current struct:

If the expression is inside a struct definition, the current struct is the enclosing struct.

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

If the expression is inside a method, the current struct is the struct to which the method
belongs.

6) Check whether the name identifies a member of the global struct.

7) If the name is still unresolved, an error message is issued.

Example
The following example illustrates how variables in the inner scopes hide those in the outer scopes:
m() is {
var X: int = 6;

if x > 4 then {
var X: bool = TRUE;

print x;
}i
print x;
bi
Result
x = TRUE
X =6

NOTE— Macros, predefined constants, and enumerated types have “global scope”, Which means
they can be seen from anywhere within an e program. For that reason, their names must be unique:

— No two name macros can have the same name, and no two replacement macros can have the same
macro-name’nonterminal-type (Chapter 13, “Macros”).

— No user-defined constant can have the same name as a predefined constant (“Predefined Constants”
on page 8).

— No two enumerated types can have the same enum-type-name (“Defining and Extending Scalar
Types” on page 98).

See Also

— “Names that Include a Path” on page 26

2.4 Operator Precedence

The following table summarizes all e operators in order of precedence. The precedence is the same as in the
C language, with the exception of operators that do not exist in C. To change the order of computation, place
parentheses around the expression that should be computed first.

Table 2-5—Operators in Order of Precedence

Operator Operation Type

“[]” onpage 54 List indexing (subscripting)

“[..]"on List slicing
page 58

“[:]”onpage 55 Bitslicing (selection)

28 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 2-5—Operators in Order of Precedence (continued)

Operator Operation Type
f(...) Method and routine calls (see “Invoking Methods and Routines”
on page 17)
“.” on page 71 Field selection
“~” on page 31, Bitwise not, boolean not
“!' (not)” on
page 35
“f..; ...} on List concatenation
page 60
“%{...,...}7 on Bit concatenation
page 62
“Unary + - on Unary plus, minus
page 40
* 1, % Binary multiply, divide, modulus (see “+ - * / %" on page 41)
+, - Binary add and subtract (see “+ - * / % on page 41)
“>><<” on Shift right, shift left
page 33
“<<=>>="on Comparison
page 42
“is [not] a” on Subtype identification
page 67
“==1="on Equality, inequality
page 43
“===|=="on Verilog four-state comparison
page 45
“~1~" on String matching
page 47

“in” on page 49

Range list operator

& Bitwise and (see “& | " on page 32)

| Bitwise or (see “& | on page 32)

A Bitwise xor (see “& | *”” on page 32)

“&& (and)” on boolean and

page 36

“l| (or)” on boolean or

page 37

“=>"onpage 37 boolean implication

“?:” on page 73 Conditional operator (“a ? b : ¢” means “if a then b else ¢”)

29

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

NOTE— Every operation in e is performed within the context of types and is carried out either with
32-bit precision or unbounded precision.

See Also

— Chapter 3, “Data Types” for information on the precision of operations and assignment rules
“Evaluation Order of Expressions” on page 30

2.5 Evaluation Order of Expressions

In e it is defined that “and” (&&) and “or” (||) use left-to-right lazy evaluation. Consider the following state-
ment:

bool 1 = foo(x) && bar (x)

If foo(x) returns TRUE, then bar(x) will be evaluated as well, to determine whether bool 1 gets TRUE. If,
however, foo(x) returns FALSE, then bool 1 gets FALSE immediately, and bar(x) is not executed. The argu-
ment to bar(x) is not even evaluated.

Expressions containing || are likewise evaluated in a lazy fashion: If the subexpression on the left of the “or”
operator is TRUE, then the subexpression on the right is ignored.

Although e was implemented to use left-to-right evaluation for both compiled e code and interpreted e code,
that evaluation order is not required by the language definition for operators other than && or ||.

Take for example the following statement:
bool 2 = foo(x) + bar(x)

If foo(x) or bar(x) has side effects (that is, if foo(x) changes the value of x or bar(x) changes the value of x),
then the results of foo(x) + bar(x) might depend on which of the two subexpressions, foo(x) or bar(x), is
evaluated first, so the results are not predictable according to the e language definition. Practically, the left-
to-right evaluation implemented in e assures predictable results, but that order is not guaranteed for other
compilers. Writing code that depends on evaluation order should be avoided.

See Also

“Operator Precedence” on page 28

2.6 Bitwise Operators

The following sections describe the e bitwise operators:

[T32]

on page 31 The bitwise unary negation operator changes each 0 bit to 1 and each 1 bit
to 0 in a single expression.

“& | ™ on page 32 The binary bitwise AND, OR, and XOR operators compare each bit in
one expression with the corresponding bit in a second expression to cal-
culate the result.

“>> <<” on page 33 The shift-right and shift-left operators shift the bits in an expression to the
left or right a specified number of bits.

30 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “bitwise_op()” on page 730
2.6.1~
Purpose
Unary bitwise negation
Category
Expression
Syntax
~exp
Syntax example:

print ~x using hex;

Parameter

exp A numeric expression or an HDL pathname.

Description

P1647/D0.1

Sets each 1 bit of an expression to 0 and each 0 bits to 1. Each bit of the result expression is the opposite of

the same bit in the original expression.
Example 1
This example shows the effect of the ~ operator on a 32-bit integer.

m() is {
var X : int = Oxff;
print ~x using hex;
Vi
Result
~x = OxEfffffo00
Example 2
This example shows the effect of the ~ operator on a 2-bit integer.
m() is {
var X : uint (bits:2) = 2;
print ~x using bin;

}i

Result

~X = 0b0O1l

This is an unapproved IEEE Standards Draft, subject to change.

31

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 3
This example shows the effect of the ~ operator on an untyped expression.

When the type and bit size of an HDL signal cannot be determined from the context, the expression is auto-
maticallly cast as an unsigned 32-bit integer.

m() is {
print 'top.clk';
print ~'top.clk';
print (~'top.clk') [0:0];

Vi

Result

'top.clk' = 0x0
~'top.clk' = OxEfffffff
(~'top.clk') [0:0] = O0x1

See Also

“'HDL-pathname" on page 838
— “Scalar Types” on page 75
“Untyped Expressions” on page 87

2628&|A
Purpose
Binary bitwise operations
Category
Expression
Syntax
expl operator exp2
Syntax example:

print (x & y);

Parameters
expl, exp2 A numeric expression or an HDL pathname.

operator is one of the following:

& Performs an AND operation.

| Performs an OR operation.

" Performs an XOR operation.
Description

Performs an AND, OR, or XOR of both operands, bit by bit.

32 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 1

m() is
var x: uint = 0xff03;
var y: uint = 0x70f6;
print (x & y);

}i

Result

(x & y) = 0x7002

Example 2
m() is {
var xX: uint = O0xff03;
'top.a' = 0x70f6;
print (x | 'top.a');
Vi
Result
(x | 'top.a') = Oxfff7
Example 3

extend sys {
m() is {
var X: uint 0xff03;
var y: uint = 0x70£f6;

A

print (x v) ;i
}i
Vi
Result
(x * y) = Ox8ffs5
See Also

“'HDL-pathname" on page 838
“Scalar Types” on page 75

2.6.3>><<
Purpose

Shift bits left or right
Category
Expression

Syntax

expl operator exp2

Syntax example:

This is an unapproved IEEE Standards Draft, subject to change.

33

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

outf ("$x\n", x >> 4);

Parameters

expl A numeric expression or an HDL pathname.

operator is one of the following:

<< Performs a shift-left operation.

>> Performs a shift-right operation.

exp?2 A numeric expression.
Description

Shifts each bit of the first expression to the right or to the left the number of bits specified by the second
expression.

In a shift-right operation, the shifted bits on the right are lost, while on the left they are filled with 1, if the
first expression is a negative integer, or 0, in all other cases.

In a shift-left operation, the shifted bits on the left are lost, while on the right they are filled with 0.

If the bit size of the second expression is greater than 32 bits, it is first truncated to 32 bits, and then the shift
is performed. Truncation removes the most significant bits.

NOTE— The result of a shift by more than 31 bits is undefined.

Example 1

m() is {
var X: int = 0x8fff0011;
outf ("$x\n", x >> 4);
var y: uint = 0x8fff0011;
outf ("$b\n", y >> 4);

bi

Result

£8£££001
1000111111111111000000000001

Example 2

m() is {
'top.a' = Ox8f£ff0011;
outf ("$x\n", 'top.a' << 4);
Vi
Result

£££00110

See Also

“'HDL-pathname" on page 838
— “Scalar Types” on page 75

34 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2.7 Boolean Operators

The following sections describe the e boolean operators:

“I (not)” on page 35 Returns TRUE when an expression evaluates to
FALSE, and vice versa.

“&& (and)” on page 36 Returns TRUE if two expressions are both TRUE.

“|| (or)” on page 37 Returns TRUE if one of two expressions is TRUE.
“=>" on page 37 Returns TRUE when the first expression of two expres-
sions is FALSE, or when both expressions are TRUE.
“now” on page 38 Returns TRUE if an event has occurred in the current
cycle.
2.71! (not)
Purpose

Boolean not operation
Category
Expression
Syntax
lexp
not exp
Syntax example:
out (! (3 > 2));
Parameters
exp A boolean expression or an HDL pathname.
Description

Returns FALSE when the expression evaluates to TRUE and returns TRUE when the expression evaluates
to FALSE.

Example

m() is {
'top.a' = 3;
out (! ('top.a' > 2));
out (not FALSE) ;

bi

Result

FALSE

This is an unapproved IEEE Standards Draft, subject to change.
35

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

TRUE

See Also

“"HDL-pathname" on page 838
“Scalar Types” on page 75

2.7.2 && (and)
Purpose
Boolean and
Category
Expression
Syntax

expl && exp2
expl and exp2
Syntax example:

if (2 > 1) and (3 > 2) then {
out ("3 > 2 > 1");
}i

Parameters

expl, exp2 A boolean expression or an HDL pathname.

Description

Returns TRUE if both expressions evaluate to TRUE; otherwise, returns FALSE.

Example
m() is {
'top.a' = 3;
'top.b' = 2;

if ('top.b' > 1) and ('top.a' > 2) then ({
out ("'top.a' > 'top.b' > 1");
}i

Vi

Result

'top.a' > 'top.b' > 1

See Also

“"HDL-pathname" on page 838
— “Scalar Types” on page 75

36 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.7.3]| (or)
Purpose
Boolean or
Category
Expression
Syntax

expl || exp2
expl or exp2
Syntax example:

if FALSE || ('top.a' > 1) then {
out ("'top.a' > 1");
bi

Parameters

expl, exp2 A boolean expression or an HDL pathname.

Description

Returns TRUE if one or both expressions evaluate to TRUE; otherwise, returns FALSE.

Example
m() is {
'top.a' = 3;
if FALSE || ('top.a' > 1) then {
out ("'top.a' > 1");
}i
}i
Result
'top.a' > 1
See Also
“"HDL-pathname" on page 838
— “Scalar Types” on page 75
2.7.4=>
Purpose

Boolean implication

This is an unapproved IEEE Standards Draft, subject to change.

37

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category
Expression
Syntax
expl => exp2
Syntax example:
out ((2 > 1) => (3 > 2));
Parameters
expl, exp2 A boolean expression.
Description

The expression returns TRUE when the first expression is FALSE, or when the second expression is TRUE.
This construct is the same as:

(not expl) or (exp2)

Example

m() is

out ((2 > 1) => (3 > 2));
(> (3 > 2));
(>

(2 > 3));

out ((1 > 2)
out ((2 > 1)

bi

Result

TRUE
TRUE
FALSE

See Also

— “constraint-bool-exp” on page 292
— “Scalar Types” on page 75

2.7.5 now
Purpose

Boolean event check
Category

Boolean expression
Syntax

now @event-name

38 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax example:

if now @sys.tx set then {out("sys.tx set occurred");};
Parameter

event-name The event to be checked.
Description

Evaluates to TRUE if the event occurs before the now expression is encountered, in the same cycle in which
the now expression is encountered.

However, if the event is consumed later during the same cycle, the now expression changes to FALSE. This
means that the event can be missed, if it succeeds after the expression is encountered.

Example 1

In the following, the sys.tx_set event is checked when the if action is encountered. If the sys.tx_set event has
already occurred, in the same sys.clk cycle, the out() routine is called.

struct pkt {
event clk is @sys.any;
tem_exa()@clk is {
if now @sys.tx set then {out("sys.tx set occurred");};

}i
run() is also {
start tcm exal() ;
}i
Vi
Example 2

In this example, the now expression is FALSE until the tx_set event is emitted, which changes the expres-
sion to TRUE. When the event is consumed by “sync consume (@tx_set)”, the now expression changes
back to FALSE.

struct pkt {

event tx_ set;

tem_exa()@sys.any is {
print now @tx set;
emit tx set;
print now @tx_ set;
sync consume (@tx set);
print now @tx set;

¥

run() is also {
start tcm exal();

}i

Vi

extend sys {
p_i: pkt;

}i

This is an unapproved IEEE Standards Draft, subject to change.
39

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— Chapter 8, “Events”
“Scalar Types” on page 75

2.8 Arithmetic Operators

The following sections describe the e arithmetic operators:

“Unary + -” on page 40 Perform arithmetic operations on a single operand.
“+-* /%" on page 41 Perform arithmetic operations on two operands.
2.8.1 Unary + -
Purpose

Unary plus and minus
Category
Expression

Syntax

-exp

+exp

Syntax example:

out (5," == ", +5);
Parameter

exp A numeric expression or an HDL pathname.
Description

Performs a unary plus or minus of the expression. The minus operation changes a positive integer to a nega-
tive one, and a negative integer to a positive one. The plus operation leaves the expression unchanged.

Example 1

m() is {
out (5," == ", +5);

0x5 == 0x5

Example 2

m() is {

40 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

var xX: int = 3;
print -x;
print -(-x);
Vi
Result
-X = -3
-(-x) = 3
See Also

“"HDL-pathname" on page 838
“Scalar Types” on page 75

282+-*1%

Purpose

Binary arithmetic

Category

Expression

Syntax

expl operator exp2

Syntax example:
out (10 + 5);

Parameters
expl, exp2 A numeric expression or an HDL pathname.
operator is one of the following:
+ Performs addition.

- Performs subtraction.

* Performs multiplication.

/ Performs division and returns the quotient, rounded down.

% Performs division and returns the remainder.
Description

Performs binary arithmetic operations.

Example 1

m() is {
out (4 * -5);
}i

This is an unapproved IEEE Standards Draft, subject to change.
41

P1647/D0.1

P1647/D0.1

Result

Oxffffffec

Example 2

0x3
0x3

Example 3

Result

0x2

See Also

DRAFT STANDARD FOR e LANGUAGE REFERENCE

“'HDL-pathname" on page 838
“Scalar Types” on page 75
— “Arithmetic Routines” on page 721

2.9 Comparison Operators

The following sections describe the e comparison operators:

“<<=>>="onpage42 Compares two numeric expressions or HDL pathnames.

“==1="on page 43

“~ 1~ on page 47

“in” on page 49
291<<=>>=
Purpose
Comparison of values
Category

Expression

Determines whether two expressions are equal or not.
Performs a 4-state, Verilog-style comparison of HDL objects.
Determines whether two string expressions are equal or not.

Determines whether an expression is in a list or a range.

42 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Syntax
expl operator exp2
Syntax example:
print 'top.a' >= 2;

Parameters

expl, exp2 A numeric expression, or an HDL pathname.

operator is one of the following:

< Returns TRUE if the first expression is smaller than the second

expression.

<= Returns TRUE if the first expression is not larger than the second

expression.

> Returns TRUE if the first expression is larger than the second

expression.

>= Returns TRUE if the first expression is not smaller than the second

expression.

Description
Compares two expressions.

Example

m() is {
'top.a' = 3;
print 'top.a' >= 2;

Vi

Result

'top.a' >= 2 = TRUE

See Also

“"HDL-pathname" on page 838
“Scalar Types” on page 75

29.2==1I=
Purpose
Equality of values
Category
Expression
Syntax

expl operator exp2

This is an unapproved IEEE Standards Draft, subject to change.

43

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Syntax example:

print lobl == lob2;
print pl != p2;
Parameters
expl, exp2 A numeric, boolean, string, list, or struct expression.
operator is one of the following

= Returns TRUE if the first expression evaluates to the same value as
the second expression.

I= Returns TRUE if the first expression does not evaluate to the same
value as the second expression.

Description
The equality operators compare the items and return a boolean result. All types of items are compared by
value, except for structs which are compared by address. Comparison methods for the various data types are

listed in Table 2-6.

Table 2-6—Equality Comparisons for Various Data Types

Type Comparison Method

integers, unsigned integers, bool- Values are compared.
eans, HDL pathnames

strings The strings are compared character by character.
lists The lists are compared item by item.
structs The structs addresses are compared

Notes

— Enumerated type values can be compared as long as they are of the same type.
— Do not use these operators to compare a string to a regular expression. Use the ~ or the !~ operator

instead.
— See “=====""on page 45 for a description of using this operator with HDL pathnames.
Example

extend sys {
pl: packet;
p2: packet;
m() is {

var s: string = "/rtests/tmp";

var b: bool = TRUE;
var lobl: list of byte = {0xaa; 0xbb; Oxcc; 0xdd};
var lob2: list of byte = lobil;

print s == "/rtests/tmp";
print b != FALSE;

print lobl == lob2;
print pl != p2;

44 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
i

Result
s == "/rtests/tmp" = TRUE
b != FALSE = TRUE
lobl == lob2 = TRUE
pl != p2 = TRUE
See Also
— “===1=="on page 45
— “~1~"on page 47

— “'HDL-pathname" on page 838
— “Scalar Types” on page 75

293 ===|==
Purpose

Verilog-style four-state comparison operators

Category

Expression

Syntax

'HDL-pathname' [\== | ===] exp
exp [!==|===]'HDL-pathname'

Syntax example:

print 'TOP.reg a' === 4'b1100;

This is an unapproved IEEE Standards Draft, subject to change.

45

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters

HDL-pathname The full path name of an HDL object, optionally including expressions and
composite data. See “"HDL-pathname" on page 838 for more information.

=== Determines identity, as in Verilog. Returns TRUE if the left and right operands
have identical values, considering also the x and z values.

== Determines non-identity, as in Verilog. TRUE if the left and right operands dif-
fer in at least 1 bit, considering also the x and z values.

== Returns TRUE if after translating all x values to 0 and all z values to 1, the left
and right operands are equal.

I= Returns TRUE if after translating all x values to 0 and all z values to 1, the left
and right operands are non-equal.

exp Either a literal with four-state values, a numeric expression, or another HDL
pathname.

Description

Compares four-state values (0, 1, x and z) with the identity and non-identity operators (Verilog style opera-
tors). Alternatively, you can use the regular equal and non-equal operators. (A description of the regular
identity and non-identity operators is included in “Parameters” on page 46, for clarity.)

There are three ways to use the identity (===) and non-identity (==) operators:

— 'HDL-pathname' = = = literal-number-with-x-and-z values
This expression compares a HDL object to a literal number (for example 'top.reg' === 4'b11z0). It
checks that the bits of the HDL object match the literal number, bit by bit (considering all four val-
ues 0, 1, x, z).

— 'HDL-pathname' = = = number-exp
This expression evaluates to TRUE if the HDL object is identical in each bit value to the integer
expression number-exp. Integer expressions in e cannot hold x and z values; thus the whole expres-
sion can be true only if the HDL object has no x or z bits and is otherwise equal to the integer
expression.

— 'HDL-pathname' = = = 'second-HDL-pathname'
This expression evaluates to TRUE if the two HDL objects are identical in all their bits (considering
all four values 0, 1, x, z).

Example 1

As in Verilog, if the radix is not binary, the z and x values in a literal number are interpreted as more than one
bit wide and are left-extended when they are the left-most literal. The width they assume depends on the
radix. For example, in hexadecimal radix, each literal z counts as four z bits.

Thus the value assigned in the following statement is 20'bxxxx_xxxx_zzzz_0000_0001 .

'x.8ignal [19:0]' = 20'hxz01;

Because z is evaluated as 1 and x as 0 in ordinary expressions, the value printed by the following statement
is 0000_0000 1111 0000 0001 .

print 'x.signal';

46 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Because x is evaluated as 1 and other values as 0 in expressions with @x, the value printed by the following
statement is 1111 _1111_0000_0000_0000 .

print 'x.signalex';

Because z is evaluated as 1 and other values as 0 in expressions with @z, the value printed by the following
statement is 0000_0000 1111_0000_0000.

print 'x.signalez';

Example 2

In the following example, both comparisons evaluate to TRUE.

'TOP.reg a' = 4'bl100;

wait cycle;

print 'TOP.reg a' === 4'b1100;

print 'TOP.reg a' === 0xC;
Example 3

This example shows how to test a single bit to determine its current state.

case {
'"TOP.write en' === 1'b0: {out("write en is 0");};
'"TOP.write en' === 1'bl: {out("write en is 1");};
'"TOP.write_en' === 1'bx: {out("write_en is x");};
'"TOP.write en' === 1'bz: {out("write en is z");};

bi

See Also

“'HDL-pathname" on page 838
— “Scalar Types” on page 75

294~ 1~

Purpose

String matching

Category

Expression

Syntax

“string” operator “pattern-string”

Syntax example:

print s ~ "blue*";
print s !~ "/"Bl.*d$/";

This is an unapproved IEEE Standards Draft, subject to change.
47

P1647/D0.1

Parameters

string

A legal e string.

operator is one of the following:

pattern-string

Description

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Returns TRUE if the pattern string can be matched to the whole string.

Returns TRUE if the pattern string cannot be matched to the whole string.

Either an AWK -style regular expression or a native e regular expression. If the
pattern string starts and ends with slashes, then everything inside the slashes is
treated as an AWK-style regular expression. See “String Matching” on page 51

for more information.

Matches a string against a pattern. There are two styles of string matching: native e style, which is the
default, and AWK-style.

After a match using either of the two styles, a local pseudo-variable $0 holds the whole matched string, and
the pseudo-variables $1, $2,...$27 hold the sub strings matched. The pseudo-variables are set only by the ~
operator and are local to the function that does the string match. If the ~ operator produces fewer than 28
substrings, then the unneeded variables are left empty.

Example 1

The first two patterns use e style; the next two use AWK.

m() is
var s: string = "BlueBird";
print s ~ "Blue*";
print s ~ "blue*";
print s ~ "/"Bl.*ds/";
print s ~ "/"bl.*d$/";

Vi

Result

s ~ "Blue*" = TRUE

s ~ "blue*" = TRUE

s ~ "/*Bl.*d$/" = TRUE

s ~ "/*bl.*d$/" = FALSE

Example 2

The first pattern uses e style; the next uses AWK.

m() is {
var Ss:

print s
print s

}i

Result

s !~ "blue*

48

string = "BlueBird";

I~ "blue*";
I~ w/ABl.*d$/";

" = FALSE

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

s !~ "/"Bl.*d$/" = FALSE

See Also

— “The string Type” on page 86
29.5in
Purpose
Check for value in a list or specify a range for a constraint.
Category
Expression
Syntax
expl in exp2
Syntax example:

keep x in [1..5];
check that x in {1;2;3;4;5};
Parameters

expl When the second expression is a range list, in a keep constraint, for example, then the
type of the first expression has to be of a type comparable to the type of the range list.
For a range list, square brackets are used.

When the second expression is a list, in a check, for example, then the type of the first
expression can be one of the following:

— A type that is comparable to the element type of the second expression.
— A list of type that is comparable to the element type of the second expression.

For a list, curly braces are used.

exp?2 Either a list or a range list. A range list is a list of constants or expressions that evaluate
to constants. Expressions that use variables or struct fields cannot appear in range lists.

Description

For a check evaluates TRUE if the first expression is included or contained in the second expression. For a
constraint, designates the range for the first expression.

Example 1

This example checks to make sure that a variable is generated correctly by confirming that its value is in a
list of values.

extend sys {
x: int (bits: 64);
keep x in [1..5];

This is an unapproved IEEE Standards Draft, subject to change.
49

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

run() is also {
check that x in {1;2;3;4;5};
}i
Vi

Example 2
This example illustrates the use of in with square brackets, [], to designate a range of values for a constraint.

type pm _type: [PC_ A, PC B, PC C, MM A, MM B];
extend sys {

pm: pm_type;

keep pm in [PC_A, PC B, PC_C];

}i

Example 3

When two lists are compared and the first one has more than one repetition of the same value (for example,
in {1;2;1}, 1 is repeated twice), then at least the same number of repetitions has to exist in the second list for
the operator to succeed.

In this example, the list y is constrained to have 0 or 2 elements. The first check makes sure that y contains 0
to 2 instances of the numbers 0, 1, 2, and 3. An error is issued for the second check.

<l

extend sys {
y: list of uint (bits: 2);
keep y.size() in {0;2};

run() is also {
check that y in {0;0;1;1;2;2;3;3};
check that {1;1;2} in {1;2;3;4};
}i
bi

">

Result

*** Error: Dut error at time 0
Checked at line 12 in basics66.e (sys.run):
check that {1;1;2} in {1;2;3;4}

Example 4

This example illustrates that the order of the list items does not influence the result of the comparison. No
error is issued.

<l
extend sys {
run() is also {
check that {1;2;3} in {3;2;1};
check that {1;1;2} in {1;2;1;2};

}i

- —

50 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

See Also

— “List Types” on page 84
“[range,...]” on page 64

2.10 String Matching

There are two styles of string matching: native e style, which is the default, and an AWK-like style. If the
pattern starts and ends with slashes, then everything inside the slashes is treated as an AWK-style regular
expression.

The following sections describe these two styles of string matching:

— “Native e Elite String Matching” on page 51
“AWK-Style String Matching” on page 52

See Also

“List Types” on page 84
“Arithmetic Routines” on page 721

2.10.1 Native e Elite String Matching

Native e string matching is attempted on all patterns that are not enclosed in slashes. e style is similar to
UNIX filename matching.

Native string matching uses the meta-characters shown in the following table.

Table 2-7—Meta-Characters in Native String Matching

Character String Meaning
" " (blank) Any sequence of white space (blanks and tabs)
* Any sequence of non-white space characters, possibly empty

("™). "a*" matches "a", "ab", and "abc", but not "ab c".

Any sequence of characters

Native style string matching always matches the full string to the pattern. For example: r does not match
Bluebird, but *r* does.

A successful match results in assigning the local pseudo-variables $1 to $27 with the substrings correspond-
ing to the non-blank meta-characters present in the pattern.

Native style string matching is case-insensitive.

Example
m() is {
var x := "pp kkk";
print x ~ "* *u,;
print $1; print $2;
print x ~ "..";
print $1;

This is an unapproved IEEE Standards Draft, subject to change.
51

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
Result
X ~ "% *" — TRUE
$1 = llppll
$2 = "kkk"
x ~ "..." = TRUE

$1 = "pp kkk"

See Also

“AWK-Style String Matching” on page 52
“The string Type” on page 86
“String Routines” on page 736

2.10.2 AWK-Style String Matching

In an AWK-style string matching you can use the standard AWK regular expression notation to write com-
plex patterns. This notation uses the “/.../”” format for the pattern to specify AWK-style regular expression
syntax.

AWK style supports special characters such as . * [\~ $ +? <>, when those characters are used in the same
ways as in UNIX regular expressions (regexp).

The + and ? characters can be used in the same ways as in UNIX extended regular expression (egrep).

In AWK -style regular expressions, you can also use the following Perl shorthand notations, each represent-
ing a single character.

Table 2-8—Perl-Style Regular Expressions Supported

Shorthand Notation Meaning

A shortest match operator: ~ (back tick).

\d Digit: [0-9]

\D Non-digit

\s Any white-space single char
\S Any non-white-space single
\w Word char: [a-zA-Z0-9]
\W Non-word char

After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthe-
sized pieces of the match. $0 stores the whole matched piece of the string.

Example 1
m() is {
var x := "pp--kkk";

print (x ~ "/--/");
print (x ~ "/“pp--kkk$/");

52 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Vi

Result

X ~ "/--/" = TRUE
x ~ "/*pp--kkk$/" = TRUE

Example 2

AWK -style matching is longest match. A shortest match operator is also supported: ~ (back tick). The pat-
tern “/x.~y/” matches the minimal such substring.

m() is {
var s := "x Xy y";
print s ~ "/x(.M)y/"; // Prints TRUE
print $1; // Prints " x " Matches x X y
print s ~ "/x(.*)y/"; // Prints TRUE
print S$1; // Prints " x y "Matches x X y y
Vi
Result
s ~ "/x(.')y/" = TRUE
$1 = " x "
s ~ "/x(.*)y/" = TRUE
$l = " x y n
Example 3

After doing a match, you can use the local pseudo-variables $1, $2...$27, which correspond to the parenthe-
sized pieces of the match. For instance:

m() is {
var x := "pp--kkk";
if x ~ "/%(p*)--(k*)$/" then {print $1, $2;};
Vi
Result
$l = "pp"
$2 = "kkk"
See Also

“Native e Elite String Matching” on page 51
— “The string Type” on page 86
“String Routines” on page 736

2.11 Extraction and Concatenation Operators

The following sections describe the e extraction and concatenation operators:

“[T” on page 54 Extracts or sets a single item from a list.

“[:]” on page 55 Extracts or sets consecutive bits or slices of a scalar, a list of bits, or
a list of bytes.

This is an unapproved IEEE Standards Draft, subject to change.
53

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

“[..]” on page 58 List slicing operator
“[range,...]” on page 64 Range list operator
“{...; ...} on page 60 List concatenation
“%9{..., ...} on page 62 Bit concatenation
2111[]
Purpose

List index operator

Category

Expression

Syntax

list-exp[exp]

Syntax example:
ints[size] = 8;

Parameters
list-exp An expression that returns a list.

exp A numeric expression.

Description
Extracts or sets a single item from a list.

Notes

— Indexing is only allowed for lists. To get a single bit from a scalar, use bit extraction. See “[:]” on
page 55.
— Checking list boundaries to see if the specified element exists is done only in interpretive mode.

Example

<l

extend sys {
packets[7]: list of packet;
ints[15]: list of int;
size: int [0..15];

m() is {
print packets[5];
ints[size] = 8;

print ints([size];

54 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
Result

__ @basics69
0 protocol: atm
1 len: 1
2 data: (1 items)
ints([size] = 8

See Also

“List Types” on page 84
— Chapter 19, “List Pseudo-Methods Library”

211.2[:]
Purpose
Select bits or bit slices of an expression
Category
Expression
Syntax
exp|[high-exp]:[low-exp][:slice]]
Syntax example:

print u[15:0] using hex;

Parameters

exp A numeric expression, an HDL pathname, or an expression returning a list of bit or a
list of byte.

high-exp A non-negative numeric expression. The high expression has to be greater than or
equal to the low expression. To extract a single slice, use the same expression for both
the high expression and the low expression.

low-exp A non-negative numeric expression, less than or equal to the high expression.
slice A numeric expression. The default is bit.
Description

Extracts or sets consecutive bits or slices of a scalar, a list of bits, or a list of bytes.

When used on the left-hand-side of an assignment operator, the bit extract operator sets the specified bits of
a scalar, a list of bits, or a list of bytes to the value on the right-hand-side (RHS) of the operator. The RHS
value is chopped or zero/sign extended, if needed.

When used in any context except the left-hand-side of an assignment operator, the bit extract operator
extracts the specified bits of a scalar, a list of bits, or a list of bytes.

This is an unapproved IEEE Standards Draft, subject to change.
55

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.11.2.1 Slice and Size of the Result

The slice parameter affects the size of the slice that is set or extracted. With the default slice (bit), the bit
extract operator always operates on a 1-bit slice of the expression. When extracting from a scalar expression,
by default the bit extract operator returns an expression that is the same type and size as the scalar expres-
sion. When extracting from a list of bit or a list of byte, by default the result is a positive unbounded integer.

By specifying a different slice (byte, int, or uint), you can cause the bit operator to operate on a larger num-
ber of bits.

For example, the first print statement displays the lower two bytes of big_i, 4096. The second print state-
ment displays the higher 32-bit slice of big_i, -61440.

var big i: int (bits: 64) = Oxffff1000££££1000;
print big i[1:0:bytel;
print big i[1l:1:int];

Result

big 1i[1:0:byte] = 0x0000000000001000
big i[1:1:int] = Oxffffffffff££1000

2.11.2.2 Accessing Nonexistent Bits

If the expression is a numeric expression or an HDL pathname, any reference to a non-existent bit is an error.
However, for unbounded integers, all bits logically exist and will be 0 for positive numbers, 1 for negative
numbers. It is an error to extract nonexisting bits from list items. When setting non-existing bits in list items,
new zero items are added.

Notes

— The [high : low] order of the bit extract operator is the opposite of [low.. high] order of the list
extract operator.
— The bit extract operator has a special behavior in packing. Packing the result of a bit extraction uses
the exact size in bits (high - low + 1). The size of this pack expressionis (5-3+ 1)+ (i-3 +1).
pack (packing.low, A[5:3], B[i:3]);

Example 1
This is a simple example showing how to extract and set the bits in an unsigned integer.

var x : uint = 0x8000_0a60;
print x[11:4];

print x[31:31];

x[3:0] = 0x7;

print x;

x[2:1:byte] = 0x1234;
print x;

Result

x[11:4] = Oxaé6
x[31:31] = 0Ox1
X = 0x80000a67
X = 0x80123467

56 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 2
This example shows how to extract and set the bits in a list of bit.

var y : list of bit = {0;1;0;1;1;0;1;0;0;0;0};
print y using bin;

print y[6:1] using bin;

y[6:1] = Oxff;

print y using bin;

var x : uint = y[:];

print x using hex;

Result

y = (11 items, bin):
000 0101 1010

y[6:1]1 = 0bl101101

y = (11 items, bin):
000 0111 1110
x = 0x7e
Example 3

This example shows how to extract and set the bits in a list of byte.

var z : list of byte = {0x12;0x34;0x56};
print z;

print z[1:0];

print z[1:0:byte];

z[2:2:byte] = 0x48;

print z;
Result
z = (3 items, hex):
56 34 12
z[1:0] = 0x2
z[1:0:byte] = 0x3412
z = (3 items, hex):
48 34 12
Example 4

This example shows how to use variables in the bit extract operator.

var x : uint = 0x80065000;
var i : uint = 16;

var j : uint = 4;

print x[i+j:i-j] using hex;

Result

x[i+j:1-j] = 0x65

This is an unapproved IEEE Standards Draft, subject to change.
57

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 5

This example shows how to use variables in the bit extract operator.

taining 32 bits, extracted starting from byte 1 of the list of bit.

var lob : list of bit;

gen lob keeping {.size() < 128};
print lob;

var i : uint = 1;

var r:= lob[i+3:i:byte];

print r using bin;

Result

lob = (40 items, hex):

1011 1001 0111 1011 100
1010 0101 100

r = 0b0000000010100101100111001011100101111011

See Also

— “Bit Slice Operator and Packing” on page 514
— “'HDL-pathname" on page 838

— “List Types” on page 84

— “Scalar Types” on page 75

2113[..]

Purpose

List slicing operator
Category

Expression

Syntax
expl[low-exp]..[high-exp]]
Syntax example:

size: int [0..14];

58 This is an unapproved IEEE Standards Draft, subject to change.

will be an unbounded integer con-

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
exp An expression returning a list or a scalar.
low-exp An expression evaluating to a positive integer. The default is 0.
high-exp An expression evaluating to a positive integer. The default is the expression size on
bits - 1.
Description

Accesses the specified list items and returns a list of the same type as the expression. If the expression is a
list of bit it returns a list of bit. If the expression is a scalar, it is implicitly converted to a list of bit.

The rules for the list slicing operator are as follows:

— A list slice of the form a[m..n] requires that n>=m>=0 and n<a.size(). The size of the slice in this
case is always n-m+1.

— A list slice of the form a[m..] requires that m>=0 and m<=a.size(). The size of the slice in this case is
always a.size()-m.

— When assigning to a slice the size of the rhs must be the same as the size of the slice, specfically
when the slice is of form a[m..] and m==a.size() then the rhs must be an empty list.

These rules are also true for the case of list slicing a numeric value, for example

var i:int;
print i[m..n];
print i[m..];

This operator interprets the numeric value as a list of bits and returns the slice of that list. In the above exam-
ple, the first print is legal if n>=m>=0 and n<32 and the second is legal if m>=0 and m<=32.

Notes

This operator is not supported for unbounded integers.
The only case where a list slice operation returns an empty list is in the case of a[m..] where
m==a.size().

Example 1

This example shows the use of the list slicing operator on a list of integers and a list of structs.

<l
struct packet ({
protocol: [atm, eth];
len : int [0..10];
data([len] : list of byte;
bi
extend sys {
packets[7]: list of packet;
ints[15]: list of int;
size: int [0..15];
m() is {
print packets[5..];
print ints[0..sizel;

i

This is an unapproved IEEE Standards Draft, subject to change.
59

P1647/D0.1

">

Result
packets[5..] =
item type protocol len
0. packet atm 1
1. packet eth 5
ints[0..size] =
0. 2030699911
1. -419930323
2. -1597130501
3. -494877665
4. -17370926
5. -1450077749
6. 1428017017
7. 2036356410
8. -1952412155
9. -259249691
Example 2

DRAFT STANDARD FOR e LANGUAGE REFERENCE

(1 items)
(5 items)

This example shows the use of the list slicing operator on a scalar expression and an HDL pathname.

<l
extend sys {

m() is {
var u : uint = Oxffffaaaa;
print ul..15];
'top.a' = Oxbbbbcccc;
print 'top.a'l[..1l5];
}i
}i
>
Result
ul..1l5] = (16 items, hex):
'top.a'[..15] = (16 items, hex):
See Also

“"HDL-pathname" on page 838
“List Types” on page 84
“Scalar Types” on page 75

211.44{...; ..}
Purpose

List concatenation

aaaa .0

cccc .0

60 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax
{exp; ...}
Syntax example:
var x: list of uint = {1;2;3};
Category
Expression

Parameters

exp Any legal e expression, including a list. All expressions need to be compati-
ble with the result type.

Description

Returns a list built out of one or more elements or other lists. The result type is determined by the following
rules:

— The type is derived from the context. In the following example, the result type is a list of uint:
var x: list of uint = {1;2;3};
— The type is derived from the first element type of the list. In the following example, the result type is
a list of int 50 bits wide:
var y := {50'1; 2; 3};

Example

< 1
type color: [red, orange, yellow, green, blue, purple];
extend sys {
m() is {
var los: list of string = {"abc";"def"};
var locl: list of color = {red;green;blue};
var loc2:={color'purple;locl};
print los;
print locl;
print loc2;

}i

Vi

>

Result

los =

0. "abc"

1. "def"
locl =

0 red

1 green

2 blue
loc2 =

0 purple

1 red

2 green

This is an unapproved IEEE Standards Draft, subject to change.
61

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

3. blue

See Also

— “List Types” on page 84
2.11.5 %{..., ...}
Purpose
Bit concatenation operator
Category
Expression
Syntax
Y%{expl, exp2, ...}

Syntax example:

numl = %{num2, num3};
${num2, num3} = numl;
Parameters

expl, exp2 Expressions that receive lists of bits (when on the left-hand side of
an assignment operator), or supply lists of bits (when on the right-
hand side of an assignment operator).

Description

Creates a list of bits from two or more expressions, or creates two or more smaller lists of bits from a given
expression.

You can use the bit concatenation operator %{} for packing or unpacking operations that require the pack-
ing.high order.

* value-exp = %{expl, exp2,...} is equivalent to value-exp = pack(packing.high, expl, exp2, ...).
* %{expl, exp2,...} = value-exp is equivalent to unpack(packing.high, value-exp, expl, exp2, ...).

Bit concatenations are untyped expressions. In many cases, the required type can be deduced from the con-
text of the expression. See “Untyped Expressions” on page 87 for more information.

Example
This example shows several uses of the bit concatenation operator.

extend sys {

post_generate() is also {
var numl : uint (bits : 32);
var num2 : uint (bits : 16);
var num3 : uint (bits : 16);

62 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

)i
}i

Result
numl = 0x1234abcd
num2 = 0x9876
num3 = 0x5432
% {num2, num3} = (32 items, hex):
bilist = (32 items, hex):
bylist = (4 items, hex):

See Also

var bilist : list of bit;
var bylist : list of byte;

num2 = 0x1234;

num3 Oxabcd;

numl = %{num2, num3};
print numil;

numl = 0x98765432;
${num2, num3} = numl;
print num2, num3;
print %{num2, num3};

bilist = %{num2, num3};
print bilist;
bylist = %{num2, num3};
print bylist;

— “pack()” on page 516

— “unpack()” on page 521

— “swap()” on page 524

— “do_pack()” on page 526
— “do_unpack()” on page 529

2.12 Scalar Modifiers

9876 5432

9876 5432

98 76 54 32

P1647/D0.1

You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type.
The following sections describe the scalar modifiers:

“[range,...]” on page 64
“(bits | bytes : width-exp)” on page 65

See Also

— “Scalar Types” on page 75
“type sized scalar” on page 101
— “type scalar subtype” on page 100

63

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

2.12.1 [range,...]
Purpose

Range modifier
Category
Expression

Syntax

[range, ...]

Syntax example:

u: uint[5..7, 15];

Parameter
range Either a constant expression, or a range of constant expressions in the
form
low-value. .high-value
If the scalar type is an enumerated type, it is ordered by the value associ-
ated with the integer value of each type item.
Description

Creates a scalar subtype by restricting the range of valid values.
Example 1

The following example shows how to limit the values of an enumerated type and a numeric type.

<l
type color: [red, orange, yellow, green, blue, purple];
extend sys {
bright: color[red..yellow] ;
u: uint[5..7, 15];
bi

Example 2

The following example shows how to specify a list of possible values in a keep constraint.

<l
type color: [red, orange, yellow, green, blue, purple];
extend sys {
bright: color;
keep bright in [red, orange, yellow];
Vi

">

64 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

See Also

— “Scalar Subtypes” on page 76
“type scalar subtype” on page 100

2.12.2 (bits | bytes : width-exp)
Purpose

Define a sized scalar

Category

Expression

Syntax

(bits|bytes: width-exp)

Syntax example:

type word :uint (bits:16) ;
type address :uint (bytes:2);

Parameter
width-exp A positive constant expression. The valid range of values for sized scalars is limited
to the range 1 to 2n - 1, where n is the number of bits or bytes.
Description

Defines a bit width for a scalar type. The actual bit width is exp * I for bits and exp * 8 for bytes. In the syn-
tax example shown above, both types “word” and “address” have a bit width of 16.
Example

type word :uint (bits:16) ;
type address :uint (bytes:2);

See Also

“Scalar Types” on page 75
“type sized scalar” on page 101

2.13 Parentheses

You can use parentheses freely to group terms in expressions, to improve the readability of the code. Paren-
theses are used in this way in some examples in this manual, although they are not syntactically required.

