
1

CS11001/CS11002
Programming and Data 

Structures (PDS)
(Theory: 3-1-0)

Loops



2

The for loop

 for ( initialize loop; continuation condition ; 
loop increment )

{ execute loop body; }

 The for loop can be equivalently described in 
terms of the following while loop: 
 initialize loop; 

while (continuation condition is true) 

{ execute loop body; 

loop increment; }  

Example

 One can compute gcds using for loops as 
follows:

for ( ; b > 0 ; ) 

{ 

r = a % b; /* Compute the next remainder */        

a = b; /* Replace a by b */ 

b = r; /* Replace b by r */ 

} 



3

Computing the Harmonic Numbers

 Computation of harmonic numbers using for 
loops is quite simple: 

H = 0; 

for (i=1; i<=n; ++i) 

H += 1.0/i; 

printf("H(%d) = %f\n", n, H); 

For loops with multiple initialization and 
incrementation statements
 If more than one statements need be 

executed during the initialization or increment 
step, they should be separated by commas, 
since semi-colons indicate separation of the 
three parts of the loop control area.

 for ( i = 2, p1 = 1, p2 = 0; i <= n; ++i , p2 = p1 , p1 = F ) 

F = p1 + p2; /* Compute Fi from Fi-1 and Fi-2 */ 
printf("F(%d) = %d", n, F);  



4

Loop Invariants

 For verifying the correctness of loops one 
often uses the concept of loop invariance. 

 A loop invariant refers to a statement that is 
true at all instants when the loop condition is 
checked.

 It may be expressed in terms of one or more 
variables controlling the flow of the loop. 

Example

 Consider the while loop implementation of the 
computation of Hn. 

 i = 0; H = 0;
while (i < n) 

{ ++i; /* Incremet i */ 
H += 1.0/i; /* Update the harmonic number 

accordingly */ } 
Here the loop invariant is the statement "H stores the 

value Hi for all i=0,1,2,...,n".
The correctness of this statement can be proved using 

induction on i. 



5

Another example

/* Initialize */
r2 = a; u2 = 1; v2 = 0; /* Previous-to-previous values */
r1 = b; u1 = 0; v1 = 1; /* Previous values */ 

/* Extended gcd loop */
while (r1 > 0) {

/* Compute values for the current iteration */ 
q = r2 / r1; /* Compute the next quotient */ 
r = r2 - q * r1; /* Compute the next remainder */
u = u2 - q * u1; /* Identically compute the next u value */
v = v2 - q * v1; /* Identically compute the next v value */
/* Prepare for the next iteration */ 

r2 = r1; u2 = u1; v2 = v1; /* Let the previous-to-previous values be the 
previous values */ 

r1 = r; u1 = u; v2 = v; /* Let the previous values be the current values */ }
printf("gcd(a,b) = %d = (%d) * a + (%d) * b\n", r2, u2, v2); 

Loop Invariant

 Whenever the continuation condition for the 
above loop is checked, we have: 
 gcd(r2,r1) = gcd(a,b), (1) 

 u2 * a + v2 * b = r2,    (2) 

 u1 * a + v1 * b = r1.    (3) 

 Convince your self that the initial values 
satisfy these 3 equations.

 Prove the results by induction:
 gcd(r1,r)=gcd(r2,r1)=gcd(a,b)



6

Inductive Reasoning

 Moreover, 
 u = u2 - q * u1, and v = v2 - q * v1, and so 

 u * a + v * b 

= (u2 - q * u1) * a + (v2 - q * v1) * b 

= (u2 * a + v2 * b) - q * (u1 * a + v1 * b) 

= r2 - q * r1 = r. 

Let us look at the trace of the values stored in different variables 
for a sample run with a=78 and b=21. 

6
3 

26
26

-7
-7

0
0

2
2

-11
26

4
-11

3
-7

-1
3

3
0

6
3

4

15
6 

-11
-11

3
3

3
3

2
2

4
-11

-3
4

-1
3

1
-1

6
3

15
6

3

21
15 

4
4

-1
-1

6
6

1
1

3
4

1
-3

1
-1

0
1

15
6

21
15

2

78
21 

-3
-3

1
1

15
15

3
3

1
-3

0
1

0
1

1
0

21
15

78
21

1

78 ----10012178Before loop

u2*a+v2*b vurqv1v2u1u2r1r2Iteration No

gcd(78,21) = 3 = (3) * 78 + (-11) * 21 



7

The break statement

 A loop may be forcibly broken from inside 
irrespective of whether the continuation 
condition is satisfied or not. This is achieved 
by the break statement. 

 while (1) 

{ if (b == 0) break; 

r = a % b; a = b; b = r;

} printf("gcd = %d\n", a); 

Infinite loops with break

 The do-while loop: 
do { execute loop body; } while (continuation 
condition is true); 
is equivalent to 

 do { execute loop body; 
if (continuation condition is false) break; } 
while (1); 

 while (1) { execute loop body; 
if (continuation condition is false) break; } 



8

Cmputing sum of gcd(a,b), a<=b<=20 

/* Initialize sum */ 
sum = 0; 
for (i=1; i<=20; ++i) 

{ for (j=i; j<=20; ++j) 
{ /* Now we plan to compute gcd(j,i) */
/* But we must not disturb the loop variables */ 

/* So we copy j and i to temporary variables a and b and change those copies */ 
a = j; b = i; 

/* The Euclidean gcd loop */
while (1) 
{ if (b == 0) break; /* gcd computation is over, so break the while loop */
r = a % b; a = b; b = r; } 

/* When the while loop is broken, a contains gcd(j,i). Add it to the accumulating 
sum. */ 

sum += a; 
}/*end inner for loop*/ 

}/*end outer for loop*/ 
printf("The desired sum = %d\n", sum); 

An obfuscated code

 sum = 0; /* Initialize sum to 0 */
i = 0; /* Initialize the outer loop variable */

while (1 != 0) { /* This condition is always true */
j = ++i; /* Increment i and assign the incremented value to j */

if (j == 21) break; /* Break the outermost loop */
while (3.1416 > 0) { /* This condition is always true */

a = j; b = i; /* Copy j and i to temporary variables */ 
while ('A') { /* This condition is again always true, since 'A' = 65 */ 
r = a % b; /* Compute next remainder */
if (!r) break; /* Break the innermost loop */ 

a = b; /* Adjust a and b and */
b = r; /* prepare for the next iteration */ }

/* End of innermost loop */ 



9

sum += b; /* Add gcd(j,i) to the accumulating 
sum */ 
if (j == 20) break;
/* Break the intermediate loop */
++j; /* Prepare for the next value of j */ }
/* End of intermediate loop */ }

/* End of outermost loop */
printf("The desired sum = %d\n", sum); 