Parentheses are required in a few places in e code, such as at the end of the method or routine name in all
method definitions, method calls, or routine calls. Required parentheses are shown in boldface in the syntax
listings in this manual.

This is an unapproved IEEE Standards Draft, subject to change.
65

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

The following sections describe the contexts in which the parentheses are required to invoke a method,
pseudo-method, or routine:

— “list.method()” on page 66

— “Calling Predefined Routines: routine()” on page 793
“Invoking Methods” on page 474

2.14 list.method()
Purpose
Execute list pseudo-method
Category
Expression
Syntax
list-exp. list-method([param,)...)[list-method([param,]...). ...]
Syntax example:
print me.my list.is empty () ;

Parameters
list-exp An expression that returns a list.

list-method ~ One of the list pseudo-methods described in Chapter 19, “List Pseudo-Methods
Library”

Description

Executes a list pseudo-method on the specified list expression, item by item. When an item is evaluated, it
stands for the item and index stands for its index in the list.

When a parameter is passed, that expression is evaluated for each item in the list.
Example 1

This example shows how to call two simple list pseudo-methods. The is_empty() list method returns a bool-
ean, while size() returns an int.

<l
extend sys {
my_ list: list of int;

post_generate() is also {

print me.my list.is empty();
check that (me.my list.size() > 5)

66 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Result

me.my list.is empty () = FALSE
Example 2

List method calls can be nested within any expression as long as the returned type matches the context. The
following example filters the list my packets to include only the ethernet kind, sorts the result in ascending
order, and prints.

<l

struct packet {
kind: [ethernet, atm, other];
size: uint;

Vi

extend sys {
packets[10] : list of packet;

post_generate() is also {
print packets.all(.kind==ethernet) .sort (.size);

}i
bi
'>
Result
packets.all (.kind==ethernet) .sort (.size) =
item type kind size
0. packet ethernet 895996206
1. packet ethernet 960947360
2. packet ethernet 3889995846
See Also

— Chapter 19, “List Pseudo-Methods Library”
— “Implicit Variables” on page 24
2.15 Special-Purpose Operators

The following special purpose operators are supported:

“is [not] a” on page 67 Identify the subtype of a struct instance

“new” on page 69 Allocate a new struct

“” on page 71 Refer to fields in structs
“" on page 73 Used in names of e entities
“?:” on page 73 Conditional operator

2151 is [not] a
Purpose

Identify the subtype of a struct instance

This is an unapproved IEEE Standards Draft, subject to change.
67

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Boolean expression

Syntax

struct-exp is a subtype [(name))
struct-exp is not a subtype
Syntax example:

if me is a long packet (1) {
print 1;

}i

if me is not a long packet {
print kind;

Vi

Parameters
struct-exp An expression that returns a struct.
subtype A subtype of the specified struct type.
name The name of the local variable you want to create. This parameter cannot be used
with is not a expressions.
Description

Identifies whether a struct instance is a particular subtype or not at run time.

If a name is specified, then a local temporary variable of that name is created in the scope of the action con-
taining the is a expression. This local variable contains the result of struct-exp.as_a(fype) when the is a
expression returns TRUE.

Notes

— A compile time error results if there is no chance that the struct instance is of the specified type.

— Unlike other constructs with optional name variables, the implicit it variable is not created when the
optional name is not used in the is a expression.

— The name parameter cannot be used with is not a expressions.

Example

<|
type pack _kind :[long, short];
struct packet {
kind: pack_kind;
when long packet
a: int;
}i

check my type() is {
if me is a long packet (1) {
print 1;
}i
if me is not a long packet {
print kind;

68 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
Vi

extend sys {
p:packet;

1 = packet-@0: packet

0 kind:
1 long'a:

See Also
— “as_a()” on page 104
2.15.2 new
Purpose
Allocate a new initialized struct
Category
Expression
Syntax
new [struct-type [[(name)] with {action;...}]]

Syntax example:

var g : packet = new good large packet;

Parameters

————————— @expressionse67

long
-1786485835

struct-type Either a struct type or a struct subtype.

P1647/D0.1

name An optional name, valid within the action block, for the new struct. If no name is

specified, you can use the implicit variable it to refer to the new struct.

action A list of one or more actions.

Description
Creates a new struct:

1) Allocates space for the struct.

2) Assigns default values to struct fields.

3) Invokes the init() method for the struct, which by default initializes all fields of scalar type,
including enumerated scalar type, to zero. The initial value of a struct or list is NULL, unless
the list is a sized list of scalars, in which case it is initialized to the proper size with each item

set to the default value.

This is an unapproved IEEE Standards Draft, subject to change.

69

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

4) Invokes the run() method for the struct, unless the new expression is in a construct that is exe-
cuted before the run phase. For example, if you use new in an extension to sys.init(), then the
run() method is not invoked.

5) Executes the action-block, if one is specified.

If no subtype is specified, the type is derived from the context. For example, if the new struct is assigned to
a variable of type packet, the new struct will be of type packet.

If the optional with clause is used, you can refer to the newly created struct either with the implicit variable
it, or with an optional name.

NOTE— The new struct is a shallow struct. The fields of the struct that are of type struct are not
allocated.

Example

<l
struct packet {
good : bool;
size : [small, medium, largel;
length : int;

Vi
extend sys {
post_generate() is also
var p : packet = new;
print p;
var g : packet = new good large packet;
print g;
var x := new packet (p) with {
p.length = 5;
print p;
}i
}i
Vi
'>
Result
p = packet-@0: packet
—— @expressionsé9
0 good FALSE
1 size small
2 length: 0
g = good large packet-@l: good large packet
—— @expressionsé9
0 good: TRUE
1 size: large
2 length: 0
p = packet-@2: packet
—— @expressionsé9
0 good: FALSE
1 size: small
2 length: 5
See Also

— “The init() Method of sys” on page 645
— “The run() Method of sys” on page 646

70 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— “Struct Subtypes” on page 80

2.15.3.

Purpose

Refer to fields in structs
Category

Expression

Syntax

[[struct-exp).] field-name

Syntax example:

keep soft port.sender.cell.u == Oxff;
Parameters

struct-exp An expression that returns a struct.

field-name The name of the scalar field or list field to reference.
Description

Refers to a field in the specified struct. If the struct expression is missing, but the period exists, the implicit
variable it is assumed. If both the struct expression and the period (.) are missing, the field name is resolved
according to the name resolution rules.

Notes

— When the struct expression is a list of structs, the expression cannot appear on the left-hand side of
an assignment operator.
— When the field name is a list item, the expression returns a concatenation of the lists in the field.

Example 1

[T3R1]

The following example shows the use of the ““.” to identify the fields u and kind in the keep constraints:

<l

struct switch {
ctrl: ctrl_stub;
port: port stub;

keep soft port.sender.cell.u == Oxff;
keep ctrl.init command.kind == RD;

}i

struct ctrl stub {
init_command: ctrl cmd;

bi

struct simplex {
kind: [TX, RX];
cell: cell;

This is an unapproved IEEE Standards Draft, subject to change.
71

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

struct port_ stub {
sender: TX simplex;
listener: RX simplex;

Vi

struct cell {
u: uint;

}i

struct ctrl cmd
kind: [RD, WR];
addr: int;

Vi

extend sys {
switch : switch;

}i

">

Example 2
This example shows the effect of using the “.” to access the fields in a list (switch.port) and to access a field
that is a list (switch.port.data):

< 1
struct switch {
port: list of port stub;

keep soft port.size() == 4;

}i

struct port_ stub {
data[5]: list of byte;
bi

extend sys {
switch : switch;

post_generate() is also
print switch.port;
print switch.port.data;

i
Vi
'>
Result
switch.port =
item type data
0 port stub (5 items)
1 port_stub (5 items)
2. port_stub (5 items)
3 port_stub (5 items)
switch.port.data = (20 items, dec):
185 24 137 186 202 3 186 107 108 119 84 212 .0
129 224 56 145 3 252 61 658 .12

See Also

“Struct Hierarchy and Name Resolution” on page 19

72 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

2154°
Apostrophes

The apostrophe (') is an important syntax element used in multiple ways in e source code. The actual context
of where it is used in the syntax defines its purpose. A single apostrophe is used in the following places:

— When accessing HDL objects (for example: 'top.a')

— When defining the name of a syntactic construct in a macro definition (for example: show_time'com-
mand)

— When referring to struct subtypes (for example: b'dest Ethernet packet)

— When referring to an enumerated value not in context of an enumerated variable (for example:
color'green)

— In the begin-code marker <' and in the end-code marker ">

See Also

— Chapter 13, “Macros”

— “Struct Subtypes” on page 80

— “Enumerated Type Values” on page 23
— “Code Segments” on page 4

2155 7?:

Purpose
Conditional operator
Category
Expression

Syntax

bool-exp ? expl : exp?2
Syntax example:

z = (flag ? 7 : 15);

Parameters
bool-exp A legal e expression that evaluates to TRUE or FALSE.
expl, exp2 A legal e expression.

Description

Evaluates one of two possible expressions, depending on whether a boolean expression evaluates to TRUE
or FALSE. If the boolean expression is TRUE, then the first expression is evaluated. If it is FALSE, then the
second expression is evaluated.

Example

<!

This is an unapproved IEEE Standards Draft, subject to change.

73

P1647/D0.1

extend sys {
m() is {
var z: int;

var flag: bool;

z = (flag ? 7

print flag,

Result

flag = FALSE
z = 15

See Also

“Conditional Actions” on page 533

15);

DRAFT STANDARD FOR e LANGUAGE REFERENCE

74 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

3 Data Types

The e language has a number of predefined data types including the integer and boolean scalar types com-
mon to most programming languages. In addition, you can create new scalar data types (enumerated types)
that are appropriate for programming, modeling hardware, and interfacing with hardware simulators. The
e language also provides a powerful mechanism for defining object-oriented hierarchical data structures
(structs) and ordered collections of elements of the same type (lists).

This chapter contains the following topics:

“Overview of e Data Types” on page 75
— “Defining and Extending Scalar Types” on page 98
“Type Conversion Between Scalars and Strings” on page 104

See Also

— Chapter 4, “Structs, Fields, and Subtypes”
— Chapter 2, “e Basics”

3.1 Overview of ¢ Data Types
The following sections provide a basic explanation of e data types:

— “e Data Types” on page 75

— “Memory Requirements for Data Types” on page 87
— “Untyped Expressions” on page 87

— “Assignment Rules” on page 89

— “Precision Rules for Numeric Operations” on page 93
— “Automatic Type Casting” on page 96

3.1.1 ¢ Data Types
Most e expressions have an explicit data type. These data types are described in the following sections:

— “Scalar Types” on page 75

— “Scalar Subtypes” on page 76

— “Enumerated Scalar Types” on page 77
— “Struct Types” on page 80

— “Struct Subtypes” on page 80

— “List Types” on page 84

— “The string Type” on page 86

— “The external pointer Type” on page 86

Certain expressions, such as HDL objects, have no explicit data type. See “Untyped Expressions” on
page 87 for information on how these expressions are handled.

3.1.1.1 Scalar Types
Scalar types in e are one of the following:

— Numeric
— Boolean

This is an unapproved IEEE Standards Draft, subject to change.
75

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

— Enumerated

Table 3-1, “Predefined Scalar Types”, on page 76 shows the predefined numeric and boolean types. See the
notes below the table for important information about these predefined types.

Table 3-1—Predefined Scalar Types

Type Name Function Def;‘;ﬂt S.lle for Default Value
acking

int Represents numeric data, both negative 32 bits 0
and non-negative integers.

uint Represents unsigned numeric data, non- 32 bits 0
negative integers only.

bit An unsigned integer in the range 0—1. 1 bit 0
byte An unsigned integer in the range 0-255. 8 bits 0
time An integer in the range 0-263-1. 64 bits 0
bool Represents truth (logical) values, 1 bit FALSE (0)

TRUE(1) and FALSE (0).

NOTE— Both signed and unsigned integers can be of any size and, thus, of any range. See “Scalar
Subtypes” on page 76 for information on how to specify the size and range of a scalar field or
variable explicitly.

Result

— Predefined constants, described in Chapter 2, “e Basics”
— Constraint boolean expressions, described in Chapter 2, “e Basics”

3.1.1.2 Scalar Subtypes
You can create a scalar subtype by using a scalar modifier to specify the range or bit width of a scalar type.
You can also specify a name for the scalar subtype if you plan to use it repeatedly in your program.

Unbounded integers are a predefined scalar subtype.

The following sections describe scalar modifiers, named scalar subtypes, and unbounded integers in more
detail.

3.1.1.2.1 Scalar Modifiers

There are two types of scalar modifiers that you can use together or separately to modify predefined scalar
types:

1) Range modifiers
2) Width modifiers

Range modifiers define the range of values that are valid. For example, the range modifier in the expression
below restricts valid values to those between zero and 100 inclusive.

int [0..100]

76 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Width modifiers define the width in bits or bytes. The width modifiers in the expressions below restrict the
bit width to 8.

int (bits: 8)
int (bytes: 1)

You can use width and range modifiers in combination.

int [0..100] (bits: 7)

3.1.1.2.2 Named Scalar Subtypes
When you use a scalar modifier to limit the range or bit width of a scalar type, you can also specify a name.

Named scalar subtypes are useful in a context where, for example, you need to declare a counter variable
like the variable “count” several places in the program.

var count : int [0..100] (bits:7);
By creating a named scalar type, you can use the type name when introducing new variables with this type.

type int_count : int [0..99] (bits:7);
var count : int_ count;

See “type enumerated scalar” on page 98 for more information on named scalar subtypes.
3.1.1.2.3 Unbounded Integers

Unbounded integers represent arbitrarily large positive or negative numbers. Unbounded integers are speci-
fied as:

int (bits: *)

You can use an unbounded integer variable when you do not know the exact size of the data. You can use
unbounded integers in expressions just as you use signed or unsigned integers.
Notes

— Fields or variables declared as unbounded integers cannot be generated, packed, or unpacked.
— Unbounded unsigned integers are not allowed, so a declaration of a type such as “uint (bits:*)” gen-
erates a compile-time error.

See Also

“type scalar subtype” on page 100
— “type sized scalar” on page 101
— “extend type” on page 103

3.1.1.3 Enumerated Scalar Types

You can define the valid values for a variable or field as a list of symbolic constants. For example, the fol-
lowing declaration defines the variable “kind” as having two legal values.

var kind: [immediate, register];

This is an unapproved IEEE Standards Draft, subject to change.
77

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

These symbolic constants have associated unsigned integer values. By default, the first name in the list is
assigned the value zero. Subsequent names are assigned values based upon the maximum value of the previ-
ously defined enumerated items + 1. You can also assign explicit unsigned integer values to the symbolic
constants.

var kind: [immediate = 1, register = 2];

The associated unsigned integer value of a symbolic constant in an enumerated type can be obtained using
the .as_a() type casting operator. Similarly, an unsigned integer value that is within the range of the values of
the symbolic constants can be cast as the corresponding symbolic constant.

Casting an unsigned integer to a symbolic constant:

type signal number: [signal 0, signal 1, signal 2, signal 3];
struct signal ({
cast_1() is {
var temp_val: uint = 2;
var signal name: signal number = temp val.as_a(signal number) ;
print signal name;
}i
bi

Casting a symbolic constant to an unsigned integer:

type signal number: [signal 0, signal 1, signal 2, signal 31];
struct signal ({
cast_2() is {
var temp_enum: signal number = signal 3;
var signal value: uint = temp_ enum.as_a(uint);
print signal value;
}i
Vi

You can explicitly assign values to some symbolic constants and allow others to be automatically assigned.
The following declaration assigns the value 3 to “immediate”; the value 4 is assigned to “register” automati-
cally.

var kind: [immediate = 3, register];
You can name an enumerated type to facilitate its reuse throughout your program. For example, the first
statement below defines a new enumerated type named “instr_kind”. The variable “i_kind” has the two legal

values defined by the “instr_kind” type.

type instr kind: [immediate, register];
var i1 _kind: instr_ kind;

It is sometimes convenient to introduce a named enumerated type as an empty type.
type packet protocol: [];

Once the protocols that are meaningful in the program are identified you can extend the definition of the
type with a statement like:

extend packet protocol : [Ethernet, IEEE, foreignl];

Enumerated types can be sized.

78 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

type instr kind: [immediate, register] (bits: 2);

Variables or fields with an enumerated type can also be restricted to a range. This variable declaration
excludes “foreign” from its legal values:

var p :packet protocol [Ethernet..IEEE];

The default value for an enumerated type is zero, even if zero is not a legal value for that type. For example,
the variable “i_kind” has the value zero until it is explicitly initialized or generated.

type instr kind: [immediate = 1, register = 2];
var 1 _kind: instr_ kind;

3.1.1.4 Casting of Enumerated Types in Comparisons

Enumerated scalar types, like boolean types, are not automatically converted to or from integers or unsigned
integers in comparison operations (that is, comparisons using <, <=, >, >=, ==, or != operators). This is con-
sistent with the strong typing in e, and helps avoid introduction of bugs if the order of symbolic names in an
enumerated type declaration is changed, for example, while operations which are affected by the order of
those names in the declaration remain unchanged (because they are in a different part of the code and there-
fore go unnoticed, perhaps).

Assume that [is an int, B is a bool, and E is an enumerated type. Since enumerated and boolean types are not
automatically converted to or from integers or unsigned integers, you cannot use syntax such as “if (I) {...}”,
or “if (B==1) {...}”, or “if (E<6) {...}”. In order to perform such comparisons, you must use explicit casting,
or tick notation to specify the type. Examples of correct and incorrect syntax are shown in the sample code
below.

type my enum: [A, B, C];
struct etypes ({

X: my enum;

my method () is {

if (A.as_a(int) < B.as_a(int)) then { // Load-time error:
out ("A is less than B"); // No such variable 'A'
}i
if (A.as_a(int) == B.as_a(int)) then { // Load-time error:
out ("A equals B"); // No such variable 'B'
}i
if (my enum'A.as_a(int) < my enum'B.as_a(int)) then { // No error
out ("A less than B");
Vi
if (my _enum'A < my enum'B) then ({ // Load-time error:
out ("A less than B"); // The type of 'x' is 'my enum'
}; // while expecting a numeric type
if (x < A) then { // Load-time error:
out ("x less than A"); // The type of 'x' is 'my_ enum'
}; // while expecting a numeric type
if (x == A) then { // No error

out ("x equals A");

This is an unapproved IEEE Standards Draft, subject to change.
79

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
i

The first two if statements above cause load errors because it is possible for A or B or both to be used in
more than one enumerated type declaration, and it is not possible to tell from the context which type they
are, or their values. In the third if statement, the enumerated type is specified using the tick notation, so that
statement is legal. Note that it is still necessary to cast A and B as ints in order to do the comparison, A <B,
otherwise the error in the fourth case, my enum’A <my_enum’B, occurs.

In the fifth case, x < A, the context of A is not clear at load time, so a loading error occurs. The context of A
is clear in the last case, x == A, however, so this code loads with no problem.

See Also

“type enumerated scalar” on page 98
— “extend type” on page 103

3.1.1.5 Struct Types
Structs are the basis for constructing compound data structures.

The following statement creates a struct type called “packet” with a field “protocol” of type
“packet_protocol”.

struct packet ({
protocol: packet protocol;
Vi
You can then use the struct type “packet” in any context where a type is required. For example in this state-
ment, “packet” defines the type of a field in another struct.
struct port {
data in : packet;
bi
You can also define a variable using a struct type.
var data in : packet;

The default value for a struct is NULL.

See Also

— Chapter 4, “Structs, Fields, and Subtypes”
— “var” on page 487

3.1.1.6 Struct Subtypes

When a struct field has a boolean type or an enumerated type, you can define a struct subtype for one or
more of the possible values for that field. For example, the struct “packet” defined below has three possible
subtypes based on its “protocol” field. The “gen_eth_packet” method below generates an instance of the

“legal Ethernet packet” subtype, where legal == TRUE and protocol == Ethernet.

type packet protocol: [Ethernet, IEEE, foreign];

80 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]: list of byte;
legal: bool;
}i
extend sys {
gen_eth packet () is {
var packet: legal Ethernet packet;
gen packet keeping {it.size < 10;};
print packet;
}i
bi

To refer to a boolean struct subtype, for example “legal packet”, use this syntax:
field name struct type

To refer to an enumerated struct subtype in a struct where no values are shared between the enumerated
types, you can use this syntax:

value name struct_ type

In structs where more than one enumerated field can have the same value, you must use the following syntax
to refer to the struct subtype:

value'field name struct_type
For example, if we define two enumerated types:

type destination: [a, b, c, dl;
type source: [a, b, c, dl;

And add two fields to the “packet” struct:

dest: destination;
src: source;

The syntax for referring to the type of an Ethernet packet with the destination “b” is:
b'dest Ethernet packet
because the name “b Ethernet packet” is ambiguous.

type packet protocol: [Ethernet, IEEE, foreign];
type destination: [a, b, c, dl;
type source: [a, b, ¢, dl;

struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]: list of byte;
legal: bool;
dest: destination;
Src: source;

This is an unapproved IEEE Standards Draft, subject to change.

81

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

extend sys {
gen_eth packet () is {
var packet: b'dest Ethernet packet;
gen packet keeping {it.size > 511 and it.size < 1k};
print packet;
}i
}i

The example below shows another context where a struct subtype can be used.

type packet protocol: [Ethernet, IEEE, foreign];
type destination: [a, b, c, dl;
type source: [a, b, c, dl;

struct packet ({
protocol: packet protocol;
size: int [0..1k];
data([size]: list of byte;
legal: bool;
dest: destination;
src: source;
Vi
extend sys {
plist: list of packet;
print Epackets() is ({
for each Ethernet packet (ep) in plist
print ep;
}i

}i
bi

You can also use the extend, when, or like constructs to add fields, methods, or method extensions that are
required for a particular subtype.

For example, the extend construct shown below adds a field and a method to the “Ethernet packet” subtype.
The “Ethernet packet” subtype also inherits all the characteristics of the struct “packet”.

type packet protocol: [Ethernet, IEEE, foreign];
struct packet ({

protocol: packet protocol;

size: int [0..1k];

data([size]: list of byte;

Vi

extend Ethernet packet {
e field: int;

show() is {out ("I am an Ethernet packet")};

Vi

The “Ethernet packet” subtype could also be defined with the when construct. The following “Ethernet
packet” subtype is exactly equivalent to the Ethernet packet subtype defined by extend.

type packet protocol: [Ethernet, IEEE, foreign];

82 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]l: list of byte;

when Ethernet packet
e field: int;

show() is {out ("I am an Ethernet packet")};
}i
Vi

You can use either the when or the extend construct to define struct subtypes with very similar results.
These constructs are appropriate for most modeling purposes. Under certain circumstances, you may prefer
to use the like construct to create struct subtypes. See Chapter 4, “Structs, Fields, and Subtypes” for a
detailed discussion of the use of these constructs to create struct subtypes.

3.1.1.7 Referencing Fields in When Constructs

The example below shows how to refer to a field of a struct subtype outside of a when, like, or extend con-
struct by assigning a temporary name to the struct subtype.

type packet protocol: [Ethernet, IEEE, foreign];

struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]: list of byte;

keep me is a Ethernet packet (ep) => ep.e field == 1;

when Ethernet packet {
e field: int;

show() is {out ("I am an Ethernet packet")};
}i
Vi

In order to reference a field in a when construct, you must specify the appropriate value for the when deter-
minant. For example, consider the following struct and subtype:

type packet protocol: [Ethernet, IEEE, foreign];
struct packet ({
protocol: packet protocol;
when IEEE packet
i val: int;
}i

bi

For any instance “pk_inst” of the packet struct, references to the “i_val” field are only valid if the when
determinant is “IEEE”. The following are three ways to ensure that “pk_inst” is in fact an “IEEE packet”
before referencing “i_val”.

— Test “pk_inst” to see if it is “IEEE packet™:

if pk_inst is a IEEE packet (ip) {ip.i val = 1; };

This is an unapproved IEEE Standards Draft, subject to change.
83

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

or

pk list.first (it is a IEEE packet (ip) and ip.i val == 1);

Use this method if “pk inst” is a packet that may or may not be “IEEE”. For example, “pk inst”
may be an element of a list of packets or may be a generated packet with no constraint on “protocol”.
Define “pk inst” as an “IEEE packet™:

var pk_inst: IEEE packet;

pk_inst.i val = 1;

or

var pk_inst: IEEE packet;

gen pk_inst keeping {

it is a IEEE packet (ip) and ip.i val ==

bi
Use this method if you want “pk_inst” to always be “IEEE”. Note that you must either declare the
variable or field to be type “IEEE packet” or use the is a syntax. It is not sufficient to say gen pk_inst
keeping (.kind == IEEE; .i_val ==1}.
Cast “pk_inst” as “IEEE packet™:

pk _inst.as_a(IEEE packet).i val = 1;
This is shorthand for method 1 above. You can do it this way if you know that “pk_inst” is an “IEEE
packet” but for some reason it is defined just as a packet. For example:

var pk inst: packet;

gen pk_inst keeping {it is a IEEE packet};

pk_inst.as_a(IEEE packet).i val = 1;

Note that if “pk_inst” is not an “IEEE packet” you will get an error stating that “struct is NULL”.

See Also

Chapter 4, “Structs, Fields, and Subtypes”

“var” on page 487

“Struct Hierarchy and Name Resolution” on page 19
“Comparison of When and Like Inheritance” on page 142
“when” on page 133

“Extending Structs: extend type” on page 121

“is [not] a” on page 67

3.1.1.8 List Types

List types hold ordered collections of data elements where each data element conforms to the same type.
Items in a list can be indexed with the subscript operator [], by placing a non-negative integer expression in
the brackets. List indexes start at zero. You can select an item from a list by specifying its index. For exam-
ple, my_list[0] refers to the first item in the list named my_list.

84

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Lists are defined by using the list of keyword in a variable or a field definition. The example below defines
a list of bytes named “lob” and explicitly assigns five literal values to it. The print statement displays the
first three elements of “lob”, 15, 31, and 63.

var lob: list of byte = {15;31;63;127;255};
print lob[0..2];

NOTE— Multi-dimensional lists (lists of lists) are not supported. To create a list with sublists in it,
you can create a struct to contain the sublists, and then create a list of such structs as the main list.

The default value of a list is an empty list.
3.1.1.8.1 Regular Lists
The following example shows two lists, “packets” and “all lengths”.

type packet protocol : [Ethernet, IEEE, foreign];
type length: int [0..10];
struct packet ({
protocol: packet protocol;
len: length;
bi
extend sys {
packets[10] : list of packet;
do_print () is {
var all_lengths: list of length;
all lengths = packets.len;
print packets;
print all lengths;
}i
}i

Each element of “packets” is a struct of type “packet”. Each element of “all_lengths” is a scalar value of
type “length”.

Both “packets” and “all lengths” have 10 elements because of the explicit size “[10]” specified in the “pack-
ets” declaration. You can only specify a list size in this manner for fields. To size lists that are variables, you
have to use a keep constraint.

3.1.1.8.2 Keyed Lists

A keyed list data type is similar to hash tables or association lists found in other programming languages.
The declaration below specifies that “packets” is a list of packets, and that the “protocol” field in the packet
type is used as the hash key.

type packet protocol : [Ethernet, IEEE, foreign];
struct packet {
protocol: packet protocol;

bi

var packets : list (key: protocol) of packet;

If the element type of the list is a scalar type or a string type, then the hash key must be the predefined
implicit variable it.

struct person {
name: string;

This is an unapproved IEEE Standards Draft, subject to change.
85

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

id: int;

bi

struct city {
lpersons: list(key: name) of person;
!street names: list(key: it) of string;

— Keyed lists cannot be generated. Trying to generate a keyed list results in an error. Therefore, keyed
lists must be defined with the do-not-generate sign (an exclamation mark), as in the above example.

— The only restriction on the type of the list elements is that they cannot themselves be lists. However,
they can be struct types containing fields that are lists.

See Also

— Chapter 4, “Structs, Fields, and Subtypes”
— “var” on page 487

— “Packing and Unpacking Lists” on page 503
— Chapter 19, “List Pseudo-Methods Library”

3.1.1.9 The string Type

The predefined type string is the same as the C NULL terminated (zero terminated) string type. You can
assign a series of ASCII characters enclosed by quotes (“”’) to a variable or field of type string, for example:

var message: string;
message = "Beginning initialization sequence...";

You cannot access bits or bit ranges of a string, but you can convert a string to a list of bytes and then access
a portion of the string. The print statement shown below displays “/test1”.

var dir: string = "/tmp/testl";
var tmp := dir.as_a(list of byte);
tmp = tmp[4..9];

print tmp.as_a(string);

The default value of a variable of type string is NULL.

See Also

— Chapter 24, “Predefined Routines Library”
— “Packing and Unpacking Strings” on page 501

3.1.1.10 The external_pointer Type

The external pointer type is used to hold a pointer into an external (non-e) entity, such as a C struct. Unlike
pointers to structs in e, external pointers are not changed during garbage collection.

86 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

3.1.2 Memory Requirements for Data Types

The amount of memory needed to store data types is listed in Table 3-3.

Table 3-2—Storage Sizes of DataTypes

Type Size in Memory

All scalars up to 32 bits 4 bytes

Scalars larger than 32 Same as a list of bit of the appropriate size
bits
String 4 bytes (the pointer) + the size of the string + 1 byte (the NULL byte)

A NULL string is just the pointer.

Struct pointer 4 bytes

Struct 8 bytes + the sum of the field sizes

A NULL struct is just the pointer (4 bytes)

List 4 bytes (a pointer to the list) + approximately 16 bytes (header) + the sum
of the sizes of the elements

Lists of scalars of size up to 16 bits are packed to the nearest power of 2
(in bits). This is often the most efficient representation.

3.1.3 Untyped Expressions

All e expressions have an explicit type, except for the following types of expressions:

— HDL objects, such as 'top.w_en'
pack() expressions, such as “pack(packing.low, 5)”

bit concatenations, such as “%{slbl, slb2};”

The default type of HDL objects is 32-bit uint, while pack() expressions and bit concatenations have a
default type of list of bit. However, because of implicit packing and unpacking, these expressions can be
converted to the required data type and bit size in certain contexts.

— When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked and
converted to the same type and bit size as the expression on the left-hand side.
The pack expression shown below, for example, is evaluated as 0x04, taking the type and bit size of

1331

J
var j:int (bits:8);
j = pack(packing.low, 4);

NOTE— Implicit unpacking is not supported for strings, structs, or lists of non-scalar types.

As a result, the following causes a load-time error if “i” is a string, a struct, or a list of a non-
scalar type:

i = pack(packing.low, 5);

This is an unapproved IEEE Standards Draft, subject to change.
87

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned.

In the following example, the value of “j”, 0x4, is implicitly packed and converted to the size of
'top.a' before the value is driven:

'top.a' = j;

NOTE— Implicit packing is not supported for strings, structs, or lists of non-scalar types. As
a result, the assignment above would cause a load-time error if “j”

were a string, a struct, or a
list of a non-scalar type.

When the untyped expression is the operand of any binary operator (+, -, *, /,%), the expression is
assumed to be a numeric type. The precision of the operation is determined by the expected type and

the type of the operands. See “Precision Rules for Numeric Operations” on page 93 for more infor-
mation.

Both 'top.a' and “pack(packing.low, -4)” are handled as numeric types.
print ('top.a' + pack(packing.low, 4) == 0);

When a pack() expression includes the parameter or the return value of a method call, the expression
takes the type and size as specified in the method declaration.

The pack() expression “pack(packing.low, data)” generates a list of bit that is implicitly unpacked
into the required type list of byte as defined in the declaration of the send data() method.

extend sys {
data[10] :1ist of byte;

send data(d: list of byte) is ({

}i
run() is also {
send_data (pack (packing.low, data));
}i
bi

NOTE— The method parameter or return value in the pack expression must be a scalar type
or a list of scalar type. For example, the following results in a load-time error:

struct instruction ({

$opcode : uint (bits : 3);
$operand : uint (bits : 5);
%$address : uint (bits : 8);

Vi
extend sys {
instr: instruction;

send_instr(i: instruction) is {

}i

run() is also {;

88 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

send_instr (pack(packing.low, 5)); --load-time error
}i
Vi

— When an untyped expression appears in one of the following contexts, it is treated as a boolean
expression:

if (untyped_exp) then {..}

while (untyped_exp) do {..}

check that (untyped_exp)

not untyped_exp

rise (untyped_exp), fall (untyped_exp), true (untyped_exp)

When the type and bit size cannot be determined from the context, the expression is automatically cast
according to the following rules.

— The default type of an HDL signal is an unsigned integer.
— The default type of a pack expression and a bit concatenation expression is a list of bit.
— If no bit width specification is detected, the default width is 32 bits.

When expressions are untyped, an implicit pack/unpack is performed according to the expected type.

See Also

“Implicit Packing and Unpacking” on page 515

3.1.4 Assignment Rules

Assignment rules define what is a legal assignment and how values are assigned to entities. The following
sections describe various aspects of assignments:

“What Is an Assignment?” on page 89
“Assignments Create Identical References” on page 90
“Assignment to Different but Compatible Types” on page 91

3.1.4.1 What Is an Assignment?
There are several legal ways to assign values:

— Assignment actions

— Return actions

— Parameter passing

— Variable declaration
Here is an example of an assignment action, where a value is explicitly assigned to a variable “x” and to a
field “sys.x”.

extend sys{

X: int;
m() is {
sys.x = '~/top/address’';

var xX: int;

This is an unapproved IEEE Standards Draft, subject to change.
89

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

X = 8ys.Xx + 1;
}i
ti
Here’s an example of a return action, which implicitly assigns a value to the result variable:
extend sys {

n(): int (bits: 64) is {
return 1;
}i

}i
Here’s an example of assigning a value (6) to a method parameter (“i”):
extend sys {

k(i: int) esys.any is {
wait [1i] * cycle;
}i

run() is also {
start k(6);
}i

Vi
Here’s an example of how variables are assigned during declaration:

extend sys {

b() is {
var X: int = 5;
var y:= "ABC";
}i

Vi

NOTE— You cannot assign values to fields during declaration in this same manner.

3.1.4.2 Assignments Create Identical References

Assigning one struct, list, or value to another object of the same type results in two references pointing to the
same memory location, so that changes to one of the objects also occur in the other object immediately.

datal: list of byte;

data2: list of byte;

run() is also ({
data2 = datal;
datal[0] = 0;

i

After generation, the two lists datal and data2 are different lists. However, after the data2=datal assignment,

both lists refer to the same memory location, therefore changing the datal[0] value also changes the data2[0]
value immediately.

90 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

3.1.4.3 Assignment to Different but Compatible Types
3.1.4.3.1 Assignment of Numeric Types

Any numeric type (for example, uint, int, or one of their subtypes) can be assigned with any other numeric
type. Untyped expressions, such as HDL objects, can also appear in assignments of numeric types. See
“Untyped Expressions” on page 87 for more information.

extend sys {
Ix1: int;
x2: uint (bits: 3);
Ix3: int [10..100];

post_generate() is alsof

x1l = xX2;
X3 = x1;
var X: int (bits: 48) = x3;

}i
Vi

Automatic casting is performed when a numeric type is assigned to a different numeric type, and automatic
extension or truncation is performed if the types have different bit size. See “Automatic Type Casting” on

page 96 for more information. See “Precision Rules for Numeric Operations” on page 93 for information on
how precision is determined for operations involving numeric types.

3.1.4.3.2 Assignment of Boolean Types
A boolean type can only be assigned with another boolean type.

var x: bool;
X = 'top.a' >= 16;

3.1.4.3.3 Assignment of Enumerated Types

An enumerated type can be assigned with that same type, or with its scalar subtype. (The scalar subtype dif-
fers only in range or bit size from the base type.)

The example below shows:

— An assignment of the same type:

var x: color = blue;

— An assignment of a scalar subtype:

var y: color2 = x;

Example

type color: [red,green,blue];
type color2: color (bits: 2);

extend sys {

m() is {
var x: color = blue;
var y: color2 = x;

bi

This is an unapproved IEEE Standards Draft, subject to change.
91

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

To assign any scalar type (numeric, enumerated, or boolean type) to any different scalar type, you must use
the .as_a() operator.

3.1.4.3.4 Assignment of Structs

An entity of type struct can be assigned with a struct of that same type or with one of its subtypes. The fol-
lowing example shows:
— A same type assignment:

p2 = pl;
— An assignment of a subtype (Ether 8023 packet):
set_cell(p);

— An assignment of a derived struct (cell_8023):

p.cell = new cell 8023;

Example

type packet kind: [Ether, Ether 8023];
struct cell {};

struct cell 8023 like cell {};
struct packet {

packet kind;

lcell: cell;

Vi

extend sys {

pl: packet;

Ip2: packet;

!'p3: packet;

post_generate() is also {
p2 = pl;
var p: Ether 8023 packet;
gen p;

set _cell(p);

i

set_cell(p: packet) is {
p.cell = new cell 8023;
}i

i
Although you can assign a subtype to its parent struct without any explicit casting as shown above, to per-
form the reverse assignment (assign a parent struct to one of its subtypes), you must use the .as_a() method.
See “as_a()” on page 104 for an example of how to do this.
3.1.4.3.5 Assignment of Strings
A string can be assigned only with strings, as shown below.

extend sys {

m(): string is {
return "aaa"; // assignment of a string

Vi

92 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

3.1.4.3.6 Assignment of Lists

An entity of type list can be assigned only with a list of the same type. In the following example, the assign-
ment of “list1” to “x” is legal because both lists are lists of integers.

extend sys {
listl: list of int;
m() is {
var x: list of int = 1listl;
}i

Vi

However, an assignment such as “var y: list of int (bits: 16) = listl;” would be an error, because “list]” not

the same list type as “y”. “y” has a size modifier, so it is a subtype of “list]1”. You can use the .as_a() method
to cast between lists and their subtypes.

See Also

“Untyped Expressions” on page 87
— “Precision Rules for Numeric Operations” on page 93
“Automatic Type Casting” on page 96

3.1.5 Precision Rules for Numeric Operations
For precision rules, there are two types of numeric expressions in e:

— Context-independent expressions, where the precision of the operation (bit width) and numeric type
(signed or unsigned) depend only on the types of the operands

— Context-dependent expressions, where the precision of the operation and the numeric type depend
on the precision and numeric type of other expressions involved in the operation (the context), as
well as the types of the operands

A numeric operation in e is performed in one of three possible combinations of precision and numeric type:
— Unsigned 32-bit integer (uint)
— Signed 32-bit integer (int)
— Infinite signed integer (int (bits: *))

The e language has rules for:

— Determining the context of an expression
— Deciding precision, and performing data conversion and sign extension

The following sections describe these rules and give an example of how these rules are applied:
— “Determining the Context of an Expression” on page 94
— “Deciding Precision and Performing Data Conversion and Sign Extension” on page 95

“Example Application of Precision Rules” on page 95

See Also

“Operator Precedence” on page 28

This is an unapproved IEEE Standards Draft, subject to change.
93

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

3.1.5.1 Determining the Context of an Expression

The rules for defining the context of an expression are applied in the following order:

1))

2)
3)

In an assignment (lhs = rhs), the right-hand side (rhs) expression inherits the context of the
left-hand side (/hs) expression.

A sub-expression inherits the context of its enclosing expression.

In a binary-operator expression (/ho OP rho), the right-hand operand (rho) inherits context
from the left-hand operand (/ho), as well as from the enclosing expression.

Table 3-3 summarizes context inheritance for each type of operator that can be used in numeric expressions.

Table 3-3—Summary of Context Inheritance in Numeric Operations

Operator Function Context
*1 %+ - Arithmetic, The right-hand operand inherits context from the
<<=>>= comparison, left-hand operand (Zho), as well as from the
== equality, and enclosing expression. /ho inherits only from the
=== l== bit-wise bool- enclosing expression.
& | ean
~! Bitwise not, The operand inherits context from the enclosing
unary + - boolean not, expression.
unary plus,
minus
[] List indexing The list index is context independent.
[..] List slicing The indices of the slice are context independent.
[:] Bit slicing The indices of the slice are context independent.
f(...) Method or The context of a parameter to a method is the
routine call type and bit width of the formal parameter.
{os .} List concate- Context is passed from the lhs of the assignment,
nation but not from left to right between the list mem-
bers.
%{..., ...} Bit concatena- The elements of the concatenation are context
tion independent.
>> << Shift Context is passed from the enclosing expression
to the left operand. The context of the right oper-
and is always 32-bit uint.
lho in [i. j] Range list All three operands are context independent. (The
operator range specifiers i and j must be constant.)
&&, || Boolean All operands are context independent.
a?b:c Conditional a is context independent, b inherits the context
operator from the enclosing expression, ¢ inherits context
from b as well as from the enclosing expression
.as_a() Casting The operand is context independent.

94

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 3-3—Summary of Context Inheritance in Numeric Operations

(continued)
Operator Function Context
abs(), odd() Arithmetic The parameter is context independent.
even() routine
min(), max() Arithmetic The right parameter inherits context from the left
routine parameter (Ip), as well as from the enclosing
expression. Ip inherits only from the enclosing
expression.
ilog2(), Arithmetic The context of the parameter is always 32-bit
ilog10(), routine uint.
isqrt()
ipow() Arithmetic Both parameters inherit the context of the
routine enclosing expression, but the right parameter

does not inherit context from the left.

3.1.5.2 Deciding Precision and Performing Data Conversion and Sign Extension

The rules for deciding precision, performing data conversion and sign extension are as follows:

P1647/D0.1

— Determine the context of the expression. The context may be comprised of up to two types.
— Ifall types involved in an expression and its context are 32 bits in width or less:

* The operation is performed in 32 bits.

* Ifany of the types is unsigned, the operation is performed with unsigned integers.

NOTE— Decimal constants are treated as signed integers, whether they are negative or
not. All other constants are treated as unsigned integers unless preceded by a hyphen.

* Each operand is automatically cast, if necessary, to the required type.

NOTE— Casting of small negative numbers (signed integers) to unsigned integers
produces large positive numbers.

— If any of the types is greater than 32 bits:

¢ The operation is performed in infinite precision (int (bits:*))

* FEach operand is zero-extended, if it is unsigned, or sign-extended, if it is signed, to infinite precision.

3.1.5.3 Example Application of Precision Rules

Given the following assignment:

sum: int;
expl: int
exp2: uint
exp3: int

95

(bytes:2) ;
(bits:4) ;
(bits:4) ;

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

sum = expl + exp2 * exp3;

1) The precision of the multiplication operation (exp2 * exp3) is based on the four types involved
here:
The inherited context of the lhs expression (int)
The inherited context of the lho (int (bytes:2))
The type of exp2 (4-bit uint)
The type of exp3 (4-bit int)

Because one of these four types is unsigned, the multiplication is done in 32-bit unsigned inte-
ger. Both exp2 and exp3 are converted to 32-bit uint and the multiplication operation is per-
formed.

2) The precision of the addition operation is based on the three types involved here:
The inherited context of the lhs expression (int)
The type of expl (int (bytes:2))
The type of (exp2 * exp3) (uint)

Because one of these types is unsigned, the addition is done in 32-bit unsigned integer. exp1 is
converted to 32-bit uint and the addition operation is performed.

3) For the assignment operation, the result of the addition operation is converted to 32-bit int and
assigned to sum.

See Also

“Untyped Expressions” on page 87
“Assignment Rules” on page 89
“Automatic Type Casting” on page 96

3.1.6 Automatic Type Casting

During assignment of a type to a different but compatible type, automatic type casting is performed in the
following contexts:

96

Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon
assignment to different numeric types. For example:

var X: uint;
var y: int;

X =Y;
Untyped expressions are automatically cast on assignment. See “Untyped Expressions” on page 87
for more information.

var j: uint = Oxff;
'top.a' = j;
Sized scalars are automatically type cast to differently sized scalars of the same type.
type color: [red,green,blue];
type color2: color (bits: 2);
var X: color = blue;

var y: color2 = x;

Struct subtypes are automatically cast to their base struct type.

type packet protocol: [Ethernet, IEEE, foreign];

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct packet {

protocol: packet protocol;

size: int [0..1k];

data[size]l: list of byte;

show () is undefined; // To be defined by children
Vi
extend Ethernet packet {

e field: int;

show() is {out ("I am an Ethernet packet")};
}i
extend sys {

m() is {

var epkt: Ethernet packet = new;

var pkt: packet = epkt;

}i
There are three important ramifications to automatic type casting:

1) If the two types differ in bit size, then the assigned value is extended or truncated to the
required bit size. See Example 1 on page 97.

2) Casting of small negative numbers (signed integers) to unsigned integers produces large posi-
tive numbers. See Example 2 on page 98.

3) There is no automatic casting to a reference parameter. See “Parameter Passing” on page 484
for more information.

Example 1

In the following example, “x” is a 32-bit signed integer, “y” is a 48-bit unsigned integer, and “z” is a 3-bit

signed integer. Assigning “x” to “y” extends “x” to 48 bits. Assigning “x” to “z” chops “x” to 3 bits.

extend sys {

m() is {
var X: int = -1;
var y: int (bits: 48) = x;
var z: int (bits: 3) = Xx;
print vy, z;
}i
Vi
Result

Calling “sys.m()” results in:

Oxffffffffffff
z = 0x7

S
1]

This is an unapproved IEEE Standards Draft, subject to change.
97

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 2
m() is {
var X: int = -1;
var y: uint = MAX UINT;
var z: uint = 1;
print x == y;

print x > z;

}i
Result

The int value “x” (Oxffftfftf) is automatically cast to uint and becomes MAX UINT. As a result, the print
statements display the following:

See Also
— “as_a()” on page 104
— “Untyped Expressions” on page 87
— “Assignment Rules” on page 89
— “Precision Rules for Numeric Operations” on page 93
3.2 Defining and Extending Scalar Types
You can use the following constructs to define and extend scalar types:
— “type enumerated scalar” on page 98
— “type scalar subtype” on page 100

— “type sized scalar” on page 101
— “extend type” on page 103

3.2.1 type enumerated scalar

Purpose

Define an enumerated scalar type

Category

Statement

Syntax

type enum-type-name: [[name[=exp], ...]] [(bits | bytes: width-exp)]
Syntax example:

type PacketType :[rx = 1, tx, ctrl];

98 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters

enum-type-name A legal e name. The name must be different from any other predefined or enu-
merated type name because the name space for types is global.

name A legal e name. Each name must be unique within the type.

exp A unique 32-bit constant expression. Names or name-value pairs can appear in
any order. By default, the first name in the list is assigned the integer value
zero. Subsequent names are assigned values based upon the maximum value of
the previously defined enumerated items + 1.

width-exp A positive constant expression. The valid range of values for sized enumerated
scalar types is limited to the range 1 to 2**n - 1, where n is the number of bits.

Description

Defines an enumerated scalar type having the name you specify and consisting of a set of names or name-
value pairs. If no values are specified, the names get corresponding numerical values starting with 0 for the
first name, and casting can be done between the names and the numerical values.

Example 1
This is a simple example of the basic syntax.

type PacketType :[rx, tx, ctrl];

struct packet ({
kind :PacketType;

do _print() is {
if kind == ctrl {
out ("This is a control packet.");
}i
}i
}i
Example 2
This example shows how HDL variables are automatically cast to the required scalar type.

type PacketType :[rx, tx, ctrl];

struct packet ({
kind :PacketType;

set () is {
kind = 'top.pkt type';
}i

}i

Example 3
This example shows an enumerated type with a bit width:

type NetworkType :[IP=0x0800, ARP=0x8060] (bits:16) ;

This is an unapproved IEEE Standards Draft, subject to change.
99

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

struct header {
dest address :uint(bits:48);
src_address :uint (bits:48);
type :NetworkType;

do print() is {
if type == IP {
out ("This is an IP packet.");

Example 4
This example shows how to type cast between an enumerated type and an unsigned integer.

type signal number: [signal 0, signal 1, signal 2, signal 3];
struct signal ({
cast_1() is {
var temp val: uint = 3;
var signal name: signal number = temp val.as_a(signal number) ;
print signal_name;

}i

cast _2() is {
var temp enum: signal number = signal 0;
var signal_ value: uint = temp_ enum.as_a(uint);
print signal_ value;
}i

bi

See Also

“type scalar subtype” on page 100
— “type sized scalar” on page 101
— “extend type” on page 103
— “as_a()” on page 104
— “Enumerated Scalar Types” on page 77

3.2.2 type scalar subtype

Purpose

Define a scalar subtype

Category

Statement

Syntax

type scalar-subtype-name: scalar-type [range, ...]

Syntax example:

100 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

type size: int [8, 16];

Parameters
scalar-subtype-name A unique e name.

scalar-type Any previously defined enumerated scalar type, any of the predefined sca-
lar types, including int, uint, bool, bit, byte, or time, or any previously
defined scalar subtype.

range A constant expression or two constant expressions separated by two dots.
All constant expressions must resolve to legal values of the named type.

Description

Defines a subtype of a scalar type by restricting the legal values that can be generated for this subtype to the
specified range.

NOTE— The default value for variables or fields of this type “size” is zero, the default for all
integers; the range affects only the generated values.

Example 1

The integer subtype defined below includes all non-negative integers except 4,5, and 7.
type medium: uint [0..3,6,8..MAX INT];

Example 2

The following example defines the “inst” type, which has five legal instruction values, and the subtype
“mem_inst”, which has only the values related to memory.

type inst: [add, sub, mul, div, load, storel;
type mem inst: inst [load..store];

Example 3

T3]

You can omit the range list, thus renaming the full range. The first example below gives the name “my_int
to the full range of integers. The second example gives the name “true_or_false” to the full range of the
boolean type.

type my int: int;
type true or false: bool;

See Also

— “type enumerated scalar” on page 98
— “type sized scalar” on page 101

— “extend type” on page 103

— “Scalar Subtypes” on page 76

3.2.3 type sized scalar
Purpose

Define a sized scalar

This is an unapproved IEEE Standards Draft, subject to change.
101

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Statement

Syntax

type sized-scalar-name: type (bits | bytes: exp)
Syntax example:

type word :uint (bits:16);

type address :uint (bytes:2);
Parameters

sized-scalar-name A unique e name.

type Any previously defined enumerated type or any of the predefined scalar
types, including int, uint, bool, or time.

exp A positive constant expression. The valid range of values for sized scalars is
limited to the range 1 to 2n - 1, where n is the number of bits.

Description

Defines a scalar type with a specified bit width. The actual bit width is exp * 1 for bits and exp * 8 for bytes.
In the example shown below, both types “word” and “address” have a bit width of 16.

type word :uint (bits:16) ;
type address :uint (bytes:2);

Example

When assigning any expression into a sized scalar variable or field, the expression's value is truncated or
extended automatically to fit into the variable. An expression with more bits than the variable is chopped
down to the size of the variable. An expression with fewer bits is extended to the length of the variable. The
added upper bits are filled with zero if the expression is unsigned, or with the sign bit (zero or one) if itis a
signed expression.

Here is an example of assigning an expression where the expression's value is truncated:
type SmallAddressType :uint (bits:2);
extend sys {
chop_expression() is {

var small address :SmallAddressType;

small address = 0x2 * 8;

out ("small address: ", small address) ;
i
run() is also {

chop_expression() ;
}i

Vi

102 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

See Also

— “type enumerated scalar” on page 98

— “type scalar subtype” on page 100

— “extend type” on page 103

— “Assignment Rules” on page 89

— “Precision Rules for Numeric Operations” on page 93

3.2.4 extend type

Purpose

Extend an enumerated scalar type
Category

Statement

Syntax

extend enum-type: [name[= exp], ...]

Syntax example:

type PacketType :[rx, tx, ctrl];
extend PacketType :[status];
Parameters
enum-type Any previously defined enumerated type.
name A legal e name. Each name must be unique within the type.
exp A unique 32-bit constant expression. Names or name-value pairs can appear in

any order. By default, the first name in the list is assigned the integer value
zero. Subsequent names are assigned values based upon the maximum value of
the previously defined enumerated items + 1.

Description

Extends the specified enumerated scalar type to include the names or name-value pairs you specify.
Example 1

This is an example of the basic syntax.

type command : [ADD=0x00, SUB=0x02, AND=0x04,
XOR=0x06, UDEF=0xXFF] (bits: 8);

extend command :[ADDI=0x01, SUBI=0x03,
ANDI=0x05, XORI=0x07 1];

This is an unapproved IEEE Standards Draft, subject to change.
103

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 2
A common use of type extension is defining a protocol type and extending it as new protocols are added to
the test environment. For example, you can define a packet header without having to know what specific
network protocols are supported by the packet:
type NetworkType :[] (bits:16);
struct header ({
dest address :uint(bits:48);
src_address :uint(bits:48);

type :NetworkType;

Vi

As protocols are gradually added to the test environment, the new protocol type can be added without
changes to the original code:

extend NetworkType :[ARP=0x8060] ;
Then again for more protocols:
extend NetworkType :[IP=0x0800];

See Also

— “type enumerated scalar” on page 98

— “type scalar subtype” on page 100

— “type sized scalar” on page 101

— ‘e Data Types” on page 75
3.3 Type Conversion Between Scalars and Strings
This section contains:
The as_a() expression is used to convert an expression from one data type to another. Information about how
different types are converted, such as strings to scalars or lists of scalars, is contained in Table 3-4, “Type
Conversion Between Scalars and Lists of Scalars”, on page 105 and Table 3-5, “Type Conversion Between
Strings and Scalars or Lists of Scalars”, on page 107.

This section contains:

— “as_a()” on page 104
“all_values()” on page 115

3.3.1as_a()
Purpose
Casting operator
Category

Expression

104 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax
exp.as_a(type: type name): type
Syntax example:

print (b).as_a(uint);

Parameters

exp Any e expression.

type Any legal e type.

Description

Returns the expression, converted into the specified type. Although some casting is done automatically (see
“Automatic Type Casting” on page 96), explicit casting is required in some cases when making assignments
between different but compatible types.

3.3.1.1 Type Conversion Between Scalars and Lists of Scalars

Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon assignment
to different numeric types.

For other scalars and lists of scalars, there are a number of ways to perform type conversion, including the
as_a() method, the pack() method, the %{} bit concatenation operator and various string routines. Table 3-
4, “Type Conversion Between Scalars and Lists of Scalars”, on page 105 shows the recommended methods
for converting between scalars and lists of scalars.

In Table 3-4, “Type Conversion Between Scalars and Lists of Scalars”, on page 105, int represents int/uint
of any size, including bit, byte, and any user-created size. If a solution is specific to bit or byte, then bit or
byte is explicitly stated.

int(bits:x) means x as any constant; variables cannot be used as the integer width.
The solutions assume that there is a variables declared as

var int : int ;

var bool : bool ;

var enum : enum ;

var list of bit : list of bit ;
var list of byte : list of byte ;
var list_of_int : list of int ;

Any conversions not explicitly shown may have to be accomplished in two stages.

Table 3-4—Type Conversion Between Scalars and Lists of Scalars

From To Solutions

int list of bit list_of bit = int[..]

This is an unapproved IEEE Standards Draft, subject to change.
105

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 3-4—Type Conversion Between Scalars and Lists of Scalars (continued)

From To Solutions
int list of list_of int= %{int}
int(bits:x)
list_ of int = pack(packing.low, int)
(LSB of int goes to list[0] for either choice)
list of bit int int = list_of bit][:]
list of byte
list of int int = pack(packing.low, list of int)

int(bits:x)

(Use packing.high for list in other order.)

int(bits:x)

int(bits:y)

intx = inty
(Truncation or extension is automatic.)

intx.as_a(int(bits:y))

bool int int = bool.as_a(int)
(TRUE becomes 1, FALSE becomes 0.)

int bool bool = int.as_a(bool)
(0 becomes FALSE, non-0 becomes TRUE.)

int enum enum = int.as_a(enum)
(No checking is performed to make sure the int value is valid for the
range of the enum.)

enum int int = enum.as_a(int)
(Truncation is automatic.)

enum bool enum.as_a(bool)
(Enumerated types with an associated unsigned integer value of 0
become FALSE; those with an associated non-0 values become
TRUE. See “Enumerated Scalar Types” on page 77 for more infor-
mation on values associated with enumerated types.)

bool enum bool.as_a(enum)
(Boolean types with a value of FALSE are converted to the enumer-
ated type value that is associated with the unsigned integer value of
0; those with a value of TRUE are converted to the enumerated type
value that is associated with the unsigned integer value of 1. No
checking is performed to make sure the boolean value is valid for the
range of the enum.)

106 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Table 3-4—Type Conversion Between Scalars and Lists of Scalars (continued)

From To Solutions

enum enum enuml = enum2.as_a(enuml)

(no checking is performed to make sure the int value is valid for the
range of the enum)

list of list of listx.as_a(list of int(bits:y))
int(bits:x) int(bits:y)
(same number of items, each padded or truncated)

listy = pack(packing.low, listx)

(concatenated data, different number of items)

3.3.1.2 Type Conversion Between Strings and Scalars or Lists of Scalars

There are a number of ways to perform type conversion between strings and scalars or lists of scalars,
including the as_a() method, the pack() method, the %{} bit concatenation operator and various string rou-
tines. Table 3-5, “Type Conversion Between Strings and Scalars or Lists of Scalars”, on page 107 shows
how to convert between strings and scalars or lists of scalars.

In Table 3-5, “Type Conversion Between Strings and Scalars or Lists of Scalars”, on page 107, int repre-
sents int/uint of any size, including bit, byte, and any user-created size. If a solution is specific to bit or byte,
then bit or byte is explicitly stated.

int(bits:x) means x as any constant; variables cannot be used as the integer width.

The solutions assume that there is a variables declared as

var int : int ;
var list_of byte : list of byte ;
var list of int : list of int ;

var bool : bool ;
var enum : enum ;
var string : string ;

Any conversions not explicitly shown may have to be accomplished in two stages.

Table 3-5—Type Conversion Between Strings and Scalars or Lists of Scalars

ASCII

From To Convert? Solutions
list of int string yes list_of int.as_a(string)
list of byte (Each list item is converted to its ASCII character

and the characters are concatenated into a single
string. int[0] represents left-most character. If a list
item is not a printable ASCII character, the string
returned is empty.)

This is an unapproved IEEE Standards Draft, subject to change.
107

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 3-5—Type Conversion Between Strings and Scalars or Lists of Scalars (contin-
ued)

From To ASCI Solutions
Convert?

string list of int yes string.as_a(list of int)

list of byte (Each character in the string is converted to its
numeric value and assigned to a separate element in
the list. The left-most character becomes int[0])

string list of int yes list of int = pack(packing.low, string)
list of int = %{string}

(The numeric values of the characters are concate-
nated before assigning them to the list. Any pack
option gives same result; null byte, 00, will be last
item in list.)

string int yes int = % {string}
int = pack(packing.low, string)

(Any pack option gives same result.)

int string yes unpack(packing.low, %{8°b0, int}, string)

(Any pack option with scalar_reorder={} gives same
result.)

string int no string.as_a(int)
(Converts to decimal.)

append(“0b”, string).as_a(int)
(Converts to binary.)

append(“0x”, string).as_a(int)
(Converts to hexadecimal.)

int string no int.as_a(string)
(Uses the current print radix.)

append(int)
(Converts int according to current print radix.)

dec(int), hex(int), bin(int)
(Converts int according to specific radix.)

string bool no bool = string.as_a(bool)

(Only “TRUE” and “FALSE” can be converted to
boolean; all other strings return an error.)

bool string no string = bool.as_a(string)

108 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Table 3-5—Type Conversion Between Strings and Scalars or Lists of Scalars (contin-

ued)
From To ASCII Solutions
Convert?
string enum no enum = string.as_a(enum)
enum string no string = enum.as_a(string)

3.3.1.3 Type Conversion Between Structs, Struct Subtypes, and Lists of Structs

Struct subtypes are automatically cast to their base struct type, so, for example, you can assign a variable of
type “Ethernet packet” to a variable of type “packet” without using as_a().

You can use as_a() to cast a base struct type to one of its subtypes; if a mismatch occurs, then NULL is
assigned. For example, the “print pkt.as_a(foreign packet)” action results in “pkt.as_a(foreign packet) =
NULL” if pkt is not a foreign packet.

When the expression to be converted is a list of structs, as_a() returns a new list of items whose type
matches the specified type parameter. If no items match the type parameter, an empty list is returned.

The list can contain items of various subtypes, but all items must have a common parent type. That is, the
specified type parameter must be a subtype of the type of the list.

Assigning a struct subtype to a base struct type does not change the declared type. Thus, you have to use
as_a() to cast the base struct type as the subtype in order to access any of the subtype-specific struct mem-
bers. See Example 6 on page 112.

Subtypes created through like inheritance exhibit the same behavior as subtypes created through when
inheritance.

3.3.1.4 Type Conversion Between Simple Lists and Keyed Lists

You can convert simple lists to keyed lists and keyed lists to simple lists. When you convert a keyed list to a
simple list, the hash key is dropped. When you convert a simple list to a keyed list, you must specify the key.

For example, if “sys.packets” is a simple list of packets and you want to convert it to a keyed list where the
“len” field of the packet struct is the key, you can do so like this:

var pkts: list (key: len) of packet
pkts = sys.packets.as a(list (key: len) of packet)

The as_a() method returns a copy of sys.packets, so the original sys.packets is still a simple list, not a keyed
list. Thus “print pkts.key index(130)” returns the index of the item that has a “len” field of 130, while “print
sys.packets.key index(130)” returns an error.

If a conversion between a simple list and a keyed list also involves a conversion of the type of each item, that
conversion of each item follows the standard rules. For example, it is a rule that if you use as_a() to convert
an integer to a string, no ASCII conversion is performed. Similarly, if you use as_a() to convert a simple list
of integers to a keyed list of strings, no ASCII conversion is performed:

var lk: list (key:it) of string
var 1: list of int = {1;2;3;4;6;9}

This is an unapproved IEEE Standards Draft, subject to change.
109

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

lk = 1l.as_a(list (key:it) of string)
print lk.key index("9")
lk.key index("9") =5

NOTE— No checking is performed to make sure the value is valid when casting from a numeric
or boolean type to an enumerated type or when casting between enumerated types.

Example 1

In this example, the most significant bits of the 32-bit variable “i” are truncated when “i” is printed as a 16-
bit variable. When “i” is printed as a 64-bit variable, it is sign-extended to fit.

extend sys {
m() is {
var i : int = Oxffff000f;
print (i).as_a(int(bits:16)) using radix=HEX;
print (i).as_a(int(bits:64)) using radix=HEX;
}i
Vi

Result

(1) .as_a(int (bits:16)) 0x000f
(1) .as_a(int (bits:64)) = Oxffffffffffff000f

Example 2

No checking is performed when “c”, a variable of type color, is assigned a value outside its range. However,
a message is issued when the “c” is accessed by the print statement.

type color: [red=2, blue=0, yellow=1];
extend sys{

m() is {
var ¢ : color = blue;
var i : int = 2;

var u : uint = 0x74786574;
print (i).as_a(color);
print (c).as_a(int);

¢ = u.as_a(color); --no checking
print c; --message issued
}i
Vi
Result
(1) .as_a(color) = red
(c) .as_a(int) = 0xO0
¢ = (Bad enum value for 'color': 1954047348)
Example 3

You can use the as_a() method to convert a boolean type to a numeric or an enumerated type or from one of
those types to a boolean.

type color: [red=2, blue=0, yellow=1];
extend sys{
m() is {

110 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

var ¢ : color = blue;
var i : int = 2;
var s : string = "hello";

print (i).as_a(bool) ;
print (c).as_a(bool) ;

}i
}i
Result
(1) .as_a(bool) = TRUE
(c) .as_a(bool) = FALSE
Example 4

You can cast between numeric types and strings with as_a(), but no ASCII conversion is performed. This
example shows how to get ASCII conversion using unpack() and the bit concatenation operator %{}.

extend sys{

m() is {
var 1 : int = 65;
var sl : string;
var s2 : string = "B";

print (i).as_a(string);
unpack (packing.low, %{8'b0,i}, s1);

print si;
--print (s2).as_a(int); --run-time error;
--"B” is not a valid integer
i = %{s2};
print i;
}i
Vi
Result
(1) .as_a(string) = "65"
sl = "A"
i = 66
Example 5

You can cast between lists of numerics and strings with as_a(). As shown in the first print statement, each
character in the string is converted to its numeric value and assigned to a separate element in the list. As
shown in the second to last print statement, using pack() to convert a string concatenates the numeric values
of the characters before assigning them to the list.

extend sys {

m() is {
var s: string;
s = "hello";
var lint: list of int;
lint = s.as_a(list of int);

print lint;

print lint.as_a(string);

var lint2: list of int;

lint2 = pack(packing.low, s);
print 1lint2 using bin;

print lint using bin;

This is an unapproved IEEE Standards Draft, subject to change.
111

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

i
bi
Result
lint =
0 104
1. 101
2. 108
3 108
4 111
lint.as_a(string) = "hello"
lint2 =
0. 0b1101100011011000110010101101000
1. 0b1101111
lint =
0. 0b1101000
1. 0b1100101
2. 0b1101100
3. 0b1101100
4. 0b1101111
Example 6

The “print pkt.as_a(foreign packet)” action below results in “pkt.as_a(foreign packet) = NULL” because
“pkt” is of type “Ethernet packet”.

The “print pkt.e_field” action in this example results in a compile-time error because the declared type of
“pkt” does not have a field “e_field”. However, the “print pkt.as_a(Ethernet packet).c_field” action prints
the value of the field.

type packet protocol: [Ethernet, IEEE, foreign];
struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]: list of byte;
show () is undefined; // To be defined by children
Vi
extend Ethernet packet {
e field: int;
show() is {out ("I am an Ethernet packet")};
Vi
extend sys {
m() is {
var epkt: Ethernet packet = new;
var pkt: packet = epkt;
print pkt.type() .name;
print pkt.declared type() .name;
print pkt.as_a(foreign packet) ;
-- print pkt.e field; //compile-time error
print pkt.as_ a(Ethernet packet).e field;
print pkt.size;

Result

pkt.type () .name = "Ethernet packet"

112 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

pkt.declared type() .name = "packet"
pkt.as_a(foreign packet) = (NULL)
pkt.as_a(Ethernet packet).e field = 0
pkt.size = 0

Example 7

The as_a() pseudo-method, when applied to a scalar list, creates a new list whose size is the same as the
original size and then casts each element separately.

To pass a list of integer(bits: 4) as a parameter to a method that requires a list of integers, you can use
explicit casting, as follows:

struct dtypes ({
increment list (cnt: list of int) is {
for each in cnt {

cnt [index] = cnt[index] + 1;
}i
}i
Vi
extend sys {
di:dtypes;
m() is {
var small list: list of int (bits: 5) = {3;5;7;9};

var big list: list of int = {O;O;O;O;};
big list = small list.as_a(list of int);
di.increment list (big list);
print big list;
}i
}i

Result

The print statement gives the following results:

big list =
0. 4
1. 6
2. 8
3 10
Example 8

When the as_a() operator is applied to a list of structs, the list items for which the casting failed are omitted
from the list.

type packet protocol: [Ethernet, IEEE, foreign];
struct packet ({

protocol: packet protocol;

size: int [0..1k];

data[size]: list of byte;

show () is undefined; // To be defined by children
Vi
extend Ethernet packet ({

e field: int;

show() is {out("I am an Ethernet packet")};

This is an unapproved IEEE Standards Draft, subject to change.

113

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
extend sys {
packets[5]: list of packet;
post_generate() is also {
print packets;
print packets.as_a(list of IEEE packet);
}i
bi

Result

Doing setup
Generating the test using seed 1...

packets =
item type protocol size data Ethernet’*
0. packet Ethernet 872 (872 item* -21166003*
1. packet Ethernet 830 (830 item* -21443627*
2. packet Ethernet 834 (834 item* 1684201428
3. packet Ethernet 663 (663 item* -15262725%*
4. packet IEEE 213 (213 item*
packets.as_a(list of IEEE packet) =
item type protocol size data Ethernet’ *
0. packet IEEE 213 (213 item*
Example 9

You can use as_a() to convert a string to an enumerated type. The string has to match letter by letter one of
the possible values of that type or a runtime error is issued.

This example sets a list of items of an enumerated type to the values read from a file.

type reg address: [UARTCTL1, UARTDATAl, UARTCTL2, UARTDATA2];
extend sys {
ctl regs: list of reg address;

keep ctl regs == (each line in file
"~/data/enum_items.txt") .apply(it.as_a(reg_address)) ;
run() is also {
print sys.ctl regs;
}i

bi

enum_items.txt

UARTCTL1
UARTDATAL
UARTCTL2
UARTDATA2
UARTDATAL
UARTCTL2
UARTCTL2
UARTCTL1
UARTDATAL

114 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Result

sys.ctl regs =
UARTCTL1
UARTDATAL
UARTCTL2
UARTDATA2
UARTDATAL
UARTCTL2
UARTCTL2
UARTCTL1
UARTDATAL

W J o0 Ul b WNKE O

P1647/D0.1

NOTE— Ifthe file is not accessible, you will see a runtime error with the name of the missing file.

If there is a typo in the file, you will see a runtime error message like the following:

*** Error: Enum type ’‘reg address’ has no item called ’UARTCTL’

See Also

— “Automatic Type Casting” on page 96
— “e Data Types” on page 75
— “is [not] a” on page 67

3.3.2 all_values()
Purpose
Access all values of a scalar type
Category
Pseudo routine
Syntax
all_values(scalar-type: type name): list of scalar type
Syntax example:
print all values(reg address) ;

Parameters

scalar-type Any legal e scalar type.

Description

Returns a list that contains all the legal values of the specified scalar type. When that type is an enumerated
type, the order of the items is the same as the order in which they were defined. When the type is a numeric

type, the order of the items is from the smallest to the largest.

NOTE— When the specified type has more than 1million legal values, this routine gives a compile

time error to alert you to possible memory abuse.

This is an unapproved IEEE Standards Draft, subject to change.

115

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example

type reg address: [UARTCTL1, UARTDATAl, UARTCTL2, UARTDATA2];
extend sys {
ctl regs: list of reg address;

keep ctl regs ==
all values(reg address).all(it.as_a(string) ~"*CTL*");
run() is also {
print sys.ctl regs;
}i

}i

Result

Running the test

sys.ctl regs =
0. UARTCTL1
1. UARTCTL2

116 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

4 Structs, Fields, and Subtypes

The basic organization of an e program is a tree of structs. A struct is a compound type that contains data
fields, procedural methods, and other members. It is the e equivalent of a class in other object-oriented lan-
guages. A base struct type can be extended by adding members. Subtypes can be created from a base struct
type which inherit the base type’s members, and contain additional members.

This chapter contains the following sections:

“Structs Overview” on page 117
— “Defining Structs: struct” on page 118
— “Extending Structs: extend type” on page 121
— “Extending Subtypes” on page 123
— “Defining Fields: field” on page 125
— “Defining List Fields” on page 127
— “Creating Subtypes with When” on page 133
— “Extending When Subtypes” on page 136
— “Defining Attributes” on page 139
— “Comparison of When and Like Inheritance” on page 142

See Also

“Syntactic Elements” on page 11
— “Struct Hierarchy and Name Resolution” on page 19
— “Overview of e Data Types” on page 75
— “Defining and Extending Scalar Types” on page 98
— Chapter 7.1, “Basic Concepts of Generation”
— Chapter 15.1, “Rules for Defining and Extending Methods”
— Chapter 19, “List Pseudo-Methods Library”
— Chapter 8.1, “Events Overview”
— Chapter 10, “Temporal Struct Members”
— Chapter 12, “Coverage Constructs”

4.1 Structs Overview

Structs are used to define data elements and behavior of components of a test environment. A struct can hold
all types of data and methods.

All user-defined structs inherit from the predefined base struct type, any_struct.

For reusability of e code, you can add struct members or change the behavior of a previously defined struct
with extend.

Inheritance is implemented in e by either of two of aspects of a struct definition:

— “when” inheritance is specified by defining subtypes with when struct members
“like” inheritance is specified with the like clause in new struct definitions

The best inheritance methodology for most applications is “when” inheritance. See “Comparison of When
and Like Inheritance” on page 142 for more information.

This is an unapproved IEEE Standards Draft, subject to change.
117

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

4.2 Defining Structs: struct
Purpose

Define a data struct

Category

Statement

Syntax

struct struct-type [like base-struct-type] {
[struct-member; ...}

Syntax example:

type packet _kind: [atm, eth];
struct packet ({

len: int;

keep len < 256;

kind: packet kind;

}i

118 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
struct-type The name of the new struct type.
base-struct-type The type of the struct from which the new struct inherits its mem-
bers.
struct-member; ... The contents of the struct. The following are types of struct mem-
bers:

¢ data fields for storing data

* methods for procedures

¢ cvents for defining temporal triggers

¢ coverage groups for defining coverage points
* when, for specifying inheritance subtypes

¢ declarative constraints for describing relations between
data fields

* on, for specifying actions to perform upon event
occurrences

¢ expect, for specifying temporal behavior rules

The definition of a struct can be empty, containing no members.

Description

Structs are used to define the data elements and behavior of components and the test environment. Structs
contain struct members of the types listed in the Parameters table. Struct members can be conditionally
defined (see “Creating Subtypes with When” on page 133).

The optional like clause is an inheritance directive. All struct members defined in base-struct-type are
implicitly defined in the new struct subtype, struct-type. New struct members can also be added to the inher-
iting struct subtype, and methods of the base struct type can be extended in the inheriting struct subtype.

Example 1
A struct type named “transaction” is defined in this example.

struct transaction {
address: uint;
data: list of uint;
transform(multiple:uint) is empty;

Vi
The “transaction” struct contains three members:

— “address” field
“data” field
“transform()” empty method definition

This is an unapproved IEEE Standards Draft, subject to change.
119

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 2

In this example, a “pci_transaction” struct is derived from the “transaction” struct in the previous example,

using like inheritance. The following struct members are added in this inherited struct:

— Fields named “command”, “dual_address”, and “bus_id”
(a type statement is included, to enumerate values for the “command” field)
— A Kkeep constraint
— A when conditional subtype
— An event definition
— An on member
— A cover group definition

The “transform()”” method, defined as empty in the “transaction” base type, is given a method body using the

is only method extension syntax.

type PCICommandType: [IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7];

struct pci_ transaction like transaction

command : PCICommandType;

keep soft data.size() in [0..7];

dual_address: bool;

when dual address pci transaction {

address2: uint;
}i

bus _id: uint;
event initiate;
on initiate {

out ("An event has been initiated on bus ", bus_id);
}i
cover initiate is {

item command;

transform(multiple:uint) is only {
address = address * multiple;
bi

bi

Example 3

Additional subtypes can, in turn, be derived from a subtype. In the following example, an “agp transaction”
subtype is derived from the “pci_transaction” subtype of the previous example. Each subtype can add fields

to its base type, and place its own constraints on fields of its base type.

type AGPModeType: [AGP_2X, AGP_4X];

struct agp_transaction like pci transaction {
block size: uint;
mode: AGPModeType;
when AGP 2X agp transaction

keep block size == 32;

i

when AGP 4X agp transaction {
keep block size == 64;

}i

120 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

See Also

— “Struct Members” on page 13

— “Extending Structs: extend type” on page 121
— “Extending Subtypes” on page 123

— “Creating Subtypes with When” on page 133
— “Comparison of When and Like Inheritance” on page 142
— Chapter 3, “Data Types”

— Chapter 15, “Methods”

— Chapter 7, “Generation Constraints”

— Chapter 8, “Events”

— Chapter 10, “Temporal Struct Members”

— Chapter 12, “Coverage Constructs”

4.3 Extending Structs: extend type
Purpose

Extend an existing data struct

Category

Statement

Syntax

extend [struct-subtype] base-struct-type {
[struct-member; ...]}

Syntax example:

type packet kind: [atm, eth];
struct packet ({
len: int;
kind: packet kind;
bi
extend packet {
keep len < 256;
Vi

This is an unapproved IEEE Standards Draft, subject to change.
121

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters

struct-subtype Adds struct members to the specified subtype of the base struct type only. The
added struct members are known only in that subtype, not in other subtypes.

base-struct-type The base struct type to extend.

member; ... The contents of the struct. A struct member is one of the following types:
¢ data fields for storing data
* methods for procedures
¢ cvents for defining temporal triggers
¢ coverage groups for defining coverage points
* when, for specifying inheritance subtypes
¢ declarative constraints for describing relations between data fields
* on, for specifying actions to perform upon event occurrences

¢ expect, for specifying temporal behavior rules

The extension of a struct can be empty, containing no members.

Description
Adds struct members to a previously defined struct or struct subtype.

Members added to the base struct type in extensions apply to all other extensions of the same struct. Thus,
for example, if you extend a method in a base struct with is only, it overrides that method in every one of the
like children.

NOTE— [Iflike inheritance has been used on a struct type, there are limitations on how the original
base struct type definition can be further extended with extend. See “Restrictions on Like
Inheritance” on page 149.

Example 1

In the following example, a struct type named “pci_transaction” is defined in one module, which is then
imported into another module where a field named “data_phases™ and two constraints are added in an exten-
sion to the struct.

< 1
// module pci transaction definition.e
type PCICommandType: [IO READ=0x2, IO _WRITE=0x3,
MEM_READ=0x6, MEM WRITE=0x7];
struct pci_transaction {
address: uint;
data: list of uint;
command : PCICommandType;
bus _id: uint;
event initiate;
on initiate {
out ("An event has been initiated on bus ", bus_id);
}i

122 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

cover initiate is {
item command;
}i

}i

'>

< !
// module pci transaction extension.e
import pci transaction definition;
extend pci_transaction {

data_phases: uint;

keep data phases in [0..7];

keep data.size() == data phases;

- —

Example 2

In the following, the “tx_packet” struct inherits its kind field from the “packet” struct definition, from which
it is derived using like inheritance. The “keep kind == atm” constraint in the packet struct extension applies
to both packet instances and tx_packet instances. The “keep len > 10” constraint in the tx_packet subtype
applies only to tx_packet instances, reducing the range of len in tx_packet instances to [11..40]:

type packet kind: [atm, eth];

struct packet ({
len: int;
keep soft len <= 40;
kind: packet kind;

bi

struct tx_packet like packet {
send_delay: int [0..100];
keep len > 10;

Vi

extend packet {
keep kind == atm;

}i

See Also

“Defining Structs: struct” on page 118
— “Extending Subtypes” on page 123
— “Creating Subtypes with When” on page 133
— “Comparison of When and Like Inheritance” on page 142
— Chapter 3, “Data Types”
— Chapter 15, “Methods”
— Chapter 7, “Generation Constraints”
— Chapter 8, “Events”
— Chapter 10, “Temporal Struct Members”
— Chapter 12, “Coverage Constructs”

4.4 Extending Subtypes

A struct subtype is an instance of the struct in which one of its fields has a particular value. For example, the
“packet” struct defined in the following example has “atm packet” and “eth packet” subtypes, depending on
whether the “kind” field is “atm” or “eth”.

This is an unapproved IEEE Standards Draft, subject to change.
123

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

type packet kind: [atm, eth];
struct packet {
len: int;
kind: packet kind;
Vi
extend packet {
keep len < 256;
}i

A struct subtype can optionally be specified with extend, so that the extension only applies to that subtype.

Example 1

The following shows a definition of a struct type named “packet”, an extension that adds a field named “len”
to the struct definition, and a second extension that adds a field named “transmit _size” only to packets
whose “kind” is “transmit”.

type packet kind: [transmit, receivel;
struct packet ({

kind: packet_kind;
Vi

extend packet {
len: int;
bi

extend transmit packet {
transmit_size: int;

The “extend transmit packet” syntax above is equivalent to:
extend packet {
when transmit packet {
transmit size: int;
}i

Vi

Example 2

The “packet” struct definition below is extended with a boolean field named “legal”. Two additional exten-
sions add a field named “header” to the packet struct: for packets whose “legal” value is TRUE, the “header”
field gets a “legal_header” struct instance. For packets whose “legal” values is FALSE, the “header” field
gets a “bad_header” struct instance.

124

type packet kind: [atm, eth];
struct packet {
len: int;
keep soft len == 40;
kind: packet_kind;

Vi

extend packet{
legal: bool;
}i

struct legal header ({
legal ck: byte;
bi

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct bad header {
bad ck: byte;

}i

extend legal packet {
header: legal header;
Vi

extend FALSE'legal packet ({
header: bad header;

}i

See Also

— “Defining Structs: struct” on page 118

— “Extending Structs: extend type” on page 121
— “Creating Subtypes with When” on page 133
— “Extending When Subtypes” on page 136

4.5 Defining Fields: field

Purpose

Define a struct field

Category

Struct member

Syntax

[!1[%] field-name[: type] [[min-val .. max-val]] [((bits | bytes):num)]
Syntax example:

type NetworkType: [IP=0x0800, ARP=0x8060] (bits: 16);
struct header ({

address: uint (bits: 48);

hdr type: NetworkType;

lcounter: int;

bi

This is an unapproved IEEE Standards Draft, subject to change.
125

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
! Denotes an ungenerated field. The “!” and “%” options can be used together,
in either order.
% Denotes a physical field. The “!”” and “%” options can be used together, in
either order.
field-name The name of the field being defined.
type The type for the field. This can be any scalar type, string, struct, or list.

If the field name is the same as an existing type, you can omit the “: fype”
part of the field definition. Otherwise, the type specification is required.

min-val..max-val An optional range of values for the field, in the form. If no range is specified,
the range is the default range for the field’s type.

(bits | bytes: num) The width of the field in bits or bytes. This syntax allows you to specify a
width for the field other than the default width.

This syntax can be used for any scalar field, even if the field has a type with
a known width.

Description

Defines a field to hold data of a specific type. You can specify whether it is a physical field or a virtual field,
and whether the field is to be automatically generated. For scalar data types, you can also specify the size of
the field in bits or bytes.

Physical Fields

A field defined as a physical field (with the “%” option) is packed when the struct is packed. Fields that rep-
resent data that is to be sent to the HDL device in the simulator or that are to be used for memories, need to
be physical fields. Nonphysical fields are called virtual fields and are not packed automatically when the
struct is packed, although they can be packed individually.

If no range is specified, the width of the field is determined by the field’s type. For a physical field, if the
field’s type does not have a known width, you must use the (bits | bytes : num) syntax to specify the width.

Ungenerated Fields

A field defined as ungenerated (with the “!”” option) is not generated automatically. This is useful for fields
that are to be explicitly assigned during the test, or whose values involve computations that cannot be
expressed in constraints.

Ungenerated fields get default initial values (0 for scalars, NULL for structs, empty list for lists). An
ungenerated field whose value is a range (such as [0..100]) gets the first value in the range. If the field is a
struct, it will not be allocated and none of the fields in it will be generated.

Assigning Values to Fields
Unless you define a field as ungenerated, a value is generated for it when the struct is generated, subject to
any constraints that exist for the field. However, even for generated fields, you can always assign values in

user-defined methods or predefined methods such as init(), pre_generate(), or post_generate(). The ability
to assign a value to a field is not affected by either the “!” option or generation constraints.

126 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example
The struct definitions below contain several types of fields.

type NetworkType: [IP=0x0800, ARP=0x8060] (bits: 16);
struct header ({
%address: uint (bits: 48);
$length: uint [0 .. 32];
Vi
struct packet ({
hdr type: NetworkType;
%$hdr: header;
is legal: bool;
lcounter: uint;

}i

extend sys {
packet;

}i

The “header” struct contains two physical fields:

— A field named “address” which is a 48-bit field of data type uint
— A field named “length” of data type uint

The “packet” struct contains:
— An enumerated “hdr_type” field that can be either “IP” or “ARP”
— A physical field named “hdr” of type “header”, which will hold an instance of the “header” struct
— A boolean “is_legal” field
— An ungenerated uint field named “counter”
The sys struct extension contains a field for an instance of a “packet” struct. No type declaration is required
for the “packet” field in the sys extension, since the field name is the same as the name of a type that was

already defined.

See Also

— Chapter 3, “Data Types”

— Chapter 7, “Generation Constraints”
— Chapter 17, “Packing and Unpacking”
— “list of” on page 127

4.6 Defining List Fields

This section shows the syntax and examples of lists in general, and of keyed lists. It contains these topics:

“list of”” on page 127
— “list(key) of” on page 129

4.6.1 list of
Purpose

Define a list field

This is an unapproved IEEE Standards Draft, subject to change.

127

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Struct member

Syntax

[1[%]list-name||length-exp]]: list of type
Syntax example:

packets: list of packet;

Parameters
! Do not generate this list. The “!”” and “%” options can be used together, in either
order.
% Denotes a physical list. The “!” and “%” options can be used together, in either
order.
list-name The name of the list being defined.
length-exp An expression that gives the initial size for the list. The expression must evaluate to
a non-negative integer.
type The type of items in the list. This can be any scalar type, string, or struct. It cannot
be a list.
Description

Defines a list of items of a specified type.

An initial size can be specified for the list. The list initially contains that number of items. The size conforms
to the initialization rules, the generation rules and the packing rules. Even if an initial size is specified, the
list size can change during the test if the list is operated on by a list method that changes the number of
items.

All list items are initialized to their default values when the list is created. For a generated list, the initial
default values are replaced by generated values.

For information about initializing list items to particular values, see “Assignment of Lists” on page 93 and
“Constraining Lists” on page 264.

Example 1

Three list fields are defined in the struct definitions below. The “cell” struct contains a list of bytes, the
“packet” struct contains a list of “cell” struct instances, and the sys struct extension contains a list of 16
“packet” struct instances.

struct cell {
$data: list of byte;
%$length: uint;

bi

struct packet ({
%is_legal: bool;
cells: list of cell;

Vi

128 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

extend sys {
packets[16]: list of packet;
}i

Example 2

Two lists of cells are defined in this following example, both with initial sizes specified using the [length]
syntax. For the cells_1 list, the length expression is a value generated from within the 16 to 32 range speci-
fied for the num_cells field. For the cells_2 list, the length expression is the integer value of an item from the
enumerated list named | sel (sm has value 0, med has value 1, Ige has value 3 due to their positions in the
enumerated list).

struct cell {
$data: list of byte;
%$length: uint;

}i

struct packet {
%is_legal: bool;

num_cells: int;

keep num cells in [16..32];
cells 1[num cells]: list of cell;
1 sel: [sm, med, lge]l;

cells 2[1 sel.as_a(int)]: list of cell;

Vi

See Also

— “Defining Fields: field” on page 125

— “Expressions” on page 19

— Chapter 3, “Data Types”

— Chapter 7, “Generation Constraints”

— Chapter 17, “Packing and Unpacking”

— Chapter 19, “List Pseudo-Methods Library”

4.6.2 list(key) of

Purpose

Define a keyed list field

Category

Struct member

Syntax

[%]list-name: list(key: key-field) of type
Syntax example:

llocations: list (key: address) of location;

This is an unapproved IEEE Standards Draft, subject to change.
129

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
! Do not generate this list. For a keyed list, the “!” is required, not optional.
% Denotes a physical list. The “%” option may precede or follow the “!”.
list-name The name of the list being defined.
key-field The key of the list. For a list of structs, it is the name of a field of the struct. For a
list of scalar or string items, it is the item itself, represented by the it variable.
This is the field or value which the keyed list pseudo-methods will check when they
operate on the list.
type The type of items in the list. This can be any scalar type, string, or struct. It cannot
be a list.
Description

Keyed lists are used to enable faster searching of lists by designating a particular field or value which is to be
searched for. A keyed list can be used, for example, in the following ways:

— As a hash table, in which searching only for a key avoids the overhead of reading the entire contents
of each item in the list.

— For a list that has the capacity to hold many items, but which in fact contains only a small percentage
of its capacity, randomly spread across the range of possible items. An example is a sparse memory
implementation.

Although all of the operations that can be done using a keyed list can also be done using a regular list, using
a keyed list provides an advantage in the greater speed of searching a keyed list.

Besides the key parameter, the keyed list syntax differs from regular list syntax in the following ways:

— The list must be declared with the “!” do-not-generate operator. This means that you must build a
keyed list item by item, since you cannot generate it.

— The “[exp]” list size initialization syntax is not allowed for keyed lists. That is, “list|exp]: list(key:
key) of type” is not legal. Similarly, you cannot use a keep constraint to constrain the size of a keyed
list.

The keyed list pseudo-methods (see “Keyed List Pseudo-Methods” on page 618) only work on lists that
were defined and created as keyed lists. Conversely, restrictions apply when using regular list pseudo-meth-
ods or other operations on keyed lists. See “Restrictions on Keyed Lists” on page 624.

A keyed list is a distinct type, different from a regular list. This means that you cannot assign a keyed list to
a regular list, nor assign a regular list to a keyed list: if list_a is a keyed list and list b is a regular list, list_a
= list b is a syntax error.

If the same key value exists in more than one item in a keyed list. the keyed list pseudo-methods always use
the item latest in the list (the one with the highest list index number). Other items with the same key value
are ignored.

Example 1

In the following example, the list named cl is declared to be a keyed list of four-bit uints, with the key being

the list item itself. That is, the key is the value of a four-bit uint. A list of 10 items is built up by generating
items and adding them to the keyed list in the for loop.

130 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

P1647/D0.1

In the if action, the list.key_exists() and list. key_index() keyed list pseudo-methods are used to check for
the existence of an item with the value of 8, and to print the list and the key value’s index if it exists.

<!

extend sys {

lcl: list(key: it) of uint(bits:

run() is also {
var ch: uint(bits: 4);
for i from 0 to 10 {

gen ch;
cl.add(ch) ;
}i
if cl.key exists(8) then {
print cl;
print cl.key index(8);
}i
}i
bi
">
Results
cl = (10 items, dec):
13 5 4 11
cl.key index(8) = 2
Example 2

4);

9 14 3 8 5 4 .0

In the following example, the struct type named s has fields a and b. A keyed list of s structs, with the n field
as the key, is declared in the sys extension, and the list is built by the bl() method.

In the run() method, the list. key_exists() keyed list pseudo-method is used to check whether the value 98
occurs in the n field in any of the structs in the keyed list. It so happens that the n value in the fourth struct in
the list (index 3) is 98. Other keyed list pseudo-methods are then used to print the struct instance and the list

index number of the struct that has n equal to 98.

Note that two list instances, index 12 and index 15, have the value 95 for n. If 95 was entered as the key
value for the list key_exists() and list.key_index() pseudo-methods, those methods would use the last
instance, that is index number 15, and ignore the instance with index 12.

<!

struct s {
n: byte;
b: bit;

bi

extend sys {
Isl: list(key: n) of s;

bl() is {
for 1 from 0 to 15 {
var t: s;
gen t;
sl.add (t) ;
}i
}i

This is an unapproved IEEE Standards Draft, subject to change.

131

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

run() is also {
bl ();
print sl;
var b: bool;
b = sl.key exists(98);
print b;
if b {
print sl.key(98);
print sl.key index(98);

}i
}i
Vi
'>
Results

sl =
item type n b
0. s 109 0
1. S 122 0
2. S 133 1
3. S 98 0
4. s 163 0
5. S 196 0
6. s 159 0
7. S 223 1
8. S 118 1
9. S 192 1
10. S 22 1
11. S 170 1
12. s 95 0
13. S 153 1
14. S 169 0
15. S 95 0

b = TRUE

sl.key(98) = s-@0: s

@tmp

0 n: 98
1 b: 0

sl.key index(98) = 3

Example 3

In the following example, a keyed list is used to model sparse memory. A struct type named location has
address and value fields. A keyed list named locations, with address as the key, is used to hold instances of
location structs generated in the while loop. For each new location struct generated, the list.key_exists()
pseudo-method checks to see if the list already contains an instance with that address value. If it is not
already in the list, the new instance is added to the list.This ensures that the keyed list will contain exactly
LLEN (50) items, all with different address values.

<!

define LLEN 50;

struct location ({
address: uint (bits: 8);
value: int;

bi

132 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

extend sys {
llocations: list (key: address) of location;
post_generate() is also {
var loc: location = new;
while locations.size() < LLEN do {
gen loc;
if locations.key exists(loc.address) == FALSE then ({
locations.add(loc) ;

See Also

“Keyed Lists” on page 85
“Keyed List Pseudo-Methods” on page 618

4.7 Creating Subtypes with When

4.7.1 Overview

The when struct member creates a conditional subtype of the current struct type, if a particular field of the
struct has a given value. This is called “when” inheritance, and is one of two techniques that e provides for
implementing inheritance. The other is called “like” inheritance. When inheritance is described in this sec-
tion. Like inheritance is described in “Defining Structs: struct” on page 118.

When inheritance is the recommended technique for modeling in e. Like inheritance is more appropriate for

procedural testbench programming. When and like inheritance are compared in “Comparison of When and
Like Inheritance” on page 142.

4.7.2 when
Purpose
Create a subtype
Category
Struct member
Syntax

when struct-subtype base-struct-type
{struct-member; ...}

Syntax example:
struct packet ({

len: uint;
good: bool;

This is an unapproved IEEE Standards Draft, subject to change.
133

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

when FALSE'good packet
pkt _msg() is {
out ("bad packet") ;
}i

}i
Vi

Parameters
struct-subtype A subtype declaration in the form #ype-qualifier'field-name.

The type-qualifier is one of the legal values for the field named by field-
name. If the field-name is a boolean field, and its value is TRUE for the sub-
type, you can omit type-qualifier. That is, if “big” is a boolean field, “big” is
the same as “TRUE'big”.

The field-name is the name of a field in the base struct type. Only boolean or
enumerated fields can be used. If the field type is boolean, the type qualifier
must be TRUE or FALSE. If the field type is enumerated, the qualifier must
be a value of the enumerated type. If the type qualifier can apply to only one
field in the struct, you can omit 'field-name.

More than one type-qualifier'field-name combination can be stated, to cre-
ate a subtype based on more than one field of the base struct type.

base-struct-type The struct type of the current struct (in which the subtype is being created).

struct-member Definition of a struct member for the struct subtype. One or more new struct
members can be defined for the subtype.

Description

You can use the when construct to create families of objects, in which multiple subtypes are derived from a
common base struct type.

A subtype is a struct type in which specific fields of the base struct have particular values. For example:

— Ifastruct type named “packet” has a field named “kind” that can have a value of “eth” or “atm”, then
two subtypes of “packet” are “eth packet” and “atm packet”.

— If the “packet” struct has a boolean field named “good”, two subtypes are “FALSE’good packet” and
“TRUE’good packet”.

Subtypes can also be combinations of fields, such as “eth TRUE’good packet” and
“eth FALSE’good packet”.

Struct members you define in a when construct can be accessed only in the subtype, not in the base struct.
This provides a way to define a subtype that has some struct members in common with the base type and all

of its other subtypes, but has other struct members that belong only to the current subtype.

NOTE— Once you have used like inheritance to create a subtype of a base struct type, you cannot
extend the base type using when.

134 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example 1

An instance of the “packet” struct below can have a “kind” of either “transmit” or “receive”. The when con-
struct creates a “transmit packet” subtype. The “length” field and the print() method apply only to packet
instances that have “kind” values of “transmit”.

type packet kind: [transmit, receivel;
struct packet {
kind: packet kind;
when transmit packet
length: int;
print () is {
out ("packet length is: ", length);

Example 2

The “op1” field in the struct definition below can have one of the enumerated “reg_n” type values (REGO,
REGI, REG2, or REG3). The “kind” field can have a value of “imm” or “reg”, and the “dest” field can have
a value of “mm_1” or “reg”.

The “REGO0'op1” subtype specification in the first when construct creates a subtype of instances in which
the “op1” value is “REGO”. This subtype has all the “instr” struct fields plus a “print_op1()” method.

The “reg'kind” subtype specification in the second when construct creates a subtype of instances in which
the “kind” value is “reg”. This subtype also has all the “instr” struct fields plus a “print_kind()” method.

It is necessary to add the “'kind” expression in the second when construct because the “dest” field can also
have a value of reg, which means that “reg” is ambiguous without the further specification of the field name.

type reg n : [REGO, REG1l, REG2, REG3];
struct instr {
%opl: reg_n;
kind: [imm, reg];
dest: [mm 1, regl;
Vi
extend instr {
when REGO'opl instr {
print opl() is {
out ("instr opl is REGO");
}i

}i
when reg'kind instr
print _kind() is {
out ("instr kind is reg");
Vi

i
}i

See Also

— “Defining Structs: struct” on page 118
— “Comparison of When and Like Inheritance” on page 142
— “is [not] a” on page 67

This is an unapproved IEEE Standards Draft, subject to change.
135

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

4.8 Extending When Subtypes

There are two general rules governing the extensions of when subtypes:

— If a struct member is declared in the base struct, it cannot be re-declared in any when subtype, but it
can be extended.
— With the exception of coverage groups and the events associated with them, any struct member
defined in a when subtype does not apply or is unknown in other subtypes, including:
fields
constraints
events
methods
on
expect
assume

4.8.1 Coverage and When Subtypes

All coverage events must be defined in the base struct. Defining the ready3 event within the ADD subtype,
for example, results in a load time error. Coverage groups can be defined in the base struct or in the subtype.

struct operation {
opcode: [ADD, SUB];
opl: uint;
op2: uint;
op3: uint;

event ready is rise(’top.ready’) ;
event ready3 is rise(’top.op3ready’); // Must define here

cover ready is {
item opl;
item op2;
cross opl, op2;
}i
Vi
extend operation {
when ADD operation {
// event ready3 is rise(’top.op3ready’); // Can’'t define here

cover ready3 is {
item opl;
item op2;
item op3;
cross opl, op2, op3;

i

Vi

4.8.2 Extending Methods in When Subtypes

A method defined or extended within a when construct is executed in the context of the subtype and can
freely access the unique struct members of the subtype with no need for any casting.

136 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

When a method is declared in a base type, each extension of the method in a subtype must have the same
parameters and return type as the original declaration. For example, because do_op() is defined with two
parameters in the base type, extending do_op() in the ADD subtype to have three parameters results in a load
time error.

struct operation {
opcode: [ADD, ADD3];
opl: uint;
op2: uint;

do _op(opl: uint, op2: uint): uint is {
return opl + op2;
}i

bi

extend operation {
when ADD3 operation
op3: uint;

// do_op(opl:uint,op2:uint,op3:uint): uint is { // Load time error
// return opl + op2 +0p3;
// }i

}i

Vi

However, if a method is not declared in the base type, each definition of the method in a subtype can have
different parameters and return type. The following variation of the example above loads without error.

struct operation {
opcode: [ADD, ADD3];
opl: uint;
op2: uint;

Vi

extend operation {
when ADD operation {
do op(opl: uint, op2: uint): uint is {
return opl + op2;
}i

}i
when ADD3 operation {
op3: uint;
do_op(opl:uint,op2:uint,op3:uint): uint is {
return opl + op2 +o0p3;

}i
Vi

If more than one method of the same name is known in a when subtype, any reference to that method is
ambiguous and results in a load-time error. In the following example, the legal ethernet packet subtype
inherits two definitions of the method show(). The error is not reported when the ambiguity becomes possi-
ble (when the legal ethernet packet subtype is extended) but when the reference to the show() method is
made.

type protocol: [ethernet, ieee, foreign];
struct packet {

legal: bool;

protocol;

This is an unapproved IEEE Standards Draft, subject to change.
137

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

when legal packet
show() is {out("it is a legal packet")};
}i

when ethernet packet {
show() is {out("it is a ethernet packet")};
}i

when legal ethernet packet(
le:uint;
}i

Vi

extend sys {
packets: list of packet;
post_generate() is {

// for each legal ethernet packet (p) in packets {
// p.show() ; // Load-time error
// }i

}i

}i

To remove the ambiguity from such a reference, use the as_a() type casting operator or the when subtype
qualifier syntax:

p.as_a(legal packet) .show() ;
break on call legal packet.show ()

NOTE— Method calls are checked when the e code is parsed. If there is no ambiguity, the method
to be called is selected and all similar references are resolved in the same manner. In the example
above, the extension to ethernet packet could be placed in a separate file like this:

extend packet {
when ethernet packet {
show() is {out ("it is a ethernet packet")};
}i

Vi

If this file is loaded after the rest of the e code has been loaded, no error is issued because the method call to
p.show() was resolved when the first file was loaded. Any call to p.show() always prints:

it is a legal packet

See Also

— “Defining Structs: struct” on page 118

— “Extending Structs: extend type” on page 121

— “Extending Subtypes” on page 123

— “Creating Subtypes with When” on page 133

— “Rules for Defining and Extending Methods” on page 459

138 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

4.9 Defining Attributes

4.9.1 Overview

You can define attributes that control how a field behaves when it is copied or compared. These attributes
are used by deep_copy(), deep_compare(), and deep_compare_physical().

4.9.2 attribute field

Purpose

Define the behavior of a field when copied or compared

Category
Struct member

Syntax

attribute field-name attribute-name = exp

Syntax example:

attribute channel deep copy = reference;

Parameters
field-name

The name of a field in the current struct.

attribute-name is one of the following:

deep_copy

deep_compare

deep _compare physical
deep_all

exp is one of the following:
normal

reference

ignore

Description

Controls how the field is copied by the deep_copy() routine.

Controls how the field is compared by the deep_compare() rou-
tine.

Controls how the field is compared by the
deep_compare_physical() routine.

Controls how the field is copied by the deep_copy() routine or
compared by the deep_compare() or deep_compare_physical()
routines.

Perform a deep (recursive) copy or comparison.
Perform a shallow (non-recursive) copy or comparison.

Do not copy or compare.

Defines how a field behaves when copied or compared. For a full description of the behavior specified by
each expression, see the description of the “deep copy()” on page 713, “deep compare()” on page 716, or
“deep _compare physical()” on page 720 routine.

The attribute construct can appear anywhere, including inside a when construct or an extend construct.

This is an unapproved IEEE Standards Draft, subject to change.

139

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

To determine which attributes of a field are valid, all extensions to a unit or a struct are scanned in the order
they were loaded. If several values are specified for the same attribute of the same field, the last attribute
specification loaded is the one that is used.

Example

This example shows the effects of field attributes on the deep_copy() and deep_compare() routines. An

instance of “packet”, which contains three fields of type “port” (also a struct type), is deep copied and then

deep compared. Because each of the three “port” fields has a different attribute, the way each field is copied

and compared is also different.

<

struct port {
%$counter: int;

}i

struct packet ({
%¥parent: port;
attribute parent deep all = reference;

%$origin: port;
attribute origin deep copy = ignore;

%dest: port;

attribute dest deep copy = normal;

attribute dest deep compare = ignore;
attribute dest deep compare physical = ignore;

%$length: int;

Vi

extend sys {
run() is also {
var portl: port new port;
var port2: port = new port;
var port3: port new port;

var packetl: packet = new packet with {
.parent = portl;
.origin = port2;
.dest = port3;

}i
var packet2: packet = deep copy(packetl) ;
Out(llll);
out ("parent of packetl is : ", packetl.parent) ;
out ("parent of packetl should be: ",
portl, " original copy");
Out(llll);
out ("parent of packet2 is : ", packet2.parent) ;
out ("parent of packet2 should be: ", portl,
" shallow copy");
O'th(""),’
out ("origin of packetl is : ", packetl.origin);
out ("origin of packetl should be: ", port2,

140 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Result

" original copy");

Out(llll);

out ("origin of packet2 is : ", packet2.origin) ;

out ("origin of packet2 should be: \

a NULL port,
Out(""),’

out ("dest of packetl is
out ("dest of packetl sh

Out(llll);

out ("dest of packet2 is
out ("dest of packet2 sh
port, attribute: c

out(llll);

packet2.dest = new port;

", packetl.dest);

attribute: copy: ignore");

ould be: ", port3);

", packet2.dest) ;

ould be: a different \
opy: normal (deep)");

var 1ldiff: list of string =
deep compare (packetl, packet2, UNDEF) ;

out (1diff, "\n");
out ("Notice a diff in the origin field, \

// force different field value

attribute is normal for deep compare') ;

out ("Notice no diff for the dest field, \

attribute is ignore for deep compare') ;

Out(llll);

Here are the results of running the packet example:

141

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

Running the test

parent of packetl is

parent of packetl should be:

parent of packet2 is

parent of packet2 should be:

origin of packetl is

origin of packetl should be: port-@1 original copy

origin of packet2 is

port-@0

port-@0 original copy

port-@0
port-@0 shallow

port-@l

(a NULL port)

origin of packet2 should be: a NULL port,

attribute: copy:

dest of packetl is

ignore

port-@2

dest of packetl should be: port-@2

dest of packet2 is

dest of packet2 should be:

attribute: copy:

This is an unapproved IEEE Standards Draft, subject to change.

normal

port-@3
a different port,
(deep)

copy

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

23 Differences between packet-@4 and packet-@5

D
25 origin: port-@l l= (a NULL port)

26

27 Notice a diff in the origin field,

28 attribute is normal for deep compare

29 Notice no diff for the dest field,

30 attribute is ignore for deep compare

Line 3-Line 7: Because the parent field has the deep_all attribute reference, the parent field of the packet2
instance contains a pointer to the parent field of packetl (port-@0).

Line 9-Line 14: Because the origin field has the deep_copy attribute ignore, the origin field of the packet2
instance contains a NULL instance of type port.

Line 16-Line 21: Because the dest field has the deep_copy attribute normal, the dest field of the packet2
instance contains a new instance of type port (port-@3).

Line 23-Line 25: These lines show the results of a deep_compare() of packetl and packet2. Note that just
prior to this comparison, a new instance of type port was assigned to the dest field of packet2. However, no
difference is reported for the dest fields of the two packet instances, because the deep_compare attribute of
the dest field is ignore. A difference is reported for the origin field because the deep_compare attribute is
normal and the fields are not the equal.

See Also

— “deep_copy()” on page 713
“deep_compare()” on page 716
“deep_compare physical()”” on page 720

4.10 Comparison of When and Like Inheritance

There are two ways to implement object-oriented inheritance in e:
— Like inheritance is the classical, single inheritance familiar to users of all object-oriented languages.
— When inheritance is a concept introduced by e. It is less familiar initially, but lends itself more easily

to the kind of modeling that people do in e.

This section discusses the pros and cons of both these types of inheritance and recommends when to use
each of them.

4.10.1 Summary of When versus Like

In general, “when” inheritance should be used for modeling all DUT-related data structures. It is superior
from a knowledge representation point of view and from an extensibility point of view. When inheritance
lets you:

— Explicitly reference a field that determines the when subtype

— Create multiple, orthogonal subtypes

— Use random generation to generate lists of objects with varying subtypes
— Easily extend the struct later

142 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Although like inheritance has more restrictions than when inheritance, it is recommended in some special
cases because:

— Like inheritance is somewhat more efficient than when inheritance.
— Generation of objects that use like inheritance can also be more efficient.

4.10.2 A Simple Example of When Inheritance

You can create a when subtype of a generic struct using any field in the struct that is a boolean or enumer-
ated type. This field, which determines the when subtype of a particular struct instance, is called the when
determinant. In the following example, the when determinant is “legal”.

struct packet ({
legal: bool;

when legal packet {
pkt_msg() is {
out ("good packet") ;
}i

}i
i

NOTE— The following syntax is used in this document because it looks closer to the “like”
version:

extend legal packet {...}
This syntax is exactly equivalent to the when construct:
extend packet {when legal packet {...}}

The following example shows a generic packet struct with 3 fields, protocol, size and data, and an abstract
method show(). In this example, the “protocol” field is the determinant of the when version of the packet.
That is, this field determines whether the packet instance has a subtype of “IEEE”, “Ethernet”, or “foreign”.
In this example. the Ethernet packet subtype is extended by adding a field and extending the show() method.

type packet protocol: [Ethernet, IEEE, foreign];
struct packet ({

protocol: packet protocol;

size: int [0..1k];

data([size]: list of byte;

show () is undefined; // To be defined by children
Vi
extend Ethernet packet ({

e field: int;

show() is {out ("I am an Ethernet packet")};

bi

Of course, it is possible for a struct to have more than one when determinant. In the following example, the
Ethernet packet subtype is extended with a field of a new enumerated type, Ethernet op.

type Ethernet op: [el, e2, e3];
extend Ethernet packet { op: Ethernet op; };
extend el Ethernet packet ({

el foo: int;

This is an unapproved IEEE Standards Draft, subject to change.
143

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

show() is {out("I am an el Ethernet packet")};

bi

Because it is possible for a struct to have more than one when determinant, the inheritance tree for a struct
using when inheritance consists of any number of orthogonal trees, each rooted at a separate enumerated or
boolean field in the struct. Figure 4-1 on page 144 shows a when inheritance tree consisting of 3 orthogonal
trees rooted in the legal, protocol, and op fields. Note that the when subtypes that have not been explicitly
defined, such as IEEE packet, exist implicitly.

Figure 4-1—When Inheritance Tree for Packet Struct Subtypes

packet | TRUE
legal
> FALSE
protocol
Y \
IEEE Ethernet foreign
op
/ Y \
el e2 e3

4.10.3 A Simple Example of Like Inheritance

You can create a like child of a generic struct using the like construct. In this example, a child
Ethernet packet is created from the generic struct packet and is extended by adding a field and extending the
show() method.

struct packet {

size: int [0..1k];

data[size]l: list of byte;

show() is undefined; // To be defined by children
}i
struct Ethernet packet like packet ({

e field: int;

show() is {out ("I am an Ethernet packet")};

}i

In the same way, you can create an IEEE packet from packet using like:
struct IEEE packet like packet ({

i field: int;
show() is {out ("I am an IEEE packet")};

144 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

}i
You can also easily create an el _Ethernet packet from Ethernet packet using like inheritance.
struct el Ethernet packet like Ethernet packet
el foo: int;
show() is {out ("I am an el Ethernet packet")};

Vi

In contrast to the when inheritance tree, the like inheritance tree for the packet type is a single tree where
each subtype must be defined explicitly, as shown in Figure 4-2. This difference between the like and when
inheritance trees is the essential difference between like and when inheritance.

Figure 4-2—Like Inheritance Tree for Packet Struct Subtypes

' '

‘Ethemet _packet| ‘ IEEE packet ‘

!

‘ el Ethernet _packetl

4.10.4 Advantages of Using When Inheritance for Modeling

While the like version and the when version look similar, and the “like” version may seem more natural to
people familiar with other object-oriented languages, the “when” version is much better for the kind of mod-
eling typically done in e. There are several reasons for this, which are explained in more detail below:

— “You can refer explicitly to the determinant fields” on page 145

— “You can create multiple orthogonal subtypes” on page 146

— “You can use random generation to create lists of objects with varying subtypes” on page 147
— “You can easily extend the struct later” on page 148

— “You can create a new type by simple extension” on page 148

You can refer explicitly to the determinant fields

In the when version, the determinant of the when is an explicit field. In the like version, there is no explicit
field that determines whether a packet instance is an Ethernet packet, an IEEE packet, or a foreign packet.
The explicit determinant fields provide several advantages:

— Explicit determinant fields are more intuitive.
Fields are more tangible than types and correspond better to the way hardware engineers perceive
architectures. Having a field whose value determines what fields exist under it is familiar to engi-
neers. (It is similar to C unions, for example.)

— You can specify the attributes of determinants that are physical fields.

This is an unapproved IEEE Standards Draft, subject to change.
145

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

If the determinant is a physical field, you probably want to specify its size in bits, the mapping of
enumerated items to values, where it is in the order of fields, and so on. These things are done very
naturally with when inheritance, because the determinant is just another field. For example:

$protocol: packet protocol (bits: 2);

— With like inheritance, you can define the same field as the when determinant, but you also have to tie
it to the type with code equivalent to the following:

var pkt: packet;

case protocol ({
Ethernet {var epkt: Ethernet packet; gen epkt; pkt = epkt;};
IEEE {var ipkt: IEEE packet; gen ipkt; pkt = ipkt;};

}i

There is an added inconvenience of having to generate or calculate protocol separately from the rest
of the packet.

— You can constrain the when determinant.
Using when inheritance, it is very natural to write constraints like these in a test:

keep protocol in [Ethernet, IEEE];
keep protocol != IEEE;
keep soft protocol == select { 20: IEEE; 80: foreign; };

keep packets.is all iterations(.protocol, ...);

Constraining the value of fields in various ways is a main feature of generation. Doing the same with
like inheritance is more complicated. For example, the first constraint above might be stated some-
thing like this:

keep me is an Ethernet packet or me is an IEEE packet;

// This pseudocode is not a legal constraint specification

However, constraints like this can become quite complex in like inheritance. Furthermore, there is
no way to write the last two constraints.

You can create multiple orthogonal subtypes

Suppose each packet (of any protocol) can be either a normal (data) packet, an ack packet or a nack packet,
except that foreign packets are always normal:

type packet kind: [normal, ack, nackl];
extend packet {

kind: packet kind;

keep protocol == foreign => kind == normal;
Vi

extend normal packet { nl: int; };

How do you do this in like inheritance? Disregard for now the issue of extending the packet struct later.
Assume that you know the requirement stated above in advance, and you want to model it using like inherit-
ance in the best possible way.

Here is one way:

struct normal Ethernet packet like Ethernet packet ({
nl: int;

146 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct ack Ethernet packet like Ethernet packet { ... };
struct nack Ethernet packet like Ethernet packet { ... };
struct normal IEEE packet like IEEE packet { ... };

//

This requires eight declarations.
Then, the Ethernet op possibilities must be taken into account:

struct ack_el Ethernet packet like el Ethernet packet { ... }
//

This works, but requires (N1 * N2 * ... * Nd) - IMP) declarations, where d is the number of orthogonal
dimensions, Ni is the number of possibilities in dimension i, and IMP is the number of impossible cases.

Another issue is how to represent the impossible cases.
Multiple inheritance would solve some of these problems, but would introduce new complications.
With when inheritance all the possible combinations exist implicitly, but you do not have to enumerate them
all. It is only when you want to say something about a particular one that you mention it, as in the following
examples:

extend normal IEEE packet { ni field: int; }; // Adds a field

extend ack el Ethernet packet { keep size == 0; };

// Adds a constraint

All in all, the when version is more natural from a knowledge representation point of view, because:

— It is immediately clear from the description what goes with what
— You only need to mention types if you have something to say about them

You can use random generation to create lists of objects with varying subtypes

The job of the generator is to create (in this example) packet instances. By default, all possible packets
should be generated. In both versions, you would create a list of packets. For example:

extend sys { packets: list of packet; };

However, the generator should only generate fully instantiated packets. In the when version, that happens
automatically — there is no other way.

With like inheritance, if you generate a parent struct, only that parent struct is created; none of the like chil-
dren are created. For example, the following gen action always creates a generic packet, never an Ethernet
packet or an IEEE packet:

pkt: packet;
gen pkt;

Thus, in practice you should only generate fields whose type is a leaf in the like inheritance tree. For exam-
ple, you normally write:

p: el Ethernet packet;
gen pj

This is an unapproved IEEE Standards Draft, subject to change.
147

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

You can easily extend the struct later

There are some restrictions on extending structs that have like children. Details are in “Restrictions on Like
Inheritance” on page 149.

You can create a new type by simple extension

You can extend the packet_protocol type and add new members to the packet subtype, for example:

extend packet protocol: [brand new] ;
extend brand new packet {

}i

..new struct members...

Automatically your old environment is able to generate brand new packets. With like inheritance, you have
to find all instances of the procedural generation code and add the new case to the case statement.

4.10.5 Advantages of Using Like Inheritance
Like inheritance is a shorthand notation for a subset of when inheritance. It is restricted but more efficient.
Like inheritance often has better performance than when inheritance for the following reasons:

— Method calling is faster for like inheritance.

— When generation is slower then like generation. This can be important if a large part of the total run
time is attributable to generation.

— When inheritance uses more memory because all of the fields of all of the when subtypes consume
space all the time.

NOTE— If this becomes a problem in a particular design, there is a workaround. Rather than
having many separate fields under the when, put all the fields into a separate struct and put a
single field for that struct under the when. For example, the following coding style may use a
lot of memory if there are many fields declared under the Ethernet packet subtype.
type packet protocol: [Ethernet, IEEE, foreign];
struct packet ({
protocol: packet protocol;
when Ethernet packet
e fieldO: int;
e fieldl: int;
e field2: int;
e field3: int;
//
}i
i

A more efficient coding style is shown below, where a single field is declared under the Ethernet
packet subtype.

type packet protocol: [Ethernet, IEEE, foreign];

148 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct Ethernet packet {
e fieldO: int;
e fieldl: int;
e field2: int;
e field3: int;
!/
}i
struct packet {
protocol: packet protocol;
when Ethernet packet {
e _packet: Ethernet packet;
}i
}i

When to Use Like Inheritance

Like inheritance should be used for modeling only when the performance win is big enough to offset the
restrictions, for example:

Objects that use a lot of memory, such as a register file, where the number of distinct registers is very
large, and for each such register a field of the register type must be generated, for example,

“pc: pc_reg”, “psr: psr_reg” and so on.
Objects that do not require randomization, such as a scoreboard or a memory.

Like inheritance should also be used for non-modeling, programming-like activities, such as implementing a
generic package for a queue.

4.10.6 Restrictions on Like Inheritance
There are three types of restrictions on like inheritance:

— “Restrictions Due to Inherent Differences” on page 149
— “Restrictions Due to Implementation” on page 150
“Generation Restrictions on Like Inheritance” on page 150

4.10.6.1 Restrictions Due to Inherent Differences

Some of the restrictions on like inheritance derive from the inherent differences between when and like
inheritance:

— You cannot explicitly reference the determinant fields.

— Creating multiple, orthogonal subtypes can be difficult with like inheritance.

— Generation of parent does not create like children.

— You cannot add when subtypes to a struct with like children. Similarly, you cannot create a like child
from a struct that has when subtypes. See Example 1 on page 152 for more information.

For more information on the first 3 items in this list, see “Advantages of Using When Inheritance for Model-
ing” on page 145.

This is an unapproved IEEE Standards Draft, subject to change.
149

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

4.10.6.2 Restrictions Due to Implementation

In addition, the following restrictions are implementation-based and may be removed in future releases:

You cannot extend a struct with like children by:
Extending or overriding a TCM, if the TCM has been modified by one of the like children.

Adding fields, unless none of the like children have added fields either explicitly or implicitly.
(Adding an event or a dynamic C routine might implicitly add a field, for example.)

Adding an event, unless none of the like children have added fields either explicitly or implicitly.

Adding or modifying an expect or assume, unless none of the like children have added fields either
explicitly or implicitly.

Adding a dynamic C routine, unless none of the like children have added fields either explicitly or
implicitly.

You cannot modify in a like child a cover group whose event is defined in the parent.

For more information see See “Examples of Like Inheritance Restrictions” on page 152.

4.10.6.3 Generation Restrictions on Like Inheritance

This section describes restrictions on generation when like inheritance is used.

150

Temporary fields in the parent cause problems.
Constraints that have expressions on one side of an equality or inequality create temporary fields.
For example:

keep a > b * ¢c;
gets translated internally into:
keep tmp == b * c; keep a > tmp;

If such constraints are specified in a parent, this may cause a crash during run time. (Note that there
is no problem with constraints in a leaf child.)

<
struct x {
a:uint;
b:uint;

c:uint;

keep a > b * ¢;

}i
struct y like x {

d:uint;

bi

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

extend sys {
x list: list of x;
y list: list of y;
}i

>

A possible workaround is to use explicit temporary variables. That is, replace:
keep a > b * c;

with:

tmp: int;

keep tmp == b * ¢;

keep a > tmp;

Unidirectional constraints in the parent do not induce generation order.

Unidirectional constraints in the parent struct do not induce the expected generation order in the
child.

For example, suppose that the following constraint appears in packet:

keep size == f (b);

During generation of a like-inherited packet struct, such as Ethernet packet, the constraint above
does not cause b to be generated before size. This often leads to a contradiction.

<!

struct x {
size:uint;
b:uint;
keep size == f(b);
f(z:uint): uint is
return z * 5;

struct y like x {
c: uint;

Vi

extend sys {
y list: list of y;
Vi

’

>

This is an unapproved IEEE Standards Draft, subject to change.
151

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

4.10.6.4 Examples of Like Inheritance Restrictions
Restrictions on like inheritance are demonstrated in the following sample e code.

Example 1

You cannot add when subtypes to a struct with like children. Similarly, you cannot create a like child from a
struct that has when subtypes.
< 1
type protocol: [Ethernet, IEEE, foreign];
struct packet {
p: protocol;
data:1list of byte;
Vi
struct tx_packet like packet {
t:uint
bi

extend packet {
// Load-time error

// when Ethernet packet {
// e:uint;
// }i
Vi
Example 2

You cannot extend or override a TCM in a struct that has like children, if the TCM has been modified by one
of the like children.

<

struct packet ({

event clk is rise (’~/top.clk’);
zip()@clk is {wait [4]};

}i

struct tx_packet like packet {
t:uint;
zip()@clk is also {wait [2]};

bi

extend packet {

// Load-time error

// zip()@clk is also {wait [5]};
}i

’>
Example 3

You cannot add fields to a struct that has like children if those children have added fields, either implicitly or
explicitly.

<!

struct packet ({

152 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

event clk is rise (’~/top.clk’);
zip()@clk is {wait [4]};

}i

struct tx_packet like packet {
t:uint;

bi

extend packet {

// Load-time error
// u:uint;

Vi

!>

Example 4

P1647/D0.1

You cannot add an event to a struct that has like children if those children have added fields, either implicitly

or explicitly. It is OK to extend a parent to modify an event.
< I
struct packet ({

event clk is rise (’~/top.clk’)@sim;
zip()@clk is {wait [4]};

bi

struct tx_packet like packet {
t:uint;

extend packet {

event clk is only fall (’~/top.clk’)esim; // No load-time error
// event ready is rise (’~/top.ready’); // Load-time error
Vi

!>

Example 5

You cannot add or modify an expect or assume to a struct that has like children if those children have added

fields, either implicitly or explicitly.
< I
struct packet {

event clk is rise (’~/top.clk’)@sim;
event ready is rise (’'~/top.ready’);
event start count;

event stop_ count;

expect rulel is @start count => {[1..5];eready}eclk;

}i

struct tx_packet like packet {
t:uint;
bi

This is an unapproved IEEE Standards Draft, subject to change.

153

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

extend packet {
// Load-time error for either of the following 2 lines

// expect rulel is only @start count => {[2..6];@ready}@clk;
// expect rule2 is @start count => (eventually @stop count) ;
Vi
'>

Example 6

You cannot modify in a like child a cover group whose event is defined in the parent. It may load without

error, but it will fail in unpredictable ways when run.

<

struct packet {
len: uint;
addr:uint;

event clk is rise (’~/top.clk’)@sim;
event packet sent;

cover packet sent is {
item len;
item addr;
}i
}i
struct tx_packet like packet ({
t:uint;

// cover packet sent is { // Error
// item len;

// item addr;

// item t;

/] Y

}i

4.10.7 A When Inheritance Example

The following example contains the e code fragments in the section titled “A Simple Example of When
Inheritance” on page 143.

<l
type packet protocol: [Ethernet, IEEE, foreign];
struct packet {
protocol: packet protocol;
size: int [0..1k];
data[size]: list of byte;
show () 1is undefined;
}i
extend Ethernet packet {
e field: int;
show() is {out ("I am an Ethernet packet")};
}i
extend IEEE packet {
i field: int;
show() is {out ("I am an IEEE packet")};

154 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

155

}i
extend foreign packet {
f field: int;

show() is {out ("I am a foreign packet")};

Vi

type Ethernet op: [el, e2, e3];

extend Ethernet packet { op:
extend el Ethernet packet ({
el foo: int;
show() is {out ("I am an
}i
extend e2 Ethernet packet {
e2 foo: int;
show() is {out ("I am an
bi
extend e3 Ethernet packet ({
e3 _foo: int;
show() is {out("I am an
Vi
extend sys {
packets: list of packet;

post_generate() is also { for each in packets {.show()}; };

Vi

'>

This is an unapproved IEEE Standards Draft, subject to change.

Ethernet op; };

el Ethernet packet")};

e2 Ethernet packet")};

e3 Ethernet packet")};

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

156 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

5 Units

This chapter describes the constructs used to define units and explains how you can use units to implement a
modular verification methodology. This chapter contains the following sections:

— “Units Overview” on page 157

— “Defining Units and Fields of Type Unit” on page 160

— “Predefined Methods for Any Unit” on page 170

— “Unit-Related Predefined Methods for Any Struct” on page 177
— “Unit-Related Predefined Routines” on page 184

See Also

— Chapter 4, “Structs, Fields, and Subtypes”

5.1 Units Overview

Units are the basic structural blocks for creating verification modules (verification cores) that can easily be
integrated together to test larger and larger portions of an HDL design as it develops. Units, like structs, are
compound data types that contain data fields, procedural methods, and other members. Unlike structs, how-
ever, a unit instance is bound to a particular component in the DUT (an HDL path). Furthermore, each unit
instance has a unique and constant place (an e path) in the runtime data structure of an e program. Both the
e path and the complete HDL path associated with a unit instance are determined during pre-run generation.

The basic runtime data structure of an e program is a tree of unit instances whose root is sys, the only pre-
defined unit in e. Additionally there are structs that are dynamically bound to unit instances. The runtime

data structure of a typical e program is similar to that of the XYZ _router program shown in Figure 5-1.

Figure 5-1—Runtime Data Structure of the XYZ_Router

key
Sys unit instance D

struct instance C)

XYZ_router field)

Come D) ((air D (o D) (o D) (o D)

Each unit instance in the unit instance tree of the XYZ_router matches a module instance in the Verilog
DUT, as shown in Figure 5-2. The one-to-one correspondence in this particular design between e unit
instances and DUT module instances is not required for all designs. In more complex designs, there may be
several levels of DUT hierarchy corresponding to a single level of hierarchy in the tree of e unit instances.

This is an unapproved IEEE Standards Draft, subject to change.
157

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Figure 5-2—DUT Router Hierarchy

top

router i

(cha1|10) (ch:lml) (cha|n2)

Binding an e unit instance to a particular component in the DUT hierarchy allows you to reference signals
within that DUT component using relative HDL path names. When the units are integrated into a unit
instance tree during pre-run generation,the complete path name for each referenced HDL object is deter-
mined by concatenating the complete HDL path of the parent unit to the path of the unit containing the refer-
enced object.

This ability to use relative path names to reference HDL objects allows you to freely change the combination
of verification cores as the HDL design and the verification environment evolve. Regardless of where the
DUT component is instantiated in the final integration, the HDL path names in the verification environment
remain valid.

See Also

— “Units vs. Structs” on page 158
— “HDL Paths and Units” on page 159
“Methodology Recommendations and Limitations” on page 160

5.1.1 Units vs. Structs

The decision of whether to model a DUT component with a unit or a struct often depends on your verifica-
tion strategy. Compelling reasons for using a unit instead of a struct include:

— You intend to test the DUT component both standalone and integrated into a larger system.
Modeling the DUT component with a unit instead of a struct allows you to use relative path names
when referencing HDL objects. When you integrate the component with the rest of the design, you
simply change the HDL path associated with the unit instance and all the HDL references it contains
are updated to reflect the component’s new position in the design hierarchy.

This methodology eliminates the need for computed HDL names (for example, ‘(path_str).sig’),
which impact runtime performance.

— Your e program has methods that access many signals at runtime.

The correctness of all signal references within units is determined and checked during pre-run gen-
eration.

If your e program does not contain user units, the absolute HDL references within structs are also
checked during pre-run generation. However, if your e program does contain user units, the relative
HDL references within structs are checked at run time. In this case, using units rather than structs
can enhance runtime performance.

On the other hand, using a struct to model abstract collections of data, like packets, allows you more flexibil-
ity as to when you generate the data. With structs, you can generate the data either during pre-run generation,
at runtime, or on the fly, possibly in response to conditions in the DUT. Unit instances, however, can only be
generated during pre-run generation, because each unit instance has a unique and constant place (an e path)

158 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

in the runtime data structure of an e program, just as an HDL component instance has a constant place in the
DUT hierarchical tree.Thus you cannot modify the unit tree by generating unit instances on the fly.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is a gener-
ated during pre-run generation it inherits the parent unit of its parent struct. If the struct is dynamically allo-
cated by the new or gen action, then the parent unit is inherited from the struct belonging to the enclosing
method.

See Also

“HDL Paths and Units” on page 159
— “Methodology Recommendations and Limitations™ on page 160

5.1.2 HDL Paths and Units

Relative HDL paths are essential in creating a verification module that can be used to test a DUT component
either standalone or integrated into different or larger systems. Binding an e unit instance to a particular
component in the DUT hierarchy allows you to reference signals within that DUT component using relative
HDL path names. Regardless of where the DUT component is instantiated in the final integration, the HDL
path names are still valid. To illustrate this, let’s look at how the XYZ router (shown in Figure 5-1 on

page 157) is bound to the DUT router (shown in Figure 5-2 on page 158).

To associate a unit or unit instance with a DUT component, you use the hdl_path() method within a keep
constraint. For example, the following code extends sys by creating an instance of the XYZ router unit and
binds the unit instance to the “router i” instance in the DUT.

extend sys {
unit_core: XYZ router is instance;
keep unit core.hdl path() =="top.router i";

bi

Similarly, the following code creates three instances of XYZ channel in XYZ_router and constrains the
HDL path of the instances to be “chan0”, “chanl”, “chan2”. These are the names of the channel instances in
the DUT relative to the “router_i” instance.

unit XYZ router {
channels: list of XYZ channel is instance;
keep channels.size() == 3;
keep for each in channels {.hdl path() ==
append ("chan", index); };

bi

The full HDL path of each unit instance is determined during generation, by appending the HDL path of the
child unit instance to the full path of its parent, starting with sys. sys has the empty full path “”’. Thus the full
path for the XYZ router instance is “top.router i’ and that for the first channel instance is
“top.router_i.chan0”.

The full path for a unit instance is used to resolve any internal HDL object references that contain relative
HDL paths.

By default, the do_print() method of any unit prints two predefined lines as well as the user-defined fields.
The predefined lines display the e path and the full HDL path for that unit. The e path line contains a hyper-
link to the parent unit.

This is an unapproved IEEE Standards Draft, subject to change.
159

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

5.1.3 Methodology Recommendations and Limitations

Each unit instance has a unique and constant place (an e path) in the runtime data structure of an e program
that is determined during pre-run generation. Thus you cannot modify the unit tree created during pre-run
generation by generating unit instances on the fly or making assignments of new values to existing unit
instances. You can generate fields of unit type dynamically. However, when you generate a field of type unit,
either on-the-fly or during pre-run generation, you must constrain the field to refer to an existing unit
Instance.

The following limitations are implied by the nature of unit instances and fields of unit type:

Unit instances cannot be the object of a new or gen action or a call to copy().

Unit instances cannot be placed on the left-hand-side of the assignment operator.

List methods which alter the original list, like list.add() or list.pop() cannot be applied to lists of unit
instances.

Units are intended to be used as structural components and not as data carriers. Therefore, using
physical fields in unit instances, as well as packing or unpacking into unit instances is not recom-
mended. Unpacking into a field of type unit when the field is NULL causes a runtime error.

All instances of the same unit type must be bound to the same kind of HDL component.

If you intend to create a modular verification environment, the following recommendations are also impor-

tant:

Avoid setting global configuration options with set_config(). Instead, for numeric settings, use
set_config_max().

Avoid global changes to the default packing options. Instead, define unit-specific options in the top-
level unit and access them from lower-level units with get_enclosing_unit().

References to HDL objects should be placed in unit methods. If you need to access HDL objects
from struct methods, you may declare additional methods in a unit. Because these access methods
will probably be one line of e code, you can declare them as inline methods for maximum effi-
ciency. For example, to access the following inline method declared in a struct,

get _reset value() is inline { return 'reset'; };

you would use

get enclosing unit (CONTROLLER) .get reset value() ;

In structs that may be dynamically associated with more than one unit, it is recommended to use
computed path names.

Pre-run generation is performed before creating the stubs file. To minimize the time required to cre-
ate a stubs file, you can move any pre-run generation that is not related to building the tree of unit
instances into the procedural code, preferably as an extension of the run() method of the appropriate
structs. For example, you probably want to avoid generating thousands of packets in order to create
a stubs file.

5.2 Defining Units and Fields of Type Unit

The following sections describe the constructs for defining units and fields of type unit:

160

“unit” on page 161

“field: unit-type is instance” on page 165
“field: unit-type” on page 166

“field: list of unit instances” on page 167
“field: list of unit-type” on page 169

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

5.2.1 unit

Purpose

Define a data struct associated with an HDL component or block
Category

Statement

Syntax

unit unit-type [like base-unit-type] §{
[unit-member; ...]}

Syntax example:

unit XYZ channel ({
event external clock;
event packet start is rise('valid out')@sim;
event data passed;

verilog variable 'valid_out' using wire;

data_ checker () @external clock is {
while 'valid out' == 1 {
wait cycle;
check that 'data out' == 'data in';
}i

emit data_passed;

}i

on packet start ({
start data_checker () ;
}i

This is an unapproved IEEE Standards Draft, subject to change.
161

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
unit-type The type of the new unit.
base-unit-type The type of the unit from which the new unit inherits its members.

unit-member; ... The contents of the unit. Like structs, units can have the following types of
members:

¢ data fields for storing data

* methods for procedures

¢ cvents for defining temporal triggers

¢ coverage groups for defining coverage points

* when, for specifying inheritance subtypes

¢ declarative constraints for describing relations between data fields
* on, for specifying actions to perform upon event occurrences

¢ expect, for specifying temporal behavior rules

Unlike structs, units can also have verilog members. This capability lets you
create Verilog stub files for modular designs.

The definition of a unit can be empty, containing no members.

Description

Units are the basic structural blocks for creating verification modules (verification cores) that can easily be
integrated together to test larger designs. Units are a special kind of struct, with two important properties:

— Units or unit instances can be bound to a particular component in the DUT (an HDL path).
— Each unit instance has a unique and constant parent unit (an e path). Unit instances create a static
tree, determined during pre-run generation, in the runtime data structure of an e program.
Because the base unit type (any_unit) is derived from the base struct type (any_struct), user-defined units
have the same predefined methods. In addition, units can have verilog members and have several special-

ized predefined methods.

A unit type can be extended or used as the basis for creating unit subtypes. Extended unit types or unit sub-
types inherit the base type’s members and contain additional members.

See “Units vs. Structs” on page 158 for a discussion of when to use units instead of structs.
Example
This example defines a unit type XYZ_router.

<!

unit XYZ router {

debug mode: bool;

162 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

channels: list of XYZ channel is instance;
keep channels.size() == 3;

keep for each in channels {
.hdl path() == append("chan", index);
.router == me };

event pclk is rise('clock')@sim;

mutex checker () epclk is {
while ('packet valid') {
var active channel: int = UNDEF;
for each in channels ({
if ' (it) .valid out' {
check that active channel == UNDEF else
dut_error ("Violation of the mutual \
exclusion by channels ",

active channel, " and ", index);
active_ channel = index;
check that active channel == 'addr' else

dut_error ("Violation of the \
correspondence between active \
channel and selected address");
i
}i
wait cycle;
}i
}i

// transaction-level checking and coverage
!current packet: XYZ packet;

event packet in is rise('packet valid’)@pclk;
on packet in {

current packet = new XYZ packet;

current packet.addr = 'addr';

current packet.len = 'len';

out (current packet.get unit());

start sample data() ;

start mutex checker() ;

}i

sample data() @pclk is {
if (debug_mode) {
out ("Start of sampling");
}i

for j from 1 to current packet.len {
wait cycle;
current packet.data.add('data');

}i

if (debug_mode) {
out ("End of sampling: packet data ",

current packet.data) ;
i

// Don’t read parity yet

This is an unapproved IEEE Standards Draft, subject to change.
163

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

event packet out is fall('packet valid')epclk;

expect (@packet in => { [current packet.len];
cycle epacket out}) epclk
else dut_error ("Violation of expected packet duration");

event log is @packet out;

on packet out {
current packet.parity = 'parity';

// Check the last byte of the data
current_packet.kind =
('data' == current packet.parity calc()) ? good : bad;

if (debug_mode) {
print current_ packet;

i
if (current packet.kind == good) then {
check that 'err' == 0 else dut_error ("Err != 0 \
for good pkt");
}
else {
check that 'err' == 1 else dut_error ("Err != 1 \
for bad pkt");
bi

i

event channel data_passed;
expect (@packet out => [1] @channel data passed) @pclk
else dut_error ("Channel data pass and packet out \
aren’t synchronous") ;

cover log using text = "End of package transaction" is
item addr : uint (bits : 2) = current packet.addr
using illegal = (addr == 3);
item len : uint (bits : 6) = current packet.len
using ranges={
range ([0..3], "short") ;

range ([4..15], "medium") ;
range ([16..63],"long") ;

item kind : XYZ kind type = current packet.kind ;
item err : bool = 'err' ;

See Also

— “Units Overview” on page 157
— Chapter 4, “Structs, Fields, and Subtypes”

164 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

5.2.2 field: unit-type is instance
Purpose

Define a unit instance field

Category

Unit member

Syntax

field-name[: unit-type] is instance
Syntax example:

cpu: XYZ cpu is instance;

Parameters
field-name The name of the unit instance being defined.
unit-type The name of a unit type.
If the field name is the same as an existing type, you can omit the
“: unit-type” part of the field definition. Otherwise, the type specifi-
cation is required.
Description

Defines a field of a unit to be an instance of a unit type. Units can be instantiated within other units, thus cre-
ating a unit tree. The root of the unit tree is sys, the only predefined unit in e.

A unit instance has to be bound to a particular component in the DUT (an HDL path). Each unit instance
also has a unique and constant place (an e path) in the runtime data structure of an e program that is deter-
mined during pre-run generation.

Notes

Instantiating a unit in a struct causes a compile-time error; units can only be instantiated within

another unit.

— The do-not-generate operator (!) is not allowed with fields of type unit instance. Unit instances can
be created only during pre-run generation.

— Itis not recommended to use the physical field operator (%) with fields of type unit instance.

Example
This example creates an instance of the XYZ_router unit type in sys.

<l
extend sys {
mntr: monitor;
unit_core: XYZ router is instance;
keep unit core.hdl path() =="top.router i";
keep unit core.debug mode == TRUE;

This is an unapproved IEEE Standards Draft, subject to change.
165

P1647/D0.1

setup() is also {
set _check("...", WARNING) ;
set config(cover, mode, on);
}i
Vi

">

See Also

— “Units Overview” on page 157

— “field: unit-type” on page 166

— “field: list of unit-type” on page 169

— Chapter 4, “Structs, Fields, and Subtypes”

5.2.3 field: unit-type
Purpose

Define a field of type unit
Category

Struct or unit member
Syntax

[!] field-name|: unit-type]
Syntax example:

extend XYZ router{
!current_chan: XYZ channel;

Parameters

DRAFT STANDARD FOR e LANGUAGE REFERENCE

! Denotes an ungenerated field. If you generate this field on the fly, you
must constrain it to an existing unit instance or a runtime error is issued.

field-name The name of the field being defined.

unit-type The name of a unit type.

If the field name is the same as an existing type, you can omit the
“: unit-type” part of the field definition. Otherwise, the type specifica-

tion is required.

Description

Defines a field of unit type. A field of unit type is always either NULL or a reference to a unit instance of a

specified unit type.

Notes

— Itis not recommended to use the physical field operator (%) with fields of type unit.
— If afield of type unit is generated it must be constrained to an existing unit instance.

166 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example

P1647/D0.1

In the example below, the XYZ_router is extended with an ungenerated field of type XYZ _channel, a unit
type. It remains NULL until the “mutex_checker()”” method is called. In this method the “current chan”
field is used as a pointer to each of the unit instances of type XYZ _channel in the channels list.

extend XYZ router (
!current chan: XYZ channel;
mutex checker () epclk is
while ('packet valid') {
var active_channel: int = UNDEF;
for each in channels {
current chan = it;

if '(current chan).valid out' {
check that active channel == UNDEF else
dut_error ("Violation of the mutual exclusion by \
channels ", active_channel, " and ", index);
active_channel = index;
check that active_channel == 'addr' else

dut_error ("Violation of the correspondence \
between active channel and selected address");

}i
}i
wait cycle;
}i
}i
}i

See Also

— “field: unit-type is instance” on page 165
— “field: list of unit-type” on page 169
— Chapter 4, “Structs, Fields, and Subtypes”

5.2.4 field: list of unit instances
Purpose

Define a list field of unit instances

Category

Struct or unit member

Syntax

name:[[length-exp]]: list of unit-type is instance
Syntax example:

channels: list of XYZ channel is instance;

This is an unapproved IEEE Standards Draft, subject to change.

167

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
name The name of the list being defined.
length-exp An expression that gives the initial size for the list.
unit-type A unit type.
is instance Creates a list of unit instances.
Description

Defines a list field of unit instances. A list of unit instances can only be created during pre-run generation
and cannot be modified after it is generated.

Notes

— List operations, such as list.add() or list.pop(), that alter the list created during pre-run generation
are not allowed for lists of unit instances.
— Itis not recommended to use the physical field operator (%) with lists of unit instances.

Example
This example creates a list of unit instances of type XYZ_channel in XYZ _router.

<l

unit XYZ channel ({
event external clock;
event packet_start is rise('valid_out')@sim;
event data_passed;

verilog variable 'valid out' using wire;

data_checker () @external clock is {
while 'valid out' == 1 {
wait cycle;
check that 'data out' == 'data_in';
}i

emit data passed;

}i

on packet start {
start data_ checker() ;
i

}i

unit XYZ router {
channels: list of XYZ channel is instance;
keep channels.size() == 3;

i
See Also

— “field: unit-type” on page 166
— “field: unit-type is instance” on page 165
— Chapter 4, “Structs, Fields, and Subtypes”

168 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

5.2.5 field: list of unit-type
Purpose

Define a list field of type unit
Category

Struct or unit member

Syntax

[!name[[length-exp]]: list of unit-type
Syntax example:

var currently valid channels: list of XYZ channel;

Parameters
! Do not generate this list.
name The name of the list being defined.
length-exp An expression that gives the initial size for the list.
unit-type A unit type.
Description

Defines a list field of type unit.

NOTE— It is not recommended to use the physical field operator (%) with lists of unit type.

Example

P1647/D0.1

This example creates a list of unit type XYZ _channel, which is used to create a list of currently valid chan-

nels.

<|
unit XYZ channel ({
router: XYZ router;

unit XYZ router {
channels: list of XYZ channel is instance;

keep channels.size () —- 3;

validity checker() is {

var currently valid channels: list of XYZ channel;

for each in channels ({
if ' (it).valid in' {
currently valid channels.add(it) ;
}i
i
print currently valid channels;

}i

This is an unapproved IEEE Standards Draft, subject to change.

169

P1647/D0.1
Vi
">

See Also

— “field: unit-type” on page 166
— “field: unit-type is instance” on page 165
— Chapter 4, “Structs, Fields, and Subtypes”

5.3 Predefined Methods for Any Unit

DRAFT STANDARD FOR e LANGUAGE REFERENCE

There is a predefined generic type any_unit, which is derived from any_struct. any_unit is the base type
implicitly used in user-defined unit types, so all predefined methods for any_unit are available for any user-
defined unit. The predefined methods for any_struct are also available for any user-defined unit.

The predefined methods for any unit include:
— “hdl_path()” on page 170
— “full_hdl path()” on page 172
— “e_path()” on page 173
— “agent()” on page 174
— “get_parent_unit()” on page 176

See Also

“Unit-Related Predefined Methods for Any Struct” on page 177
“Unit-Related Predefined Routines” on page 184

5.3.1 hdl_path()
Purpose
Return a relative HDL path for a unit instance
Category
Predefined pseudo-method for any unit
Syntax
[unit-exp.]hdl_path(): string
Syntax example:
extend dut_error struct {
write() is first {
var channel: XYZ channel =
source_struct () .try enclosing unit (XYZ channel) ;
if (channel != NULL) {

out ("Error in XYZ channel: instance ",
channel.hdl path()) ;

170 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
Description

Returns the HDL path of a unit instance. The most important role of this method is to bind a unit instance to
a particular component in the DUT hierarchy. Binding an e unit or unit instance to a DUT component allows
you to reference signals within that component using relative HDL path names. Regardless of where the
DUT component is instantiated in the final integration, the HDL path names are still valid. The binding of
unit instances to HDL components is a part of the pre-run generation process and must be done in keep con-
straints.

Although absolute HDL paths are allowed, relative HDL paths are recommended if you intend to follow a
modular verification strategy.

This method always returns an HDL path exactly as it was specified in constraints. If, for example, you use
a macro in a constraint string, then hdl_path() returns the original and not substituted string.

Notes

— All instances of the same unit must be bound to the same kind of HDL components.
— You cannot constrain the HDL path for sys.

Example 1

This example shows how you can use relative paths in lower-level instances in the unit instance tree. To cre-
ate the full HDL path of each unit instance, its HDL path is prefixed with the HDL path of its parent
instance. In this example, because the HDL path of sys is “””, the full HDL path of “unit_core” is
“top.router_i”. The full HDL path of “extra_channel” is “top.router_i.chan3”.

extend sys {
unit core: XYZ router is instance;
keep unit_core.hdl path() == "top.router i";

Vi

extend XYZ router (
extra channel: XYZ channel is instance;
keep extra channel.hdl path() == "chan3";

Vi

Example 2

This example shows how hdl_path() returns the HDL path exactly as specified in the constraint. Thus the
first print action prints “*TOP.router i”. The second print action, in contrast, accesses “top.router_i.clk”.

verilog import macros.v;
extend sys {
unit core: XYZ router is instance;
keep unit core.hdl path() == "‘TOP.router i";
run() is also {
print unit core.hdl path();
print ' (unit core) .clk';

}i

This is an unapproved IEEE Standards Draft, subject to change.
171

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Vi

Result

unit core.hdl path() = "‘TOP.router i"
"top.router i.clk’ =0

See Also

“HDL Paths and Units” on page 159
— “full _hdl path()” on page 172
— ‘e _path()” on page 173

5.3.2 full_hdI_path()

Purpose

Return an absolute HDL path for a unit instance
Category

Predefined method for any unit

Syntax

[unit-exp.]full_hdl_path(): string

Syntax example:

out ("Mutex violation in ", get unit().full hdl path());};
Parameters
unit-exp An expression that returns a unit instance. If no expression is specified, the current

unit instance is assumed.

Description

Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational
messages. Like the hdl_path() method, this method returns the path as originally specified in the keep con-
straint, without making any macro substitutions.

Example
This example uses full_hdl_path() to display information about where a mutex violation has occurred.

extend XYZ router {
!current chan: XYZ channel;
mutex_checker () @pclk is {
while ('packet valid') {
var active channel: int = UNDEF;
for each XYZ channel (current chan) in channels
if ' (current_chan) .valid out' (
if active channel != UNDEF then ({
out ("Mutex violation in ",

172 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

get_unit () .full hdl path());};
active channel

}i
}i
wait cycle;
}i
i
}i

Result

Mutual exclusion violation in top.router i

See Also

“hdl_path()” on page 170
— ‘e _path()” on page 173

5.3.3 e_path()

Purpose

Returns the location of a unit instance in the unit tree

Category

Predefined method for any unit
Syntax

[unit-exp.]e_path(): string

Syntax example:

out ("Started checking ", get unit().e_path());

Parameters

index;

P1647/D0.1

unit-exp An expression that returns a unit instance. If no expression is specified, the current unit

instance is assumed.

Description

Returns the location of a unit instance in the unit tree. This method is used mainly in informational mes-

sages.

Example
<l
unit ex u {
run() is also {

inst = get_unit().e _path();
var inst: string;

inst = get _unit().e _path();
out ("ex instance:

This is an unapproved IEEE Standards Draft, subject to change.

173

, inst);

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

unit top u {

exlist [10]: list of ex u is instance;
Vi
extend sys {

top: top_u is instance;
bi

">

Result
ex instance: sys.top.exlist [0]
ex instance: sys.top.exlist[1]
ex instance: sys.top.exlist[2]
ex instance: sys.top.exlist[3]
ex instance: sys.top.exlist [4]
ex instance: sys.top.exlist [5]
ex instance: sys.top.exlist [6]
ex instance: sys.top.exlist[7]
ex instance: sys.top.exlist[8]
ex instance: sys.top.exlist[9]

See Also

“full_hdl path()” on page 172
— “hdl_path()” on page 170

5.3.4 agent()

Purpose

Maps the DUT’s HDL partitions into e code
Category

Predefined pseudo-method for any unit
Syntax

keep [unit-exp.]agent() == string;

Syntax example:

router: XYZ router is instance;
keep router.agent () == "Verilog";

174 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters

unit-exp An expression that returns a unit instance. If no expression is specified,
the current unit instance is assumed.

string One of the following predefined agent names: verilog, vhdl, mti_vlog,
mti_vhdl, ncvlog and nevhdl. Specifying the agent name as verilog or
vhdl is preferred because it makes the e code portable between simula-
tors. In contrast, if a unit is bound to a specific agent, for example to
mti_vhdl, an error is issued if it is ported to NC Simulator. The pre-
defined names are case-insensitive; in other words, verilog is the same
as Verilog.

Description

Specifying an agent identifies the simulator that is used to simulate the corresponding DUT component.
Once a unit instance has an explicitly specified agent name then all other unit instances instantiated within it
are implicitly bound to the same agent name, unless another agent is explicitly specified.

An agent name may be omitted in a single-HDL environment but it must be defined implicitly or explicitly
in a mixed HDL environment for each unit instance that is associated with a non-empty hdl_path(). If an
agent name is not defined for a unit instance with a non-empty hdl_path() in a mixed HDL environment, an
error message is issued.

Given the hdl_path() and agent() constraints, a correspondence map is established between the unit
instance HDL path and its agent name. Any HDL path below the path in the map is associated with the same
agent unless otherwise specified. This map is further used internally to pick the right adapter for each
accessed HDL object.

It is possible to access Verilog signals from a VHDL unit instance code and vice-versa. Every signal is
mapped to its HDL domain according to its full path, regardless of the specified agent of the unit that the sig-
nal is accessed from.

When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the agent
string is exactly as specified in the corresponding constraint.
Notes

— Agents are bound to unit instances during the generation phase. Consequently, there is no way to
map between HDL objects and agents before generation. As a result of this limitation, HDL objects
in a mixed Verilog/VHDL environment cannot be accessed before generation from sys.setup() or
from the command line.

— An unsupported agent name causes an error message during the test phase.

Example 1

In the following example, the driver instance inherits an agent name implicitly from the enclosing router unit
instance.
extend sys {
router: XYZ_ router is instance;
keep router.agent () == "Verilog";

keep router.hdl path() == "top.rout";

This is an unapproved IEEE Standards Draft, subject to change.
175

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Vi

extend XYZ router (

driver: XYZ router driver is instance;

Example 2

In this example, the signal ‘top.rout.packet valid’ is sampled using the Verilog PLI because the path
“top.rout” is specified as a Verilog path. In contrast, the signal ‘top.rout.chan.mux.data out’ is sampled
using a VHDL foreign interface because the closest mapped path is “top.rout.chan” and it is mapped as a
VHDL path.

extend sys {
router: XYZ_ router is instance;
keep router.agent () == "Verilog";
keep router.hdl path() == "top.rout";
unit XYZ router {

channel: XYZ channel is instance;

keep channel.agent () == "VHDL";
keep channel.hdl path() == "chan";
run() is also {

print 'packet valid';
}i
Vi
unit XYZ channel ({
run() is also {

print 'mux.data out';

5.3.5 get_parent_unit()

Purpose

Return a reference to the unit containing the current unit instance
Category

Predefined method for any unit

176 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax
[unit-exp.]get_parent_unit(): unit type
Syntax example:

out (sys.unit core.channels[0] .get parent unit());

Parameters
unit-exp An expression that returns a unit instance. If no expression is specified, the current
unit instance is assumed.
Description

Returns a reference to the unit containing the current unit instance.

Example

out(sys.unit_core.channels[0].get_parent_unit())
XYZ_router-@2

See Also

— “get_unit()” on page 177
— “get_enclosing_unit()” on page 180
“try_enclosing_unit()” on page 182

5.4 Unit-Related Predefined Methods for Any Struct

The predefined methods for any struct include:
— “get_unit()” on page 177
— “get_enclosing_unit()” on page 180
— “try_enclosing_unit()” on page 182

— “set_unit()” on page 183

See Also

“Predefined Methods for Any Unit” on page 170
— “Unit-Related Predefined Routines” on page 184

5.4.1 get_unit()
Purpose

Return a reference to a unit
Category

Predefined method of any struct

This is an unapproved IEEE Standards Draft, subject to change.
177

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax
[exp.]get_unit(): unit type

Syntax example:

out ("Mutex violation in ", get_unit().full_hdl_path());};
Parameters
exp An expression that returns a unit or a struct. If no expression is specified, the current struct

or unit is assumed.

Description

When applied to an allocated struct instance, this method returns a reference to the parent unit—the unit to
which the struct is bound. When applied to a unit, it returns the unit itself.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is gener-
ated during pre-run generation it inherits the parent unit of its parent struct. If the struct is dynamically allo-
cated by the new or gen action, then the parent unit is inherited from the struct the enclosing method belongs
to. See Example 3 on page 179 for an illustration of this point.

This method is useful when you want to determine the parent unit instance of a struct or a unit. You can also
use this method to access predefined unit members, such as hdl_path() or full_hdl_path(). To access user-
defined unit members, use get_enclosing_unit(). See Example 1 on page 178 for an illustration of this
point.

Example 1

This example shows that get_unit() can access predefined unit members, while get_enclosing_unit() must
be used to access user-defined unit members.

struct instr {

%opcode : cpu_opcode ;
%opl : reg ;
kind : [imm, regl;
post_generate() is also
-- get_unit () .print msg() ; -- COMPILE-TIME ERROR

get_enclosing unit (XYZ cpu) .print_msg() ;
out ("Destination for this instruction is ",
get_unit () .hdl path()) ;

}i
}i
unit XYZ cpu {
instrs([3] : 1list of instr;
print msg() is {out(”Generating instruction for \
XYZ cpu...");};

bi

extend sys {
cpul: XYZ cpu 1is instance;
keep cpul.hdl path()=="'TOP/CPUl";

Vi

178 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
">

Result

Generating instruction for XYZ cpu...
Destination for this instruction is ‘TOP/CPU1l
Generating instruction for XYZ cpu...
Destination for this instruction is ‘TOP/CPUL
Generating instruction for XYZ cpu...
Destination for this instruction is ‘TOP/CPU1l

Example 2

The first call to get_unit() below shows that the parent unit of the struct instance “p” is sys. The second call
shows that the parent unit has been changed to “XYZ_router”.

var p: XYZ_packet = new
out(p.get_unit())

sys-@0
p.set_unit(sys.unit_core)
out(p.get_unit())

XYZ router-@1

Example 3

In this example, the trace_inject() method displays the full HDL path of the “XYZ_dIx” unit (not the
“XYZ _tb” unit) because “instr_list” is generated by the run method of “XYZ dIx”.

extend sys {
tb: XYZ tb is instance;
keep tb.hdl path()=="'TOP/tb";
Vi
unit XYZ tb {
dlx: XYZ dlx is instance;
keep dlx.hdl path()=="dlx cpu";
linstr list: list of instruction;
debug mode: bool;
Vi
unit XYz dlx {
run() is also {
gen sys.tb.instr list keeping { .size() < 30;};
}i

}i
extend instruction {
trace inject() is {
if get _enclosing unit (XYZ tb) .debug mode == TRUE ({
out ("Injecting next instruction to ",
get_unit () .full_hdl_path());

Result

sys.tb.instr_list[0].trace_inject()
Injecting next instruction to ‘'TOP/tb.dlx_cpu

This is an unapproved IEEE Standards Draft, subject to change.
179

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “get_parent unit()” on page 176
— “get_enclosing_unit()” on page 180
— “try_enclosing_unit()” on page 182

5.4.2 get_enclosing_unit()

Purpose

Return a reference to nearest unit of specified type
Category

Predefined pseudo-method of any struct

Syntax

[exp.]get_enclosing_unit(unit-type: exp): unit instance
Syntax example:

unpack (p.get_enclosing unit (XYZ router) .pack _config,
'data', current packet) ;

Parameters

exp An expression that returns a unit or a struct. If no expression is specified, the current
struct or unit is assumed.

NOTE— 1If get_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.

Description

Returns a reference to the nearest higher-level unit instance of the specified type, allowing you to access
fields of the parent unit in a typed manner.

You can use the parent unit to store shared data or options such as packing options that are valid for all its
associated subunits or structs. Then you can access this shared data or options with the get_enclosing_unit()
method.

Notes

— The unit type is recognized according to the same rules used for the is a operator. This means, for
example, that if you specify a base unit type and there is an instance of a unit subtype, the unit sub-
type is found.

— If a unit instance of the specified type is not found, a runtime error is issued.

180 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example 1

In the following example, get_enclosing_unit() is used to print fields of the nearest enclosing unit instances
of type “XYZ _cpu” and “tbench”. Unlike get unit(), which returns a reference only to its immediate parent
unit, get_enclosing_unit() searches up the unit instance tree for a unit instance of the type you specify. A
runtime error is issued unless an instance of type “XYZ_cpu” and an instance of type “tbench” are found in
the enclosing unit hierarchy.

struct instr {

%opcode : cpu_opcode ;
%opl : reg ;
kind : [imm, regl;

post_generate() is also {
out ("Debug mode for CPU is ",
get_enclosing unit (XYZ cpu) .debug mode) ;
out ("Memory model is "
get enclosing unit (tbench) .mem model) ;
}i
Vi
unit XYZ cpu {
instr: instr;
debug mode: bool;
}i
unit tbench {
cpu: XYZ cpu is instance;
mem model: [small, bigl;

bi

extend sys {
tb: tbench is instance;
Vi

Result
Debug mode for CPU is FALSE
Memory model is small
Example 2
extend XYZ router (

pack config:pack options;

keep pack config == packing.low big endian;
Vi
Result

var p: XYZ packet = new
print p.data

p.data = (empty)
out (p.get_unit())
sys-@0

p.set_unit (sys.unit core)
out (p.get_unit())
XYZ router-@l
unpack (p.get_enclosing unit (XYZ router) .pack config, data, p)
109876543210987605432109876054321 O| +0

This is an unapproved IEEE Standards Draft, subject to change.
181

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

00001101000011000000101100001010]

|
data |
|5432109876543210| +32
+ |
[0000111100001110
+ |

See Also

— “get_unit()” on page 177

— “set_unit()” on page 183

— “try_enclosing_unit()” on page 182
— “get_parent unit()” on page 176

5.4.3 try_enclosing_unit()

Purpose

Return a reference to nearest unit instance of specified type or NULL
Category

Predefined method of any struct

Syntax

[exp.]try_enclosing_unit(unit-type: exp): unit instance

Syntax example:

var MIPS := source_ struct().try enclosing unit (MIPS) ;
Parameters
exp An expression that returns a unit or a struct. If no expression is specified, the current

struct or unit is assumed.

NOTE— If try_enclosing_unit() is called from within a unit of the same
type as exp, it returns the present unit instance and not the parent unit
instance.

unit-type The name of a unit type or unit subtype.
Description

Like get_enclosing_unit(), this method returns a reference to the nearest higher-level unit instance of the
specified type, allowing you to access fields of the parent unit in a typed manner.

Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified

type is found. Instead, it returns NULL. This feature makes the method suitable for use in extensions to glo-
bal methods such as dut_error_struct.write(), which may be used with more than one unit type.

182 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example

<l
extend dut_error struct {
write() is also {

var MIPS := source struct () .try enclosing unit (MIPS) ;
if MIPS != NULL then {
out ("Status of ", MIPS.e path(),

" at time of error:");
MIPS.show_status() ;

See Also

— “get_unit()” on page 177
— “get_enclosing_unit()” on page 180
— “get_parent_unit()” on page 176

5.4.4 set_unit()
Purpose
Change the parent unit of a struct
Category
Predefined method of any struct
Syntax
[struct-exp.]set_unit(parent: exp)
Syntax example:

p.set_unit (sys.unit_core)

Parameters

struct-exp An expression that returns a struct. If no expression is specified, the current struct is
assumed.

parent An expression that returns a unit instance.

Description
Changes the parent unit of a struct to the specified unit instance.
NOTE— This method does not exist for units because the unit tree cannot be modified.

Example

var p: XYZ packet = new
out (p.get_unit())
sys-@0

This is an unapproved IEEE Standards Draft, subject to change.
183

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

p.set_unit (sys.unit_ core)
out (p.get_unit())
XYZ router-@l

5.5 Unit-Related Predefined Routines

The predefined routines that are useful for units include:

— “set_config_max()” on page 184
— “get_all units()” on page 186

5.5.1 set_config_max()

Purpose

Increase values of numeric global configuration parameters

Category

Predefined routine

Syntax

set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])
Syntax example:

set_config_max(memory, gc_threshold, 100m);

184 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
category Is one of the following: cover, gen, memory, and run.

option The valid cover option is:
* absolute_max_buckets.
The valid generate options are:

¢ absolute max_list size
* max_depth

* max_structs
The valid memory options are:

* gc threshold
* gc increment
* max_size

* absolute max_size
The valid run option is:
¢ tick max

The options are described in “set_config()” on page 766.

value The valid values are different for each option and are described in
“set_config()” on page 766.

Description
Sets the numeric options of a particular category to the specified maximum values.

If you are creating a modular verification environment, it is recommended to use set_config_max() instead
of set_config() in order to avoid possible conflicts that may happen in an integrated environment. For exam-
ple, if two units are instantiated and both of them attempt to enlarge the configuration value of
absolute_max_size then the recommended way to it is via set_config max, so that no unit decrements the
value set by another one.

Example

<l
extend sys {
setup() is also
set config max(memory, gc_ threshold, 100m) ;
}i
}i

>

See Also
“Predefined Methods for Any Unit” on page 170

This is an unapproved IEEE Standards Draft, subject to change.
185

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

— “Unit-Related Predefined Methods for Any Struct” on page 177

5.5.2 get_all_units()
Purpose
Return a list of instances of a specified unit type
Category
Routine
Syntax
get_all_units(unit-type: exp): list of unit instances
Syntax example:
print get all units(XYZ_channel);
Parameters
unit-type The name of a unit type. The type must be defined or an error occurs.
Description

This routine receives a unit type as a parameter and returns a list of instances of this unit type as well as any
unit instances contained within each instance.

Example

This example uses get_all_units() to print a list of the instances of XYZ_router. Note that the display also
shows that this instance of XYZ_router contains “channels”, which is a list of three unit instances.

<l
unit XYZ router {
channels: list of XYZ channel is instance;

keep channels.size() == 3;

keep for each in channels
.hdl path() == append("chan", index);
.router == me

i
}i
unit XYZ channel ({
router:XYZ router;
}i
extend sys {

router:XYZ router is instance;

run() is also {
print get all units(XYZ router);

186 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

i
bi
'>
Result
get _all units(XYZ router) =
item type channels
0. XYZ router (3 items)
See Also

“Predefined Methods for Any Unit” on page 170
— “Unit-Related Predefined Methods for Any Struct” on page 177

This is an unapproved IEEE Standards Draft, subject to change.

187

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

188 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6 e Ports

This document describes ports, an e unit member that enhances the portability and inter-operability of verifi-
cation environments by making separation between an e unit and its interface possible.

This document discusses the following topics:

— “Introduction to e Ports” on page 189

— “Using Simple Ports” on page 192

— “Using Buffer Ports” on page 199

— “Using Event Ports” on page 201

— “Defining and Referencing Ports” on page 202

— “Port Attributes” on page 210

— “Using Port Values and Attributes in Constraints” on page 231
— “Buffer Port Methods” on page 232

— “Multi-Value Logic (MVL) Methods for Simple Ports” on page 235
— “Methods for Simple Ports” on page 244

— “Global MVL Routines” on page 247

6.1 Introduction to e Ports

A port is an e unit member that makes a connection between an e unit and its interface to another internal or
external entity. There are two ways to use ports:

— Internal ports (e2e ports) connect an e unit to another e unit.
— External ports connect an e unit to a simulated object.

External ports are a generic way to access simulated objects of various kinds. An external port is bound to a
simulated object, for example an HDL signal in the DUT. Then all access to that signal is made via the port.
The port can be used to access a different signal simply by changing the binding; all the code that reads or
writes to the port remains the same. Similarly, port semantics remain the same, regardless of what simulator
is used.

NOTE— In this document, “simulator” means any hardware or software agent that runs in parallel
with an e program, and models the behavior of any part of the design under test (DUT) or its
environment.

6.1.1 Advantages of Using Ports

Although previous HDL access mechanisms are still supported, ports have the following advantages over
the old access mechanisms:

— Ports support modularity and encapsulation by explicitly declaring interfaces to e units.

— They are typed.

— They improve performance of accessing DUT objects with configurable names.

— They can pass not only single values but also other kinds of information, such as events and queues.

— They can be accompanied in e with generic or simulator-specific attributes that let you specify infor-
mation needed for enhanced access to DUT objects.

— They are suitable for use with a publicly available procedural External Simulator Interface (ESI).

— Some new simulator interfaces, such as SystemC, require the use of ports.

This is an unapproved IEEE Standards Draft, subject to change.
189

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

6.1.2 Creating Port Instances
Port type is defined by three aspects:

— The kind of port, either simple port, buffer port, or event port:
¢ Simple ports access data directly.
¢ Buffer ports implement an abstraction of queues with blocking get and put.
* Event ports transfer events between e units or between an e unit and a simulator.

— Direction, either input or output (or inout for simple and event ports)
— Data element, the e type that can be passed through this port

You can instantiate ports only within units. Like units, port instances are generated during prerun generation
and cannot be created, modified or removed during a run. When you instantiate a port, you must specify:

— A unique instance name
— The port type (direction, port kind, and a kind-specific type specifier)

The generic syntax for ports is as follows:

port-instance-name: [direction] port-kind of [type-specifier] is instance;
NOTE— Event ports do not allow a type specifier.
For example, the following unit member creates a port instance:

data_in: in buffer port of packet is instance;

where:

— The port instance name is data_in.

— The port kind is a buffer port.

— The port direction is input.

— The data element the port accepts is “packet”.

As another example, the following line creates a list of simple ports which each pass data of type bit:

ports: list of simple port of bit is instance;

6.1.3 Using Ports

A port’s behavior is influenced by port attributes, such as hdl_path() or bind(), which are applied to port
instances using pre-run generation keep constraints. For example, the following lines of code create a port
named “data” and connect (bind) it to an external simulator-related object whose HDL pathname is “data”.

data: inout simple port of list of bit is instance;
keep bind(data, external) ;
keep data.hdl path() == "data";

Each port kind has predefined methods that you use to access the port values. For example, buffer ports have
a predefined method put(), which writes a value onto an output port:

190 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

data_out: out buffer port of cell is instance;
drive all() esys.any is ({
var stimuli: cell;
var counter: int=0;
while counter < cells {
wait [1]*cycle;
gen stimuli;
data out.put (stimuli) ;
counter+=1;

i

6.1.4 Ports Example

The e code in this section shows examples of instantiating and using buffer ports. An output buffer port and
an input buffer port are created, the ports are connected together, and data elements of type “cell” are gener-
ated and transmitted from the output buffer port to the input buffer port.

1 struct cell {

2 header[2] : list of byte;

3 data[50] : list of byte;

4 };

5

6 unit trans {

7 data_out: out buffer_ port of cell is instance;
8 lcells : int;

9 keep cells == 100;

10 drive all() esys.any is ({

11 var stimuli: cell;

12 var counter: int=0;

13 while counter < cells {

14 wait [1]*cycle;

15 gen stimuli;

16 data out.put (stimuli) ;

17 counter+=1;

18 }i

19 }i

20 };

21

22 unit rec {

23 data in: in buffer port of cell is instance;
24 keep data in.buffer size() == 20;
25 get_all() @sys.any is

26 while TRUE ({

27 print data in.get () ;

28 }i

29 }i

30 };

31 extend sys{

32 transmitter: trans is instance;

33 receiver: rec is instance;

34 keep bind(transmitter.data out, receiver.data in);
35 run() is also {

36 start transmitter.drive all();

37 start receiver.get all();

38 };

This is an unapproved IEEE Standards Draft, subject to change.
191

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

39 } H
Line 1 - Line 4 : define “cell”, the data element that is passed by the output buffer port.
Line 7 creates a port instance named “data_out”, whose type is “out buffer port of cell”.

Line 10 - Line 19 : define a TCM that generates a variable named “stimuli” of type “cell” every cycle until
100 have been generated. This variable is written to the output buffer port by a predefined buffer port TCM,
put(), in Line 16.

Line 23 creates a port instance named “data_in” of type “in buffer port of cell”. This port complements the
“data_out” port created in the trans unit, and is used to receive cell data written to the data_out port.

Line 24 constrains the maximum number of cells that can be held in the port queue to 20.

Line 25 - Line 29 : define a TCM that retrieves and prints, one by one, the cells that have been placed on the
port queue by the drive all() TCM. Another predefined buffer port method, get(), is used to do this.

Line 32 - Line 34 : create instances of the “rec” and “trans” units and connect the data_out port with the
data_in port.

6.2 Using Simple Ports

You can use simple ports to transfer one data element at a time to or from either an external simulated object,
such as a Verilog register, a VHDL signal or a SystemC method, or an internal object (another e unit). A
simple port’s direction can be either input, output or inout.

Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists
of scalar types, including MVL data elements. Currently there is no support for passing structs or lists of
struct through external simple ports.

You can read or write port values using the $ port access operator. To access multi-value logic (MVL) on
simple ports, you can either declare a port’s data element to be mvl or list of mvl, or you can use the MVL
methods. See “Accessing Simple Ports and Their Values” on page 193 and “Multi-Value Logic (MVL) on
Simple Ports” on page 194 for more information.

Internal and external ports must have a bind() attribute that defines how they are connected. In addition, you
can use the delayed() attribute to control whether new values are propagated immediately or at the next tick.

An external simple port must have an hdl path() attribute to specify the name of the object that it is con-
nected to. In addition, an external simple port can have several additional attributes that enable continuous
driving of external signals.

See “Port Attributes” on page 210 for more information on attributes for simple ports.

See Also

— “(@sim Temporal Expressions with External Simple Ports” on page 196
— “An Internal Simple Ports Example” on page 197

— “An External Simple Ports Example” on page 198

— “simple_port” on page 202

— “any_simple port, any buffer port, any event port” on page 207

192 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.2.1 Accessing Simple Ports and Their Values

Ports are containers, and the values they hold are separate entities from the port itself. The $ access operator
distinguishes port value expressions from port reference expressions.

The $ access operator, for example p$, is used to access or update the value held in a simple port p. When
used on the right-hand side, p$ refers to the port’s value. On the left-hand side of an assignment, p$ refers to
the value’s location, so an assignment to p$ changes the value held in the port.

Without the § operator an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

NOTE— You cannot apply the $ access operator to an item of abstract type, such as
any_simple_port. This type does not have any access methods. The expression “port_arg$ == 0" in
the following code causes a syntax error.

foo tem (port_arg : any simple port)eclk is {
if (port arg$ == 0) then { -- syntax error
out (sys.time, " Testing port logic comparison.");
}i

}i

Examples of Accessing Port Values
print p$; Prints the value of a simple port, p.

NOTE— Compare with “print p”’, which prints information
about port p.

p$=0; Assigns the value 0 to a simple port, p.

NOTE— Compare with “pref = NULL”, which modifies a
port reference so that it does not point to any port instance.

force p$ = 0; Forces a simple external port to 0.

print g$[1:0]; Prints the two least-significant bits of the value of q.

print q$[2:2]; Prints the third least-significant bit of the value of q.

print sys.pp$; Prints the value of port sys.pp.

print sys.plist[0]$; Prints the value of port plist[0] from a list of ports, plist.
print blist$[0..1]; Prints the first two elements of a list value. blist is defined as:

blist: in simple port of list of bit is instance;

print listb1[0]$[1]; Prints the second bit in a list value of the first element in a list of
ports. Could be written (listbl[0])$[1]. listbl is defined as:

listbl: list of in simple port of list of bit is
instance;

NOTE— Indexing, slicing, and field access for a port value on the left-hand-side of an expression
are currently not supported.

This is an unapproved IEEE Standards Draft, subject to change.

193

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Examples of Accessing a Port

print p; Prints the information about port p. Port p is defined as:

p: simple port of int (bits:8) is instance;
Ip=S5; An error, as it is an attempt to assign incompatible types.

keep q ==p; q refers to the port instance p. Port reference q is defined as:

!q: simple port of int (bits:8);

r=gq; Port reference r refers to the port instance p too. It is defined
as:

var r: any simple port;
keep plist.size() == 3; plist is defined as:

plist: list of in simple port of int
(bits:8) is instance;

keep plist[0] == p; plist[0] refers to the port instance p.
keep plist[1] == p2; plist[1] refers to the port instance p2. p2 is defined as:

p2: simple port of int (bits:8) is
instance;

keep plist[2] == q; plist[2] refers to the port instance p (because of q).

See Also

“Multi-Value Logic (MVL) on Simple Ports” on page 194
— “simple port” on page 202

6.2.2 Multi-Value Logic (MVL) on Simple Ports

There are two ways to read and write multi-value logic on simple ports:

— Define numeric ports (uint, int, and so on) and use the predefined MVL methods described in “Multi-
Value Logic (MVL) Methods for Simple Ports” on page 235 to read and write values to the port.

— Define ports of type mvl or list of mvl and use the $ access operator to read and write values to the
port.

Ports of type mvl or list of mvl (MVL ports) allow easy transformation between exact e values and multi-
value logic, which is useful for communicating with objects that sometimes model bit values other than 0 or
1 during a test. Otherwise, using numeric ports is preferable, since numeric ports allow keeping the port val-
ues in a bit-by-bit representation, while MVL ports require having an e list for a multi-value logic vector.
The enumerated type mvl is defined as:

type mvl: [MVL_U, MVL_X, MVL_0, MVL_1, MVL Z, MVL_W,MVL_L, MVL_H, MVL N]

Notes

— You will get a syntax error if you use the Verilog comparison operators (=== or !==) with either
numeric ports or MVL ports. These operators can be used only with the tick access syntax.

194 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— Not all supported simulators need all the potential MVL values. All nine values are supported only
for VHDL simulations. For Verilog simulations, only four values (MVL U, MVL X, MVL 0,
MVL 1) are supported.

Example 1: Numeric Port

This example shows how tick access notation translates to MVL methods, assuming the following numeric
port declaration:

data: inout simple port of int is instance;
keep bind (data, external);

keep data.hdl path() == "data";
d: int;
d ="'data’; d = data$;
'data' = 32'bz; data.put_mvl list(32'bz);

check that'data@x'==0; check that data.get mvl list().has(it == MVL_X) == FALSE;
check that data.has_x() == FALSE;
d ='data[31:10]@z"; d=mvl to_int(data.get mvl list(), {MVL _Z})[31:0];
Example 2: MVL Port

This example shows how tick access notation translates to use of an MVL port, assuming the following
MVL port declaration:

data: inout simple port of list of mvl is instance;

keep bind (data, external);
keep data.hdl path() == "data";

check that 'data@x' == 0; check that data$.has(it == MVL_X} == FALSE;
check that data.has_x() == FALSE;
'data’ = 32'bz; data$ = 32'bz;
Example 3: Checking Numeric Ports for MVL Values
If you have several ports that pass numeric data elements of different sizes, you might want to create a
generic method that checks these ports for MVL values such as MVL X or MVL Z. For example, you can

create a generic method for the following ports:

byte port: in simple port of byte is instance;
uint port: in simple port of uint is instance;

The correct way to create a generic method is to pass the port value, not the port itself, to the method. You
must convert the port value to the desired type before passing it. For example:

x_chk(m: list of mvl) is inline ({
check that m.has (it == MVL X) == FALSE else

This is an unapproved IEEE Standards Draft, subject to change.
195

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

dut error ("Bus has value of X!");
}i
run() is also {
x_chk (byte port.get mvl list());
x_chk (uint_port.get_mvl_list());

bi
See Also

“Multi-Value Logic (MVL) Methods for Simple Ports” on page 235
— “Methods for Simple Ports” on page 244
— “Global MVL Routines” on page 247

6.2.3 @sim Temporal Expressions with External Simple Ports

When you specify an event port, you cause e to be sensitive to the corresponding HDL signal during the
entire simulation session. This might result in some unnecessary runtime performance cost if you need e to
be sensitive only in certain scenarios. In such cases you can use an external simple port in temporal expres-
sions with @sim, using the following syntax:

[change|rise|fall](simple-port$)@sim;
Normally you use this syntax in wait actions. For example:

transaction_complete: in simple port of bit is instance;
keep bind(transaction complete, external);

write transaction(data: list of byte) @clk$ is {

data ports = data;
wait rise(transaction complete$)@sim;

Vi

This syntax might be also useful if you are interested in accessing a value of a signal, in addition to knowing
if it changed. For example:

counter: in simple port of uint is instance;
keep bind(counter, external) ;

event counter_ change is change (counters)@sim;
on counter change {
if (counter$ >= 255) {out("Counter is full")};

bi

Example

unit collector {
pclkl: in simple port of bit is instance;
dataport: in simple port of byte is instance;

read packet (pclk: in simple port of bit) @sys.any is {
var p: packet = new;
var len := dataports;
for j from 0 to len - 1 {
wait fall (pclk$)@sim;
p.data.add(dataport$s) ;

}i

196 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

sys.packets.add(p) ;
i
run() is also {

start read_packet (pclkl) ;
}i

Vi

Trying to apply the @sim operator to a bound internal port causes an error when the corresponding temporal
expression is evaluated, which occurs at runtime.

See Also

— “simple port” on page 202

6.2.4 An Internal Simple Ports Example
This example shows two units communicating through simple ports, with no external ports.

unit ul {
pl: in simple port of int(bits:64) is instance;
// Define a simple port
doit ()@sys.any is {
for i from 1 to 10 do {
wait cycle;
print pls; // Do a get from the port
wait cycle;
}i
stop_run() ;
}i
run() is also {
start doit () ;
}i

}i
unit u2 {
p2: out simple port of int(bits:64) is instance;
// Define another simple port
doit ()esys.any is
var v: int (bits:64) ;
while TRUE
gen v;
p2s = v;
wait cycle;
wait cycle;
}i
}i
run() is also {
start doit();
}i

Vi
extend sys {
ul: ul is instance;
u2: u2 is instance;
keep bind(ul.pl, u2.p2); // Bind the two ports

}i

This is an unapproved IEEE Standards Draft, subject to change.
197

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

6.2.5 An External Simple Ports Example

The following e code describes a testbench component that drives data into an encoder and checks the out-
put of the encoder for errors.

In this example the clk, data length, data, address and rq ports are external ports associated with various
Verilog signals. The name of the simulator is established by the pre-run generation constraint on Line 67
(keep e.agent() == “verilog”). You can re-direct the access to another simulator (and possibly, to another
modeling language) by changing this constraint.

Verilog objects associated with the external ports are registers (clk, temp address, data width) and nets
(data). On the e side, each port’s behavior corresponds to its specified type—event port, simple port, or
buffer port. The event port clk, in Line 3, is used to synchronize the e program with the simulator. Port rq, in
Line 21, illustrates the declaration of a buffer port. The other ports read and write the specified Verilog
objects directly.

The postfix $ access operator, for example clk$ or data$ in Line 29 and Line 32, is used to access the event
associated with an event port or to read or write to a simple port. Access to a buffer port, on the other hand,
is performed using the predefined methods for buffer ports, get() and put(), as shown in Line 42.

1 unit encoder {

2

3 clk: in event port is instance;

4 keep bind(clk, external) ;

5 keep clk.hdl path() == "clk";

6

7 data length: in simple port of uint is instance;

8 keep bind(data length, external);

9 keep data length.hdl path() == "data width";

10

11 data: inout simple port of list of bit is instance;
12 keep bind(data, external);

13 keep data.hdl path() == "data";

14 keep data.verilog wire() == TRUE; -- simple port attribute
15 keep data.declared range() == "[31:0]"; -- simple port attribute
16

17 address: in simple port of uint is instance;

18 keep bind(address, external) ;

19 keep address.hdl path() == "PRIO/temp address";
20

21 rqg: in buffer port of bool is instance;

22 keep bind(rqg, external);

23 keep rg.buffer size() == 8; -- buffer port attribute
24 keep rg.hdl path() == "rqg";

25

26 data_list: list of bit;

27 keep data list.size() < 32;

28

29 inject () @clk$ is {

30 for j from 0 to 15 {

31 gen data_list;

32 data$ = data list;

33 wait cycle;

34 }i

35 stop_run() ;

36 %

37

198 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

38 checker () @clk$ is {

39 while TRUE ({

40 wait cycle;

41

42 if not rg.get() {

43 check that address$ == 0;

44 check that data$.has (it != 0)== FALSE;
45 } else {

46 check that addresss$!= 0;

47 var mask: uint = 0x10000000;

48 for {var i: byte = data_length$ - 1; i>0; i -= 1} {
49 if (data$[31:0] & mask) != 0 {
50 check that address$ == 1i;
51 break;

52 }i

53 mask >>= 1;

54 };

55 }i

56 }i

57 }i

58 run() is also f{

59 start inject();

60 start checker() ;

61 },'

62 },'

63

64 extend sys {

65 e: encoder 1s instance;

66 keep e.hdl path() == "~/priority encoder";
67 keep e.agent () == "verilog";

68

69 };

6.3 Using Buffer Ports

You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in FIFO order. When the queue is full, write access to the port is
blocked. When the queue is empty, read access to the port is blocked.

The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size may be set to 0 for rendezvous ports. See “buffer size()” on page 217 and “Rendezvous-
Zero Size Buffer Queue” on page 200 for more information.

A buffer port’s direction can be either input or output. Inout is not supported. Internal buffer ports can trans-
fer data elements of any type..

You can read or write port values using the buffer port’s predefined get() and put() methods. These methods
are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.

Buffer ports must have a bind() attribute that defines how they are connected. In addition, you can use the
delayed() attribute to control whether new values are propagated immediately or at the next tick. The
pass_by_pointer() attribute controls how data elements of composite type are passed. See “Port Attributes”
on page 210 for more information on these attributes.

This is an unapproved IEEE Standards Draft, subject to change.

199

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “An Internal Buffer Ports Example” on page 200

— “buffer_port” on page 204

— “any_simple port, any buffer port, any event port” on page 207
— “Methods for Simple Ports” on page 244

6.3.1 Rendezvous-Zero Size Buffer Queue

In rendezvous-style handshaking protocol, access to a port is blocked after each put() until a subsequent
get() is performed, and access is blocked after each get() until a subsequent put() is performed.

This style of communication is easily achieved by using buffer ports with a data queue size of 0. The follow-
ing example shows how this is done.

Example

unit consumer {
in p: in buffer port of atm cell is instance;
bi

unit producer {
out_p: out buffer port of atm cell is instance;
Vi

extend sys {
consumer: consumer is instance;
producer: producer is instance;
keep bind(producer.out p, consumer.in p);
keep producer.out_p.buffer size() == 0;

Vi

See Also

“buffer port” on page 204

6.3.2 An Internal Buffer Ports Example
This example shows two units communicating through buffer ports, with no external ports.

unit producer {
p: out buffer port of atm cell is instance;
producer () @sys.any is {
var cell: atm cell;
for i from 1 to 100 do {

gen cell;

p.put (cell) // Waits if the buffer is full
}i
stop_run() ;

}i
}i
unit consumer {
p: in buffer port of atm cell is instance;
consumer () @sys.any is {
while (TRUE) do {
var cell: atm cell;
cell = p.get(); // Waits if the buffer is empty

200 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

// Inject the cell into the DUT
}i
}i
}i
extend sys {
consumer: consumer 1s instance;
producer: producer is instance;
keep bind(producer.p, consumer.p);
keep producer.p.buffer size() == 10;

}i

6.4 Using Event Ports

You can use event ports to transfer events between two e units or between an e unit and an external object.
An internal event port’s direction can be either input, output or inout.

You can read or write port values using the $ port access operator. See “Accessing Event Ports” on page 201
for more information.

Internal and external ports must have a bind() attribute that defines how they are connected.

An external port must have an hdl path() attribute to specify the name of the object that it is connected to.
The edge() attribute for an external input event port specifies the edge on which an event is generated.

See “Port Attributes” on page 210 for more information on these attributes.

See Also

— “event_port” on page 205
— “any_simple port, any buffer port, any event port” on page 207

6.4.1 Accessing Event Ports

The $ access operator is used to access the event associated with an event port. An expression of type
event_port without the ‘$’ operator refers to the port itself and not to its event.

Example 1

emit me.ep$;

monitor ()eeps is { ... };
wait @lep[0]$;

event epl is @ep$;

wait cycle @ep$;

expect @a => { ... }@ep$;

Example 2

This example shows how to connect event ports, using a bind() constraint, and how to use the $ operator to
access event ports in event contexts.

unit ul {
in ep: in event port is instance;
teml ()@in_ep$ is {
//
}i

This is an unapproved IEEE Standards Draft, subject to change.
201

P1647/D0.1

Vi

unit u2 {

out_ep: out event port is instance;

event clk is @sys.any;
counter: uint;

on clk {
counter = counter + 1;
if counter %10 == {

emit out ep$
}i
}i
}i

extend sys {
ul: ul is instance;
u2: u2 is instance;
keep bind(ul.in_ep,u2.out_ep) ;

Vi
See Also
— “Methods for Simple Ports” on page 244
6.4.2 Defining and Referencing Ports
This section covers the following topics:
— “simple port” on page 202

— “buffer_port” on page 204
— “event_port” on page 205

DRAFT STANDARD FOR e LANGUAGE REFERENCE

— “any_simple port, any buffer port, any event port” on page 207

— “port$” on page 209

6.4.2.1 simple_port

Purpose

Access other port instances or external simulated objects directly

Category
Unit member

Syntax

port-instance-name: [list of] [direction] simple_port of element-type is instance;

Syntax example:

data: in simple port of byte is instance;

202 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
port-instance-name A unique identifier you can use to refer to the port or access its value.

direction One of in, out, or inout. The default is inout, which means that you
can read values from and write values to this port. For an in port, you
can only read values from the port, and for an out port you can only
write values to the port.

element-type Any predefined or user-defined e type except a port type or a unit
type.

Description

You can use simple ports to transfer one data element at a time to or from either an external simulated object
or an internal object (another e unit).

Internal simple ports can transfer data elements of any type. External ports can transfer scalar types and lists
of scalar types, including MVL data elements. Currently there is no support for passing structs or lists of
struct through external simple ports.

The port can be configured to access a different signal simply by changing the binding; all the code that
reads or writes to the port remains the same. Similarly, port semantics remain the same, regardless of what
simulator is used. Binding is fixed during generation.

A simple port’s direction can be either input, output, or inout. The direction specifier in a simple port is not a
when subtype determinant. This means, for example, that the following type:

data: simple port of byte is instance;
is not the base type of:

data: out simple port of byte is instance;
Furthermore, the following types are fully equivalent:

data: simple port of byte is instance;
data: inout simple port of byte is instance;

Thus, the following constraint is an error because the two types are not equivalent:

data: out simple port of byte is instance;
ldata_ref: simple port of byte; // means inout simple port of byte
keep data ref == data; // error

Example

<!

unit encoder {

data: out simple port of int(bits:64) is instance;
keep bind(data, external);
keep data.hdl path() == "data";

drive()@sys.any is {
var v: int (bits:64) ;
while TRUE

This is an unapproved IEEE Standards Draft, subject to change.
203

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

gen v;
datas = v;
wait cycle;
wait cycle;

}i

}i

run() is also {

start drive() ;

}i

See Also

— “Using Simple Ports” on page 192

— “any_simple port, any buffer port, any event port” on page 207
— “Multi-Value Logic (MVL) Methods for Simple Ports” on page 235
— “Global MVL Routines” on page 247

— “Methods for Simple Ports” on page 244

6.4.2.2 buffer_port
Purpose
Implement an abstraction of queues with blocking get and put
Category
Unit member
Syntax
port-instance-name: [list of] direction buffer_port of element-type is instance;
Syntax example:
rg: in buffer port of bool is instance;

Parameters
port-instance-name A unique identifier you can use to refer to the port or access its value.

direction One of in or out. There is no default. For an in port, you can only read
values from the port, and for an out port you can only write values to
the port. See “Buffer Port Methods” on page 232 for information on
how to read and write buffer ports.

element-type Any predefined or user-defined e type except a unit or a port type.

Description
You can use buffer ports to insert data elements into a queue or extract elements from a queue. Data is

inserted and extracted from the queue in FIFO order. When the queue is full, write access to the port is
blocked. When the queue is empty, read access to the port is blocked.

204 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size may be set to 0 for rendezvous ports.

You can read or write port values using the buffer port’s predefined get() and put() methods. These methods
are time-consuming methods (TCMs). Use of the $ port access operator with buffer ports is not supported.

A typical usage of a buffer port is in a producer and consumer protocol, where one object puts data on an
output port at possibly irregular intervals, and another object with the corresponding input port reads the

data at its own rate.

Example

unit encoder ({

rqg: in buffer port of bool is instance;
keep rg.buffer size() == 8; -- buffer port attribute

Vi

See Also

“Using Buffer Ports” on page 199
“Buffer Port Methods™ on page 232
— “Methods for Simple Ports” on page 244

6.4.2.3 event_port
Purpose
Transfer events between units or between simulators and units
Category
Unit member
Syntax
event-port-field-name: [list of| [direction] event_port is instance;
Syntax example:
clk: in event port is instance;

Parameters
event-port-field-name A unique identifier you can use to refer to the port or access its value.

direction One of in, out, or inout. The default is inout, which means that
events can be both emitted and sampled on the port. For a port with
direction in, events can only be sampled. For a port with direction
out, events can only be emitted.

Description

You can use event ports to transfer events between two e units or between an e unit and an external object.

This is an unapproved IEEE Standards Draft, subject to change.

205

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

You can read or write port values using the $ port access operator. See “Accessing Event Ports” on page 201
for more information.

An internal event port’s direction specifier can be either input, output or inout. The direction specifier is not
a when subtype determinant. This means, for example, that the following type

clk: event port is instance;
is not the base type of

clk: out event port is instance;
Furthermore, the following types are fully equivalent:

clk: event port is instance;
clk: inout event port is instance;

Notes

— Currently, external out and inout event ports are unsupported.

— The on struct member for event ports is not supported.

— Coverage on event ports is currently unsupported.

— It is impossible to specify a temporal formula (like “event port is ...””) for definition of an out event
port.

In order to use any of the above unsupported capabilities (except the first in the list) it is possible to define an
additional event and connect it to the event port as follows:

ep: in event port is instance;
keep bind(ep, external) ;
event e is @ep$;

Example 1

References to event ports are supported. In the following example, current clk is an event port reference.

unit u {
clks: list of in event port is instance;
events: list of out event port is instance;

Vi

extend u {
lcurrent clk: in event port;
keep current clk == clks[0];

}i

Example 2

You can pass an event port as a parameter to a TCM. In this example, each event in a list of events is passed
as a parameter to the drive() method.

extend u {

drive (ep: out event port) @current clks is {
emit ep$;
}i

206 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

run() is also {
for each in events do
start drive (it) ;

Example 3

P1647/D0.1

The attribute hdl_path() must be specified for external event ports. In the following example, only a “cti”
simulator can emit ext_ep. Presumably there is some DUT event related to a simulated item “~/top_s/

transaction_done”.
unit u {
ext ep: in event port is instance;

keep bind(ext ep,external) ;
keep ext _ep.hdl _path() == "transaction done";

i
extend sys {
u: u is instance;
keep u.hdl path() == "top s";

Vi

See Also

— “Using Event Ports” on page 201
“Methods for Simple Ports” on page 244

6.4.2.4 any_simple_port, any_buffer_port, any_event_port
Purpose

Reference a port instance

Category

Unit field, variable or method parameter

Syntax

[! | var] port-reference-name: [direction] port-kind [of element-type|
[! | var] port-reference-name: any-port-kind

Syntax example:

!last_printed_port: any_buffer port;
!in int buffer port ref: in buffer port of int;

This is an unapproved IEEE Standards Draft, subject to change.

207

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
port-reference-name A unique identifier.
direction One of in, out, or, for simple ports and event ports, inout.
port-kind One of simple_port, buffer_port or event_port.
any-port-kind One of any_simple_port, any_buffer_port or
any_event_port.
element-type Required if port-kind is simple_port or buffer_port.
Description

Port instances may be referenced by a field, a variable, or a method parameter of the same port type or of an
abstract type:

— any simple port
— any buffer port
— any_event_port.

Abstract port types reference only the port kind, not the port direction or data element. Thus, a method
parameter of type any_simple_port accepts all simple ports, including, for example:

data_length: in simple port of uint is instance;
data: inout simple port of list of bit is instance;

If a port reference is a field, then it must be marked as non-generated or it must be constrained to an existing
port instance. Otherwise, a generation error results.

Port binding is allowed only for port instance fields, not for port reference fields. Trying to apply a keep
bind() constraint to a port reference results in an error.

Notes

— You cannot apply the $ access operator to an item of type any_simple_port or any_event_port.
Abstract types do not have any access methods. For example, the expression “port_arg$ == 0 in the
following code causes a syntax error.

foo tem (port arg : any simple port)eclk is {
if (port_arg$ == 0) then { -- syntax error
out (sys.time, " Testing port logic comparison.");
}i
}i

You cannot use an abstract type in a port instance; you must specify the element type.

Example

The print_port() method in the following example can be called with any buffer port. The iterate() method
shows an alternative way to print a list of ports.

unit u {
plist: list of in buffer port of int is instance;
!last_printed port: any buffer port; // A field, so must be
// non-generated

208 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

print port (p: any buffer port) is { // A method parameter

print p; // Prints the port's e path, agent name,
last printed port = p;
}i
iterate() is {
for each in plist
in int buffer port ref = it;
print port (in int buffer port ref);
}i
}i
bi
6.4.2.5 port$
Purpose

Read or write a value to a simple port or event port
Category

Operator

Syntax

exp$

Syntax example:

pS = 32'bz; // Assigns an mvl literal to the port 'p'
Parameters
exp An expression that returns a simple port or event port
instance.
Description

P1647/D0.1

and so on

The $ access operator is used to access or update the value held in a simple port or event port. When used on
the right-hand side, p$ refers to the port’s value. On the left-hand side of an assignment, p$ refers to the

value’s location, so an assignment to p$ changes the value held in the port.

Without the § operator an expression of any type port refers to the port itself, not to its value. In particular,

an expression without the $ operator can be used for operations involving port references.

NOTE— You cannot apply the $ access operator to an item of type any_simple_port or
any_event_port. Abstract types do not have any access methods. For example, the expression

“port_arg$ == 0” in the following code causes a syntax error.

foo tem (port_arg : any simple port)eclk is {
if (port arg$ == 0) then { -- syntax error

out (sys.time, " Testing port logic comparison.");

This is an unapproved IEEE Standards Draft, subject to change.
209

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
bi
Example
<l
unit u {
free port(p: inout simple port of list of mvl) is ({
pS$S = 32'bz; // Assigns an mvl literal to the port
}i
bi
'>
See Also

— “Accessing Simple Ports and Their Values” on page 193
— “Accessing Event Ports” on page 201

— “Multi-Value Logic (MVL) on Simple Ports” on page 194
— “Methods for Simple Ports” on page 244

6.5 Port Attributes

Ports have attributes that affect their behavior and how they can be used. You assign port attributes using the
attribute() syntax in pre-generation constraints, as follows:

keep [soft] port_instance.attribute() == value;

You can use soft constraints for attributes that you might want to override later.

Most port attributes are ignored unless the port is an external port, but it does no harm to specify attributes
for ports that are not external ports. Attributes intended for external ports may or may not be supported for a

particular simulator. A particular adapter can also define additional port attributes that are required to
enhance access to simulated objects.

6.5.1 Generic Port Attributes

Port attributes that are potentially valid for all simulators are described in Table 6-1. However, a particular
simulator adapter might not implement some of these attributes.

210 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

P1647/D0.1

NOTE— Depending on the simulator adapter you are using, port attributes might cause additional
code to be written to the stubs file. In that case, if you add or change an attribute, you must rewrite

the stubs file.

Table 6-1—Generic Port Attributes

Attribute

Description

Applies to

bind()

Connects two internal ports or connect a port to an
external object

Type: bool
Default: none

See also “bind()” on page 215.

All kinds of internal and
external ports

buffer size()

Specifies the maximum number of elements for a
buffer port queue.

Type: uint
Default: none

See also “buffer size()” on page 217.

Buffer ports

declared range()

Specifies the bit width of an external multi-bit
object.

Type: string
Default: none

See also “declared range()” on page 219.

External output simple

ports that are bound to

some kinds of multi-bit
objects

delayed()

Specifies whether propagation of a new port value
assignment occurs immediately or is delayed to
the tick boundary.

Type: bool

Default: TRUE

See also “delayed()” on page 219.

Internal and external
simple ports

driver()

When TRUE, an additional resolved HDL driver
is created for the corresponding simulator item,
and that driver is written to instead of the port.
Type: bool

Default: FALSE

See also “driver()” on page 220.

External output simple
ports

211

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 6-1—Generic Port Attributes

Attribute

Description

Applies to

driver_delay()

Specifies the delay time for all assignments from
e to the port.

Type: time
Default: 0

See also “driver_delay()” on page 221.

External output simple
ports

edge() Specifies the edge on which an event is generated. ~ External input event
ports
Type: event_port _edge
Default: change
See also “edge()” on page 222.
hdl path() Specifies a relative path of the corresponding sim- External ports

ulated item as a string.
Type: string
Default: none

See also “hdl path()” on page 223.

pack_options()

Specifies how the port’s data element is implicitly
packed and unpacked.

Type: pack options
Default: global.packing.adapter

See also “pack options()” on page 225.

External simple ports
whose data element is a
composite type (lists and
structs)

pass_by_pointer

When TRUE, composite data (structs or lists) are
transferred by reference.

Type: bool
Default: FALSE (pass by value)

See also “pass_by pointer()” on page 225.

Internal simple or buffer
ports whose data element
is a composite type (lists
and structs)

6.5.2 Port Attributes for HDL Simulators

Port attributes that are potentially valid for all HDL simulators are described in Table 6-2. However, a partic-
ular simulator adapter might not implement some of these attributes.

212

This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

The port attributes in Table 6-2 enable extended functionality. They cause additional information to be writ-
ten into the HDL stubs file to enhance user control over the driving of HDL signals. For this reason, if you
add or change any attribute shown in Table 6-2, you must rewrite the stubs file.

Some of these attributes are similar to Verilog or VHDL unit members, such as verilog variable or vhdl
driver.

Example
The following verilog variable declaration
verilog variable 'sig[7:0]' using strobe="#1", drive="#5" ;

is equivalent to the following port attributes:

data : inout simple port of uint(bits: 8) is instance;
keep bind(data, external);

keep data.hdl path()=="sig";

keep data.declared range() == "[7:0]";

keep data.verilog strobe() == "#1";

keep data.verilog drive() == "#5";

Table 6-2—Port Attributes for Verilog or VHDL Agents

Attribute Description Applies to
driver_initial value() Applies an initial mvl value to the port. External output
simple ports

Type: list of mvl
Default: {} (empty list)

See also “driver_initial value()” on page 222.

verilog_drive() Specifies the event on which the data is drivento External output
the Verilog object. simple ports

Type: string
Default: none

See also “verilog_drive()” on page 226.

verilog_drive hold() Specifies an event after which the port datais set ~ External output
to Z. simple ports

Type: string
Default: none

See also “verilog drive hold()” on page 227.

This is an unapproved IEEE Standards Draft, subject to change.
213

P1647/D0.1

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Table 6-2—Port Attributes for Verilog or VHDL Agents

Attribute

Description

Applies to

verilog_forcible()

Allows forcing of Verilog wires.
Type: bool
Default: FALSE

See also “verilog_forcible()” on page 227.

External output
simple ports

verilog_strobe()

Specifies the sampling event for the Verilog sig-
nal that is bound to the port.

Type: string
Default: none

See also “verilog strobe()” on page 228.

External output
simple ports

verilog wire()

Binds an external out port to a Verilog wire.
Type: bool
Default: FALSE

See also “verilog wire()”” on page 229.

External output
simple ports

vhdl_delay _mode()

Specifies whether pulses whose period is shorter
than the delay are propagated through the driver.

Type: sn_vhdl delay mode

Default: TRANSPORT (all pulses, regardless of
length, are propagated)

See also “vhdl _delay mode()” on page 229.

External output
simple ports

Applies-an-mrvl-value to-the pert-when-you
G Elite after issti
mand-but-do-netrestart the-simulator—

See-alse-“vhdl_disconnect value()” on
page 230

External output
simple ports

214 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Table 6-2—Port Attributes for Verilog or VHDL Agents

Attribute Description Applies to

vhdl driver() This is an alias for the driver() attribute. External output
simple ports
Type: bool
Default: FALSE

See also “driver()” on page 220.

6.5.2.1 bind()

Purpose

Connect two internal ports or connect a port to an external object
Category

Generic port attribute

Syntax

bind(expl, exp2);

bind(exp1, external);

bind(expl, empty | undefined);

Syntax example:

buf inl: in buffer port of int (bits:16) is instance;
buf outl: out buffer port of int (bits:16) is instance;

keep bind(buf_ inl, buf outl); // Valid
Parameters
expl, exp2 One or more expressions of port type. If two expressions are given and

the port types are compatible, the two port instances are connected.

external Defines a port as connected to a simulated object, such as a Verilog reg-
ister, a VHDL signal, or a SystemC object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an unde-
fined binding causes an error

Description

Ports are connected to other e ports or to external simulated objects such as Verilog registers, VHDL signals,
or SystemC methods using a pre-run generation constraint on the bind() attribute. Ports can also be left
explicitly disconnected with empty or undefined.

This is an unapproved IEEE Standards Draft, subject to change.
215

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Rules

— All ports must be bound in one of the following ways:

* Bound in pairs, that is, one in or inout port bound to one out or inout port. It is illegal to bind together
two input ports, two output ports, or two inout ports.

* Only ports of the same kind may be bound together. A simple port cannot be bound to a buffer port
or to an event port and a buffer port cannot be bound to an event port.

¢ Bound to an external simulated item.

* Explicitly disconnected (empty or undefined).

NOTE— Dangling ports (ports without bind() attributes) cause an error during
elaboration. See “Checking of Ports” on page 216 for more information.

— Currently, no port may be connected to more than one other port. In other words, you can connect
port A to port B or to port C but not to both.

— You can explicitly disconnect a port and then over-ride that disconnect with a binding to an internal
or external object. No other multiple bindings are allowed. In other words, you cannot bind a port to
an internal object and also bind it to an external object. Similarly, you cannot define a port’s binding
as both empty and undefined.

— Ports connected in a pair must have exactly the same element type.

NOTE— For Verisity adapters, if you add or change this attribute for an external port, you must
rewrite the stubs file.

Checking of Ports
Binding and checking of ports takes place automatically at the end of the predefined generate_test() test
method. This process, called elaboration of ports, includes checking for dangling ports and binding consis-

tency (directions, buffer sizes, and so on).

A port that has no bind() constraint is a dangling port. Since all ports must be bound, a dangling port causes
an elaboration-time error.

Disconnected Ports
A port that is bound using the empty or undefined keyword is called a disconnected port.

The empty or undefined keyword can only appear as the second argument of the bind() constraint, in place
of a second port instance name.

The same port cannot be both empty and undefined. Attempting to apply such contradicting constraints to
one port causes an elaboration-time error.

Empty binding allows you to define a port that is connected to nothing. Runtime accessing of an empty-
bound port is allowed. Its effect depends on the operation and type of the port:

— Reading from an empty-bound simple port returns the last written value or the default of the port ele-
ment type, if no value has been written so far.

— Writing to an empty-bound out or inout simple port stores the new value internally.

— Reading from an empty-bound buffer port causes the thread to halt.

— Writing to an empty-bound buffer port causes the thread to halt if the buffer is full.

216 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

— Waiting for an empty-bound event port causes the thread to halt. If the port direction is inout then
emitting the port resumes the thread.
— An empty-bound event port can be emitted.

A subsequent constraint can be used to overwrite the empty binding constraint.

Like empty binding, undefined binding lets you define a port that is connected to nothing. The difference is
that runtime accessing of a port with an undefined binding causes an error.

A subsequent constraint can be used to overwrite the undefined binding constraint.

Example 1: Valid Bindings

buf_inl: in buffer port of int(bits:16) is instance;
buf_outl: out buffer port of int(bits:16) is instance;
keep bind(buf inl, buf outl); // Valid

buf in4: in buffer port of int (bits:16) is instance;

buf out4: out buffer port of int(bits:16) is instance;

keep bind(buf_ in4, empty);

keep bind(buf_in4, buf out4); // Valid; buf_in4 will be bound to buf_ out4

simple inl: in simple port of int (bits:16) is instance;

keep bind(simple inl, empty);

keep bind(simple inl, external);

keep simple_inl.hdl path() == "foo"; // Valid; buf in5 will be bound to foo

Example 2: Invalid Bindings

buf in2: in buffer port of int (bits:32) is instance;
buf_out2: out buffer port of int(bits:16) is instance;

keep bind(buf in2, buf out2); // Invalid; different bit size
buf in3: in buffer port of packet is instance;

buf out3: out buffer port of small packet is instance;

keep bind(buf in3, buf out3); // Invalid; different subtypes
simple in2: in simple port of int (bits:16) is instance;
simple out2: out simple port of int(bits:16) is instance;
keep bind(simple in2, simple out2);

keep bind(simple in2, external); // Invalid; multiple binding

Example 3

The bind() method can also be used in procedural code. It returns TRUE if the port in its argument is bound
as specified. For example:

print bind(p, q);

6.5.2.2 buffer_size()
Purpose

Specify the size of a buffer port queue

This is an unapproved IEEE Standards Draft, subject to change.
217

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Buffer port attribute
Syntax
exp.buffer_size() == num

Syntax example:

keep u.p.buffer size() == 20;
Parameters

exp An expression of type [in | out] buffer_port of fype.

num An integer specifying the maximum number of elements for the queue.
Description

This attribute determines the number of put() actions that can be performed before a get(). A get() action is
required to remove data and make more room in the queue. Specifying a buffer size of 0 means rendezvous-
style synchronization.

No default buffer size is provided. If a buffer size is not specified in a constraint, an error occurs. It is only
necessary to specify a buffer size for one of the two ports in a pair of connected ports. That size applies to

both ports. If the two ports have different buffer sizes specified, then both of them get the larger of the two
sizes.

Example
Like all port attributes, the buffer size can also be used as an expression.

unit consumer {
in p: in buffer port of atm cell is instance;
bi

unit producer {
out_p: out buffer port of atm cell is instance;
Vi

extend sys {
consumer: consumer is instance;
producer: producer is instance;
keep bind(producer.out p, consumer.in p);
keep producer.out p.buffer size() == 500;

run() is also {
// Print the size of the queue
outf ("Size of the gqueue is set to %u\n",
consumer.in p.buffer size());
}i
Vi

See Also

— “buffer_port” on page 204

218 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5.2.3 declared_range()

Purpose

Specify the bit width of a multi-bit external object
Category

External port attribute

Syntax

exp.declared_range() == string

Syntax example:

keep u.p.declared range() == "[31:0]";
Parameters
exp An expression of a simple port type.
string An expression in the form:
" [msb:Isb] "
Description

This string attribute is meaningful for external simple ports that are bound to multi-bit objects. Because it is
legal to bind a port to an HDL object with a different size, the range information is not extracted from the
port declaration. In order to implement access to multi-bit signals correctly in the stubs file, this attribute is
required when using the verilog_wire(), verilog_drive(), verilog_strobe() or driver() attributes.

The interpretation of the string is adapter-specific. For Verisity adapters, the declared range must match the
actual range of the signal; it cannot be a part select.

Example

unit u {
p: simple port of int is instance;
bi

extend sys {
u: u is instance;
keep u.hdl_path() == "top";
keep u.agent () == "Verilog";
keep bind(u.p, external);
keep u.p.hdl path() == "shr";
keep u.p.verilog wire() == TRUE;
keep u.p.declared range() == "[31:0]";

Vi

6.5.2.4 delayed()
Purpose

Specify immediate or delayed propagation of new values

This is an unapproved IEEE Standards Draft, subject to change.
219

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Simple port attribute
Syntax
exp.delayed() == bool

Syntax example:

keep u.p.delayed() == FALSE;
Parameters

exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is TRUE.
Description

This boolean attribute specifies whether propagation of a new port value assignment occurs immediately or
is delayed.

When the delayed() attribute is TRUE (the default), propagation of external ports is delayed until the next
tick. Propagation of internal ports is delayed until the next tick at which the sys.time value changes. This
behavior is consistent with the definition of delayed assignments in e and matches temporal e semantics with
regard to the multiple ticks occurring at the same simulator time.

To make assigned values on ports visible immediately, constrain this attribute to be FALSE, for example:

keep u.p.delayed() == FALSE;

6.5.2.5 driver()

Purpose

Create a resolved driver for an external object
Category

External out simple port attribute

Syntax

exp.driver() == bool

Syntax example:

keep u.p.driver() == TRUE;

220 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters

exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.
Description

This boolean attribute is meaningful only for external out ports. When this attribute is set to TRUE, an addi-
tional resolved HDL driver is created for the corresponding simulator item, and that driver is written to
instead of the port.

Every port instance associated with the same simulator may create a separate driver, thus allowing HDL res-
olution to be applied for multiple e resources.

Notes

— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.

— Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

— Verisity Verilog adapters make use of this attribute only if it is applied to an external signal that can
be driven contiguously and allows multiple drivers, such as Verilog wires (not registers or memo-
ries).

— Verisity VHDL adapters make use of this attribute only for MTI ModelSim and only if the VHDL
signals are of a resolved type (not VHDL variables or signals of unresolved type).

— The Verisity OSCI (SystemC) adapter requires this attribute to be specified in order to drive SystemC
ports.

6.5.2.6 driver_delay()

Purpose

Specify the delay for assignments to a port
Category

External out simple port attribute

Syntax

exp.driver_delay() == time

Syntax example:

keep u.p.driver_delay () == 2;

This is an unapproved IEEE Standards Draft, subject to change.
221

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters

exp An expression of a simple port type.

time A value of type time (64 bits). The default is 0.
Description

This attribute of type time is meaningful only for external out ports. It specifies the delay time for all assign-
ments from e to the port. This attribute is silently ignored unless the driver() attribute or the vhdl_driver()
attribute is set to TRUE.

NOTE— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.

6.5.2.7 driver_initial_value()
Purpose

Specify an initial value for an HDL object
Category

HDL port attribute

Syntax

exp.driver_initial value() == mvl-list

Syntax example:

keep u.p.driver initial value() == {MVL_X;MVL X;MVL_1;MVL 1};
Parameters

exp An expression that returns a port instance.

mvl-list A lists of mvl values. Possible values are MVL U,

MVL X, MVL 0,MVL 1, MVL Z, MVL W, MVL L,
MVL_H, MVL N. The default is {} (an empty list).

Description

This mvl list type attribute applies an initial mvl value to an external Verilog or VHDL object. This attribute
is silently ignored unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.

When an e program is driving a std_logic signal that is also driven from VHDL, unless an initial value is
specified, the adapter creates a VHDL driver that is initialized by MVL_X.

6.5.2.8 edge()
Purpose

Specify the edge on which an event is generated

222 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Event port attribute
Syntax

exp.edge() == edge-option
Syntax example:

keep e.edge() == any_change;

Parameters

exp

edge-option

Description

An expression of an event port type.

Possible values are of type event_port_edge:

P1647/D0.1

change, rise, fall — equivalent to the behavior of @sim
temporal expressions. This means that transitions between x
and 0, z and 1 are not detected, x to 1 is considered a rise, z to

0 a fall, and so on.

any_change — any change within the supported MVL values

is detected, including transitions from x to 0 and 1 to z.

MVL_0_to_1 — transitions from 0 to 1 only.

MVL_1_to_0 — transitions from 1 to 0 only.

MVL_X to_0 — transitions from X to 0 only.

MVL_0_to_X — transitions from 0 to X only.

MVL_Z _to_1 — transitions from Z to 1 only.

MVL_1_to_Z — transitions from 1 to Z only.

The default is change.

This attribute of type event_port_edge for an external event port specifies the edge on which an event is

generated.

Example

e: in event port is instance;
keep bind(e,external) ;
keep e.hdl path() == "clk";
keep e.edge() == any change;

6.5.2.9 hdl_path()
Purpose

Map port instance to an external object

This is an unapproved IEEE Standards Draft, subject to change.

223

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Generic port attribute
Syntax

exp.hdl_path() == string
Syntax example:

clk: in event port is instance;

keep clk.hdl path() == "clk";
Parameters
exp An expression of a port type.
string The path to the external object, enclosed in double quotes.

The default is an empty string.

Description

To access an external, simulated object, you must provide a path to the object with the hdl_path() attribute.
This path is a concatenation of the partial paths you provide for the port itself and for its enclosing units. The
partial paths can contain any separator that is supported by the adapter for the simulator you are using.

To allow portability between simulators, you can use the e canonical path notation. (See the documentation
for the adapter for a description of supported separators.)

NOTE— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
Example

In this example, all ports inherit the Verilog simulator specified as the agent for the encoder instance. The
clk, data_width, data and rq ports access Verilog signals of the same name in the top-level module
“priority_encoder”. The address port accesses a signal with the path priority _encoder.PRIO.temp_address.

unit encoder ({

clk: in event port is instance;
keep bind(clk, external);
keep clk.hdl path() == "clk";

data_length: in simple port of uint is instance;
keep bind(data length, external) ;
keep data length.hdl path() == "data_ width";

data: inout simple port of list of bit is instance;
keep bind(data, external);

keep data.hdl path() == "data";
keep data.verilog wire() == TRUE; -- simple port attribute
keep data.declared range() == "[31:0]"; -- simple port attribute

address: in simple port of uint is instance;
keep bind(address, external);
keep address.hdl path() == "PRIO/temp address";

224 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

rqg: in buffer port of bool is instance;
keep bind(rqg, external);
keep rg.buffer size() == 8; -- buffer port attribute
keep rg.hdl path() == "rg";

extend sys {
e: encoder is instance;
keep e.hdl path() == "~/priority encoder";

Vi

6.5.2.10 pack_options|()

Purpose

Specify how an external port’s data element is implicitly packed and unpacked
Category

External simple port attribute

Syntax

exp.pack_options() == pack-option

Syntax example:

keep u.p.pack_options() == packing.low big endian;

Parameters
exp An expression of a simple or buffer port type.
pack-option A predefined or user-defined pack option. The default is

global.packing.adapter.

Description

This attribute of type pack_options is meaningful only for external ports whose data element is a composite
type (lists and structs). It affects the way a port’s data element is implicitly packed and unpacked. This
attribute exists both for units and ports and may be propagated downwards from an enclosing unit instance

to its ports and other unit instances.

NOTE— None of the existing simulator adapters supports external simple port of structs.

6.5.2.11 pass_by_pointer()

Purpose

Specify how composite data is transferred by internal ports
Category

Internal port attribute

This is an unapproved IEEE Standards Draft, subject to change.
225

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Syntax
exp.pass_by_pointer() == bool

Syntax example:

keep u.p.pass by pointer() == TRUE;
Parameters
exp An expression of a simple or buffer port type.
bool Either TRUE or FALSE. The default is FALSE.
Description

This boolean attribute specifies how composite data (structs or lists) are transferred by internal simple ports
or buffer ports.

By default, this attribute is FALSE and complex objects are deep-copied upon an internal port access opera-
tion. To pass data by reference and speed up the test, you can set this attribute to TRUE. If you do so, you

must write your code such that it does not result in test correctness violations.

There is also a global config misc option, ports_data_pass_by_pointer. Setting this option influences all
internal ports.

6.5.2.12 verilog_drive()

Purpose

Specify timing control for data driven to the Verilog object
Category

Verilog port attribute

Syntax

exp.verilog_drive() == timing-control

Syntax example:

keep u.p.verilog drive() == "@posedge clk2";

226 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
exp An expression of a simple port type.
timing-control A string specifying any legal Verilog timing control
(event or delay).
Description

This string attribute tells an external output port to drive its data to the Verilog signal when the specified tim-
ing occurs. It can be either a Verilog temporal expression such as “@(posedge top.clk)” or a simple delay of
kind “#1”. This attribute is functionally equivalent to a verilog variable using drive declaration.

Notes

— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
— Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

6.5.2.13 verilog_drive_hold()
Purpose

Specify when to set the port to Z
Category

Verilog port attribute

Syntax

exp.verilog_drive_hold() == event

Syntax example:

keep u.p.verilog drive hold() == "@negedge clk2";
Parameters

exp An expression of a simple port type.

event A string specifying any legal Verilog timing control.
Description

On the first occurrence of the specified event after the port data is driven, the value of the corresponding
Verilog signal is set to Z. The event is a string specifying any legal Verilog timing control. This attribute
requires that you also specify the verilog_drive() attribute.

6.5.2.14 verilog_forcible()
Purpose

Specifies that a Verilog object can be forced

This is an unapproved IEEE Standards Draft, subject to change.
227

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Verilog port attribute

Syntax
exp.verilog_forcible() == bool

Syntax example:

keep u.p.verilog forcible() == TRUE;
Parameters

exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.
Description

This boolean attribute allows forcing of Verilog wires. By default Verilog wires are not forcible. This
attribute requires that you also specify the verilog_wire() attribute.

6.5.2.15 verilog_strobe()

Purpose

Specify the sampling event for a Verilog object
Category

Verilog port attribute

Syntax

exp.verilog_strobe() == event

Syntax example:

keep u.p.verilog strobe() == "@posedge clkl";
Parameters

exp An expression of a simple port type.

event A string specifying any legal Verilog timing control.
Description

This string attribute specifies the sampling event for the Verilog signal that is bound to an external input
port. This attribute is equivalent to the verilog variable ... using strobe declaration.

Notes

— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
— Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

228 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5.2.16 verilog_wire()

Purpose

Create a single driver for a port (or multiple ports)
Category

Verilog port attribute

Syntax

exp.verilog_wire() == bool

Syntax example:

keep u.p.verilog wire() == TRUE;
Parameters

exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.
Description

This boolean attribute allows an external out port to be bound to a Verilog wire, in a manner similar to a ver-
ilog variable using wire declaration.

The main difference between this attribute and the driver() attribute is that, being backward compatible, the
verilog_wire() attribute merges all of the ports that have this attribute into a single Verilog driver, while the

driver() attribute creates a separate driver for each port.

Notes

— For Verisity adapters, if you add or change this attribute, you must rewrite the stubs file.
— Verisity adapters require that you also use declared_range() if the object that is driven is multi-bit.

6.5.2.17 vhdl_delay_mode()

Purpose

Specify whether short pulses are propagated through driver
Category

HDL port attribute

Syntax

exp.vhdl_delay_mode() == mode-option

Syntax example:

keep u.p.vhdl_delay mode() == INERTIAL;

This is an unapproved IEEE Standards Draft, subject to change.
229

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
exp An expression of a simple port type.
mode-option Either TRANSPORT (the default) or INERTIAL.
Description

This sn_vhdl_delay_mode type attribute applies a VHDL delay mode value to an external out port. This
attribute specifies whether pulses whose period is shorter than the delay specified by the driver_delay()
attribute are propagated through the driver. INERTIAL specifies that such pulses are not propagated.
TRANSPORT specifies that all pulses, regardless of length, are propagated.

This attribute also influences what happens if another driver (either VHDL or another unit) schedules a sig-
nal change and before that change occurs, this driver schedules a different change. With INERTIAL, the first

change never occurs.

This attribute is silently ignored unless the driver_delay() attribute is also specified.

Purpese
Speetfyvalue-to-apply-on-SpeemanEliterestere
Gategory
HbBLEpertattribute
Syntax
Syntax-example:
keep—u-p-vhdl -disconnect—value) == {MVL Z};
Parameters
exp An expression that returns a port instance.
mvl-value-list A list of one or more of the following: MVL U, MVL X,
MVL 0, MVL_1,MVL Z,MVL W,MVL L, MVL H,
MVL _N.

230 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5.3 Using Port Values and Attributes in Constraints

Like units, port instances can be created only during pre-run generation. They cannot be created with new,
nor generated at runtime. Consequently, a port value cannot be initialized or sampled in pre-run generation
constraints. Port values can be used in on-the-fly generation constraints in accordance with the basic con-
straint principles, such as the bidirectional nature of constraints. See Example 1 on page 231.

Another methodological requirement is that you must explicitly specify attribute values in hard constraints if
the attributes are used anywhere in bidirectional constraints, including implication constraints. See Example
2 on page 231.

Example 1

This example shows the correct way to initialize an out port.

< 1

extend sys {
inport: in simple port of int is instance;
keep bind(inport, external) ;
outport: inout simple port of int is instance;
keep bind(outport, external);
!startval: int;

run() is also {
gen startval;
outports$ = startval; // Use port$ to set a value
}i
Vi

">

Trying to constrain the generation of startval to equal the value of the out port does not work because
outport$ in this context samples the port value, but does not affect it:

gen startval keeping { outport$ == startval}; // does not work

Example 2

This example shows how using port attribute values in bidirectional constraints can have undesired effects.

<l
extend sys {
pclk: buffer port of packet is instance;
keep synthesized() == FALSE => pclk.pass_by pointer() == TRUE;

-

The implication constraint above requires the following constraint to be set in every specific non-synthe-
sized test, instead of relying on the default value:

extend sys {
keep synthesized() == FALSE;
Vi

Adding a constraint such as

keep pclk.pass_by pointer () ==FALSE

This is an unapproved IEEE Standards Draft, subject to change.
231

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

silently sets synthesized() to TRUE.

6.5.4 Buffer Port Methods

The methods in this section are used to read from or write to buffer ports and to check whether a buffer port
queue is empty or full. The methods are:

— “get()” on page 232
— “put()” on page 233

— “is_empty()” on page 234
— “is_full()” on page 235

6.5.4.1 get()
Purpose
Read and remove data from an input buffer port queue
Category
Predefined TCM for buffer ports
Syntax
in-port-instance-name.get(): port element type
Syntax example:
rec_cell = in port.get();
Description
Reads a data item from the buffer port queue and removes the item from the queue.
Since buffer ports use a FIFO queue, get() returns the first item that was written to the port.
The thread blocks upon get() when there are no more items in the queue.

If the queue is empty, or if it has a buffer size of 0 and no put() has been done on the port since the last get(),
then the get() is blocked until a put() is done on the port.

The number of consecutive get() actions that is possible is limited to the number of items inserted by put().

Example

unit consumer {
cell in: in buffer port of atm cell is instance;
current cell: atm cell;
update cell() @eclk$ is {
current cell = cell in.get();
i

Vi

232 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “put()” on page 233
— “is_empty()” on page 234
— “is_full()” on page 235

6.5.4.2 put()

Purpose

Write data to an output buffer port queue
Category

Predefined TCM for buffer ports

Syntax

out-port-instance-name.put(data: port-element-type)

Syntax example:
out port.put (trans cell);

Parameters

data A data item of the port element type.

Description

Writes a data item to the output buffer port queue. The sampling event of this TCM is sys.any.

The new data item is placed in a FIFO queue in the output buffer port.

P1647/D0.1

If the queue is full, or if it has a buffer size of 0 and no get() has been done on the port since the last put(),

then the put() is blocked until a get() is done on the port.

The number of consecutive put() actions that is possible is limited to the buffer size.

The thread blocks upon put() when there is no more room in the queue, that is, when the number of conse-

quent put() operations exceeds the buffer_size() of the port instance.

Example

unit producer {

clk: in event port is instance;
cell out: out buffer port of atm cell is instance;
write cell list(atm_cells: list of atm cell) @clk$

for each in atm cells do {
cell out.put(it);

This is an unapproved IEEE Standards Draft, subject to change.

233

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

See Also

— “get()” on page 232
— “is_empty()” on page 234
— “is_full()” on page 235

6.5.4.3 is_empty()

Purpose

Check if an input buffer port queue is empty
Category

Pseudo-method for buffer ports

Syntax

in-port-instance-name.is_empty(): bool
Syntax example:

var readable: bool;
readable = not cell in.is empty () ;

Description
Returns TRUE if the input port queue is empty.
Returns FALSE if the input port queue is not empty.

Example

unit consumer
cell in: in buffer port of atm cell is instance;
clk: in event_port is instance;
check_and_read(atm cell): atm_cell @clk$ is
if cell in.is empty() ({
// No data is available - avoid blocking:
dut_error ("No atm cell is available");
}
else {
// Read data from the port:
return cell in.get();
}i

}i
}i

See Also

— “get()” on page 232
— “put()” on page 233
— “is_full()” on page 235

234 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5.4.4 is_full()

Purpose

Check if an output buffer port queue is full
Category

Pseudo-method for buffer ports

Syntax

out-port-instance-name.is_full(): bool
Syntax example:

var overflow: bool;
overflow = cell out.is full();

Description
Returns TRUE if the output port queue is full.
Returns FALSE if the output port queue is not full.

Example

unit producer {
cell out: out buffer port of atm cell is instance;
clk: in event_port is instance;
check_and write(cell: atm_cell)@clk$ is
if cell out.is full() ({
// Cannot write to the port without being blocked
dut_error ("Overflow in atm cells queue");

}

else {
// Write data to the port
cell out.put(cell);
}i
}i
}i

See Also

— “get()” on page 232
— “put()” on page 233
— “is_empty()” on page 234

6.5.5 Multi-Value Logic (MVL) Methods for Simple Ports

The predefined port methods in this section are for reading and writing MVL data between ports, to facilitate
communication with objects where MVL values occur.

These methods operate on data of type mvl, which is defined as follows:

This is an unapproved IEEE Standards Draft, subject to change.
235

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

type mvl: [MVL_U, MVL_X, MVL_0, MVL_1, MVL Z, MVL_W,MVL_L, MVL_H, MVL N]

The enumeration literals are the same as those of VHDL, except for MVL_N, which corresponds to the
VHDL ‘-’ (“don’t care”) literal.

NOTE— Mixed access—accessing a port with MVL methods and accessing it through the
$ operator—is allowed.

The MVL methods are applicable in accordance to the port direction. Methods that write a value to a port are
accessible for out and inout simple ports, while methods that read a value from a port are accessible for in
and inout simple ports.
The predefined methods for simple ports are:

— “put_mvl()” on page 236

— “get_mvl()” on page 237

— “put_mvl_list()” on page 238

— “get_mvl list()” on page 239

— “put_mvl_string()” on page 240

— “get_mvl_string()” on page 241

— “get_mvl4()” on page 241

— “get_ mvl4 list()” on page 242
— “get_ mvl4 string()” on page 243

6.5.5.1 put_mvl()

Purpose

Put an mvl data on a port of a non-mvl type
Category

Predefined method for simple ports
Syntax

exp.put_mvl(value: mvl)

Syntax example:

p.put_mvl (MVL Z)

Parameters
exp An expression that returns a simple port instance.
value A multi-value logic value.

Description

Place an mvl value on an output or inout simple port, to initialize an object to a “disconnected” value, for
example.

Placing an mvl value on a port whose element type is list places the value in the LSB of the list.

236 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example

unit uo {
pbo: out simple port of bit is instance;
keep bind(pbo, external);
disconnect pbo() is {
pbo.put_mvl (MVL_Z) ;
}i

Vi

See Also

— “get_ mvl()” on page 237

— “put_mvl list()” on page 238
— “put_mvl_string()” on page 240
— “string_to_mvl()” on page 247
— “int_to_mvl()” on page 250

— “bits_to_mvl()” on page 252
— “mvl to mvl4()” on page 252

6.5.5.2 get_mvl()

Purpose

Read mvl data from a port of a non-mvl type
Category

Predefined method for simple ports

Syntax

exp.get_mvl(): mvl

Syntax example:

check that pbi.get mvl() != MVL X else dut error("Bad value");
Parameters

exp An expression that returns a simple port instance.
Description

Reads an mvl value from an input or inout simple port, to check that there are no undefined “x” bits, for
example.

Getting an mvl value from a port whose element type is list reads the LSB of the list.

Example

unit ui {
pbi: in simple port of bit is instance;
keep bind(pbi, external);
chk pbi() is {
check that pbi.get mvl() != MVL X else

This is an unapproved IEEE Standards Draft, subject to change.
237

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

dut error ("Bad value") ;
}i
Vi

See Also

— “put_mvl()” on page 236

— “get_mvl list()” on page 239
— “get_mvl string()” on page 241
— “get_ mvl4()” on page 241

— “mvl to_string()” on page 248
— “mvl to int()” on page 249

— “mvl_to_bits()” on page 251
— “mvl to mvl4()” on page 252

6.5.5.3 put_mvl_list()

Purpose

Put a list of mvl values on a port of a non-mvl type
Category

Predefined method for simple ports

Syntax

exp.put_mvl_list(values: list of mvl)

Syntax example:

pbo.put mvl list ({MVL H; MVL 0; MVL L; MVL 0});

Parameters
exp An expression that returns a simple port instance.
values A list of mvl values

Description

Writes a list of mvl values to an output or inout simple port.
Putting a list of mvl values on a port whose element type is a single bit writes only the LSB of the list.

Example

unit ui {
pbi: in simple port of uint (bits:4) is instance;
Vi

unit uo {
uin: ui is instance;
pbo: out simple port of uint(bits:4) is instance;
keep bind(pbo, uin.pbi);
wr_pbo () is {

238 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

pbo.put mvl list ({MVL H; MVL 0; MVL L; MVL 0});
}i
Vi

See Also

— “put_mvl()” on page 236
— “get_ mvl()” on page 237
— “get_mvl list()” on page 239

6.5.5.4 get_mvl_list()

Purpose

Get a list of mvl values from a port of a non-mvl type
Category

Predefined method for simple ports

Syntax

exp.get_mvl_list(): list of mvl

Syntax example:

check that pbil.get mvl list().has(it == MVL U) == FALSE else
dut_error ("Bad list");

Parameters

exp An expression that returns a simple port instance.

Description
Reads a list of mvl values from an input or inout simple port.

Example

unit uo {
pbol: out simple port of list of bit is instance;

unit ui {
uout: uo is instance;
pbil: in simple port of list of bit is instance;
keep bind(uout.pbol, pbil);
chk_pbil() is {
check that pbil.get mvl list () .has(it == MVL_U) == FALSE else
dut_error("Bad list");
}i
Vi

See Also

— “put_mvl()” on page 236

This is an unapproved IEEE Standards Draft, subject to change.
239

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

— “get_mvl()” on page 237
— “put_mvl_list()” on page 238
— “get_ mvl4 list()” on page 242

6.5.5.5 put_mvl_string()

Purpose

Put an mvl value on a port of a non-mvl type when a value is represented as a string
Category

Predefined method for simple ports

Syntax

exp.put_mvl_string(value: string)

Syntax example:

pbol.put mvl string("32'hxxxx111l1l") ;

Parameters
exp An expression that returns a simple port instance.
value An mvl value in the form of a base and one or more characters,
entered as a string. The mvl values in the string must be lowercase.
Use 1 for MVL 1,0 for MVL 0, z for MVL Z, and so on.
Description

Writes a string representing a list of mvl values to a simple output or inout port. The mvl value consists of
any legal base, for example, 32'b, followed by one or more characters, for example xxxxzzzz. The string rep-
resentation follows the same rules as Verilog literals. The difference is that Verilog literals support only 4-
value logic digits (1,0,x and z) while e allows also the characters u, I, h, w and n.

Example

unit uo {
pbol: out simple port of uint (bits:4) is instance;
keep bind(pbol, external) ;
wr_pbol () is {
pbol.put mvl string("32'hxxxx111l1l");
}i

Vi

See Also

— “put_mvl()” on page 236
— “get_mvl()” on page 237
— “get_mvl_string()” on page 241

240 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

6.5.5.6 get_mvl_string()

Purpose

Get a value in form of a string from a port of a non-mvl type
Category

Predefined method for simple ports

Syntax

exp.get_mvl_string(radix: radix): string

Syntax example:

print pbis.get mvl string(BIN) ;

Parameters
exp An expression that returns a simple port instance.
radix One of BIN, OCT, or HEX.

Description

Returns a string in which each character represents an mvl value. The characters are lowercase. HDL value
‘1 is represented by the character 1, ‘Z’ by z, ‘-’ by character n. The returned string always includes all the
bits, with no implicit extensions. For example, a port of type uint returns a string of 32 characters, since an
int is a 32-bit data type.

Example
unit ui {
pbis: in simple port of uint(bits:4) is instance;
keep bind(pbis,external) ;

chk pbis() is {
print pbis.get mvl string(BIN) ;
}i

Vi

See Also

— “put_mvl()” on page 236

— “get_mvl()” on page 237

— “put_mvl_string()” on page 240
— “get mvl4 string()” on page 243

6.5.5.7 get_mvl4()
Purpose

Get an mvl value from a port, converting 9-value logic to 4-value logic

This is an unapproved IEEE Standards Draft, subject to change.
241

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Category

Predefined method for simple ports
Syntax

exp.get_mvl4(): mvl

Syntax example:

check that pbi.get mvl4() != MVL Z else dut error("Bad value");
Parameters

exp An expression that returns a simple port instance.
Description

Reads a 9-value mvl value from an input simple port and converts it to 4-value subset mvl.
The predefined mapping from 9-value logic to 4-value logic is:

MVL U, MVL W, MVL_X, MVL N -> MVL X
MVL L, MVL 0 -> O

MVI, H, MVL_1 -> 1

MVI, 7 -> MVL_Z%

Example

unit ui {
pbi: in simple port of bit is instance;
keep bind(pbi, external);
chk_pbi() is {
check that pbi.get mvl4 () != MVL X else
dut error ("Bad value") ;
}i
}i

See Also

— “put_mvl()” on page 236

— “get_ mvl()” on page 237

— “get mvl4 list()” on page 242
— “get mvl4 string()” on page 243
— “mvl to mvl4()” on page 252

6.5.5.8 get_mvl4_list()

Purpose

Get a list of mvl values from a port, converting from 9-value logic to 4-value logic
Category

Predefined method for simple ports

242 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax
exp.get_mvl4_list(): list of mvl
Syntax example:

check that pbi4l.get mvl4 list().has(it == MVL X) == FALSE else
dut_error ("Bad list");

Parameters

exp An expression that returns a simple port instance.

Description
Reads a list of 9-value mvl values from an input simple port and converts them to 4-value MVL.
The predefined mapping from 9-value logic to 4-value logic is:

MVL_U, MVL W, MVL_X, MVL N -> MVL_X

MVL_L, MVL 0 -> 0

MVL H, MVL 1 -> 1

MVL Z -> MVL %

Example

unit ui {
pbi4l: in simple port of list of bit is instance;
keep bind(pbi4l, external) ;
chk_pbi4l() is {

check that pbi4l.get mvl4 list () .has(it == MVL X) == FALSE else
dut_error("Bad list");
}i
Vi

See Also

— “put_mvl()” on page 236

— “get_ mvl()” on page 237

— “get_ mvl4()” on page 241

— “mvl list to mvl4 list()” on page 253

6.5.5.9 get_mvl4_string()

Purpose

Get a 4-state value in form of a string from a port of a non-mvl type
Category

Predefined method for simple ports

Syntax

exp.get mvl4_string(radix): string

This is an unapproved IEEE Standards Draft, subject to change.
243

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Syntax example:

print pbi4s.get mvl4 string(BIN) ;

Parameters
exp An expression that returns a simple port instance.
radix One of BIN, OCT, or HEX.

Description

Reads a string in which each character represents a 4-value logic digit from a subset of mvl, converted from
9-value logic. The characters are lowercase.

The predefined mapping from 9-value logic to 4-value logic is the same as it is commonly used when con-
verting from VHDL std logic to Verilog:

U, W, X, N -> x

L, 0 ->0
H, 1 ->1
Z -> z

The returned string always includes all the bits, with no implicit extensions. For example, a port of type int
returns a string of 32 characters, since an int is a 32-bit data type.

Example

unit ui {
pbi4s: in simple port of list of int(bits:4) is instance;
keep bind(pbi4s,external) ;
chk pbids() is {
print pbi4s.get mvl4 string (HEX) ;
}i

}i

See Also

— “put_mvl()” on page 236

— “get mvl()” on page 237

— “get_ mvl4()” on page 241

— “string to_mvl4()” on page 254

6.5.6 Methods for Simple Ports
These methods are defined for all simple ports, regardless of the type of data element:
— “has_x()” on page 245

— “has_z()” on page 245
— “has_unknown()” on page 246

244 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

6.5.6.1 has_x()
Purpose
Determine if port has X
Category
Predefined method for simple ports
Syntax
exp.has_x(): bool
Syntax example:
print pbi4s.has x();

Parameters

exp An expression of a simple port type.

Description

Returns TRUE if at least one bit of the port is MVL_X.

Example

unit ui {

pbi4s: in simple port of uint (bits:4)

keep bind(pbi4s,external) ;
chk pbids() is {

print pbi4s.has x();
}i

}i

See Also

— “has_z()” on page 245
“has_unknown()” on page 246

6.5.6.2 has_z()

Purpose

Determine if port has Z

Category

Predefined method for simple ports
Syntax

exp.has_z(): bool

This is an unapproved IEEE Standards Draft, subject to change.

245

is instance;

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Syntax example:
print pbi4s.has z();
Parameters
exp An expression of a simple port type.
Description
Returns TRUE if at least one bit of the port is MVL _Z.

Example

unit ui {
pbi4s: in simple port of uint (bits:4) is instance;
keep bind(pbi4s,external) ;
chk pbids() is {
print pbi4s.has z();
}i

}i

See Also

“has_x()” on page 245
— “has_unknown()” on page 246

6.5.6.3 has_unknown()
Purpose
Determine if port has U
Category
Predefined method for simple ports
Syntax
exp.has_unknown(): bool
Syntax example:
print pbi4s.has_unknown () ;

Parameters

exp An expression of a simple port type.

Description
Returns TRUE if at least one bit of the port is one of the following:

« MVL U

246 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

MVL_X

MVL _Z

MVL W

MVL N

Example

unit ui {
pbi4s: in simple port of uint (bits:4) is instance;
keep bind(pbi4s,external) ;
chk_pbids() is {
print pbi4s.has unknown() ;
}i

bi

See Also

— “has_x()” on page 245
“has_z()” on page 245

6.5.7 Global MVL Routines

The global routines for manipulating MVL values are:
— “string_to_mvl()” on page 247
— “mvl_to_string()” on page 248
— “mvl_to_int()” on page 249
— “int_to_mvl()” on page 250
— “mvl_to_bits()” on page 251
— “bits_to_mvl()” on page 252
— “mvl_to_mvl4()” on page 252
— “mvl list to mvl4 list()” on page 253
— “string_to_mvl4()” on page 254

6.5.7.1 string_to_mvl()

Purpose

Convert a string to a list of mvl values
Category

Predefined routine

Syntax

string_to_mvl(value-string: string): list of mvl
Syntax example:

mlist = string to mvl("8'bxzl");

This is an unapproved IEEE Standards Draft, subject to change.
247

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters

value-string A string representing mvl values, consisting of a width and base fol-
lowed by a series of characters corresponding to mvl values. Format
of the input string is the same as in Verilog literals, except there are
additional 9-value logic digits: u, 1, h, w and n.

Description
Converts each character in the input string to an mvl value.

Example

var mlist: list of mvl;
mlist = string to mvl("8'bz");
// returns {MVL_Z; MVL_Z; MVL _Z; MVL Z; MVL Z; MVL_Z; MVL_Z; MVL_Z};
mlist = string to mvl("8'bxzl");
// returns {MVL_1; MVL_Z; MVL_X; MVL_X; MVL X; MVL_X; MVL_X; MVL_X};
See Also
— “mvl_to_string()” on page 248
6.5.7.2 mvl_to_string()
Purpose
Convert a list of mvl values to a string
Category
Predefined routine
Syntax
mvl_to_string(mvl-list: list of mvl, radix: radix): string

Syntax example:

mstring = mvl to string({MVL Z; MVL Z; MVL Z; MVL Z; MVL X; MVL X; MVL X;
MVL X}, BIN);

Parameters

mvl-list A list of mvl values.

radix One of BIN, OCT, or HEX.
Description

Converts a list of mvl values to a string. The mapping is done in the following way:

MVL U is converted to character "u" (lowercase)

MVL X - "x"
MVL 0 - "O"
MVL 1 - "1"

248 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

MVL Z - "z"
MVL W - "w";
MVL L - "1"
MVL H - "h"
MVL N - "n"

NOTE— This routine always returns a sized number as a string.

Example 1

var mstring: string;

P1647/D0.1

mstring = mvl to string ({MVL Z; MVL_Z; MVL Z; MVL_Z; MVL_X; MVL X; MVL X;

MVL_X}, BIN);
// returns "8b'zzzzxxxx"

Example 2
var 1: list of mvl = {MVL_1;MVL 0};
print mvl to string(l, BIN); --prints 2'bl0
print mvl to string(l, HEX); --prints 2'h2

See Also

“string_to_mvl()” on page 247
— “mvl_to_int()” on page 249
— “mvl_to_bits()” on page 251
— “mvl_to_mvl4()” on page 252
— “mvl _list to_mvl4_list()” on page 253

6.5.7.3 mvi_to_int()

Purpose

Convert an mvl value to an integer

Category

Predefined routine

Syntax

mvl_to_int(mvl-list: list of mvl, mask: list of mvl): uint
Syntax example:

var ma: uint = mvl_to int (1, {MVL_X});

This is an unapproved IEEE Standards Draft, subject to change.
249

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
mvl-list A list of mvl values to convert to an integer value.
mask A list of mvl values that are to be converted to 1.
Description

Converts each value in a list of mvl values into a binary integer (1 or 0), using a list of mvl mask values to
determine which mvl values are converted to 1.

When the list is less than 32 bits, it is padded with 0. When it is greater than 32 bits, it is truncated, leaving
the 32 least significant bits.

Example

var 1: list of mvl = {MVL X; MVL X; MVL 0; MVL 1};
var ma: uint = mvl_to_int (1, {MVL _X});

// returns 12 (0b1100)

var mb: uint = mvl to_int(1l, {MVL_Z})

// returns 0

See Also

— “int_to_mvl()” on page 250

— “mvl_to_bits()” on page 251

— “mvl to mvl4()” on page 252

— “mvl list to mvl4 list()” on page 253

6.5.7.4 int_to_mvl()

Purpose

Convert an integer value to a list of mvl values
Category

Predefined routine

Syntax

int_to_mvl(value: uint, mask: mvl): list of mvl
Syntax example:

var mlist: list of mvl = int to mvl (12, MVL X)

250 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters

value An integer value to convert to a list of mvl values.

mask An mvl value that replaces each bit in the integer that has the value 1.
Description

Maps each bit that has the value 1 to the mask mvl value, retains the 0 bits as MVL 0, and returns a list of
32 mvl values. The returned list always has a size of 32.

Example

var mlist: list of mvl = int_to_mvl (12, MVL_X)

// returns MVL_O;.......... MVL_X;MVL_X;MVL_0;MVL_0
See Also

— “mvl_to_int()” on page 249

6.5.7.5 mvi_to_bits()

Purpose

Convert a list of mvl values to a list of bits

Category

Predefined routine

Syntax

mvl_to_bits(mvi-list: list of mvl, mask: list of mvl): list of bit
Syntax example:

var bl: list of bit = mvl to bits({MVL Z; MVL Z; MVL X; MVL L}, {MVL_Z; MVL X})

Parameters
mvl-list A list of mvl values to convert to bits.
mask A list of mvl values that specifies which mvl values are to be con-
verted to 1.
Description

Converts a list of mvl values to a list of bits, using a mask of mvl values to indicate which mvl values are
converted to 1 in the list of bits.

Example

var bl: list of bit = mvl_to bits({MVL_Z; MVL Z; MVL X; MVL L}, {MVL_Z; MVL_X})
// returns {1; 1; 1; 0}

This is an unapproved IEEE Standards Draft, subject to change.
251

P1647/D0.1

See Also

— “mvl _to_string()” on page 248
— “mvl_to_int()” on page 249
— “mvl_to_mvl4()” on page 252

6.5.7.6 bits_to_muvl()

Purpose

Convert a list of bits to a list of mvl values
Category

Predefined routine

Syntax

bits_to_mvl(bit-list: list of bit, mask: mvl): list of mvl

Syntax example:

DRAFT STANDARD FOR e LANGUAGE REFERENCE

var ml: list of mvl = bits to mvl({1; 0; 1; 0}, MVL_Z)

Parameters

bit-list A list of bits to convert to mvl values.

mask An mvl value that replaces each bit in the list that has the value 1.
Description

Maps each bit with the value 1 to the mask mvl value, retains the 0 bits as MVL 0, and returns an mvl list

that is bit-list size.

Example

var ml: list of mvl = bits to mvl({1l; 0; 1; 0}, MVL 2)

// returns {MVL_Z;MVL 0;MVL_Z;MVL 0}

See Also

— “mvl_to bits()” on page 251

6.5.7.7 mvi_to_mvl4()

Purpose

Convert an mvl value to a 4-value logic value

Category

Predefined routine

252 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Syntax
mvl_to_mvl4(value: mvl): mvl
Syntax example:
var md: mvl = mvl to mvl4 (MVL_U)
Parameters
value An mvl value to convert to a 4-value logic value
Description
Converts an mvl value to the appropriate 4-value logic subset value.
The predefined mapping from 9-value logic to 4-value logic is:
MVL U, MVL W, MVL X, MVL N -> MVL X
MVL L ,MVL 0 -> 0
MVL H, MVL 1 -> 1

MVI, 7 -> MVL_Z%

Example

var m4: mvl = mvl to mvl4 (MVL_U)
// returns MVL X

See Also

— “mvl to_string()” on page 248

— “mvl to int()” on page 249

— “mvl_to_bits()” on page 251

— “mvl list to mvl4 list()” on page 253

6.5.7.8 mvl_list_to_mvl4_list()

Purpose

Convert a list of mvl values to a list of 4-value logic subset values
Category

Predefined routine

Syntax

mvl_list_to_mvl4_list(mvi-list: list of mvl): list of mvl

Syntax example:

var m4l: list of mvl = mvl list to mvl4 list({MVL _N; MVL L; MVL H; MVL_1})

This is an unapproved IEEE Standards Draft, subject to change.
253

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters

mvl-list A list of mvl values to convert to a list of 4-value logic subset values

Description
Converts each value in a list of mvl values to the corresponding 4-value logic value.
The predefined mapping from 9-value logic to 4-value logic is:

MVL U, MVL W, MVL X, MVL N -> MVL X

MVL L, MVL 0 -> MVL 0

MVL H, MVL 1 -> MVL 1

MVL_Z -> MVL_Z

Example

var m4l: list of mvl = mvl list to mvl4 list ({MVL N; MVL L; MVL H; MVL _1})
// returns {MVL X; MVL 0; MVL 1; MVL 1;}

See Also

— Line 6.5.7.2

— “mvl_to_int()” on page 249
— “mvl_to_bits()” on page 251
— “mvl to mvl4()” on page 252

6.5.7.9 string_to_mvl4()
Purpose
Convert a string to a list of 4-value logic mvl subset values
Category
Predefined routine
Syntax
string_to_mvl4(value-string: string): list of mvl
Syntax example:
mlist = string to mvl("8'bxz");

Parameters

value-string A string representing MVL values, consisting of a width and base fol-
lowed by a series of characters corresponding to 9-value logic values.

Description

Converts each character in the string to the corresponding 4-value logic value. If the string contains charac-
ters other than ‘0, “1°, °x’, ‘z’, ‘h’, ‘I’, ‘u’, ‘W’ or ‘n’ a runtime error is issued.

254 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Example

var mlist: list of mvl;

mlist = string to mvl4 ("8'bz");

// returns {MVL_Z; MVL_Z; MVL %; MVL_Z; MVL Z; MVL_Z; MVL Z; MVL_Z};
mlist = string to mvl("8'bxz");

// returns {MVL_Z; MVL _X; MVL X; MVL_X; MVL X; MVL _X; MVL X; MVL_X};

See Also

— “string_to_mvl()” on page 247
— “mvl _to_string()” on page 248
— “mvl_to_mvl4()” on page 252
— “mvl _list to_mvl4_list()” on page 253

This is an unapproved IEEE Standards Draft, subject to change.
255

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

256 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

7 Generation Constraints

Test generation is the process that produces values for fields and variables (data items). Constraints are
directives that influence the behavior of the test generator. They are declared within a struct and influence
the generation of values for data items within the struct and its subtree. There are two basic types of con-
straints:

1) Value constraints restrict the range of possible values that the generator produces for data items,
and they constrain the relationship between multiple items.

2) Order constraints influence the sequence in which data items are generated. Generation order is
important because it affects the distribution of values and the success of generation.

Both value and order constraints can be hard or soft:

— Hard constraints (either value or order) must be met or an error is issued.

— Soft value constraints suggest default values but can be overridden by hard value constraints.

— Soft order constraints suggest modifications to the default generation order, but they can be overrid-
den by dependencies between data items or by hard order constraints.

You can define constraints in many ways:

— By defining a range of legal values in the field or variable declaration
— By defining a list size in the list declaration

— By using one of the keep construct variations within a struct definition
— By using a gen...keeping action within a method

You can generate values for particular struct instances, fields, or variables during simulation (on-the-fly gen-
eration) with the gen action. You can also set values procedurally before or after generation within the
pre_generate() or post_generate() methods.

This chapter contains the following sections:

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.1 Basic Concepts of Generation
The following introduce basic concepts related to constraints and generation.

— “Generation Order” on page 257

— “Unidirectional Constraints” on page 259

— “Enforceable Expressions” on page 261

— “Order of Evaluation of Soft Value Constraints” on page 262
— “Constraining Struct Instances” on page 263

— “Constraining Lists” on page 264

— “Constraining Bit Slices” on page 266

7.1.1 Generation Order

The fields in a struct are generated one by one, starting with the first field defined and progressing through
the fields in the order in which they appear in the e code. A struct item is always fully generated, including

This is an unapproved IEEE Standards Draft, subject to change.
257

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

all substructs, before the next item is generated. Similarly, within a list, each item is fully generated, includ-
ing all substructs, before the next item is generated. Lists are generated in ascending index order.

User-defined constraints can affect generation order. A constraint for a particular item might create a depen-
dency that requires a field to be generated before some other fields. For example, the keep constraint shown
below requires that the “kind” field be generated first and passed to the “get size()” method in order to
determine the value of “size”. Value constraints that induce a generation order are called unidirectional con-
straints.

type kind: [tx, rx];
struct packet {

kind;
size: byte;
keep size == get_size(kind) ;

Vi

Generation order is important because it influences the distribution of values. For example, in the keep con-
straint shown below, if “kind” is generated first, “kind” is “tx” about 1/2 the time because there are only two
legal values for “kind”:

struct packet {
kind: [tx, rx];
size: byte;
keep size > 15 => kind == rx;

Vi

On the other hand, if “size” is generated first, there is only a 1 in 16 chance that “size” will be less than or
equal to 15, so “kind” will be “tx” about 1/16 of the time.

7.1.2 Subtype Generation Optimization Constraints

In a subtype generation optimization constraint like the keep gen_before_subtypes(kind) constraint shown
below, you specify a field that has at least one value that is used as a when determinant for creation of a sub-
type of the struct. In this case, the when determinant is the tx value of the kind field, since that is the value
that determines when a subtype (that is, a tx packet) will be created.

type kind: [tx, rx];
struct packet ({
kind;
offset: uint;
keep gen before subtypes(kind) ;
when tx packet {
len: uint;
keep size > 0 => offset == size - 1;
}i
size: byte;

bi

A subtype generation optimization constraint may change the order of generation by delaying analysis of
constraints under the when until a when determinant value is actually generated. When no subtype genera-
tion optimization constraint is present, the generator analyzes all of the constraints and fields in the struct
before it generates the struct, even fields and constraints that are defined under subtypes. When a subtype
optimization constraint is present, then the generator initially analyzes and generates only the base type of
the struct. It is not until it encounters a subtype optimization when determinant field that the generator ana-
lyzes the fields and constraints in the associated subtype, and then generates the subtype.

258 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

In the example below, the keep gen (size) before (offset) constraint might be ignored if, due to subtype opti-
mization, the “offset” field is generated before the “kind” field is generated.

type kind: [tx, rx];
struct packet {
kind;
offset: uint;
keep gen before_ subtypes (kind) ;
when tx packet {
len: uint;
keep gen (size) before (offset);

}i
size: byte;
i
See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.1.3 Unidirectional Constraints

Value constraints that induce a generation order are called unidirectional constraints. For example, the keep
constraint shown below requires that the “kind” field be generated first. The test generator cannot determine
the value of the expression “get_size(kind)” without first generating the value of “kind”.

type kind: [tx, rx];
struct packet {

kind;
size: byte;
keep size == get size(kind) ;

Vi

Expressions like “get size(kind)” are treated like constants within the context of a constraint boolean
expression. That is, any parameters in these expressions are first generated, the operation is performed on
the generated values, and the returned value can be used to constrain other generatable items in the con-
straint boolean expression. In the example above, the field “size” is constrained by return value of

“get size(kind)”.

Other expressions that are treated as constants within the context of a constraint boolean expression are:

list slicing lob[7..15]
bitwise operations ~sigA, sigA | sigB
most method calls my_method(), b.as_a(int), value()

multiplication, division, and mod- i.address % 2, 3*b, c/4
ulo operations

in cellA in cellList, cellListA in cellListB

The only method calls that are not treated as constants are:

— my_list.size()

This is an unapproved IEEE Standards Draft, subject to change.
259

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

— my_list.is_all iterations()
— my_listis_a permutation()

When “my_list” is a generatable list, these expressions are also generatable.

A unidirectional constraint can cause a runtime contradiction error if it selects a value for a parameter that
turns out to conflict with a subsequent constraint. In the example below, the first constraint is unidirectional
for b, ¢, and d because of the multiplication operator. Thus the generator first selects a value for b from the
range [0-16], then selects a value for ¢ from the range [0-4], and for d from the range [0-1]. Finally, the gen-
erator applies the constraint (a + 3*b + 12*c + 48*d) == 48. Most of the time this constraint results in a con-
tradiction error because the values for three of the integers are selected before the constraint defining the
required relationship between the integers is applied.

a: uint;

b: uint;

c: uint;

d: uint;

keep a + 3*b + 12*c + 48*d == 48; // Usually results in a contradiction error
keep a <= 48;

keep b <= 16;

keep ¢ <= 4;

keep d <= 1;

In some cases you can rewrite the constraints to avoid the contradiction error. To avoid the contradiction
illustrated above, for example, you need define the generation order so that the integers in the multiplication
expressions (d, ¢, and b) are generated before a. You also must define each integer based only on constants
and the values of the previously generated integers. Modifying the constraints in this manner avoids the con-
tradiction error. To change the distribution of values (50% of the time d is 1 and a, b, and ¢ are all 0), you can
either add keep soft select constraints or you can constrain one of the other integers (a, b, or ¢) to a constant,
and then constrain the others based only on constants and products of previously generated integers.

d: uint;

keep d <= 1;

c: uint;

keep ¢ <= (48 - 48%*d)/12;

b: uint;

keep b <= (48 - 48*d - 12*c)/3;
a: uint;

keep a + 3*b + 12*c + 48*d == 48;

Unidirectional constraints can also cause a constraint cycle, which results in a runtime contradiction error. A
constraint cycle occurs when two or more unidirectional constraints impose conflicting requirements on the
generation order. For example, the first constraint shown below requires that the “kind” field be generated
first. The second constraint, however, requires that the “size” field be generated first.

type kind: [tx, rx];
struct packet {

kind;

size: byte;

keep size == get size(kind) ;

keep kind == get_kind(size); // Constraint cycle

260 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.1.4 Enforceable Expressions

An enforceable constraint boolean expression is an expression for which the test generator can choose a
value that satisfies the constraint. Expressions that are not enforceable often involve non-generatable items
or expressions that are treated as constants.

The following expressions are not enforceable:

— An expression that contains no generatable item
— An expression that restricts the legal values of an expression that is treated as a constant

Example 1

For a compound constraint boolean expression that uses and, both subexpressions must be enforceable. The
expression in this example is not enforceable because “sys.x” is not generatable. A runtime error is issued.

struct cons {
y: int;
z: int;

keep sys.x > 100 and z < 100; // Not enforceable

Vi

extend sys {
ci: cons;
x: int;

}i

Example 2

For a compound constraint boolean expression that uses or, only one subexpression has to be enforceable. In
this example, the second expression (z < 100) is enforceable, so no runtime error occurs. The first expression
(sys.x > 100) is ignored because “sys.x” is not generatable.

struct cons ({
y: int;

z: int;

keep sys.x > 100 or z < 100;

Vi

extend sys {
ci: cons;
x: int;

Vi

This is an unapproved IEEE Standards Draft, subject to change.
261

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 3

This expression is not enforceable because the test generator first generates “address”, then performs the
modulo operation, and then cannot constrain the resulting value to zero.

)

i.address % 2 == 0 // Not enforceable
Example 4

This expression is not enforceable because the test generator first generates “y”, then passes “y” to the
value() method, and then cannot constrain the returned value to zero.

value(y) == 0 // Not enforceable
Example 5

This expression is enforceable because the test generator first generates “y”, then passes “y” to the value()

€9

method, and then generates “x”.

Example 6

[T}

This expression is enforceable because the test generator first generates “y”, extracts the least significant bit
of “y”, and then generates “x”.

x == y[0:0]

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.1.5 Order of Evaluation of Soft Value Constraints

Soft value constraints on a data item are considered only at the time the data item is generated, after the hard
value constraints on the data item are applied. Soft constraints are evaluated in reverse order of definition. If
a soft constraint conflicts with the constraints that have already been applied, it is skipped.

NOTE— If a soft constraint does not contradict a hard constraint, it will be applied. If your intent
is to over-ride a soft constraint with a hard constraint, use reset_soft(). See Example 2 on page 263.

Example 1

keep x in [1..10];
keep soft x > 3;
keep soft x==8;
keep soft x < 6;

The evaluation of the constraints is as follows:
1) The hard constraint is applied, so the range is [1..10].

2) The last soft constraint in the code order, x < 6, is considered. It does not conflict with the cur-
rent range, so it is applied. The range is now [1..5].

262 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

3) The next to last soft constraint, x == §, conflicts with the current range, so it is skipped. The
range is still [1..5].

4) The first soft constraint in the code order, x > 3, does not conflict with the current range, so it is
applied. The final range of legal values is [4, 5].

Example 2

The constraint shown below sets the default value for num to the range [1..10].

< I’
struct x {

num: uint;

keep soft num in [1..10];

In order to override the default and change the range with a hard constraint to [10.20] for a particular test,
you must also reset the soft constraint. Because there is one value (10) in the intersection of the soft and the
hard constraint, both constraints are applied and num will always be 10. The example below shows how to
override the soft constraint with reset_soft().

<l
extend sys {

x1list[10]: list of x;

keep for each (n) in xlist {
n.num.reset soft () ;
n.num in [10..20];

}i

run() is also {
print sys.xlist;

See Also

— “keep gen-item.reset_soft()” on page 283

— “Basic Concepts of Generation” on page 257
— “Defining Constraints” on page 270

— “Invoking Generation” on page 296

7.1.6 Constraining Struct Instances

You can constrain two struct instances of the same type to have the same contents. The constraint causes the
two struct instances to refer to the same memory location. As a result, changing one of the struct instances
also changes the other struct instance immediately. For example, in the code below, when scons].x is set to
5, the value of scons2.x also becomes 5.

struct scons {
x: ulnt;
blist: list of byte;

Vi

This is an unapproved IEEE Standards Draft, subject to change.
263

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

extend sys {
sconsl: scons;
scons2: scons;
keep scons2 == sconsl;

run() is also {
sconsl.x = 5;

bi

7.1.7 Constraining Lists

There are several ways that you can constrain a list or its elements. See the following sections for more
information:

— “List Size” on page 264

— “List Item” on page 264

— “One List to Another List” on page 265
— “Multiple List Items™ on page 265

— “List of Structs” on page 266

— “Multiple Lists” on page 266

7.1.7.1 List Size

You can constrain the list size of a field either by using a size expression in a field declaration or by using a
keep constraint. The following statements both constrain the number of elements in the “pacs” list to 10:

pacs[10]: list of pac;
keep pacs.size() == 10;

The key difference between these two methods is that the keep constraint affects only generation, whereas
the field declaration also initializes the list automatically. Note, however, that if you use the field declaration
approach and the size expression cannot be evaluated when init() is called, you will see an error. For exam-
ple, if the size expression is struct-field.field and struct-field is NULL when init() is called, you get an error.
If you unpack data into a field declared as a list, it is better to use the size expression in a field declaration.
That way, the list’s size is always exactly as specified. See “Packing and Unpacking Lists” on page 503 for

more information.

To constrain the list size of a variable, you must use the keep constraint. A size expression in a variable dec-
laration is not allowed.

If there are no explicit constraints on the size of a list, the generated list will have a size between zero and the
value of the configuration variable, default_max_list_size. This variable is set initially to 50.

7.1.7.2 List Item
You can constrain an individual item in a list of scalar items using the keep constraint as follows.
keep me.data[0] == 0x9a;

You can constrain an individual item in a list of structs using the keep constraint as follows.

264 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

keep dstructs[0] .data == Oxff;

NOTE— Neither multiple list indexing nor index expressions may be used in constraints. For
example, top[0].dstruct[0].data is not legal, and dstruct[n+1].data is not legal.

7.1.7.3 Item in List

You can constrain a list to keep a specific item in the list. For example:

< 1
extend sys {
x: ulnt;
keep x == 5;
lu: list of uint;
keep x in 1lu;

-

This constraint is bidirectional, meaning that it does not imply a generation order for the item and list. How-
ever, the item is always at the last place in the list, regardless of which is generated first, the item or the list).

In this example, x is generated before lu and therefore the last item in Iu is 5.
Therefore, the following code results in a contradiction:

< 1

extend sys {
x: uint;
y: uint;
lu: list of uint;
keep x in 1lu; // last item in lu is x
keep vy in lu; // last item in lu is y
keep x != y;

7.1.7.4 One List to Another List

You can constrain one list to contain the same items as another list, using the keep constraint.
datal: list of byte;
data2: list of byte;
keep data2 == datal;
This results in two references to two separate lists which initially contain the same values. Changing one of

the lists does not affect the other list unless one list is assigned to the other, which results in the references to
the two lists pointing to the same memory location.

7.1.7.5 Multiple List Iltems
You can constrain multiple items in a list, using the keep for each constraint.

keep for each in pacs {
index == 0 => it.kind == control;

This is an unapproved IEEE Standards Draft, subject to change.
265

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE
Vi

7.1.7.6 List of Structs

You can constrain a list of structs to have all legal values of one or more fields, using the .is_all_iterations()
method.

keep pacs.is_all iterations(.kind);

7.1.7.7 Multiple Lists

You can constrain a list to be a subset of another list, using the in construct. In this example, all the elements
in the “pacs_sub” list are contained in the “pacs” list, but not necessarily in the same order. The “pacs” list
can have elements that are not in “pacs_sub”.

pacs_sub[10]: list of pac;
keep pacs_sub in pacs;

You can constrain a list to have the same elements as another list using the is_a_permutation() pseudo-
method. In this example, the “pacs_dup” list and the “pacs” list have exactly the same elements, but not nec-
essarily in the same order.

pacs_dup[10]: list of pac;
keep pacs_dup.is_a permutation (pacs) ;

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.1.8 Constraining Bit Slices

You can use the bit slice operator in constraints to achieve a variety of purposes. A simple example is using
the bit slice operator to constrain the fields of a CPU instruction:

struct cpu_env {
instr: uint (bits: 16);

keep instr[15:13] == 0b1l00;
keep instr[12:8] == 0b11001;
keep instr[7:0] == 0b00001111;

Vi
Another simple but useful application of the bit slice constraint is to generate a list of even integers:

struct cpu env {
lint: list of int;

keep for each in lint {
it [0:0] == O;
}i

Vi

266 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

NOTE— Using “it%2 == 0 to generate a list of even integers does not work. Since the “%”
operator makes the constraint unidirectional, “it” is generated before the constraint is checked, and
a contradiction occurs about 50% of the time.

You can also use a bit constraint to constrain particular bits in relation to each other. For example, the fol-
lowing constraint ensures that only one of the lower four bits of “x” is 1:

keep x[3:0] in [1,2,4,8];

You can use non-constant bit indices in bit slice constraints, as in the following example, which generates a
4-bit integer with 1s in two consecutive bits:

i: int [0..3];
j: int [0..3];
1: int (bits: 4);

keep j - 1 == 1;
keep 1[j:1] == 0bl1l;
See Also

— “Bit Slice Constraints and Generation Order” on page 267
— “Bit Slice Constraints and Signed Entities” on page 268
— “Bit Slice Constraints and Soft Constraints” on page 269
— “Limitations of Bit Slice Constraints” on page 269

— “Debugging Bit Slice Constraints” on page 269

7.1.8.1 Bit Slice Constraints and Generation Order
A generatable item can contain a bit slice reference; however, there are implications for generation order:
Non-constant Bit Indices

Non-constant bit indices must be generated before other entities in the constraint. You cannot override this
order.

For example, the following constraint
keep x[j:1] == vy;
implies
keep gen (j, i) before (x, y);

NOTE— A further implication is that constraints like the following, where the bit indices are non-
constant and the other items are constant, cannot be solved.

keep 125[j:1i] == 0b1l01;
Generation of Bit Sliced Items

By default, bit sliced items are generated after other items in the same constraint. You can override this
default with a keep gen constraint.

For example, the following constraint

This is an unapproved IEEE Standards Draft, subject to change.
267

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

keep x[j:1i] == y;
implies
keep soft gen (y) before (x);

There can be cases where you need to override this default generation order with a keep gen constraint. For
example, to meet the following constraints, “x” must be generated before “y”:

keep y == x[1:0];
keep x in [1,2,5,6];

In order to make this happen, you can add the constraint:
keep gen (x) before (y);
or you can add the value() routine to the existing constraint:

keep y == value(x[1:0])

7.1.8.2 Bit Slice Constraints and Signed Entities

Bit slices in e are treated as unsigned. It is possible, however, to constrain the value of a bit slice (or any
unsigned entity) relative to a signed entity. In the example below, a bit slice of “x” is constrained by a signed

entity, “y”

x: int;
y: int (bits:5);
keep x[4:0] == vy;

There are several implications of constraints that relate a bit slice to a signed entity:

— The value of the bit slice is treated as an unsigned integer; in other words, none of the bits in the slice
is treated as a sign bit. In the example above, although “x” can be a negative number, x[4:0] is
treated as a positive value.

— The value of the signed entity is generated as a non-negative. In the example above, “y” will always
be generated as a non-negative integer.

— The value of both the bit slice and the signed entity must fit into the smaller of

¢ The bit width of the bit slice

¢ The bit width of the highest possible value of the signed entity (This width excludes one bit used to
store the sign.)

Example

[Tl

Given the following integers, “x” and “y”,

x: int;
y: int (bits:5);

any one of the following constraints requires the value of “y” to be a non-negative number no larger than
four bits (the bit width of “y”, minus one bit to store the sign). In other words, the value of both “y” and the
specified bit slice of “x” is generated in the range [0..15]. Any upper bits of the bit slice not required to store
the value are set to 0:

268 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

keep x[7:0] == vy; // x[7:4] is O
keep x[4:0] == y; // x[4] is 0
keep x[3:0] == y;

By contrast, the value of “y” in the following constraint must fit into only three bits (the bit width of the bit
slice), so “y” and “x[2:0]” are generated in the range [0..7]:

keep x[2:0] == y;

7.1.8.3 Bit Slice Constraints and Soft Constraints

A hard constraint on a bit slice of a variable always overrides a soft constraint on that variable. For example,
the intention of the following constraints is to make all the bits of a scalar be zero by default, then set indi-
vidual bits with bit slice constraints:

keep soft x == 0;
keep x[7:7] == 1; // Doesn’t have desired effect

These constraints will not have the desired effect as the soft constraint will always be overridden. The only
way to achieve this purpose is to apply the soft constraint to each individual bit explicitly:

keep soft x[0:0] == 0;
keep soft x[31:31] == 0;
keep x[7:7] == 1;

7.1.8.4 Limitations of Bit Slice Constraints

If a bit slice is a function of another bit slice of the same field or variable, in many cases a contradiction
occurs.

€y, 9

In the following example, “x” is an argument to the “bit_parity()” function and must be generated before the
function is called:

keep x[8:8] == bit parity(x[7:0]); // Usually a contradiction error
The result of the function call is then compared to “x[8:8]” and will fail in 50% of the cases.
The workaround is to assign a new virtual field for “x[7:0]”.

y: uint (bits:8);

keep y == x[7:0];
keep x[8:8] == bit parity(y);

These constraints cause “y” to be generated first, “x[7:0]” to be constrained to have the value of “y” and
“x[8:8]” to be constrained to have the return value from the bit_parity() method.

This is an unapproved IEEE Standards Draft, subject to change.
269

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

[11 19 51 591 OO Y Y]
T~ — g 2222

7.2 Defining Constraints
For information on the constructs used to define constraints, see:

— “keep” on page 270

— “keep all of {...}” on page 272

— “keep struct-list.is_all iterations()” on page 274
— “keep for each” on page 275

— “keep soft” on page 278

— “keep soft... select” on page 279

— “keep gen-item.reset_soft()” on page 283

— “keep gen ... before” on page 284

— “keep soft gen ... before” on page 285

— “keep gen_before_subtypes()” on page 287

— “keep reset_gen before subtypes()” on page 289
— “value()” on page 290

— “constraint-bool-exp” on page 292

— “gen-item” on page 294

In addition, see the following for helpful information.
“Constraining Lists” on page 264

“Constraining Bit Slices” on page 266
— “Comparison Operators” on page 42

7.2.1 keep

Purpose

Define a hard value constraint
Category

Struct member

Syntax

keep constraint-bool-exp
Syntax example:

keep kind != tx or len == 16;

270 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Parameters
constraint-bool-exp A simple or a compound boolean expression. See “constraint-bool-exp”
on page 292 for a full description of this parameter.
Description

States restrictions on the values generated for fields in the struct or the struct subtree, or describes required
relationships between field values and other items in the struct or its subtree.

Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a gener-
ated struct, the generator either meets the constraint or issues a constraint contradiction message.

NOTE— If the keep constraint appears under a when construct, the constraint is considered only
if the when condition is true.

Example 1

This example describes a required relationship between two fields, “kind” and “len”. If the current “pkt” is
of kind “tx”, then “len” must be 16.

struct pkt {
kind: [tx, rx];
len: uint;
keep kind == tx => len == 16;

i
This constraint is translated internally into an or constraint:

keep kind != tx or len == 16;

Example 2

This example shows a required relationship between two fields, “kind” and “len”, using a local variable,

[

p”, to represent “pckt” instances of kind “tx”:

struct pckt {
kind: [tx, rx];
len: uint;
}i
struct top {
packet: pckt;
keep packet is a tx pckt (p) => p.len in [128..255];

Vi

Example 3

This example shows another way to describe the required relationship between the two fields, “kind” and
“len”. This constraint is also translated into an or constraint:

struct pkt {
kind: [tx, rx];
len: uint;
when tx pkt {

This is an unapproved IEEE Standards Draft, subject to change.
271

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

keep len == 16;
}i
Vi

Example 4

This example shows how to call the list.is_a_permutation() method to constrain a list to have a random per-
mutation of items from another list. In this example, “1 1” and “l1 2” will have exactly the same elements.
The elements will not necessarily appear in the same order.

struct astr {
1 1: list of int;
1 2: list of int;
keep 1 2.is a permutation(l 1);

bi

Example 5

This example shows a constraint on a single list item (“data[0]”) and the use of path names to identify the
item to be constrained.

type transaction _kind: [good, bad];
struct transaction {

kind: transaction kind;

address: uint;

length: uint;

data: list of byte;

i

extend transaction {
keep length < 24;
keep data[0] == 0x9a;
keep address in [0x100..0x200];
keep me.kind == good;
}i
extend sys {

t: transaction;
keep me.t.length != 0;

Vi

See Also

“Basic Concepts of Generation” on page 257
— “Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.2 keep all of {...}
Purpose

Define a constraint block

272 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Category

Struct member

Syntax

keep all of {constraint-bool-exp; ...}
Syntax example:

keep all of {

kind != tx;
len == 16;
}i
Parameters
constraint-bool-exp A simple or a compound boolean expression. See “constraint-bool-exp”
on page 292 for a full description of this parameter.
Description

A keep constraint block is exactly equivalent to a keep constraint for each constraint boolean expression in
the block. For example, the following constraint block

keep all of {
kind != tx;
len == 16;

Vi
is exactly equivalent to

keep kind != tx;
keep len == 16;

The all of block can be used as a constraint boolean expression itself, as is shown in Example on page 273.

Example

type transaction kind: [VERSION1, VERSION2, VERSION3];
struct transaction {

kind: transaction kind;

address: uint;

length: uint;

data: list of byte;

keep kind in [VERSION1, VERSION2] => all of {
length < 24;
data[0] == 0x9a;
address in [0x100..0x200];
}i
Vi

See Also

“Basic Concepts of Generation” on page 257

This is an unapproved IEEE Standards Draft, subject to change.
273

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

— “Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.3 keep struct-list.is_all_iterations()
Purpose

Cause a list of structs to have all iterations of a field
Category

Constraint-specific list method

Syntax

keep gen-item.is_all_iterations(.field-name: exp, ...)
Syntax example:

keep packets.is_all iterations(.kind, .protocol) ;

Parameters
gen-item A generatable item of type list of struct. See “gen-item” on page 294 for more
information.
field-name The name of a scalar field of a struct. The field name must be prefixed by a period.
The order of fields in this list does not affect the order in which they are iterated.
The specified field that is defined first in the struct is the one that is iterated first.
Description

Causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field list.
Fields not included in the field list are not iterated; their values can be constrained by other relevant con-
straints. The highest value always occupies the last element in the list.

Soft constraints on fields specified in the field list are skipped. For example, given the following constraints,
packet_list will have all legal iterations of the length field, not just iterations within 10 and 100:

keep soft len in [10..100];
keep packet list.is_all iterations(.len)

All other relevant hard constraints on the list and on the struct are applied. If these constraints reduce the
ranges of some of the fields in the field list, then the generated list is also reduced.

Memory Usage and Performance Considerations

The number of iterations in a list produced by /ist.is_all_iterations() is the product of the number of possi-
ble values in each field in the list. For example, if you list all iterations of a struct with the following fields:

i: int [0..4] // 5 possible values
j: int [0..3, 5..7] // 7 possible values
k: int (bits: 8) // 256 possible values

274 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

The number of iterations for the list is:
5 * 7 * 256 = 8960

The absolute_max_list_size generation configuration option sets the maximum number of iterations
allowed in a list. The default is 524,288. If the number of iterations in your list exceeds this number, you can

set absolute_max_list_size to a larger number with the-eenfig-gencommand.

Notes
— The list.is_all_iterations() method can only be used in a constraint boolean expression.
— The fields to be iterated must be of a scalar type, not a list or struct type.

Example

The “sys.packets” list will have six elements (2 “kinds” * 3 “protocols”). The “len” field is not iterated on; it
will get any value from its legal range for each of the list items.

type p_kind: [tx, rx];
type p_protocol: [atm, eth, other];
struct packet ({

kind: p_kind;

protocol: p protocol;

len: int [O0..4k];

bi
extend sys {
packets: list of packet;
keep packets.is all iterations(.kind, .protocol) ;

Vi

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.4 keep for each
Purpose

Constrain list items
Category

Struct member

Syntax

keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in
gen-item {constraint-bool-exp | nested-for-each; ...}

Syntax example:

keep for each (p) in pkl {
soft p.protocol in [atm, eth];

This is an unapproved IEEE Standards Draft, subject to change.
275

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

}i
Parameters
item-name An optional name used as a local variable referring to the current item in
the list. The default is it.
index-name An optional name referring to index of the current item in the list. The
default is index.
prev-name An optional name referring to the previous item in the list. The default is
prev.
gen-item A generatable item of type list. See “gen-item” on page 294 for more
information.
constraint-bool-exp A simple or a compound boolean expression. See “constraint-bool-exp”
on page 292 for a full description of this parameter.
nested-for-each A nested for each block, with the same syntax as the enclosing for each
block, except that “keep” is omitted.
Description

Defines a value constraint on multiple list items.

Notes

— You must refer to the items you want to generate using a path name that starts either with it, such as
“it.pk” or with the name that you assigned to the list item (item-name). Items whose pathname does
not start with it can only be sampled; their generated values cannot be constrained.

— Within a for each constraint, prev and index are predefined constants and cannot be constrained or
generated.

— Items in lists are generated in ascending order starting with index zero. Constraints that use an index
expression to refer to other items in a list can only refer to items with lower index values.

— Referencing prev while in the first item of the list causes an error.

— You can nest for each constraints.

— If a for each constraint is contained in a gen ... keeping action, you must name the iterated variable.
See Example 3 on page 298 for more information.

Example 1

In this example, the “keep for each in dat” constraint in the “pstr” struct constrains all the “dat” fields to be
less than 64. Note that referring to the list items in the boolean expression “it < 64” as “dat[index]” rather
than “it” generates an error.

struct pstr {
dat: list of uint;
keep for each in dat {
it < 64;
}i
}i

Example 2

Wi X u i index i i i valu
The following example uses an item name “p” and an index name “pi” to constrain the generation of values
for the variable “indx”:

276 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1
struct packet {
indx: uint;
}i

extend sys {
packets: list of packet;
keep for each (p) using index (pi) in packets ({
p.indx == pi;
}i

bi

Example 3

[3T)

The following example shows the use of index in a nested for each block. The “x” field receives the value
of the outer index and each byte of “payload” receives the value of the inner index.

struct packet ({

X: 1nt;
$payload: list of byte;
keep payload.size() == 10;

bi
extend sys {
packets: list of packet;
keep packets.size() == 5;
keep for each (p) in packets {

p.x == index;
for each in p.payload
it == index;
}i
}i
post_generate() is also {
for i from 0 to 4
print packets[i] .x;
print packets[i] .payload;
}i
}i

Vi

Result

Generating the test using seed 1...
packets[i] .x = 0
packets[i] .payload = (10 items, dec):
9 8 7 6 5 4 3 2 1 0 .0

packets[i] .x = 1
packets[i] .payload = (10 items, dec):
9 8 7 6 5 4 3 2 1 0 .0

packets[i] .x = 2
packets[i] .payload = (10 items, dec):
9 8 7 6 5 4 3 2 1 0 .0

packets[i] .x = 3
packets[i] .payload = (10 items, dec):
9 8 7 6 5 4 3 2 1 0 .0

packets[i] .x = 4

This is an unapproved IEEE Standards Draft, subject to change.
277

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

packets[i] .payload = (10 items, dec):
9 8 7 6 5 4 3 2 1 0 .0

See Also

— “Basic Concepts of Generation” on page 257
— “Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.5 keep soft
Purpose

Define a soft value constraint
Category

Struct member

Syntax

keep soft constraint-bool-exp

Syntax example:

keep soft legal == TRUE;
Parameters
constraint-bool-exp A simple boolean expression. See “constraint-bool-exp” on page 292 for a

full description of this parameter.

Description

Suggests default values for fields or variables in the struct or the struct subtree, or describes suggested rela-
tionships between field values and other items in the struct or its subtree.

Soft constraints are order dependent and will not be met if they conflict with hard constraints or soft con-
straints that have already been applied. See “Order of Evaluation of Soft Value Constraints” on page 262 for
more information on this topic.

NOTE— The soft keyword can be used in simple boolean expressions, but not in compound
boolean expressions. Thus the first constraint below is valid, but the second generates a compile-
time error:

keep x > 0 => soft y < 0;
keep soft x > 0 => y < 0; // Compile-time error

Example 1
Because soft constraints only suggest default values, it is better not to use them to define architectural con-
straints, such as “keep opcode in [ADD, SUB, AND, XOR, RET, NOP]”. If you want to be able to explicitly

override the architectural constraints in order to generate illegal instructions for a particular test, then you
can define a boolean field for legal instructions and place a soft constraint on that:

278 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE

struct instr {
%opcode: cpu_opcode;
legal: bool;
keep soft legal == TRUE;

keep legal => opcode in [ADD, SUB, AND, XOR, RET, NOP];

Vi

Example 2
Individual constraints inside a constraint block can be soft constraints.

extend sys {
packets: list of packet;
keep for each in me.packets
soft .len == 2k;
.kind != tx;
}i
bi

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.6 keep soft... select

Purpose

Constrain distribution of values

Category

Struct member

Syntax

keep soft gen-item==select {weight: value; ...}

Syntax example:

keep soft me.opcode == select ({
30: ADD;
20: ADDI;

10: [SUB, SUBI];

Vi

This is an unapproved IEEE Standards Draft, subject to change.

279

P1647/D0.1

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Parameters
gen-item A generatable item. See “gen-item” on page 294 for a full description of
this parameter.
weight Any uint expression. Weights are proportions; they do not have to add up

to 100. A relatively higher weight indicates a greater probability that the
value is chosen.

value is one of the following:

range-list A range list such as [2..7]. A select expression with a range list selects the
portion of the current range that intersects with the specified range list.

exp A constant expression. A select expression with a constant expression
(usually a single number) selects that number, if it is part of the current
range.

others Selects the portions of the current range that do not intersect with other

select expressions in this constraint.

Using a weight of O for others causes the constraint to be ignored. That is,
the effect is the same as if the others option were not entered at all.

pass Ignores this constraint and keeps the current range as is.
edges Selects the values at the extreme ends of the current range(s).
min Selects the minimum value of the gen-item.
max Selects the maximum value of the gen-item.

Description

Specifies the relative probability that a particular value or set of values is chosen from the current range of
legal values. The current range is the range of values as reduced by hard constraints and by soft constraints
that have already been applied.

A weighted value will be assigned with the probability of

* weight/(sum of all weights)

Weights are treated as integers. If you use an expression for a weight, take care to avoid a situation where the
value of the expression is larger than the maximum integer size (MAX INT).

Like other soft constraints, keep soft select is order dependent and will not be met if it conflicts with hard
constraints or soft constraints that have already been applied. See “Order of Evaluation of Soft Value Con-
straints” on page 262 for more information on this topic.

Example 1

The following soft select constraint specifies that there is a 3/6 probability that ADD is selected from the
current range, a 2/6 probability for ADDI, and a 1/6 probability that either SUB or SUBI is selected.

struct instr {
%opcode: cpu_opcode;

keep soft me.opcode == select {
30: ADD;
20: ADDI;

10: [SUB, SUBI];

280 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

}i
i

Example 2

In the following example, “address” is generated in the range [0..49] 10% of the time, as exactly [50] 60% of
the time, and in range [51..99] 30% of the time, assuming that the current range includes all these values.

struct transaction {
address: uint;

keep soft address == select {
10: [0..49];
60: 50;
30: [51..99];
i
Vi
Example 3

This particular test uses the distribution described in the original definition of “transaction” only 10% of the
time and uses the range [200..299] 90% of the time.

extend transaction {
keep soft address == select {
10: pass;
90: [200..299];
}i
Vi

The final distribution is 90% [200..299], 1% [0..49], 6% [50], 3% [51..99].
Example 4

This extension to “transaction” sets the current range with a hard constraint. 50% of the time the extreme
edges of the range are selected (0, 50, 100, and 150). 50% of the time other values in the range are chosen.

extend transaction {
keep address in [0..50,100..150];

keep soft address == select {
50: edges;
50: others;
}i
}i
Example 5

This extension to “transaction” sets the current range with a hard constraint. About 10% of the values are to
be 10 and about 30% of the values are to be 50. The remaining 60% of the values are to be distributed
between 10 and 50.

extend transaction {
keep address in [10..50];
keep soft address == select {

This is an unapproved IEEE Standards Draft, subject to change.
281

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

10: min;
60: others;
30: max;
}i
Vi
Example 6

This example shows how to weight the values of generated elements of a list. The it variable is used to rep-
resent a list element in the keep for each construct. The values A, B, and C are given equal weights of 20,
and all other possible values (D through L) are given a collective weight of 40. About 20% of the generated
list elements will be A, 20% will be B, 20% will be C, and the remaining 40% will get random values in the
range D through L.

<!

type alpha: [A, B, C, D, E, F, G, H, I, J, K, L];
struct top {
my list[50]: list of alpha;

keep for each in my list {

soft it == select ({
20: A;
20: B;
20: C;
40: others;
}i
}i
bi
extend sys {
top;
Vi
">
Example 7

This example shows how a runtime value from the simulation can be used to weight the selection of a value.
In this case, the generation of the JMPC opcode is controlled by the value of the 'top.carry' signal.

extend instr {
keep soft opcode == select {
40: [ADD, ADDI, SUB, SUBI];
20: [AND, ANDI, XOR, XORI];
10: [JMP, CALL, RET, NOP];
'top.carry' * 90: JMPC;
}i
bi

See Also

— “Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
— “Invoking Generation” on page 296

282 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

7.2.7 keep gen-item.reset_soft()
Purpose
Quit evaluation of soft constraints for a field
Category
Struct member
Syntax
keep gen-item.reset_soft()
Syntax example:
keep c.reset_soft();

Parameters

gen-item A generatable item. See “gen-item” on page 294 for a full description of this parame-
ter.

Description

Causes the program to quit the evaluation of soft value constraints for the specified field. Soft constraints for
other fields are still evaluated..

Example 1

It is important to remember that soft constraints are considered in reverse order to the order in which they are
defined in the e code. If the following constraints are defined in the order shown, then the program applies
the “keep soft ¢ > 5 and ¢ < 10” constraint (the last one defined) and then quits the evaluation of soft value
constraints for “c” when it encounters the “keep c.reset_soft()” constraint. It never considers the “keep soft
¢ < 3” constraint. It does evaluate the “keep soft d< 3” constraint:

struct adder

c: uilnt;

d: uint;

keep soft ¢ < 3; // Is never considered
keep soft d < 3; // Is considered

bi

extend adder ({
keep c.reset_soft();

Vi

extend adder ({
keep soft ¢ > 5 and ¢ < 10;

}i

This is an unapproved IEEE Standards Draft, subject to change.
283

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 2

This example shows the use of reset_soft() in the situation where a soft constraint is written with the intent
that it will be ignored if other constraints are added in an extension. Normally, “address” should be less than
64. The test writer needs to do nothing additional to get this behavior.

In a few tests, “address” should be any value less than 128. The test writer needs to remove the effect of the
soft constraint so that it does not reduce the range [0..128] to [0..64].

struct transaction {
address: uint;
keep soft address < 64;

}i

extend transaction {
keep address.reset soft();
keep address < 128;

bi

See Also

“Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.8 keep gen ... before
Purpose
Modify the generation order
Category
Struct member
Syntax
keep gen (gen-item: exp, ...) before (gen-item: exp, ...)
Syntax example:
keep gen (y) before (x);

Parameters

gen-item, ... An expression that returns a generatable item. The parentheses are required. See
“gen-item” on page 294 for more information.

Description

Requires the generatable items specified in the first list to be generated before the items specified in the sec-
ond list. You can use this constraint to influence the distribution of values by preventing soft value con-
straints from being consistently skipped. Before using this constraint for this purpose, read “Basic Concepts
of Generation” on page 257 to be sure that you understand how soft constraints are evaluated.

284 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

Notes

— This constraint itself can cause constraint cycles. If a constraint cycle involving one of the fields in
the keep gen ... before constraint exists and if the resolve_cycles generation configuration option is
TRUE, the constraint can be ignored if the program cannot satisfy both it and other constraints that
conflict with it.

— This constraint cannot appear on the left-hand side of a implication operator (=>).

Example

In the following example, the constraint requires the test generator to generate values for “length” and
“data” before generating “crc”.

struct packet {
good: bool;
length: byte [1..24];
data [length]l: list of byte;
crc: uint;
keep good => crc == crc_calc();
keep gen (length, data) before (crc);

crc_calc() : uint is {
result = pack(packing.low,length,data).crc_32(0,length);
}i

Vi
extend sys {
p: list of packet;
run() is also {
print sys.p.crc;
}i
}i

extend packet {
keep good == TRUE; // just to show interesting case

}i

See Also

“Basic Concepts of Generation” on page 257
— “Defining Constraints” on page 270
“Invoking Generation” on page 296

7.2.9 keep soft gen ... before
Purpose

Suggest order of generation
Category

Struct member

Syntax

keep soft gen (gen-item: exp, ...) before (gen-item: exp, ...)

This is an unapproved IEEE Standards Draft, subject to change.
285

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Syntax example:

keep soft gen (y) before (x);

Parameters
gen-item, ... An expression that returns a generatable item. See “gen-item” on page 294 for
more information.
Description

Modifies the “soft” generation order by recommending that the fields specified in the first field list to be
generated before the fields specified in the second field list. This soft generation order is second in priority
to the hard generation order created by dependencies between parameters and keep gen before constraints.

You can use this constraint to suggest a generation order that you can later override for particular purposes in
individual tests with a hard order constraint.

NOTE— This constraint cannot appear on the left-hand side of a implication operator (=>).
Example

This example shows how you can use a soft order constraint to get the distribution of values you want. In the
example below, there is a hard value constraint on “length” and “address”.

struct transaction {
address: uint;

extend transaction {
length: uint [1..10];
keep length == 5 => address < 50;

Vi

However, because “address” is generated first (based on coding order), “length” is generated to 5 only a
small percentage of the time (50 out of MAX UINT). If you want 5 to be as likely as any other value, the
default ordering must be changed with a soft order constraint.

extend transaction {
keep soft gen (length) before (address);
}i

Since the order constraint is soft, it can be overridden by a hard constraint, such as one that uses a method.
The following hard value constraint requires “address” to be generated before “length”, overriding the soft
generation order suggested by the previous extension to “transaction”.

extend transaction {
keep length == value (address) ;
Vi

See Also

— “Basic Concepts of Generation” on page 257
— “Defining Constraints” on page 270
— “Invoking Generation” on page 296

286 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

7.2.10 keep gen_before_subtypes()

Purpose

Specify a when determinant field for deferred generation

Category

Struct member

Syntax

keep gen_before_subtypes(determinant-field: field, ...)

Syntax example:

keep gen before subtypes (format) ;

Parameters

determinant-field An expression that evaluates to the name of a field in the struct type. The field

must be one that has at least one value that is used as a when determinant for a
subtype definition. If the field is not a when determinant field, a warning is
issued and the constraint is ignored.

Multiple field expressions can be entered, separated by commas.

Description

To speed up generation of structs with multiple when subtypes, this type of constraint, called a subtype opti-
mization constraint, causes the generator engine to wait until a when determinant value is generated for a
specified field before it analyzes constraints and generates fields under the when subtype.

When no subtype optimization constraints are present in a struct, the generator analyzes all of the constraints
and fields in the struct before it generates the struct, even those constraints and fields that are defined under
when subtypes. When a subtype optimization constraint is present, the generator initially analyzes only the
constraints and fields of the base struct type. Only when a subtype optimization when determinant is
encountered does the generator analyze the associated when subtype and then generate it.

Notes

287

Subtype optimization can handle multiple determinants. Subtypes are analyzed and generated in the
order in which their when determinants are encountered.

If multiple determinants are specified, and some of them are subtype optimization determinants
while others are not, then a subtype that is a result of multiple inheritance of a subtype optimization
determinant and a non-subtype optimization determinant will be treated the same as a other subtype
optimization determinant subtype.

The generator engine’s ability to resolve contradictions is diminished somewhat by subtype optimi-
zation constraints. Specifically, the generator might not be able to resolve contradictions arising
from constraints under subtypes that involve fields of the base type.

The analysis and generation is recursive. If a subtype contains another determinant that is specified
in a subtype optimization constraint, then that sub-subtype is analyzed and generated as soon as its
determinant field is generated under the higher-level subtype.

This is an unapproved IEEE Standards Draft, subject to change.

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

Example 1

This example shows a subtype optimization constraint on the field named format in the instr_s struct. The
generator defers analysis and generation of constraints and fields under the FMT_ A and FMT_B subtypes,
since those are when determinants.

type format t: [FMT A, FMT B, FMT C];
struct instr s {
intrpt: bool;
format: format t;
keep gen before subtypes (format) ;
keep format == FMT A => intrpt != FALSE;

when FMT A'format instr s {
a_intrp: bool;

keep intrpt != a intrp;
keep gen (size) before (offset);
keep offset == 0x10;

}i

when FMT B'format instr s {
b intrp: bool;
keep intrpt == TRUE;

}i

offset: int;
size: int;

Vi
The generation order for the example above is:

1) All constraints in the base struct concerning intrpt and format are analyzed.
2) A value is generated for intrpt.

3) A value is generated for format.

4) When format is FMT A,

* All constraints under subtype FMT_A are analyzed.
* A value is generated for a_intrp.

5) A value is generated for size.
6) A value is generated for offset.

Notes

— The gen...before constraint in the FMT A subtype can be satisfied because neither offset nor size
has been generated when that constraint is encountered.

— The constraint between intrpt and a_intrp can be satisfied even though it is unidirectional, because
intrpt is generated before a_intrp.

— If the gen...before constraint under FMT A was between intrpt and offset, for example, then it
would be ignored because intrpt is generated before any subtypes are analyzed (unless an explicit
order constraint was added between the format determinant and intrpt).

Example 2

In the following example, the keep op != SUB constraint under the FMT_A subtype might cause a contra-
diction, since it involves a field in the base struct. This is because the generator initially generates the base

288 This is an unapproved IEEE Standards Draft, subject to change.

DRAFT STANDARD FOR e LANGUAGE REFERENCE P1647/D0.1

struct (the op and format fields) before it analyzes the constraints in the subtype. There are no constraints
involving op and format in the base struct, so the generator is free to choose FMT_A and SUB for those
fields. However, once the format determinant is fixed, the generator analyzes the FMT_A subtype, and finds
that op is not allowed to be SUB. This results in a contradiction.

type format_t: [FMT A, FMT B, FMT C];
type opcode t: [ADD, SUB, MUL, DIV];
struct instr s {
op: opcode_ t;
format: format t;
keep gen before subtypes (format) ;
when FMT A'format instr s {
a_intrp: bool;
keep op != SUB; // Might cause a contradiction
}i
Vi

To avoid the possibility of a contradiction described above, you can elevate the constraint from the subtype
to the base struct:

keep format == FMT A => op != SUB;

See Also

“Basic Concepts of Generation” on page 257
“Defining Constraints” on page 270
— “Invoking Generation” on page 296

7.2.11 keep reset_gen _before_subtypes()
Purpose
Disable all previous keep gen_before_subtypes() subtype optimization constraints
Category
Struct member
Syntax
keep reset_gen_ before_ subtypes()
Syntax example:
keep reset gen before subtypes () ;
Description
When subtype optimization is turned off by default, this constraint causes the generator to ignore all previ-

ously defined gen_before_subtypes() constraints for the enclosing struct or unit. Any
gen_before_subtypes() constraints you define after the reset will be followed.

This is an unapproved IEEE Standards Draft, subject to change.
289

P1647/D0.1 DRAFT STANDARD FOR e LANGUAGE REFERENCE

When subtype optimization is turned on by default, this constraint turns off subtype optimization for the
enclosing struct or unit.

When subtype optimization is forced on or off, this constraint has no effect.

NOTE— You can define other subtype optimization constraints following a keep
reset_gen_before_subtypes() constraint.

Example

This example shows a reset_gen_before_subtypes() constraint, which disables all previous
gen_before_subtypes() constraints, followed by a new gen_before_subtypes() constraint which is still
effective.

type format_t: [FMT A, FMT B, FMT C];
struct instr s {

intrpt: bool;

format: format t;

keep gen before subtypes (format) ;

}i
extend instr s {
keep reset gen before subtypes();
// Disables previous subtype optimization constraints
keep ge